

Building-block solutions for
developing instructional software

Eddy Boot

Open Universiteit Nederland
Heerlen, 2005

 II

Het in dit proefschrift beschreven onderzoek werd uitgevoerd bij TNO Business
Unit Human Factors in Soesterberg

The research reported in this dissertation was carried out at TNO Business Unit
Human Factors in Soesterberg

Druk Print Partners Ipskamp
 Enschede

Omslag Nieke Janssen
Typografie advies Leander Teepe

ISBN-10: 9090200584
ISBN-13: 9789090200583

© Eddy Boot, Wierden, 2005
e-mail: eddy.boot@tno.nl

Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een
geautomatiseerd gegevensbestand of openbaar gemaakt worden in enige vorm
of op enige wijze, hetzij elektronisch, mechanisch of door fotokopieën, opname,
of op enige andere manier, zonder voorafgaande schriftelijke toestemming van
de auteur.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permissions in writing, from
the author.

 III

Building-block solutions for developing
instructional software

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Open Universiteit Nederland
op gezag van de rector magnificus

prof. dr. ir. F. Mulder
ten overstaan van een door het

College voor promoties ingestelde commissie
in het openbaar te verdedigen

op vrijdag 9 december 2005 te Heerlen

om 15.30 uur precies

door
Eduardus Willem Boot

geboren op 25 mei 1969 te Ommen

 IV

Promotor:
Prof. dr. J.J.G. van Merriënboer, Open Universiteit Nederland

Overige leden beoordelingscommissie:
Prof. dr. A.S. Gibbons, Brigham Young University
Prof. dr. J. Lowyck, Katholieke Universiteit Leuven
Dr. Y.F. Barnard, Eurisco
Prof. dr. P.A. Kirschner, Open Universiteit Nederland
Prof. dr. E.J.R. Koper, Open Universiteit Nederland

 V

Acknowledgements

This dissertation is about improving the development of instructional

software. Three solutions are proposed to assist instructional designers in
communicating their designs to software producers better. The first solution is
to support the designers in making a better use of formal design languages to
standardize their design documents. The second solution is to support the
designers by using templates that offer pre-structured software moulds that only
have to be filled in with learning materials to create instructional software,
either as examples for producers, or even as final products. And the third
solution is to support designers in reusing parts of instructional software to
assemble new instructional software, as examples for producers or as final
products.

These solutions can be demonstrated in this Acknowledgement section. A
study of several dissertations shows that most Acknowledgement sections are
structured in a very uniform way, all using a similar design language. This
implies that a structured template can be made, in which each user only has to
instantiate his or her text. The result is a faster creation of this section, with the
potential of reusing parts for other Acknowledgement sections! In this example,
the eXtended Markup Language (XML) is used as a standardized design
language, with a template-like structure, identifying multiple parts that can be
reused, perhaps with some reediting. This example may also demonstrate
potential drawbacks of the three building block solutions: Will they limit
creativity?

<lom xmlns="http://www.imsglobal.org/xsd/imsmd_v1p2">

<general>
<title>
<langstring xml:lang="x-none">Acknowledgements</langstring>
</title>
<purpose>

 <langstring xml:lang="x-none">Thanking everybody who has
contributed to this dissertation</langstring>
</purpose>

</general>
<promoter>

Jeroen, for all his support, above and beyond duty, in conducting the studies
and writing this dissertation. The endless discussion, writing, and lunch-
walking sessions in Heerlen will be remembered with delight. It was Stoof
(2005) who already identified one of the characteristic Four Components of
Jeroen, namely “cognitive clearness”. I would like to add to that the
Component of “cognitive meticulousness”, and leave it to my successors to
identify the two remaining Components (or…perhaps there are more than
four?).

</promoter>

 VI

<management>
Herke, Alma, Hans, Bernd, and Rick, successively my department heads,
for the freedom they provided me to write this dissertation and allowing
me to practice what we preach as a department, namely that learning
must be integrated with working.

</management>
<co-authors and reviewers>

Jeroen, Jon, Andy, Arja, and Nicolet for their cooperation in recording my
wild and divergent ideas on paper in such a way that also normal people
will understand them. The reviewers Craig, Allard, Nicolet, Daniëlle,
Marcel, Martijn, and Luca for wading through large amounts of text and
providing valuable input. Jennifer and Roxana for the English corrections.
Ergo: If this dissertation is still incomprehensible, it must be me.

</co-authors and reviewers>
<support>

Arno, Martin, Martijn, Jim, and Nicolet for their statistical advice, they all
were significant contributors. John, Yvonne, and Arja for their successive
coaching roles when this dissertation project started. I hope it is just
coincidental that each of them left TNO shortly after they started coaching
me... I want to thank all my colleagues at the department of Training &
Instruction, supported by the tireless Dianne. Particularly, I want to thank
the members of our former Learning Processes group: Gerard, Nicolet,
Daniëlle, Arja, Martijn, Cathy, Sietske, Nieke, John, and Yvonne. Koos and
Walter for the many multimedia issues they have solved for me over the
years. Bart for the great pictures of the 3D-model. Allard for his technical
support during the studies and Allard and Martijn for their lay-out advice.
And finally, Nieke for her excellent cover design.

</support>
<studies>

Participants in the studies were military and civilian personnel from the
Royal Netherlands Army (RNLA) and the Royal Netherlands Air Force
(RNLAF), and students from the Computer Science Department from the
Utah State University. I want to thank them all for bearing with me, while
I gave them impossible tasks. The designers/producers from 367
TRSS/TSIT at Hill Air Force Base in Ogden, Utah helped piloting
instructional materials, made possible by Deputy Flight Chief Embry and
TSgt McIntyre. Furthermore, many people helped me in organizing the
studies. First, internship students Christa and Maarit showed great
organization and research skills in conducting their studies. From the
RNLA, John, Markwin, Brenda, Robert, Ton, and Rien were of great value.
From the RNLAF, I have received much support from Willem, Ton, Jan,
Mattie, and Rob. Last but not least, Michael provided a lot of experimental
design advice and practical input.

</studies>

 VII

<the-year-abroad>

TNO, particularly Alma, Jan H, Jan V, and Ronald, who made it possible
to finish this dissertation at the Utah State University (USU) in Logan,
Utah. Byron and the staff of USU’s Instructional Technology department
for organizing everything very well. Jon for making it a year to remember
forever, academically, politically, and personally. Andy for his
supervision from Brigham Young University in Provo, Utah. For our ‘best
one year’ in Utah, Rian and I want to thank everybody who has made it
possible for us to still consider Logan as our “home town”: the Black’s, the
Kennedy’s, the Merrill’s (the whole clan that is), the Sweat’s, the Nelson’s,
the King’s, Van Schaack’s, the Olson’s, and the Eastman’s.

</the-year-abroad>
<family>

When I left elementary school, the school master advised me to follow my
father’s footsteps, and become a farmer as soon as possible. The formal
school tests (i.e., the CITO tests) found me to be more stubborn than
intelligent, and joined this advice. They’re foresight was excellent: Today’s
complex agricultural situation in the Netherlands requires at least a Ph.D.
title to manage! Nevertheless, it was my parents who ignored the advice
(you see where my stubbornness comes from!) and pushed me through a
seemingly never-ending series of studies. I want to thank them for this
enormous effort, and I hope I make them very proud with this book. I
want to thank the rest of our families and friends for their love and
support. Finally, I want to thank Rian, just for being with me…now it is
time to search for new horizons to explore!

</family>
<conclusion>

Writing a dissertation is a long and complex endeavor. However, to quote
a not unfamiliar song: “You’ll never walk alone”. In fact, I now see that
writing this dissertation is similar to the topic studied in this dissertation:
Developing instructional software. The task of the designer of both
instructional software and a dissertation is to communicate his or her
ideas clearly to an audience. I hope that this dissertation, as my latest
development project, is successful in that respect.

</conclusion>

 VIII

 IX

Index

CHAPTER 1

Introduction

1

CHAPTER 2

Improving the Development of Instructional Software: Three
Building-Block Solutions to Interrelate Design and
Production

11

CHAPTER 3

Stratification, Elaboration, and Formalization of Design
Documents: Effects on the Production of Instructional
Materials

35

CHAPTER 4

Novice and Experienced Instructional Software Developers:
Effects on Materials Created with Instructional Software
Templates

53

CHAPTER 5

Solutions for Developing Instructional Software by Creating
and Reusing Learning Objects

75

CHAPTER 6

General Discussion

103

Summary

117

Dutch Summary / Nederlandse samenvatting

121

Curriculum Vitae

127

Introduction

 1

Chapter 1

Introduction

Abstract

This introduction consists of five parts. First, the central problem of this
dissertation, namely, the difficulties instructional designers experience in
ensuring an unequivocal interpretation of their designs by software producers,
is introduced by means of an illustrative scenario. Second, this “transition
bottleneck” is further explored and, third, possible solutions are proposed,
emphasizing new roles for instructional designers who have to interact more
and more with the building blocks of the development process normally
intended for software producers rather than instructional designers. Fourth, the
main research questions of this dissertation are formulated, directed at testing
three building-block solutions that support instructional designers in their new
roles: (1) The Developing Design Documents (3D) model to support designers in
stratifying, elaborating, and formalizing design documents; (2) instructional
software templates to support designers in producing software themselves, and
(3) an integrative approach to support designers in reusing learning objects.
Finally, the structure of the dissertation is presented by briefly describing each
of the four reported studies.

Chapter 1

 2

An Illustrative Scenario

“Willem, a staff employee at the training division of a large company, has just
finished writing the new company policy document about developing instructional
software. With his academic background in educational technology, he is always very
interested in the latest innovations in his field. In his policy document, he has taken into
account two recent innovations he thinks are particularly useful for his company. The
first innovation is the increased focus on authentic learning tasks, based on real-life
tasks, as the driving force for learning. Such tasks help learners to integrate the
knowledge, skills, and attitudes necessary for effective task performance; give them the
opportunity to learn to coordinate constituent skills that make up complex task
performance, and eventually enable them to transfer what is learned to their daily life or
work settings. Especially transfer to new situations is necessary within Willem’s
company because it is absolutely impossible to train employees for each new system and
each new task, introduced at an ever-increasing rate. The second innovation Willem has
included in the policy document is the application of blended learning or integrated e-
learning: The combination of face-to-face learning, distance learning, and on-the-job
learning. Blended learning is supported by a balanced media-mix of traditional and
advanced learning technologies such as books, e-learning, mobile learning, and
simulations. Implementing both innovations should provide Willem’s company with the
flexibility to promote the integration of working and learning, in terms of time- and
place independent learning, as well as adaptive learning, personalized for individual
learners with different backgrounds.

It is one week later. Jon, an instructional designer, works in the training
development department of the same company as Willem. He has just received two
documents. The first document is an assignment from the company’s Technical
Maintenance division to create a new instructional software product for training
maintenance engineers for a complex system the company is about to introduce. The
second document describes the new company training policy prepared by Willem. Jon
briefly reads the first document and already starts to sketch in his mind a possible design
for the new product. After that, he reads Willem’s policy document. As a developer, he is
particularly interested in the consequences of the new innovations, introduced by
Willem, for the development processes and products. First, for the development process it
appears that the new focus on authentic learning tasks makes it more important than
ever to describe the task environment and the learning environment sufficiently detailed
in design documents, which help to properly transfer this information to software
producers. Second, for the development products, it appears that future instructional
software packages must become much more flexible than they used to be. This flexibility
is expressed in terms of adaptivity towards individual learners, generativity to assemble
new configurations easily, and scalability to quickly expand and enlarge the possible
target groups. Jon realizes that this will lead to a higher complexity of the instructional
design process, and that he faces the difficult task to make his design documents as
complete, concrete, and clear as possible.

Together with his team of instructional designers, Jon starts to create the new
instructional design for the maintenance engineer training. Based upon the Four
Components Instructional Design model they normally use in their training

Introduction

 3

development department, the designers start with an analysis of the task domain and the
target group, in order to establish a task hierarchy and a global training sequence. Also,
they analyze the task domain in terms of systems and the task environment of the
maintenance engineers. Subsequently, they create the instructional design based on the
domain representations and selected training strategies, and record this in a training
blueprint. In addition, they provide guidelines for the implementation of the training
blueprint in the instructional software by means of a storyboard. The storyboard
contains sketches of the screen layouts and guidelines for media selection and
navigation. After both types of design documents are finished, representing the total
instructional design, Jon sends them to his project leader. The project leader will make a
Request for Proposal (RFP) based upon these documents. This RFP will contain a brief
description of the design requirements as well as other demands, and invite external
production companies to submit a proposal. As usual, this proposal is based upon a fixed
price: The external company must promise to create the whole instructional software
program for the price stated in their reply to the proposal.

Michael works for a multimedia company creating instructional software for
other companies. Michael’s company submitted the lowest offer in the bidding process,
and now he and his team will produce the new instructional software product for
training maintenance engineers. He has received Jon’s two design documents, and
Michael starts reading the training blueprint and the storyboard. Quickly, he more or
less foresees what kind of product he has to make, and how he should do it. He will start
with creating the technical specifications. However, some issues bother him. First, he
notices there are several, well-explained instructional design concepts in the training
blueprint, such as feedback, modeling examples, scaffolding, and just-in-time
information presentation items. However, the relations between these instructional
design concepts and the instructional software concepts are not particularly clear. For
instance, if the design documents propose video clips to represent a particular learning
task and Michael wants to use photographs, which are cheaper to make, he doesn’t know
if and how such a static representation instead of a dynamic representation will affect the
instructional strategies and thereby the learning outcomes. Second, parts of the
instructional design lack sufficient detail. For Michael, the application of delayed
cognitive feedback following a particular learning task, for instance, requires highly
detailed descriptions of timing, content, and presentation to be able to specify and
implement the feedback as intended by the instructional designer. Third, Michael notices
that the textual descriptions in the training blueprint and the sketches in the storyboard
leave him considerable room for own interpretation. This provides him some freedom in
production choices, but also the danger that his product will not reflect Jon’s design
intentions. Furthermore, there is the danger of inconsequent translations of design
principles to specifications. For example, similar types of delayed feedback may be
interpreted differently in various parts of the design, resulting in different
implementations of the same feedback in the product. In summary, Michael would have
preferred (a) a rigorous one-to-one relation between design and software issues, (b) with
a higher level of detail in the design descriptions, and (c) using notation systems that are
less ambiguous. Note that Michael feels responsible for a good implementation of the
design in the resulting products. Other software producers may not even think about
these issues, and produce what is feasible within their budget. Such producers will think

Chapter 1

 4

they understand the design completely, whilst they are often only loosely interpreting
the design. Nevertheless, Michael resolves to make the best of the situation. He sends
Jon’s design documents to his production team, and opens the group agenda to plan the
kick-off meeting to start the technical specification process.”
 The scenario above demonstrates an important problem in the process of
modern instructional software development, namely, the distortion and/or loss
of relevant design information between the design and production phases – a
phenomenon that will be referred to as the “transition bottleneck”. Due to the
criteria set by educational innovations, such as using authentic tasks and
increasing flexibility, this problem becomes more prominent than ever before. It
appears to be difficult for instructional designers to describe their design in such
a way that unequivocal interpretation by software producers is ensured. This
introductory chapter first presents an exploration of this problem. Second,
possible solutions are proposed. Third, the main research questions of this
dissertation are formulated. Finally, a brief overview of the dissertation is given.

Problem Exploration

New criteria for instructional software development, such as the use of

authentic learning tasks (see Merrill, 2002; Reigeluth, 1999) and high flexibility
(see Jochems, van Merriënboer, & Koper, 2004), pose high demands to the
design and development process. To improve the efficiency of developing
instructional software, lean production has been introduced (Woll, 2003). Lean
production originates from the manufacturing industry and is a development
approach that is directed at producing a broad variation of products, which are
flexibly to adapt to individual users. This “mass-customization” should ensure
adaptivity, generativity, and scalability of the instructional software products,
satisfying the main features of flexibility. However, lean production does not
solve the transition bottleneck, that is, the distortion and loss of information
between the design and production phase. In contrast, lean production may
make this problem even more prominent. One of the basic principles of lean
production is that design information should be optimally interrelated to
production information by placing emphasis on the manufacturability of the
product as early as possible. This implies that instructional designers rather than
software producers are actually responsible for overcoming the design-
production transition bottleneck, and should try to accommodate to the
information needs of software producers.
 A fundamental problem in the transition between the design and
production phase is the lack of standardized design languages that are familiar to
both instructional designers and software producers. In other domains than the
instructional design field (e.g., architecture, music, mechanics), such powerful
design languages are able to capture and describe the design (i.e., blueprints,
storyboards) with such a level of detail that software producers will interpret it
unequivocally (Waters & Gibbons, 2004). But as a result of the lack of
appropriate instructional design languages, it is very difficult for an

Introduction

 5

instructional designer to transfer his design and make sure that different
software producers will interpret it in the same way, reach the same technical
realization, and make the same calculation for costs and time necessary for
producing the instructional software. This is especially important in the case of
outsourcing, but also relevant for project calculations and task allocation
decisions for production groups within the same organization.

Of course, there are alternative ways to improve the transfer of
information from the design to the production phase. For instance, a software
producer might decide to discuss indistinctnesses in the blueprint and
storyboard with the instructional designer(s) during the drafting of technical
specifications. Or the software producer might decide to apply a rapid
prototyping approach and frequently show prototypes to the instructional
designer to trigger discussions. However, both approaches are often undesirable
from a project management point of view. Discussion costs considerable time.
Prototyping will cost even more time, and evaluation of instructional software
prototypes with learners is often difficult. Mostly, such extra time expenditures
are not included in the initially set price. Also, during discussing or reviewing
prototypes, instructional designers will likely give suggestions to the software
producers that change and embellish the design and thus expand the necessary
production activities.

Ideally, the design should be transferred from the instructional designer
or design team to the software producer or production team only once, and be
completely understood by the software producer(s). This way, there is either no
further information exchange necessary, or developers can formulate clear and
concrete questions about, for instance, details of the task domain. Thus, an ideal
design should allow the production company to make an exact estimation of
costs and time (before the contract is signed), and ensure a product that is fully
compatible with the original design (after the contract is signed). A good
solution should focus on supporting instructional designers to provide software
producers with exactly the product-related information they need. The focus on
instructional designers rather than software producers or other stakeholders is
important, because the designers are pre-eminently responsible for the
didactical quality of the final products (defined as the extent to which desired
learning outcomes are attained in an efficient manner). This didactical quality is
of utmost importance because technical quality (defined as the extent to which
the software takes care of the input, information processing, and output as
intended, and the responsibility of the producers) alone is a necessary but not
sufficient condition to stimulate the desired learning processes and reach
intended learning outcomes.

Possible Solutions

Currently, production-related information is typically embedded in three

types of building blocks for the production process: (a) design documents as
input; (b) programming structures as throughput, and (c) learning materials as

Chapter 1

 6

output. In order to better interrelate the design phase with the production phase,
it is proposed to focus instructional designers’ attention on these three particular
types of building blocks. First, instructional designers could be supported to
create design documents that are better organized, more detailed, and
standardized according to particular formalisms. This should ensure that
software producers are confronted with one-to-one relations between
instructional design aspects and software aspects, the right level of detail, and
unambiguous notation systems. Second, instructional designers could be
supported in creating the programming structures (i.e., the software code) that
make up didactically sound instructional software themselves, without the
involvement of software producers. Modern authoring tools enable the quick
and easy development of programming structures for instructional software,
and are often used by software producers to make the production process more
efficient. However, instructional designers can also choose to create these
programming structures themselves in stead of the producers, because modern
authoring tools require no or little technical programming skills. Third,
instructional designers could be supported in reusing learning objects, another
activity that is normally performed by software producers. Learning objects are
small, modular chunks of learning materials and are normally used by software
producers to make the production process more efficient. Again, instructional
designers can choose to create the product they want from existing learning
objects themselves in stead of the producers, as selecting and reusing
appropriate learning objects is a fairly straightforward and standardized process
that requires no or little technical programming skills.
 Despite the increasing availability of support tools, it is still difficult for
instructional designers to improve the quality of their design documents, to
create programming structures, and to reuse learning objects. Domain specialists
and senior instructors often act as instructional designers in the practical field,
and are typically inexperienced with production tasks. Therefore, three
building-block solutions are proposed in this dissertation. First, a Developing
Design Documents (3D) model is presented as a three-dimensional decision tool
that may help instructional designers to improve their design documents.
Second, instructional software templates are presented as a promising tool to
support instructional designers with the creation of sound instructional
software. And third, an integrative approach is introduced that may help
instructional designers with the reuse of learning objects. In the first solution,
instructional designers work in their traditional role but more explicitly tune
their design products (blueprints, storyboards, and so forth.) to the production
requirements. In the second and third solutions, instructional designers operate
in a new production-like role, interrelating the design phase with the production
phase by implementing their designs in programming structures and learning
objects. Which—combination of—the three solutions can be used depends on
factors such as available time of the instructional designers, their capabilities,
and suitable support tools (e.g., templates, repositories).

Introduction

 7

Research Questions

The main research question of this dissertation is if it is possible to
support instructional designers to overcome the transition bottleneck by the
three proposed building-block solutions. The first research question is if the 3D-
model supports the development of design documents that improve software
producers’ understanding of the design and its translation into technical
specifications. The second research question is if instructional software
templates support instructional designers in the creation of programming
structures that make up didactically sound instructional software. The third
research question is if the integrative approach supports instructional designers
in the reuse of learning objects that make up didactically sound instructional
software.

Overview of the Dissertation

One explorative and three empirical studies are conducted to answer the

research questions. Chapter 2 discusses new innovations in the educational field
as well as criteria for developing instructional software resulting from these
innovations. In this explorative study, theoretical and empirical analyses show
that current development approaches for instructional software are not able to
satisfy the new criteria of developing instructional software. Lean production is
introduced as a promising new development approach that does satisfy all but
one criterion. It appears that the criterion of “modeling” is not satisfied due to a
lack of design languages that help to transfer design information to the
production phase. In order to overcome this problem, and to enable the broader
implementation of lean production, design and production should be better
interrelated to each other. Three building-block solutions are proposed to
accomplish this, focusing the instructional designer’s attention on: (1) improving
design documents, (2) creating programming structures, and (3) reusing
learning objects.

Chapter 3 describes the first empirical study, in which the building-block
solution of “improving design documents” is investigated. The lack of
organization, detail, and standardization of traditional design documents is
discussed. The 3D-model is introduced, which supports instructional designers
in creating design documents that are more or less stratified, elaborated, and
formalized. The effects of design documents based on the 3D-model are
compared with the effects of traditional design documents. The goal of the study
is to see if software producers are better able to interpret design documents
based on the 3D-model than traditional documents and if this improves their
understanding. The degree of agreement between the design documents and
scores on technical specification questions is measured, as well as software
producers’ perceived cognitive load, time investment, and satisfaction.

Chapter 4 describes the second study, in which the building-block
solution of “creating programming structures” is investigated. It studies if

Chapter 1

 8

software templates can help instructional designers, with little production
experience, to create instructional software with an adequate didactical,
technical, and authoring quality. Domain specialists who act as instructional
designers in their field, with low and high production experience, work with the
software templates. The goal of the study is to see if instructional designers with
high production experience who work with software templates make products
of higher didactical quality and size than instructional designers with low
production experience. No differences with regard to technical and authoring
quality were expected, as the instructional software templates should level the
differences between instructional designers. The volume and quality of the
resulting products is measured as well as the satisfaction of the instructional
designers. Furthermore, the effects of instructional designers’ didactical
perspective and development style are explored.

Chapter 5 describes the third study, in which the building-block solution
of “reusing learning objects” is investigated. An integrative approach is
introduced to improve the reuse of learning objects, with (a) templates, (b)
automation, and (c) intermediate product solutions to overcome problems
hampering the efficient development of instructional software. Two experiments
are described. In the first experiment, domain specialists with low production
experience are supported with a combination of the templates and automation
solutions: They reuse both small and large learning objects, from both familiar
and unfamiliar task domains, to develop instructional software. This experiment
is intended to see if domain specialists with little production experience are
indeed able to reuse learning objects, and if the type of learning object and the
familiarity of the domain does make a difference. The number of reused
learning objects, time invested, and instructional designers’ opinions were
measured. In the second experiment, domain specialists with low production
experience are supported by the automation solution in combination with a set
of (1) regular templates, (2) extended templates, and (3) intermediate products.
The goal of the study is to see what the most effective configuration of these
three solutions is. The quality of the resulting products is measured as well as
domain specialists’ opinions on the provided solutions.

Chapter 6 is the final chapter of the dissertation and presents a general
discussion of the reported studies. A review of the main results is given,
followed by the main conclusions and practical implications of the studies. Next,
the limitations of the conducted studies are discussed. Finally, suggestions for
further research are presented and a scenario is described that illustrates how
the building-block solutions might work in practice.

Introduction

 9

References

Jochems, W., van Merriënboer, J. J. G., & Koper, R. (Eds.) (2003). Integrated E-
learning: Implications for pedagogy, technology, and organization.
London, UK: RoutledgeFalmer.

Merrill, M. D. (2002). First principles of instruction. Educational Technology,
Research and Development, 50(3), 43-59.

Reigeluth, C. M. (Ed.) (1999). Instructional-design theories and models: A new
paradigm of instructional theory (Vol. 2). Mahwah, NJ: Lawrence Erlbaum.

Waters, S. H., & Gibbons, A. S. (2004). Design languages, notation systems, and
instructional technology: A case study. Educational Technology, Research
and Development, 52(2), 57-68.

Woll, C. (2003). Identifying value in instructional production systems: mapping the
value stream. Unpublished PhD Dissertation, Utah State University,
Logan.

Chapter 2

 10

Building-block solutions

 11

Chapter 2

Improving the Development of Instructional Software: Three
Building-Block Solutions to Interrelate Design and Production1

Abstract

Currently, there is a focus on authentic tasks as the driving force for learning in
integrated e-learning systems. This sets new criteria for instructional software,
which should become much more flexible and allow for domain modeling and
pedagogical modeling. A theoretical analysis and a survey (N = 37) amongst
experienced developers show that current development methods are unsuitable
to develop such instructional software. New development methods based on
lean production promise to satisfy the new criteria, as they emphasize mass-
customization by rigorously applying a pull principle throughout the whole
development process. However, a potential bottleneck is the lack of design
languages to properly transfer the design outcomes to the production phase.
Three building-block solutions are proposed to overcome the “transition
bottleneck”: (1) a Developing Design Documents (3D) model to support
designers in stratifying, elaborating, and formalizing design documents; (2)
instructional software templates to support designers in producing software
independently from producers, and (3) an integrative approach to support
designers in reusing learning objects.

1 Boot, E., van Merriënboer, J.J.G., & Theunissen, N.C.M. (submitted). Improving the
Development of Instructional Software: Three Building-Block Solutions to Interrelate
Design and Production

Chapter 2

 12

Current educational, technological, and organizational innovations are
rapidly changing the nature of instructional software, and, thereby, the way it is
developed. Recent theories of instruction tend to focus on authentic learning
tasks that are based on real-life tasks as the driving force for learning (Merrill,
2002; Reigeluth, 1999). The general assumption is that such authentic tasks help
learners to integrate the knowledge, skills, and attitudes necessary for effective
task performance; give them the opportunity to learn to coordinate constituent
skills that make up complex task performance; and eventually enable them to
transfer what is learned to their daily life or work settings. This focus on
authentic, whole tasks can be found in practical educational approaches, such as
project-based education, the case method, problem-based learning, and
competency-based learning; in theoretical models, such as Collins, Brown and
Newman's (1989) theory of Cognitive Apprenticeship Learning, Jonassen’s
(1999) theory of Constructive Learning Environments, Nelson’s (1999) theory of
Collaborative Problem Solving, and Schank’s theory of Goal Based Scenario’s
(Schank, Berman, & MacPerson, 1999); and in instructional design models, such
as the Four Component Instructional Design model (Van Merriënboer, 1997).

In addition to educational changes, technological and organizational
innovations enable the application of blended learning or integrated e-learning:
The combination of face-to-face learning, distance learning, and on-the-job
learning. Blended learning is supported by a balanced media-mix of traditional
and advanced learning technologies such as books, e-learning, mobile learning,
and simulations (Jochems, van Merriënboer, & Koper, 2004). Such integrated e-
learning provides both the flexibility to enable the integration of working and
learning, in terms of time and place independent learning, and adaptive
learning, personalized for individual learners.

The resulting combination of pedagogical considerations (e.g., “How can
authentic learning tasks be implemented in the instructional software?”),
technological considerations (e.g., “Which media mix is most optimal?”), and
organizational considerations (e.g., “How can working and learning be
efficiently integrated by means of instructional software?”) makes the
development process highly complex, requiring a structural approach towards
design, production, and implementation.

In this Chapter, we investigate if current development methods provide
for such a structural approach to the development of innovative instructional
software. First, the new criteria that result from the recent innovations are
discussed. Second, a theoretical analysis of current development methods is
described. Third, the theoretical analysis is complemented by an empirical
analysis, in the form of a survey study. Fourth, lean production is introduced as
a new development approach that promises to fit the new situation better. Fifth,
the problem of lack of design languages, which hampers the implementation of
lean production, is discussed. Sixth, three building-block solutions are proposed
to enable the implementation of lean production approaches by supporting
designers to (1) improve design documents; (2) use instructional software
templates, and (3) reuse learning objects. Finally, conclusions will be drawn

Building-block solutions

 13

about the consequences of criteria and building blocks for future development
of instructional software

New Criteria for Developing Instructional Software

The educational, technological, and organizational innovations lead to

four new criteria for instructional software development. The first three criteria
are related to the flexibility of development processes and products. For
example, a blended learning approach requires the efficient and fast creation of
multiple configurations of instructional methods and media (“packages”).
Atkinson and Wilson (1969; for more recent discussions, see Gibbons, Nelson, &
Richards, 2000; Parrish, 2004) have identified three criteria for developing
instructional software related to flexibility. First, adaptivity, which is the ability
of an instructional software product to adjust itself to learner needs, learner
progress, preferences, and choices, provides personalized learning for
individual learners. Second, generativity, which is the ability to assemble the
instructional software product from some combination of parts and sources at
the moment of delivery, frees the designer from having to create an infinite
variety of products with static designs. Finally, scalability, which is the ability to
increase the production capacity of instructional software products without a
corresponding increase in costs, enables the serving of more and larger target
groups.

The fourth, most important criterion is related to the holistic pedagogical
view (van Merriënboer & Boot, 2005), central in current educational innovations.
A holistic view on learning assumes that complex knowledge and skills are best
learnt through cognitive apprenticeship on the part of the learner in a rich
environment (Collins, 1988). Experiences are provided for the learners that
mimic the apprenticeship programs of adults in trades, or teachers in internship.
It is not possible to immerse the learner to the extent that a traditional internship
would imply. However, through the use of simulations and meaningful
experiences, the learner would learn the ways of knowing of an expert. As a
result, the most important problem of a holistic approach is how to deal with
complexity.

Most authors introduce some notion of “modeling” to attack this
problem. For example, Achtenhagen’s (2001) notion of “modeling the model”
prescribes a two-step approach to modeling, namely modeling reality and then
modeling those models of reality from a pedagogical perspective. For
developing instructional software, this implies first the domain modeling of
realistic tasks and systems in such a way that they are simplified (i.e., reduction
of complexity) towards the learner’s level of ability while at the same time
remaining representative for the “real” world. Second, it implies pedagogical
modeling of these domain models to facilitate learning, such as the use of
modeling examples, coaching, and scaffolding attuned to the expertise,
progress, and interests of the learner. This modeling of the model for
instructional purposes allows the designer to determine which elements of the

Chapter 2

 14

original model can be omitted, and which elements can be increased (not in the
original, but introduced for supporting the functions of the model) (Gibbons,
Bunderson, Olsen, & Robertson, 1995). For developing instructional materials, a
third facet should be added to this modeling process, namely functional modeling.
This works out the two previous models in order to transfer them by means of
design documents from the design phase to the production phase. Functional
modeling allows the designer to determine how each element should be
presented to the learner. The development criterion of modeling, actually
consisting of the three sub-criteria domain, pedagogical, and functional
modeling, is conditional for the other three criteria, as adaptivity, generativity,
and scalability all depend on an adequate modeling process.

To which degree do current development methods meet the four criteria
discussed above? This question could be answered from a theoretical
perspective and an empirical perspective, discussed in the next sections.

Theoretical Analysis of Current Development Methods

The vast majority of development methods is based upon the standard

Instructional Systems Development (ISD) model, an instantiation of the generic
Analysis, Design, Development (also called Production; the technical realization
of the design), Implementation, and Evaluation model (ADDIE; Dick & Carey,
1996). Every phase in the ISD model identifies specific types of activities and
outcomes, for which different specialists (e.g., designers, producers, visual
artists, and so forth) are responsible. Applying the ISD model is typically based
upon either a craft production approach or a mass production approach (Woll,
2003). Craft production approaches are directed at providing the highest-quality
products, completely adapted towards a specific target group. Development
involves highly skilled professionals using flexible, often custom-build tools, in
a flexible work process. Products, processes, and tools are not standardized.
Developers focus on producing limited quantities: In expanding the volume,
costs will rise proportionally. The development of Computer-Based Training
(CBT) is a good example of how craft production is applied in the field of
instructional software (see, for example, Gibbons & Fairweather, 1998). The first
row of Table 2.1 shows that craft production approaches are not able to satisfy
any of the new criteria for developing instructional software. Craft production is
focused on single solutions for a highly specific target group with particular
needs. So design, production, as well as final products, will be focused on that
single solution, with very limited use of modeling and adaptivity. There is also
no need for products to be modular, so generativity will be difficult to realize.
Finally, due to the focus on producing small quantities of unique products, costs
will proportionally rise with increase of volume.

Building-block solutions

 15

Table 2.1
Production Approaches and their Satisfaction of Criteria for Developing Instructional
Software

Criteria

Type of
production
approach Adaptive Generative Scalable Modeling

1. Craft production No, because
it is not
necessary for
custom-build
single-
purpose
solution

No, because
no standards
are used and
products are
monolithic

No, because of
the
proportional
increase in
costs of
customized
processes

No, because
modeling is
not used as
only single-
purpose
solutions are
created

2. Mass production No, because
only single-
purpose
solutions are
created to
allow for
efficient
production

Yes, reached
through
standardizati
on and
modularity
of products

Yes, it is an
explicit
objective, and
reached
through
standardization
and modularity
of process

No, because
modeling is
not used as
only single-
purpose
solutions are
created

3. Lean Production Yes, it is an
explicit
objective and
reached
through the
pull principle

Yes, reached
through
standardizati
on and
modularity
of products

Yes, it is an
explicit
objective, and
reached
through
standardization
and modularity
of process

No, because
the lack of
design
languages
will limit
transfer of
modeling
information

The counterparts of craft production approaches are mass production

approaches. These are directed at providing (somewhat) similar products for a
broad target group. Development involves narrowly skilled, interchangeable
specialists, using expensive, single-purpose tools, in a continuous work process.
Products, processes and tools are highly standardized and modularized.
Developers focus on producing large quantities: With every increase in volume,
costs per unit will decrease. The development of e-learning materials is a good
example of how mass production is applied in the field of instructional software.
For example, recent standardization efforts (see Collis & Strijker, 2004, for

Chapter 2

 16

examples in the military, commercial, and academic fields) explicitly refer to
standardized, modularized approaches to increase scalability. The second row
of Table 2.1 shows that mass production approaches are not able to satisfy the
criteria of modeling and adaptivity for the same reasons as craft production
models. However, the criterion of generativity can be satisfied as resulting
products are highly standardized and modular. Also, scalability is an explicit
objective of mass production.

A third development approach, lean production (third row of Table 2.1),
may better meet the new criteria for developing instructional software. Before
we discuss this alternative, however, the empirical analysis of the craft and mass
production approaches will be presented.

Empirical Analysis of Current Development Methods

To investigate the practical application of current development methods

and the degree to which they meet the criteria, a survey study has been
conducted. In this study, a questionnaire was used to gather opinions of
experienced developers of instructional software on their current practices and
experienced problems. A special focus is on the transition of information
between the design phase and the production phase (the “transition
bottleneck”), as defined by the third modeling step, namely, functional
modeling.

Method

Respondents. Thirty-seven developers of instructional software from the
United States of America (n = 17) and the Netherlands (n = 18), working in large
academic, commercial, and military organizations, participated in the study. All
participants were male and their age varied between 24 and 58 years.

Materials. An on-line questionnaire was used to gather information on the
respondents and the problems they experienced in the development process.
First, to investigate the respondents’ background, they were asked to indicate
their overall experience, and the different roles they fulfilled, relevant to
developing instructional software. They were also asked whether or not they
applied structural, phased approaches based upon the ISD model, and who the
responsible persons were for creating the design documents as output of the
design phase. Second, to investigate possible development problems, the
respondents were asked to rate on a 5-point scale for each of the five ADDIE
phases the occurrence of seven typical development problems. Third, the
respondents were asked to rate on a 5-point scale 21 statements that focused on
possible causes and consequences of problems in transferring information from
the design phase to the production phase (see Table 2.4; note that questions 7 to
21 were only presented to the USA respondents). The 21 statements were
established on the basis of suggestions from experienced developers. Fourth, to
investigate the need for new solutions for the design-production transition
bottleneck, the respondents were asked to indicate on a 5-point scale whether

Building-block solutions

 17

they needed solutions for the transition bottleneck for either themselves or for
their organization (questions 22 and 23 of Table 2.4).

Data analysis. A factor analysis (Principle Component analysis with
Varimax rotation) was used to identify the main development problems from
the scores of the seven problems for each of the five ADDIE phases (35 items).
Using a factor analysis for data reduction, a small number of issues could be
identified that explains most of the variance observed in the larger number of
item scores. Next, to determine the intra-item reliability of items within each
factor, Cronbach’s alpha is computed. In general, an alpha larger than .70 is
regarded as satisfactory for drawing conclusions about different groups. Scale
scores for each factor were obtained by adding item scores within the scale, and
transforming crude scale scores linearly to a 0-100 range, with higher scores
indicating more problems. Differences between groups (nationality, role, or type
of organization) with respect to the issues were tested by MANOVA.

With regard to the possible causes and consequences of the transition
bottleneck, and the perceived need for new solutions, one-sample T-tests were
used to test for differences between the ratings and the neutral score of 3.
Results

 First, the number of years of experience in a particular role was used to
determine the main specialization of the respondents. The respondents’ mean
experience with developing instructional software was 16.97 years (SD = 12.69).
Their main specialization was designer, with a mean experience of 6.11 years
(SD = 5.39). Furthermore, they were experienced as project leader (M = 4.97
years, SD = 4.42), manager or policy-maker (M = 2.03 years, SD = 3.84), multi-
media specialist (M = 3.05 years, SD = 4.55), or programmer (M = 0.81 years, SD
= 3.09). All respondents indicated that they used structural, phased approaches
based upon the ISD model. The respondents indicated that in their organization
the following persons were responsible for creating training blueprints: In 16
cases, only the designers were responsible; in 6 cases, only producers, and in 15
cases, combinations of designers and producers. So, in most cases, designers
were either responsible for or directly involved in the creation of design
documents.

Second, with respect to possible development problems, the factor
analysis identified four factors (see Table 2.2). Combined, they explained 53% of
the total variance.

 C
ha

pt
er

 2

18Ta

bl
e

2.
2

Fa

ct
or

 L
oa

di
ng

s o
f t

he
 3

5
Ite

m
s c

ov
er

in
g

Fi
ve

 A
D

D
IE

 P
ha

se
s i

n
Co

m
bi

na
tio

ns
 w

ith
 S

ev
en

 D
ev

elo
pm

en
t P

ro
bl

em
s

Ite
m

Sc

al
e

1
Sc

al
e

2
Sc

al
e

3
Sc

al
e

4
In

te
rn

al
 d

es
ig

n
an

d
de

ve
lo

pm
en

t d
iff

ic
ul

tie
s

Pr
ob

le
m

s w
ith

 m
an

ag
in

g
th

e
de

si
gn

 p
ha

se

.8
2

Pr

ob
le

m
s w

ith
 p

ro
du

ct
io

n
ac

tiv
iti

es
 in

 th
e

pr
od

uc
tio

n
ph

as
e

.6
7

Pr

ob
le

m
s w

ith
 p

ro
du

ct
io

n
ph

as
e

to
o

tim
e-

co
ns

um
in

g
.6

5

Pr
ob

le
m

s w
ith

 d
es

ig
n

ph
as

e
to

o
tim

e-
co

ns
um

in
g

.6
4

Pr

ob
le

m
s w

ith
 d

es
ig

n
ac

tiv
iti

es
 in

 th
e

de
si

gn
 p

ha
se

.6

1

Pr
ob

le
m

s w
ith

 m
an

ag
in

g
th

e
an

al
ys

is
 p

ha
se

.5

6

Pr
ob

le
m

s w
ith

 im
pl

em
en

ta
tio

n
ph

as
e

to
o

tim
e-

co
ns

um
in

g
.5

6

Pr
ob

le
m

s w
ith

 a
na

ly
si

s p
ha

se
 to

o
tim

e-
co

ns
um

in
g

.5
3

Pr

ob
le

m
s w

ith
 m

an
ag

in
g

th
e

ev
al

ua
tio

n
ph

as
e

.5
1

Pr

ob
le

m
s w

ith
 li

m
ite

d
re

tu
rn

 o
n

in
ve

st
m

en
t i

n
th

e
de

si
gn

 p
ha

se

.4
9

Pr

ob
le

m
s w

ith
 a

na
ly

zi
ng

 in
 a

na
ly

si
s p

ha
se

.4

6

Pr
ob

le
m

s w
ith

 m
an

ag
in

g
th

e
pr

od
uc

tio
n

ph
as

e
.4

1

Ro
lli

ng
-o

ut
 d

iff
ic

ul
tie

s

Pr

ob
le

m
s w

ith
 e

va
lu

at
io

n
to

o
la

bo
r i

nt
en

si
ve

.6
9

Pr
ob

le
m

s w
ith

 c
oo

pe
ra

tio
n

w
ith

 st
ak

eh
ol

de
rs

 in
 e

va
lu

at
io

n
ph

as
e

.6

6

Pr

ob
le

m
s w

ith
 c

ha
ng

in
g

re
qu

ir
em

en
ts

 a
nd

 c
on

di
tio

ns
 in

im

pl
em

en
ta

tio
n

ph
as

e

.6
5

Pr
ob

le
m

s w
ith

 st
ak

eh
ol

de
rs

 in
 im

pl
em

en
ta

tio
n

ph
as

e

.6
2

Pr
ob

le
m

s w
ith

 li
m

ite
d

re
tu

rn
 o

n
in

ve
st

m
en

t i
n

im
pl

em
en

ta
tio

n
ph

as
e

.6

1

Pr
ob

le
m

s w
ith

 c
ha

ng
in

g
re

qu
ir

em
en

ts
 a

nd
 c

on
di

tio
ns

 in

ev
al

ua
tio

n
ph

as
e

.6

1

Pr
ob

le
m

s
in

 e
va

lu
at

io
n

ph
as

e
w

ith
 in

pu
t f

ro
m

 p
re

vi
ou

s
ph

as
e

.6

0

Pr

ob
le

m
s w

ith
 m

an
ag

in
g

th
e

im
pl

em
en

ta
tio

n
ph

as
e

.5

8

Bu
ild

in
g-

bl
oc

k
so

lu
tio

ns

19

Pr
ob

le
m

s
in

 im
pl

em
en

ta
tio

n
ph

as
e

w
ith

 in
pu

t

.5
3

Pr
ob

le
m

s w
ith

 im
pl

em
en

ta
tio

n
ac

tiv
iti

es
 in

 im
pl

em
en

ta
tio

n
ph

as
e

.4

8

Pr

ob
le

m
s w

ith
 li

m
ite

d
re

tu
rn

 o
n

in
ve

st
m

en
t i

n
ev

al
ua

tio
n

ph
as

e

.4

8

Ex

te
rn

al
 d

es
ig

n
an

d
de

ve
lo

pm
en

t d
iff

ic
ul

tie
s

Pr
ob

le
m

s w
ith

 c
ha

ng
in

g
re

qu
ir

em
en

ts
 a

nd
 c

on
di

tio
ns

 in

pr
od

uc
tio

n
ph

as
e

.7
3

Pr
ob

le
m

s
in

 p
ro

du
ct

io
n

ph
as

e
w

ith
 in

pu
t

.6
9

Pr

ob
le

m
s w

ith
 c

oo
pe

ra
tio

n
w

ith
 st

ak
eh

ol
de

rs
 in

 p
ro

du
ct

io
n

ph
as

e

.6

7

Pr
ob

le
m

s w
ith

 c
oo

pe
ra

tio
n

w
ith

 st
ak

eh
ol

de
rs

 in
 d

es
ig

n
ph

as
e

.6
4

Pr

ob
le

m
s w

ith
 e

va
lu

at
io

n
in

 e
va

lu
at

io
n

ph
as

e

.6

1

Pr
ob

le
m

s w
ith

 c
ha

ng
in

g
re

qu
ir

em
en

ts
 a

nd
 c

on
di

tio
ns

 in
 d

es
ig

n
ph

as
e

.5
9

Pr
ob

le
m

s
in

 d
es

ig
n

ph
as

e
w

ith
 in

pu
t

.4
9

Pr

ob
le

m
s w

ith
 li

m
ite

d
re

tu
rn

 o
n

in
ve

st
m

en
ts

 in
 p

ro
du

ct
io

n
ph

as
e

.4
0

Fr

on
t-e

nd
 a

na
ly

sis
 d

iff
ic

ul
tie

s

Pr

ob
le

m
s w

ith
 c

ha
ng

in
g

re
qu

ir
em

en
ts

 a
nd

 c
on

di
tio

ns
 in

 a
na

ly
si

s
ph

as
e

.8

4

Pr
ob

le
m

s
in

 a
na

ly
si

s
ph

as
e

w
ith

 in
pu

t

.6
8

Pr
ob

le
m

s w
ith

 li
m

ite
d

re
tu

rn
 o

n
in

ve
st

m
en

ts
 in

 a
na

ly
si

s
ph

as
e

.5

9
Pr

ob
le

m
s w

ith
 c

oo
pe

ra
tio

n
w

ith
 st

ak
eh

ol
de

rs
 in

 a
na

ly
si

s p
ha

se

.5

2

Chapter 2

 20

The first factor can be interpreted as internal design and production
difficulties: Respondents experience problems in organizing and executing (i.e.,
designing, producing) the design and production phases. The second issue can
be interpreted as rolling-out difficulties: Respondents experience difficulties with
executing the implementation and evaluation phases. The third factor can be
interpreted as external design and production difficulties: Respondents experience
problems in dealing with external conditions such as quality of input,
cooperation between stakeholders, and changing requirements and conditions
of the design and production phases. The fourth factor can be interpreted as
front-end analysis difficulties: Respondents experience problems with executing
the analysis phase. Table 2.3 presents the number of associated items with a
particular factor, and Cronbachs’ Alpha for the items contributing to that factor.
MANOVA’s showed no significant differences for nationality, role, or type of
organization on any of the factors.

Table 2.3
Number of Items, Cronbach Alpha’s, and Percentages of Explained Variance for the
Four Factors

Factors Number

of items
Cronbach’s
Alpha

Explained
Variance

Internal design and
production difficulties

12 .85 16 %

Rolling-out difficulties 10 .85 15 %
External design and
production difficulties

8 .84 12 %

Front-end analysis
difficulties

5 .67 9 %

Finally, Table 2.4 shows the ratings on possible causes and consequences of the
transition bottleneck, as well as the need for new solutions for that bottleneck.

Building-block solutions

 21

Table 2.4
Ratings on Causes, Consequences, and Need for New Solutions for the Transition
Bottleneck

Questions

M SD

Causes of problems in transferring information from design to production
1. Lack of instructional design information 2.60 1.22
2. Lack of modularization 2.76 1.25
3. Lack of clear design languages 2.80 1.21
4. Lack of structure in design languages 2.50 1.22
5. Too much information transferred in design documents 2.13* .86
6. Too little information transferred in design documents 2.70 1.05
7. Producers’ lack of design knowledge 2.65 1.22
8. Producers making design decisions 2.70 1.26
9. Designers’ lack of production knowledge 3.00 1.00
10. Designers making production decisions 2.82 1.07
11. Communication between designers and producers starts

too late
3.00 1.32

12. Communication between designers and producers starts
too early

1.94** 0.83

13. Cooperation between designers and producers starts too
late

2.82 1.27

14. Cooperation between designers and producers starts too
early

2.11** 0.78

15. Instructional Design models incomplete 2.76 1.14
16. Instructional Design models providing too little guidance 2.71 1.10

Consequences of problems in transferring information from design to production

17. Too long development process 3.47 1.33
18. Planning of development process difficult 3.41 1.12
19. Structuring development teams difficult 3.00 1.22
20. Unpredictability of character of end product 2.76 1.09
21. Unpredictability of pedagogical quality of end product 2.65 1.27

Need for new solutions

22. For the transition bottleneck for myself 2.88 1.26
23. For the transition bottleneck for my organization 3.06 1.34
All questions scored on a 5-point Likert-scale ranging from 1 (“totally disagree”)
to 5 (“totally agree”)
* p < .05
** p < .01

Chapter 2

 22

First, respondents rated the possible cause “too much information transferred in
design documents” as less relevant than the neutral score (M = 2.13, SD = .86; t =
-3.33, p < .05). Second, they rated the possible cause “communication between
designers and producers starts too early” as less relevant than neutral (M = 1.94,
SD = .83; t = -5.29, p < .01). Third, respondents rated the possible cause
“cooperation between designers and producers starts too early” as less relevant
than neutral (M = 2.11, SD = .78; t = -4.65, p < .01). There were no significant
differences between nationality, organization, and role on the ratings for
possible causes and consequences and the need for new solutions.

Discussion

 It appears that developers experience problems in organizing, managing
and executing each phase, particularly in the design and production phases as
indicated by the factors “internal design and production difficulties” and
“external design and production difficulties”, together explaining 28% of the
variance. However, developers were not able to indicate clear causes of these
problems. On the contrary, they indicated for three issues that they are not the
cause of the identified problems, namely, “too much information transferred,”
“too early communication,” and “too early cooperation.” Furthermore, they did
not indicate possible consequences of the problems. Finally, they did not
indicate a need for new solutions for themselves or for their organizations. It
seems that designers report problems from a vague feeling rather than from
experiencing concrete bottlenecks. A possible explanation is that they are
educated in, and experienced with ISD-based development methods, and are
not familiar with alternative methods that could help to overcome the transition
bottleneck. Or, as Womack, Jones, and Roos (1990) stated, workers in a
particular manufacturing model will not criticize this model nor move to
another model unless there is a real crisis. The absence of a need for new
solutions also implies that developers will probably be rather skeptical in
implementing new improvements.

A limitation of this study is that the respondents predominately had
design experience and less production experience. This could possibly explain
why they were not able to indicate clear causes and consequences of
development problems. Producers, for example, could have been better able to
indicate what they would need to improve the development process. A second
limitation concerns the modest number of respondents, which limits the results
of the factor analysis. Setting aside these limitations, the results of our empirical
analysis are fully in line with the theoretical analysis.

Lean Production as an Alternative Development Approach

The theoretical and empirical analyses show that development methods

based upon current craft and mass production approaches do not satisfy the
new criteria for developing instructional software. The practical application of
these production approaches is not without problems either. In the

Building-block solutions

 23

manufacturing industry, lean production is introduced as a new approach for
development methods, to overcome the problems of craft and mass production
(Womack et al., 1990). Lean production aims to provide a high variability of
high quality products, which are flexibly to adapt to different clients.
Development according to the lean production approach involves autonomous,
multi-skilled expert-teams, using flexible automated tools in a standardized and
modularized work process. Lean production raises efficiency through the
continuous, incremental improvement of work processes.

One important implication of lean production is the radical application of
the “pull principle.” Craft- and mass-production approaches are supply-
oriented: Developers “push” the product they think is appropriate for the client
forward through the work process. Lean production, however, is demand-
oriented. In the field of Instructional Systems Development (ISD), this implies
that developers have to consider the specific needs of clients and create their
products accordingly. The pull principle applies to both intermediate products,
transferred between the phases, and final products. Figure 2.1 compares the
supply-oriented model with the demand-oriented model, indicating that
according to the pull principle, designers pull information from the analysts,
producers pull information from the designers, implementers pull information
from the producers, and evaluators pull information from the implementers.
This demand-oriented principle ensures a more effective transition process of
information and products.

Figure 2.1. Supply versus demand oriented Instructional Systems Development
(ISD) models.

Another important implication of lean production is “waste-reduction,”
which is the continuous process of measuring and analyzing the development

Chapter 2

 24

process and (intermediate) products to improve quality, increase
standardization, and limit waste (Ohno, 1988). Waste is defined as unnecessary
delays, defects, and redundancies in the development process. This puts much
emphasis on the quality of the transition of information or products, because
each transition must be optimal the first time. Otherwise, time-consuming
iterations are necessary to provide additional explanations or correct errors.

With respect to the criteria presented in our theoretical analysis of current
development methods, the lean production approach is the only approach that
meets the criterion of adaptivity (see Table 2.1). Therefore, lean production is
suitable for the development of innovative instructional software (Woll, 2003).
Schellekens (2004) suggests a similar, process-focused strategy, which promotes
“mass-customization” with a high degree of adaptation to the needs of clients,
high design quality, and volume flexibility.

As can be seen in the third row of Table 2.1, satisfying the criterion of
modeling, particularly the step of functional modeling, remains difficult in the
lean production approach. The application of the pull principle between the
design and development phases implies that developers have to pull the
information they require from designers. However, the designers lack the
necessary means to provide the producers with information that ensures an
unequivocal interpretation by producers. They have a different background
than producers (educational vs. technological) and use different tools (analysis
and design tools vs. technical production tools). For applying the pull principle
between other phases, the signaled problem is less relevant because analysts and
designers have the same background, and because developers and
implementers, as well as implementers and evaluators, exchange concrete
products.

Lack of Common Design Languages

The lack of standardized design languages, familiar to both designers and

producers, is a fundamental problem in the transition between design and
production. Such design languages should be able to allow for functional
modeling by capturing and describing the domain and pedagogical models at a
level of detail ensuring that different producers interpret them unequivocally
(Waters & Gibbons, 2004). Design languages require notation systems to convey
their message by means of symbolic, graphical, textual or other conventions. An
example of a graphical modeling language, not bound to the field of
instructional software development, is the Unified Modeling Language (UML;
Booch, 1994). The notation system of UML (i.e., diagrams) enables both
designers and producers to describe and understand a design. Recent attempts
to introduce design languages in the field of instructional software development
are IMS Learning Design (IMS LD; Koper & Tattersall, 2005) and the Educational
Environment Modeling Language (E2ML; Botturi, in press). Both languages are
promising but not yet able to provide a complete solution for the transition
bottleneck. IMS LD is limited to the configuration of a pedagogical model in an

Building-block solutions

 25

IMS LD compatible e-learning system. E2ML is limited to describing
instructional design issues such as learning goals, roles, actions, and resources,
instead of (relating this to) instructional software issues such as its interface
design, interaction design, and information flow.

As long as there are no complete design languages available in the field
of instructional software development, iteration as proposed by agile methods
(e.g., see http://www.agilealliance.com) might possibly provide a solution to
overcome the transition bottleneck. Iteration implies that designers and
producers model and produce the instructional software incrementally and in
direct contact with each other, rather than relying on the once-only transfer of
formalized information (i.e. functional modeling) between the design and
production phases. Iteration is popular in the fields of software engineering
(Fowler, 2004) and instructional development (e.g., Reigeluth & Nelson, 1997;
Tennyson, 1995). However, three problems limit the value of iteration: (a) Lack
of expertise of designers and producers, (b) outsourcing of production, and (c)
lower efficiency.

The first limitation of iteration is that one of the characteristics of
instructional software development is the participation of domain specialists
such as subject matter experts and instructors, with relatively less instructional
design and software production expertise (Hoogveld, Paas, Jochems, & van
Merriënboer, 2003; Spector & Muraida, 1997). Iteration, however, requires
considerable expertise in order to determine exactly when and how iteration
should take place (Verstegen, 2003). This problem may be solved by Verstegen’s
methodology for the development of a needs statement. In this method, directed
at establishing a thorough needs assessment before starting the actual
development process, a series of workshops is organized with stakeholders such
as clients, teachers, learners, and instructional designers. Under guidance of an
experienced discussion leader, they proceed iteratively through all ISD phases in
a structured and standardized manner, and record their assumptions and
(provisional) decisions with regard to design, production, implementation, and
evaluation issues. The standardized method and structured discussion
overcome the problem of lack of expertise. Also, if producers are involved in the
workshops, the resulting needs-assessment documents may provide
development information that is understood and accepted by both designers
and producers, thereby avoiding the need to rely solely on formal transfers of
design documents.

However, the workshop methodology will often be impossible due to the
second limitation of iteration, namely outsourcing of production. In large
organizations and in professional development projects, there is often a strict
juridical and organizational separation between design and production due to
outsourcing of production activities to external companies. Note that
production-related input in Verstegen’s (2003) method can be accomplished by
involving other producers, to promote at least understanding of the
development information by the ultimate producers.

Chapter 2

 26

The third limitation of iteration is that it may reduce efficiency because it
costs extra time, and there is no guarantee that this will be regained in a later
phase of the development process. For example, Verstegen’s (2003) method
explicitly emphasizes iteration within the needs-assessment phase to prevent
iteration between later development phases.
Summarizing, development methods based on lean production promise to
satisfy the new criteria for instructional software development, except domain,
pedagogic, and—in particular--functional modeling, due to the lack of common
design languages and the limitations of iteration. A possible solution should
focus on supporting designers to provide producers with exactly the functional
modeling information they need.

Three Building-Block Solutions

Currently, production-related information is typically embedded in three

types of building blocks for the production process: (a) design documents as
input, (b) programming structures as throughput, and (c) learning materials as
output (see Figure 2.2).

Figure 2.2. The three artifacts in the development process that embed
production-related information.

In order to better interrelate the design phase into the production phase,

it is proposed that designers’ attention be focused on these three building
blocks, thereby preventing the need to rely solely on design documents and/or
iteration. Three building-block solutions are proposed to compensate for the
limited production expertise of the typical designer: First, the Developing
Design Documents (3D) model to support designers to improve design
documents; second, instructional software templates to support designers to
create programming structures, and third, an integrative approach to support
designers to reuse learning objects. According to the first solution, designers
work in their traditional role but use functional modeling to interrelate their
design more explicitly to production. According to the second and third
solutions, designers operate in a producer’s role, using programming structures

Building-block solutions

 27

and learning objects to interrelate their designs more explicitly to production.
The next sections discuss the three solutions.

The 3D-model

In functional modeling, design documents such as training blueprints
and storyboards serve as input for creating technical specifications by
producers. Design documents may be difficult to interpret for three reasons: (a)
different instructional and technical structures are often not meaningfully
organized; (b) different levels of detail are mixed up, and (c) different
expressions are used in a non-standardized manner. With regard to meaningful
organization, Gibbons’ model of Design Layers (Gibbons, 2003) may be used for
stratification of the instructional software design on seven, interrelated layers:
Content, strategy, control, message, representation, media logic, and data
management. Each layer is typified by the designer’s selection of design
languages pertaining to the solution of different instructional design sub
problems. Together, the functional designs at each layer make up the total
design. Stratification helps to determine the relations between the functionally
different instructional and technical structures, while at the same time staying
cognizant of the need for integration of those structures within the complete
design.

With regard to mixing up different levels of detail, the three perspectives
of Fowler (2004) may be used for the elaboration of the instructional software
design: (a) A conceptual perspective, with more or less superficial and
descriptive information; (b) a specification perspective, with more or less
comprehensive and detailed information, and (c) an implementation
perspective, with more or less technical and meticulous information. Elaboration
helps to determine the required level of detail, depending on the capabilities of
the designer and the needs of the producer.
With regard to the use of non-standardized expressions, designers may reach
formalization of their design by making their informal and formal design
languages explicit. They should strive for (combinations of) formal languages,
but depending on their capabilities and the needs of the producer, they can also
select (combinations of) informal languages. Formalization helps to determine
the required level of standardization.

The 3D-model uses stratification, elaboration and formalization as its
three dimensions. Designers, with or without producers, may first analyze their
design situation in order to determine the optimal configuration of the 3D-
model (e.g., What kind of designers and producers are involved? What kind of
training is the design made for? Which support tools are available?), and then
use this configuration to stratify, elaborate, and formalize their design
documents. Figure 2.3 presents the 3D-model in its full configuration, in which
all dimensions are completely utilized. The 3D-model provides producers with

Chapter 2

 28

insight in the underlying structure and content of the functional model, even
when the design languages used are deficient.

Figure 2.3. The Developing Design Documents (3D) model.

Instructional Software Templates

E-learning systems and authoring tools often provide instructional
software templates, which producers can use to easily create or adapt
programming structures that make up the instructional software. This
“programmer-less-authoring” (Hedberg & Sims, 2001) is based on automation of
routine tasks and intuitive interfaces such as “wizards.” They provide support
on three levels. First, on the authoring level, the templates offer prefabricated
“moulds” of programming structures to implement the lessons, practice items,
test questions, examples, cases, feedback, learner support, and so forth into the
instructional software. Second, on the technical level, the templates
automatically produce programming structures that are compliant with current
e-learning technologies, learning technology standards, and different operating
systems. Third, on the pedagogical level, the templates provide prefabricated
structures, for example, drill-and-practice, concept learning, mastery learning,

Building-block solutions

 29

and case-based learning. On the one hand, producers use templates to speed up
their authoring and technical activities and to receive pedagogical support for
creating programming structures without support from instructional designers.
On the other hand, those designers may use templates to speed up their
pedagogical activities and receive authoring and technical support.

Instructional software templates explicitly interrelate design and
production. First, designers can choose not to rely on the producers at all and
select and instantiate appropriate templates without the involvement of
producers. This way, they are able to create and assemble the programming
structures they want, thereby making their own instructional software. Second,
designers can provide producers with design information by means of
implementing their design principles. These templates will then force producers
to apply particular pedagogical principles in the instructional software. Third,
designers might provide producers with design information by means of
example products they have created with templates. Optionally, these examples
can be presented to the producers together with the design documents.

Learning Objects

To increase the efficiency of design and production, there is currently
much emphasis on the reuse of learning materials. If learning materials are
divided into small, modular chunks, often called “learning objects,” developers
will be able to combine and recombine those objects to create new learning
materials. Van Merriënboer and Boot (2004) identify six problems with the
current reuse of learning objects. The first three problems relate to the nature of
learning objects: (1) The metadata problem refers to the fact that it is difficult and
extremely labor-intensive to specify metadata for large sets of learning objects;
(2) the arrangement problem refers to the fact that combining and sequencing
learning objects into larger arrangements is not always easy and self-evident,
and (3) the exchange problem refers to the fact that it may be difficult from a
psychological viewpoint (e.g., due to the “not-invented-here” syndrome) or
organizational viewpoint (e.g., due to security issues or intellectual property
rights) to exchange learning objects between developers and between e-learning
systems. The remaining three problems arise because current approaches of
reuse are not consistent with the holistic pedagogical view: (4) The context
problem refers to the fact that effective learning objects cannot be created in
isolation without an implicit or explicit instructional setting, target group, and
other contextual descriptors; (5) the pedagogical function problem refers to the fact
that it is difficult to express pedagogical intentions for a learning object by
means of technical properties such as metadata, and (6) the correspondence
problem refers to the fact that a developer working from a holistic viewpoint will
typically not search for one particular learning object but rather for a set of
meaningfully interrelated learning objects that is aimed at the construction of
one rich cognitive representation.

Van Merriënboer and Boot (2004) propose an integrative approach,
stressing four solutions to improve the reuse of learning objects. The first

Chapter 2

 30

solution is to reedit instead of reuse learning objects. This increases the chance
that the developer will find a useful learning object because it becomes less
important to find exactly what is needed. The second solution is to use
templates instead of instantiations as learning objects. Templates allow for the
easy modification of learning objects (e.g., a change of an American grading
system to a European grading system), making them useful for a broader range
of situations. The third solution is to automate the creation and reuse of learning
objects. The use of automatic analysis of multimedia content and the semantic
indexing of this content in metadata fields makes reuse more cost-effective and
also yields more objective metadata than indexing by hand. The final solution is
to use intermediate products in addition to final products as learning objects.
Intermediate products, such as task analysis results and lesson plans, contain
rich information that describes the final products for which they were made.
This rich information is more suitable than metadata to provide input for
searching suitable learning objects.

The integrative approach to the reuse of learning objects explicitly
supports designers to interrelate design to production. First, designers can
choose not to rely on producers at all and independently select and reuse
appropriate learning objects to assemble the instructional software product they
want. Second, designers can provide producers with design documents
illustrated with example sets of learning objects they have assembled.

Conclusions and Discussion

New criteria for instructional software development are set by recent

pedagogical, technological and organizational innovations: Adaptivity,
generativity, scalability, and last but not least, modeling. From theoretical and
empirical analyses, which clearly corroborate each other, it appears that existing
instructional software development methods based on a push-principle do not
satisfy all criteria. Lean production, based upon the pull-principle, is suggested
as a new development approach to enable the required mass-customization of
instructional software. However, lean production also suffers from the
fundamental problem of a lack of design languages to transfer information from
the design phase to the production phase. In order to overcome this problem,
designers may use production building blocks that prevent sole reliance on
design languages and/or iteration. We proposed three building block solutions
to support designers in functional modeling: The 3D-model to improve design
documents, instructional software templates to create programming structures,
and the integrative approach for reusing learning objects.

The suggested building-block methods are predominantly based on
practical experiences and theoretical as well as empirical analyses. Further
research might go in three directions. First, it should validate the actual value of
the building-block solutions, separately and in combination, on the success of
the transition between design and production. In particular, it is interesting to
study the application of the three solutions by domain specialists such as subject

Building-block solutions

 31

matter experts and teachers, because although they are inexperienced in
instructional design and software production, they are often the persons
involved in actual instructional software development projects. Second, as our
empirical analysis shows, designers are likely to be rather skeptical towards new
solutions. Changing the instructional software development process as
drastically as lean production approaches suggest, and also introducing the
proposed building-block solutions that require other design skills than before,
will probably meet resistance from designers. So, further research and validation
should also be aimed at the development of innovation models that help to
promote acceptance of new solutions by designers. Third, further research may
pertain to the roles of designers and producers. The pull principle suggests that
designers should be fully responsible for solving the transition bottleneck, as
producers are the “demanding party.” This does not imply that designers
should provide any solution that producers demand. Further research should be
aimed at clarification of new roles for producers and designers.
 This study has some clear practical implications for the use of the three
building-block solutions, either alone or in combination. First, they allow
designers to improve their design documents through the analysis of
instructional software templates and learning objects used by a production
team. This yields useful product information and informs designers about the
capabilities and preferences of the producers. Second, they allow designers to
improve their instructional software templates through the analysis of multiple
sets of learning objects and design documents. This yields useful design
information to serve as input for creating new templates. Third, they allow
designers to improve their reuse of learning objects, as the integrative approach
incorporates both using design documents (called “intermediate products”) and
using instructional software templates. This way the three proposed solutions
may offer a first step toward the implementation of the holistic pedagogical
view, with a focus on authentic learning tasks, in innovative instructional
software.

Chapter 2

 32

References

Achtenhagen, F. (2001). Criteria for the development of complex teaching-
learning environments. Instructional Science, 29, 361-380.

Atkinson, R. C., & Wilson, H. A. (1969). Computer assisted instruction: A book of
readings. New York: Academic Press.

Booch, G. (1994). Object-oriented analysis and design with applications. Redwood
City, CA: Benjamin/Cummings.

Botturi, L. (in press). E2ML: A visual language for the design of instruction.
Educational Technology, Research and Development.

Collins, A. (1988). Cognitive apprenticeship and instructional technology (Tech. Rep.
No. 6899). Cambridge, MA: BBN Labs Inc.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship:
Teaching the craft of reading, writing, and mathematics. In L. B. Resnick
(Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser
(pp. 453-493). Hillsdale, NJ: Lawrence Erlbaum.

Dick, W., & Carey, L. (1996). The systematic design of instruction (4th Ed.). New
York: Harper Collins.

Fowler, M. (2003). UML distilled: A brief guide to the standard object modeling
language. Boston, MA: Addison-Wesley.

Gibbons, A. S. (2003). What and how do designers design? A theory of design
structure. Tech Trends, 47(5), 22-27.

Gibbons, A. S., & Fairweather, P. G. (1998). Computer-based instruction: Design and
development. Englewood Cliffs, NJ: Educational Technology Publications.

Gibbons, A. S., Bunderson, C. V., Olsen, J. B., & Robertson, J. (1995). Work
models: Still beyond instructional objectives. Machine-Mediated Learning,
5(3&4), 221-236.

Gibbons, A. S., Nelson, J., & Richards, R. (2000). The nature and origin of
instructional objects. In D. A. Wiley (Ed.), The instructional use of learning
objects (pp. 25-58). Bloomington, IN: AECT.

Hedberg, J., & Sims, R. (2001). Speculations on design team interactions. Journal
of International Learning Research, 12(2/3), 193-208.

Building-block solutions

 33

Hoogveld, A. W. M., Paas, F., Jochems, W. M. G., & van Merriënboer, J. J. G.
(2002). Exploring teachers' instructional design practices: Implications for
improving teacher training. Instructional Science, 30, 291-305.

Jochems, W., van Merriënboer, J. J. G., & Koper, R. (Eds.) (2003). Integrated E-
learning: Implications for pedagogy, technology, and organization. London,
UK: RoutledgeFalmer.

Jonassen, D. H. (1999). Designing constructivist learning environments. In C. M.
Reigeluth (Ed.), Instructional design theories and models: A new paradigm of
instructional theory (Vol. II) (pp. 371-396). Mahwah, NJ: Lawrence
Erlbaum.

Koper, R., & Tattersall, C. (Eds.) (2005). Learning design: A handbook on modeling
and delivering networked education and training. Heidelberg, Germany:
Springer-Verlag.

Merrill, M. D. (2002). First principles of instruction. Educational Technology,
Research and Development, 50(3), 43-59.

Nelson, L. M. (1999). Collaborative problem solving. In C.M. Reigeluth (Ed.),
Instructional design theories and models: A new paradigm of instructional
theory (Vol. II) (pp. 241-267). Mahwah, NJ: Lawrence Erlbaum.

Ohno, T. (1988). Toyota production system: Beyond large-scale production. Portland,
OR: Productivity Press.

Parrish, P. E. (2004). The trouble with learning objects. Educational Technology,
Research and Development, 52(1), 49-67.

Reigeluth, C. M. (Ed.) (1999). Instructional-design theories and models: A new
paradigm of instructional theory (Vol. 2). Mahwah, NJ: Lawrence Erlbaum.

Reigeluth, C. M., & Nelson, L. M. (1997). A new paradigm of ISD? In R. M.
Branch, B. B. Minor, & D. P. Ely (Eds.), Educational media and technology
yearbook (Vol. 22, pp. 24-35). Englewood, CO: Libraries Unlimited.

Schank, R. C., Berman, T. R., & MacPerson, K. A. (1999). Learning by doing. In
C.M. Reigeluth (Ed.), Instructional design theories and models: A new
paradigm of instructional theory (Vol. II) (pp. 161-181). Mahwah, NJ:
Lawrence Erlbaum.

Schellekens, A. (2004). Towards flexible programmes in higher professional education.
Unpublished PhD dissertation. Open University of the Netherlands,
Heerlen.

Chapter 2

 34

Schwartz, B. (2004). The paradox of choice: Why more is less. New York: Harper
Collins Publishers.

Spector, J., & Muraida, D. (1997). Automating design instruction. In S. Dijkstra,
N. Seel, F. Schott, & D. Tennyson (Eds.). Instructional Design: International
Perspectives (Vol. 2) (pp. 59-81). Mahwah, NJ: Lawrence Erlbaum.

Collis, B., & Strijker, A. (2004). Technology and human issues in reusing learning
objects. Journal of Interactive Media in Education, 2004 (4). Special Issue on
the Educational Semantic Web.

 Tennyson, R. D. (1995). Four generations of Instructional System Development.
Journal of Structural Learning, 12(3), 149-164.

Van Berlo, M. P. W. (2005). Instructional design for team training: Development and
validation of guidelines. Unpublished PhD dissertation. Catholic University
of Leuven, Belgium.

Van Merriënboer, J. J. G. (1997). Training complex cognitive skills. Englewood
Cliffs, NJ: Educational Technology Publications.

Van Merriënboer, J. J. G., & Boot, E. W. (2005). A holistic pedagogical view of
learning objects. In J. M. Spector, S. Ohrazda, P. van Schaaik, & D. A.
Wiley (Eds.), Innovations in instructional technology: Essays in honor of M.
David Merrill (pp. 43-64). Mahwah, NJ: Lawrence Erlbaum.

Verstegen, D. M. L. (2003). Iteration in instructional design: An empirical study on
the specification of training simulators. Unpublished PhD dissertation.
Utrecht University, Utrecht, The Netherlands.

Waters, S. H., & Gibbons, A. S. (2004), Design languages, notation systems, and
instructional technology: A case study. Educational Technology, Research
and Development, 52(2), 57-68.

Woll, C. (2003). Identifying value in instructional production systems: mapping the
value stream. Unpublished PhD dissertation. Utah State University, Logan.

Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world.
New York: HarperCollins.

 Chapter 3

 35

Chapter 3

Stratification, Elaboration, and Formalization of Design
Documents:

Effects on the Production of Instructional Materials2

Abstract

Designers and producers of instructional materials lack a common design
language. As a result, producers have difficulties translating design documents
into technical specifications. The Developing Design Documents (3D) model is
introduced to improve the stratification, elaboration, and formalization of
design documents. It is hypothesized that producers working with improved
documents (n = 8) show a more efficient translation process and more
satisfaction with the design documents than producers working with traditional
documents (n = 8). As expected, in the improved documents group, a higher
agreement was found between the design documents and the technical
specifications, which also required less time and less perceived cognitive load
for their production. There were no differences on satisfaction with the design
documents. The study shows that designers, working with the 3D-model, are
able to improve design documents, resulting in a better translation process and
integration of design and production.

2 Boot, E., Nelson, J., van Merriënboer, J. J. G., & Gibbons, A. S. (submitted).
Stratification, Elaboration, and Formalization of Design Documents: Effects on the
Production of Instructional Materials

The 3D-model

 36

Developing instructional software is becoming increasingly complex. An
important reason is the increasing interest in competency-based learning, which
is characterized by learning integrated sets of knowledge elements, skills, and
attitudes to recognize and solve problems in a variety of real-life situations.
Training programs for competency-based learning are often problem, project, or
case based and typically include authentic, realistic learning tasks as the driving
force for learning (cf. Merrill, 2002). Instructional software for such training
programs often has the character of blended learning or integrated e-learning
(Jochems, van Merriënboer, & Koper, 2004), emphasizing flexible and adaptive
learning paths. Developing such complex instructional software predominantly
takes place in large projects, conducted by multidisciplinary teams, and based
upon modular, object-oriented approaches towards specification and
production.

The basic development model is the Instructional Systems Development
(ISD) model, an instantiation of the generic Analysis, Design, Development,
Implementation, and Evaluation model (ADDIE; Dick & Carey, 1996). Every
phase in the ISD model identifies specific types of activities and outcomes, for
which different specialists (e.g., designers, producers, visual artists and so forth)
are responsible. The outcomes of a preceding phase are mostly transferred to the
next phase by means of design documents. In the design phase, for instance,
instructional designers create a design based upon information from the
preceding analysis phase, consisting of a learning hierarchy, target group
analysis results, a context description, and so forth. In the case of competency-
based learning, the design is likely to be based on models such as the four-
component instructional design model (4C/ID model; van Merriënboer, 1997)
and described in a particular design document, in this phase often called a
training blueprint (van Merriënboer, Clark, & de Croock, 2002). In addition,
designers can provide guidelines with respect to the implementation of the
training blueprint in the instructional software, for instance by means of
storyboards (e.g., Driscoll, 1998). In the subsequent development phase,
producers such as systems integrators, multimedia specialists and
programmers, interpret, elaborate and transform the training blueprints and
storyboards, in order to translate them into technical specifications.

It appears that the transition of information between the design phase
and the development phase is a serious bottleneck (Boot & van Merriënboer,
submitted). The intentions of an instructional design, described in the training
blueprint and storyboards, are often not sufficiently represented in the technical
specifications created by the producers. Time-consuming reviews and frequent
discussions between instructional designers and software producers are often
required to reach correct technical specifications, which are fully in line with the
blueprint and storyboard. This sub-optimal translation process is deteriorated
by the fact that many software experts are not necessarily experienced in
specifying and creating instructional software programs. In absence of those
reviews and discussions, the production process often results in an

 Chapter 3

 37

unsatisfactory outcome, that is, flawed instructional software that requires
correction afterwards (“design by debugging”).

Recent software engineering methods attempt to overcome the
translation problem by means of agile development methods. Agile methods
emphasize iteration in the development process (see
http://www.agilealliance.com). For instance, eXtreme Programming (XP)
prescribes (a) revisiting preceding phases if information is insufficient, and (b)
rapid prototyping of small but representative intermediate products for testing
during development (Verstegen, 2003). However, such approaches are often not
feasible due to the juridical and financial restrictions of outsourcing the
production phase—increasingly applied in large (instructional) software
projects—which separates the design and production phases in space and time.
Such outsourcing to external parties, particularly if these parties are in foreign
countries (“offshore outsourcing”), also limits information exchange due to
language problems and cultural differences.

As a result, the development process relies heavily on the communicative
quality of design documents such as training blueprints. An important question
is therefore how such documents can be improved by instructional designers, to
increase the probability of an optimal transfer of information from designer to
producer. In the remaining parts of this Introduction, three fundamental
variables of creating design documents are presented: Organization, detail, and
standardization. Subsequently, the 3D-model for organizing design documents,
based upon the three variables, is introduced. Then, an empirical study is
presented comparing the effects of conventional design documents and
improved design documents on the efficiency of the translation process and
producers’ satisfaction. The results of this study and, finally, their implications
for future research and the practical field of instructional design are discussed.

Design documents
In the field of instructional software development, designers and

producers lack a common, explicit notation system (Gibbons, Nelson, &
Richards, 2000; Waters & Gibbons, 2004). A notation system is an embedded
element of a design language and captures abstract ideas to create transferable
designs (Gibbons & Brewer, 2005). Part of the reason why designers and
producers use different languages and notation systems, even though they are
discussing the same instructional software, is simply that they are interested in
different aspects of the product and thus need to describe different features and
functionalities (Nelson, 2003). The designer is mainly concerned with the
content and the instructional strategies realized by the product, while the
producer is mainly interested in its architecture and necessary data structures.
Therefore, designers typically work with training blueprints and storyboards. A
training blueprint consists of intermediate instructional design products, such as
learning hierarchies, task classes, learning tasks, structures for scaffolding,
cognitive feedback messages, and so forth. A storyboard consists of sketches of
the interface lay-out and information for media selection and navigation.

The 3D-model

 38

Producers, in contrast, typically work with technical specifications consisting of
highly detailed structural and procedural descriptions of the instructional
software, such as program architectures, interaction patterns, navigation
models, data types, information flows, reusable learning objects with metadata,
and so on. For both designers and producers, the different sets of terms refer to
different aspects of the same final product. But when training blueprints and
storyboards are translated into technical specifications, the communication of
ideas and the quality of the final product suffers if there is a mismatch of
languages and notation systems (Nelson, 2003).

Three basic variables directly affect the quality of the translation from
instructional design documents (blueprints and storyboards) to technical
specifications, namely, the (1) organization, (2) level of detail, and (3)
standardization of the design information. With regard to the organization of
design information, the descriptions of different instructional and technical
structures are often not meaningfully interrelated in conventional design
documents. Adapting such documents to reflect changes in the design can be
very difficult and laborious for the designers. Also, if producers face changes
after the design phase, it will be very difficult for them to determine the effects
of such changes for the technical specifications and the final product. For
instance, the training of a problem-solving task can change because a new
device so strongly supports the original problem-solving task that it becomes a
routine task. This implies considerable implications for instruction (e.g., more
emphasis on repetition of similar practice items combined with just-in-time
information) as well as technical issues (e.g., different information to be
displayed, different interactions, different feedback mechanisms, and so on).

The second variable is the level of detail of the design information. The
level of detail in conventional design documents varies depending on the
capabilities of the designer. For example, more capable designers will typically
add more detail to instructional issues but not to technical issues. However, the
level of detail should also depend on the needs of the receiver of the
information, that is, the producer. For instance, to communicate between
designers the application of delayed cognitive feedback following a particular
learning task, a rather conceptual description will suffice. The designers will
readily understand each other. But for a producer, much more detailed
descriptions of timing, content, and presentation of feedback are needed to be
able to specify and implement it as intended by the designer.

The third variable is the standardization of design information. In
conventional design documents, designers express an instructional design
mostly by textual expressions, supplemented with tables, lists, flowcharts, and
graphics – all in a non-standardized manner. For producers, this leads to (a)
semantic problems, as they may not fully understand the intentions of the
designer, (b) interpretation problems, as they are left with too many degrees of
freedom in creating the technical specifications, and (c) compatibility problems,
as they cannot directly and (semi) automatically translate a design description
into technical specifications.

 Chapter 3

 39

We assume that the three basic variables (a) organization, (b) level of
detail, and (c) standardization of design documents provide a starting point to
improve the quality of the communication between designers and producers.
Eventually, this will improve the quality of instructional software products.

The 3D-model
The 3D-model is established to support improving design documents. It

consists of three dimensions, namely (a) stratification, (b) elaboration, and (c)
formalization, based upon the variables discussed in the previous section. The
three D’s in the name reflect the three dimensions and are also an acronym for
Developing Design Documents. Independent designers, or teams with designers
and producers, may use the 3D-model to (a) analyze their design situation (e.g.,
what kind of designers and producers are involved? For what kind of training is
the design made? Which support tools are available?) to determine the most
optimal configuration of the 3D-model, and subsequently (b) use this
configuration to stratify, elaborate, and formalize their design documents.
Figure 3.1 presents the 3D-model in its full configuration, in which all
dimensions are completely utilized.

Figure 3.1. The 3D-model for Developing Design Documents in its full configuration.

The 3D-model

 40

First, in order to improve the organization of design documents,
designers may stratify their designs in terms of a layered design architecture.
For example, according to Gibbons’ model of Design Layers (Gibbons, 2003),
each complete instructional design is organized on seven, interrelated layers:
Content, strategy, control, message, representation, media logic, and data
management. Each layer is typified by the designer’s selection of design
languages pertaining to the solution of different instructional design sub
problems. Together, the functional designs at the different layers, expressed in
one or more design languages, make up the total design. The design of each
layer may require different design activities, support tools, and specialists (see
Table 3.1). For both designers and producers, stratification helps to identify the
relations between the functionally-different instructional and technical
structures, while at the same time staying cognizant of the need for integration
within the complete design. Designers should therefore decide to which extend
they are able to complete the stratification dimension, given their specific design
situation.

Table 3.1
Objectives and Examples of the Seven Design Layers (Adapted from Gibbons, 2003)

Layer Objective Examples of
activities

Examples of
outcomes

Content Define the content
and structure of the
domain (“what
should be learned”)

Task analysis,
Content analysis,
Concept mapping,
Model analysis

Task hierarchies,
Mental model
descriptions

Strategy Define the
instructional design
(“how should be
learned”)

Identification of
whole-task practice
and part-task
practice, Definition
of and sequencing
of learning tasks,
Definition of social
relationships during
instruction,
Definition and
sequence of time-
event structures,
Definition of roles,
goals, and initiative-
sharing during
instruction

Task classes, Case
descriptions,
Feedback
mechanisms

Control Define the Identification of Content controls,

 Chapter 3

 41

command language
given the learner for
communication of
actions and
responses to the
instructional source
(“how can the user
interact”)

user actions,
Definition of control
space, Flow
planning

Strategy controls,
Administrative
controls

Message Define the message
design (“what
should be sensed”)

Definitions of
message structure,
Composition of
elements and rules

Message standards
design for content

Representation Define the
representation
design (“how
should it be shown)

Media selection,
Selection of
production tools
and methods

Layout standards,
Media channel
assignment, Media
synchronization
methods

Media-Logic Define the software
architecture (“how
should the program
be structured”)

Definition of logic
structure,
Algorithms
Creation, Learning
objects definition

Modularity plan,
Packaging method,
Software platform
selection,
Maintenance plan

Data
Management

Define the data
management (“how
should information,
captured during
instruction, be
organized, analyzed,
stored, and
reported”)

Defining
administration
processes, Data base
selection, Definition
of data items,
capture, filtering,
storage, analysis,
interpretation,
compilation, and
sharing

Security plan,
Billing methods,
Metadata
assignment

Second, in order to add sufficient detail to each layer, designers may elaborate
their designs according to three different perspectives (Fowler, 2003). First, in a
conceptual perspective, designers can describe the design more or less superficial
and descriptive, reflecting the general direction of the design. Second, in a
specification perspective, designers can describe the design more or less
comprehensive and detailed, reflecting all design decisions. Third, in an
implementation perspective, designers can describe the design more or less
technical and meticulous. For both designers and producers, elaboration helps
to determine the required minimum level of detail, depending on the

The 3D-model

 42

capabilities of the designer and the needs of the producer. Designers should
therefore decide for each design layer to which extend they are able to progress
along the elaboration dimension, given their design situation.

Third, in order to add sufficient standardization to the descriptions of
each layer-perspective combination, designers may formalize their design
descriptions by making their informal or formal design languages explicit.
Formalization helps to add rigor to a design to promote unequivocal
understanding of both designers and producers. Designers should strive for
(combinations of) formal languages, but depending on the capabilities of the
designer and the needs of the producer, they can also select (combinations of)
informal languages. Such a language can be specific for a particular layer, for
instance, informal languages such as event-and-control flow diagrams for the
control layer, and wire frames of layouts for the representation layer. Or it can
be specific for a particular perspective, for instance, an informal language such
as plain text for the conceptual perspective; the Unified Modeling Language
(UML; Fowler, 2003) for the specification perspective, and the Extended Markup
Language (see www.w3.org/XML) for the implementation perspective.
Designers should therefore decide for each design layer and each perspective
which (in)formal design languages are suitable, given their design situation.

The application of the 3D-model will result in a specific configuration for
each different design situation. This is expected to result in a more efficient
translation process and a higher producers’ satisfaction with the design
documents than with conventional design documents. The current study is
conducted to verify this claim. It is hypothesized that compared to conventional
design documents the improved documents lead to a better understanding by
the producers and require less time and perceived cognitive load to reach this
understanding.

Method

Participants
Sixteen students from Utah State University’s Computer Science

department participated in this study, acting as producers of instructional
software. They were randomly assigned to either the conventional documents
group (n = 8) or the improved documents group (n = 8). All participants
received a compensation of $ 20.

Materials
Design documents. The conventional and improved design documents

were on an identical topic, learning to drive a car, and had an identical function,
providing input for the technical specification process for an advanced car-
driving educational simulation (see van Emmerik, 2004). With respect to
ecological validity, reviews of expert instructional designers and producers, not
related to the study and blinded for condition, indicated that the design

 Chapter 3

 43

documents were representative for documents used in professional training
organizations.

Figure 3.2. Configurations of the 3D-model for the conventional and improved design
documents.

Figure 3.2 describes the difference between the conventional and
improved design documents in terms of configurations of the 3D-model. In the
conventional design document, the value on the “formalization” dimension is
always informal, thus no formal representations are used. The value on the
“elaboration” dimension is implementation for the content and strategy layers;
specification for the control, message, and representation layers; and conceptual
for the media logic and data management layers. This configuration reflects the
traditional approach towards design documents. The content and strategy layers
are described as a training blueprint specified in the four-component
instructional design model (van Merriënboer, 1997; van Merriënboer, Clark, &
de Croock, 2002), containing typical instructional design information such as a
task-hierarchy, a list of learning objectives, descriptions of learning tasks, and an
overview of the whole training program. The control, representation, media
logic, and data management layers are described with storyboards, containing
typical instructional software information on user-interfaces, navigation,
interaction, and program-flow. The information was described by text, tables,
flowcharts, and drawings according to best practices and guidelines from the
literature (e.g., Driscoll, 1998; Kruse & Keil, 2000).

In the improved design document, the values on the “formalization”
dimension are both formal and informal, thus both kinds of representations are
used. For the informal representations, the values on the “elaboration”
dimension are conceptual, specification, and the values on the content and strategy
layers are implementation. For the formal representations, the values on the

 Conventional configuration Improved configuration

The 3D-model

 44

“elaboration” dimension are specification and conceptual for the layers content up
to data management. This configuration reflects the use of the 3D-model to
stimulate and support designers to stratify, elaborate, and formalize design
documents more than they usually do. As in the conventional design document,
the informal representations were described by a training blueprint according to
the four-component instructional design model and storyboards. The formal
representations were described by UML diagrams.

Measurements
 Background questionnaire. The background questionnaire was used to
collect information about the participants’ (a) experience with car driving,
related to the topic of the design documents (ownership of drivers license, years
of driving experience); (b) level of education; (c) number of familiar object-
oriented programming languages, and (d) familiarity with Object-Oriented
Programming (OOP), Object Oriented Modeling (OOM), and UML.

Specification questionnaire. The ability to translate the design document
into technical specifications, defined as the results of the translation process, was
measured by the specification questionnaire. It consisted of 25 open questions,
each question on one printed page with sufficient space to note down the
answer. There was no time limit for answering the questions. Each question
addressed a particular aspect of translating the design document into technical
specifications. For instance, the participants had to distill from the design
document how many databases should be used in the instructional software;
what the consequences would be from changing text-based messages into audio-
based messages (the so-called “ripple effect”); how a particular program flow
should be implemented; what it meant if just-in-time information would be
applied in a particular learning task; where the producer would need a subject
matter expert to provide additional domain information; which instructional
design components should be implemented as reusable learning objects, and so
forth. Based on a checklist with correct answers, two reviewers rated all items as
correct or incorrect (the Intra Correlation Coefficient, ICC, is .94, which is good,
Fleiss, 1981).

Cognitive load questionnaire. This questionnaire measured the perceived
cognitive load for each question in the specification questionnaire, defined as
part of the costs of the translation process. It used the standard 9-point rating
scale developed by Paas (1992; see also Paas, Tuovinen, Tabbers, & van Gerven,
2003). The rating scale was included at the bottom of each page of the
specification questionnaire, and ranged from 1 = “very, very low perceived
load” to 9 = “very, very high perceived load”. The ICC of the questionnaire is
.89, which is good.
 Satisfaction questionnaire. This questionnaire measured the participants’
satisfaction with the design documents. It contained six statements that had to
be rated on a 9-point scale (ranging from 1 = “very, very low” to 9 = “very, very
high”). The statements concerned (a) the effort that needs to be invested in the
technical specification process, (b) the capability to create technical

 Chapter 3

 45

specifications, (c) the perceived completeness, (d) the level of detail, (d) the
understandability, and (e) the quality of the design document.

Procedure
First, the participants were asked to fill out the background

questionnaire. Subsequently, they were asked to study either the conventional
or the improved design document for exactly 50 minutes. During this period,
they were allowed to make notes for later use. Then, they had to fill out the
specification questionnaire. The 25 pages of the questionnaire were filled out
one by one, allowing the experimenter to note down the time on task for each
question (in units of half minutes). In addition to perceived cognitive load, time
was defined as another part of the costs of the translation process. After finishing
each question, the participants filled out the cognitive-load questionnaire at the
bottom of the page and gave it to the experimenter. Immediately after
answering the final question the participants filled out the satisfaction
questionnaire.
Data Analysis

T-tests for independent samples are used to test for differences between
the conventional and improved document groups. The relative efficiency of both
groups is calculated using the 3D-efficiency approach of Tuovinen and Paas
(2004). In this approach, efficiency is defined as the difference between
standardized results (in this study the quality of technical specifications (QTS) as
a result of the translation from design documents) and standardized scores for
perceived cognitive load (PCL) and time on task (TT), reflecting the costs. In a
three dimensional Cartesian space, efficiency is the perpendicular distance
between a point in that space and a plane that represents an efficiency of zero,
and determined by the equation:

3
TTPCLQTSE −−

=

Results

In the conventional documents group, participants’ education was

computer science on the Bachelors level (3 out of 8), Masters level (4 out of 8), or
PhD level (1 out of 8). All participants had a driver license, and their mean car
driving experience was 7.88 years (SD = 6.01). In the improved documents
group, participants’ education was computer science on the Bachelors level (6
out of 8) or Masters level (2 out of 8); 6 of the 8 participants had a driver license,
and their mean car driving experience was 6.75 years (SD = 5.25). As can be
seen in Table 3.2, participants have experience in at least two object-oriented
programming languages and rated their experience with OOP, OOM, and UML
above average. There were no significant differences between groups.

The 3D-model

 46

Table 3.2
 Means and Standard Deviations of Proficiency with Programming Languages and
Ratings on Experience with Object-oriented Software Development

Conventional
design documents

group
(n = 8)

Improved design
documents group

(n = 8)

M SD M SD
1. # of familiar OOP languages 2.37 0.92 1.87 0.99
2. Object-Oriented Programming

a
7.13 0.99 6.63 1.99

3. Object-Oriented Modeling 6.75 0.88 6.37 1.41
4. Unified Modeling Language 5.75 2.52 5.25 2.31

a Questions 2-4 are rated on a 9-point scale (1 = “very, very low”; 9 = “very,
very high”).

Table 3.3 presents the main results on the quality of the technical

specifications (i.e., agreement with the design document), time on task,
perceived cognitive load, and relative efficiency of the translation process. The
quality of the technical specifications is higher in the improved documents
group (M = 17.18 on a scale with a maximum of 25, SD = 1.94) than in the
conventional documents group (M = 12.25, SD = 2.35; t = 4.58, p < .001). The
mean time on task per question is lower in the improved documents group (M =
2.75 minutes, SD = .71) than in the conventional documents group (M = 3.46
minutes, SD = 0.89; t = 1.77, p < .05). The perceived cognitive load does not differ
between groups (t = 0.88, p > .39); the improved documents group scored a
mean of 4.06 on a 9-point scale (SD = 1.10) and the conventional documents
group scored a mean of 4.43 (SD = .42). As expected, the efficiency of the
translation process is significantly higher in the improved documents group (M
= .28, SD = .37) than in the conventional documents group (M = -.28, SD = .38; t
= 3.03, p < .01).

 Chapter 3

 47

Table 3.3
Means and Standard Deviations for Measures of the Transition Process

Conventional
design documents

group
(n = 8)

Improved design
documents group

(n = 8)

M SD M SD
1. Quality of production (0 – 25) 12.25 2.35 17.18 1.94
2. Mean time per question (mins.) 3.46 0.89 2.75 0.71
3. Mean perceived cognitive load

per question a
4.43 0.42 4.06 1.10

4. Efficiency of specification
process

-.28 .38 .28 .37

a Item 3 is rated on a 9-point scale (1 = “very, very low”; 9 = “very, very high”).

Table 3.4 presents the results on participants’ satisfaction with the design

documents. In general, the participants were reasonably satisfied. There are no
significant differences between the groups.

Table 3.4
Means and Standard Deviations for Satisfaction with Design Documents

Conventional
design documents

group
(n = 8)

Improved design
documents group

(n = 8)

M SD M SD
1. What is your invested effort? a 5.25 1.04 5.87 1.45
2. How is your ability to create

technical specifications based
upon the design documents?

5.87 1.25 5.25 1.83

3. How is the level of
completeness of the design
documents?

4.87 1.81 6.00 0.75

4. How is the level of detail of the
design documents?

5.25 1.48 6.37 1.59

5. How is your understanding of
the design documents?

6.13 1.25 6.50 0.93

6. How is the quality of design
documents?

5.63 1.99 5.87 1.23

a Items are rated on a 9-point scale (1 = “very, very low”; 9 = “very, very high”).

The 3D-model

 48

Discussion

This study investigated means to improve the efficiency of the translation
process between the design phase and the production phase. The results show
that the application of a structured, three-dimensional approach by designers,
helps producers to specify technical specifications that are more in agreement
with instructional design documents (i.e., training blueprint and storyboard). By
improving these documents, less of the designers’ intentions are “lost in
translation,” preventing the specification and production of sub-optimal
products. Developing design documents while supported by the 3D-model
results in a higher efficiency of the translation process, reflecting better results in
combination with less time and perceived cognitive load.
 This study assumed that primarily instructional designers are in a
position to enhance the efficiency of the translation process through the
improvement of instructional design documents, because producers cannot
correctly judge the quality of those documents. The results of this study are in
line with this assumption, because no relation between producers’ satisfaction
and the nature of the design documents was found. The lack of differences in
satisfaction with conventional and improved design documents might be caused
by the fact that the producers in this study were not professional instructional
software developers but students. However, the participants indicated to be
experienced with several programming languages and techniques. Most
instructional software development projects will use producers with equal or
even less experience than the participants in our study.

Developing design documents according to the 3D-model suggest three
lines for future research. The first line pertains to variations on the current
study. For instance, the effects of different configurations of the 3D-model
(compare Figure 3.2) on the efficiency of the translation process may be studied,
as the optimal configuration is likely to be dependent on the specific design
situation. As another example, the creation of the design documents may be
varied by changing the characteristics of the instructional designers in terms of
experience, educational sector (e.g., formal schooling, military, government,
industry), subject matter domain (social, technical), and so forth.

The second line pertains to the role support tools can play for the
configuration of the 3D-model. For instance, new tools such as ADAPT-IT (De
Croock, Paas, Schlanbusch, & van Merriënboer, 2002, also see
www.enovateas.com) support the easy creation of design documents in a
structured manner. With respect to the dimensions of the 3D-model, ADAPT-IT
helps designers to create design documents that are both formal and informal,
are elaborated at the conceptual and specification level, and describe the content
and strategy layers. Future research may either investigate the contribution of
support tools to the creation of design documents, or use the 3D-model to
develop new tools that take all three dimensions into account.

The third research line pertains to the role standardized instructional
design languages may play for the instantiation of the 3D-model. For instance,

 Chapter 3

 49

new languages such as IMS Learning Design (IMS-LD; Koper & Tattersall, 2005)
and E2ML (Botturi, in press) offer opportunities to specify particular
(combinations of) cells in the 3D-model. This is particularly relevant for formal
representations at the elaboration levels ‘specification’ and ‘implementation.’
Further research should indicate to which extend these new languages may
contribute to the quality of the design documents and the efficiency of the
translation process.

An important practical implication of this study concerns the schooling of
instructional designers. The results of this study imply that producers are not in
a good position to improve design documents, because they have difficulties in
judging the quality of these documents. In addition, they cannot always ask the
designer for clarification (e.g., in the case of –offshore—outsourcing). This puts
the responsibility for improving design documents predominantly on designers.
Besides being knowledgeable and skilled in traditional instructional design
activities such as domain and task analysis, strategy selection, and media
selection (see Richey, Fields, & Foxon, 2001), our results indicate that
instructional designers need to become proficient in at least three new activities.
First, they should be able to stratify instructional design documents to describe
aspects associated with design as well as production. Second, they should be
able to decide for each layer how much detail is required for unequivocal
understanding of the design by producers. Finally, they should be able to
represent their designs in formal design languages such as UML, IMS LD, or
E2ML. Support tools may help them to perform their new activities. Due to
limitations in budget and time, formal education will not always be feasible.
Communities of practice might offer an alternative option, because they provide
designers and producers with a platform to discuss each others information and
training needs.

The 3D-model

 50

References

Boot, E. W., & van Merriënboer, J. J. G. (submitted). Improving the development
of instructional software: Three building-block solutions to interrelate
design and production.

Botturi, L. (in press). E2ML: A visual language for the design of instruction.
Educational Technology, Research and Development.

De Croock, M. B. M., Paas, F., Schlanbusch, H., & van Merriënboer, J. J. G.
(2002). ADAPT-IT: ID tools for training design and evaluation.
Educational Technology, Research and Development, 50(4), 45-58.

Dick, W., & Carey, L. (1996). The systematic design of instruction. New York:
HarperCollins.

Driscoll, J. (1998). Web-based training: Tactics and techniques for designing adult
learning. San Francisco, CA: Jossey-Bass/Pfeiffer.

Fowler, M. (2003). UML distilled: A brief guide to the standard object modeling
language. Boston, MA: Addison-Wesley Professional.

Fleiss, J. L. (1981) Statistical methods for rates and proportions (2nd Ed.). New York:
Wiley.

Gibbons, A. S. (2003). What and how do designers design? A theory of design
structure. Tech Trends, 47(5), 22-27.

Gibbons, A. S., & Brewer, E. K. (2005). Elementary principles of design
languages and design notation systems for instructional design. In J. M.
Spector, C. Ohrazda, A. Van Schaack & D. Wiley (Eds.), Innovations to
instructional technology: Essays in honor of M. David Merrill (pp. 111-129).
Mahwah, NJ: Lawrence Erlbaum Associates.

Gibbons, A. S., Nelson, J., & Richards, R. (2000). The nature and origin of
instructional objects. In D. A. Wiley (Ed.), The instructional use of learning
objects (pp. 25-58). Bloomington, IN: Association for Educational
Communications and Technology.

Jochems, W., van Merriënboer, J. J. G, & Koper, R. (Eds.). (2004). Integrated e-
learning: Implications for pedagogy, technology, and organization. London,
UK: RoutledgeFalmer.

Koper, R., & Tattersall, C. (Eds.). (2005). Learning design: A handbook on modeling
and delivering networked education and training. Berlin, Germany:Springer-
Verlag.

 Chapter 3

 51

Kruse, K., & Keil, J. (2000). Technology based learning: The art and science of design,
development, and delivery. San Francisco, CA: Jossey-Bass Pfeiffer.

Merrill, M. D. (2002). First principles of instruction. Educational Technology,
Research and Development, 50(3), 43-59.

Nelson, J. S. (October, 2003). Separating the media logic layer: An argument for a
layered theory of design. Roundtable session at the annual conference of the
Association of Educational Communications and Technology (AECT).
Anaheim, CA.

Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill
in statistics: A cognitive-load approach. Journal of Educational Psychology,
84, 429-434.

Paas, F., Tuovinen, J., Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive
load measurement as a means to advance cognitive load theory.
Educational Psychologist, 38, 63-71.

Richey, R. C., Fields, D. C., & Foxon, M. (Eds.) (2001). Instructional design
competencies: The standards (3rd Ed.). Syracuse, NY: ERIC Clearinghouse on
Information and Technology and the International Board of Standards for
Training, Performance and Instruction.

Salden, R. (2005). Dynamic task selection in aviation training. Unpublished PhD
Dissertation, Open University of the Netherlands, Heerlen.

Tabbers, H. K. (2002). The modality of text in multimedia instructions: Refining the
design guidelines. Unpublished PhD Dissertation, Open University of the
Netherlands, Heerlen, The Netherlands.

Tuovinen, J. E., & Paas, F. (2004). Exploring multidimensional approaches to the
efficiency of instructional conditions. Instructional Science, 32, 133-152.

Van Emmerik, M. L. (2004). Beyond the simulator: Instruction for high-performance
tasks. Unpublished PhD Dissertation, University of Twente, Enschede.

Van Merriënboer, J. J. G. (1997). Training complex cognitive skills: A four-component
instructional design model for technical training. Englewood Cliffs, NJ:
Educational Technology Publications.

Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and
complex learning: Recent developments and future directions. Educational
Psychology Review, 17(2), 147-177.

The 3D-model

 52

Van Merriënboer, J. J. G., Clark, R. E., & De Croock, M. B. M. (2002). Blueprints
for complex learning: The 4C/ID-model. Educational Technology, Research
and Development, 50(2), 39-64.

Verstegen, D. M. L. (2003). Iteration in instructional design: An empirical study on
the specification of training simulators. Unpublished PhD Dissertation,
Utrecht University, Utrecht.

Waters, S. H., & Gibbons, A. S. (2004). Design languages, notation systems, and
instructional technology: A case study. Educational Technology, Research
and Development, 52(2), 57-68.

 Chapter 4

 53

Chapter 4

Novice and Experienced Instructional Software Developers:
Effects on Materials Created with Instructional Software

Templates3

Abstract

The development of instructional software is a complex process, posing high
demands to the technical and didactical expertise of developers. Domain
specialists rather than professional developers are often responsible for it, but
authoring tools with pre-structured templates claim to compensate for this
limited experience. This study compares instructional software products made
by developers with low production experience (n = 6) and high production
experience (n = 8), working with a template-based authoring tool. It is
hypothesized that those with high production experience will be more
productive and create software with a higher didactical quality than those with
low production experience, whereas no differences with regard to technical and
authoring quality are expected. The results show that the didactical quality was
unsatisfactory and did not differ between groups. Nevertheless the templates
compensated for differences in experience because the technical and authoring
quality was equal for both groups, indicating that templates enable domain
specialists to participate successfully in the production process.

3 This chapter will be published as: Boot, E., & van Merriënboer, J. J. G. (in press).
Novice and experienced instructional software developers: Effects on materials created
with instructional software templates. Educational Technology, Research and
Development.

Instructional software templates

 54

The development of instructional software is a costly and time-
consuming process (Tennyson & Barron, 1995). This development bottleneck,
concerning the instructional design and software production, is becoming more
and more serious because current trends in e-learning, such as just-in-time and
just-enough learning (Rosenberg, 2000), increase the need for large amounts and
many different kinds of instructional software, to be created for very specific
needs, in short periods of time. The technical automation of development is only
beneficial when it concerns a large volume of instructional software for the same
topic (Spector & Muraida, 1997), such as software for teaching (foreign)
languages or information technology skills. But as most knowledge domains are
more specific, instructional software needs to be developed custom-made. This
is typically done by domain specialists, because they already possess the
necessary domain knowledge and have easy access to relevant—multimedia—
resources (Spector & Muraida, 1997), and professional instructional designers
and software producers are not easily available or too expensive to hire. Such
domain specialists are proficient in one or more task domains. In organizations
such as the military, typically senior domain specialists are also tasked with
teaching about their domain, and designing traditional instructional materials
such as readers, syllabi, course plans, workbooks and so forth.

The didactical quality of instructional software (defined as the extent to
which desired learning outcomes are attained in an efficient manner) is of
utmost importance because technical quality (defined as the extent to which the
software takes care of the input, information processing, and output as
intended) alone is necessary but not sufficient to stimulate the desired learning
processes. Two approaches can be used to assess the didactical quality. First, an
empirical approach which can determine if learners who use the software
indeed reach the learning objectives specified beforehand. Secondly, an
analytical approach that can determine to which degree particular instructional
principles are embedded in the software. For example, Merrill (2002) describes
five ‘first principles of learning’ (2002): The extension to which these principles
are implemented determines the didactical quality of the software. The
principles refer to (1) the use of real-life problems as the driving force for
learning; (2) the proper activation of relevant prior knowledge; (3) the
demonstration of useful problem-solving approaches and procedures; (4) the
practical application of those approaches and procedures by the learner, and (5)
the integration of what has been learned into real-world activities.

However, principles and guidelines from instructional design theories are
often not very concrete and difficult to apply unequivocally in developing
instructional software. As Goodyear (1997) states: “There are many gaps
between what the prescriptive literature on instructional design would have us
believe and the vicissitudes of design and production practice” (p. 83). For
example, it is mainly the way that the five principles mentioned above are
applied rather than their mere presence that determines the didactical quality of
software. Consequently, more powerful ways to support domain specialists
with their development of instructional software are needed. Our main research

 Chapter 4

 55

question is if so-called instructional software templates can adequately support
domain specialists who develop (i.e., design and produce) instructional
software. In this Introduction, first, different approaches to support domain
specialists are presented, second, the use of templates in modern development
tools is described, and third, the hypothesized effects of such templates are
discussed. Then, we present an empirical study in which the quality of
instructional software developed by novice and experienced domain specialists
is compared.

Supporting Domain Specialists

How can the instructional software development process by domain
specialists be made more efficient (i.e., faster, cheaper, easier) and more effective
(i.e., improved didactical quality of the final product)? One way is to provide
formal training to improve both design and production skills for creating
instructional software. However, such training is often not possible due to a lack
of budget, time, or suitable training programs. Another way is to provide so-
called 'authoring tools' (Locatis & Al-Nuaim, 1999), which intend to make the
development process from paper-based instructional blueprint to concrete
instructional software faster and easier, while still creating effective and
appealing instruction (Merrill, 1997). For instance, such tools hide complex
programming code by providing intuitive interfaces and pre-structured
program components. Familiar tools are Macromedia's Authorware and
Asymetrix' Toolbook, but current Learning Content Management Systems
(LCMSs) also begin to provide build-in authoring facilities (Chapman, 2003).
Vendors often claim that their tools allow for the easy and rapid creation of
instructional software with a high didactical quality – even when developers
have little or no experience. Thus, authoring tools seem to provide a good
solution for supporting domain specialists who need to develop instructional
software but have no or little experience with that.

An inventory study for the Royal Netherlands Army analyzed the
process of instructional software development by novice developers such as
domain specialists who used different authoring tools (Boot & van Rooij, 1999).
The domain specialists were mostly former instructors with considerable
experience in teaching and developing traditional instructional materials, but
with limited multimedia and instructional software development experience.
The study showed that the development of instructional software was much
harder for the domain specialists than expected, mainly because of (1) authoring
problems, (2) technical problems, and (3) didactical problems.
First, it became clear that despite the use of authoring tools the production
process still required considerable programming knowledge, which the domain
specialists seldom possessed (see also Merrill, 1997). Offering a collection of pre-
structured pieces of programming code and ready-made user interfaces was not
enough. The authoring process still required insight in how to structure a
program, how to deal with data variables, how to implement a navigation
structure, how to apply an effective interaction design, and so forth. As a

Instructional software templates

 56

consequence, the resulting products showed a lack of standardization in the
uniformity of program structures and user-interfaces. In addition, most projects
did not meet their deadlines and the quality of the final products greatly varied.

Second, an interesting finding was that the domain specialists seldom
reused existing multimedia resources in order to make the production process
more cost-efficient. Reuse was impeded by the lack of technical knowledge of
file formats, sizes, resolutions, and interfacing, required to (re-)combine
multimedia resources and programming structures. This problem is further
complicated by the fact that Internet technology, operating systems, and
authoring tools are constantly being changed and updated, and are also
becoming increasingly more advanced and complex. The domain specialists also
lacked adequate tools to support them in reusing resources efficiently.

Finally, it was found that even domain specialists with high instructional
design experience, had great difficulties to apply didactical models that made an
optimal use of the new possibilities offered by multimedia systems and
instructional software. Possibly, traditional didactical models differ too much
from new models for ‘digital learning and instruction’ to allow them to make the
necessary transition (Simons, 2002; van Merriënboer, 2003). More specifically, it
is difficult for domain specialists to implement multimedia instruction for at
least three reasons. First, to embed didactical models in instructional software,
the design must be quite detailed. For example, feedback on learner actions has
to be anticipated beforehand because the developer cannot intervene in the
learning process ‘on-the-fly’ as a teacher can do in a classroom. Second, domain
specialists may not be aware of the didactical models that are (implicitly)
supported by authoring systems. For example, in a ‘drill and practice’ or
‘learning by doing’ setting, simulated environments can offer authentic
opportunities for an extensive practice of skills. Or, in a ‘mastery learning’
setting, decisions with regard to mastery and subsequent measures can be based
on a process of continuously, non-intrusive tracking and tracing of learning
results. Third, domain specialists must be extremely careful with implementing
combinations of different visual and auditory representations. For example,
narration may work well for explaining a system-paced streaming animation
but be less effective than a visual explanation if the learner is able to set the pace
of the animation (for more examples, see Mayer, 2001; Sweller, van Merriënboer,
& Paas, 1998).

Template-based Development Tools

Commercial vendors currently provide so-called 'zero-programming'
tools that are claimed to solve the authoring, technical, and didactical problems
in both instructional design and software production. These tools are
characterized by the use of instructional software templates. The concept of such
templates can be traced back to earlier developments in the field of software
engineering. As soon as programmers discovered that it was helpful to
automate certain routine and repetitive task aspects they created template-like
structures that contained parts of a program, which only had to be instantiated

 Chapter 4

 57

with new data and adapted towards new uses. Subsequently, the software
methodology of Object Oriented Programming (OOP) focused on improving
programming by the decomposition of software into independent, reusable
units that functioned like LEGO bricks (Ackermann, 1996; Booch, 1994). Another
important feature of OOP is its use of design patterns (Gamma, Helm, Johnson,
& Vlissides, 1995). Based on the assumption that in developing software one
encounters many recurrent problem situations that require comparable
solutions, these patterns provide standard solutions to common software
development problems. Working in the tradition of this building-block
approach, instructional software templates should potentially be able to provide
support on the authoring, technical, and didactical level.

On the authoring level, instructional software templates offer pre-
structured ‘moulds’ of instructional software. By analogy with OOP, the
templates include different didactical objects. Such objects can be higher-level
objects, including empty lesson structures, default navigation methods, and
generic graphical user-interfaces, as well as lower-level objects, including
structures to create practice items, test questions, examples, cases, feedback, and
learner support. The screens that present the developer an easy-to-use interface
to templates (i.e., wizards) guide the proper structuring and programming of
instructional software.

On the technical level, instructional software templates automatically
produce instructional software that is compliant with current technologies and
operating systems. The vendor only needs to regularly update the templates in
order to ensure compliance with the latest technical possibilities. Wizards can
guide the proper embedding of multimedia objects into templates.

On the didactical level, instructional software templates provide
didactical design patterns, either originating from instructional theory or from
best practices. Default structures may, for instance, present drill-and-practice,
concept learning, mastery learning, and case-based learning, thereby explicitly
gearing design with production. Wizards can guide the proper application of
these structures.

The Effects of Instructional Software Templates

The use of instructional software templates is not new in the field of
instructional technology (e.g., see de Jong, Limbach, Gelleveij, Kuyper, Pieters,
& van Joolingen, 1999; Cline & Merrill, 1995; Merrill & ID2 Research Group,
1998; Tennyson et al., 1995; van Merriënboer & Martens, 2002). But what is new
is the appearance of a great number of commercial template-based tools and
their widespread application in large development projects. As argued above,
these tools may have the potential to overcome some or all of the problems
associated with the development of instructional software, but until now very
little is known about their actual benefits in real-life design projects.

In the template-based authoring tools, there is typically a strong
emphasis on authoring and technical support (e.g., see WBTIC, 2004). Didactical
support is largely neglected, and if it is mentioned at all, it is based on a highly

Instructional software templates

 58

traditional information-transmission view on instruction resulting in linear and
quite passive learning experiences. One reason for not supporting didactical
models or only supporting overly simplified didactical models may be that it is
much harder to give didactical support than to give authoring and technical
support. Consequently, developers may experience limited didactical support
and are biased or even encouraged to apply traditional didactical models whilst
designing and producing instructional software. Thus, whereas in general tools
cannot be blamed, the main impact of instructional software templates may be
that they support the production of mediocre instructional software with a low
didactical quality in a more efficient manner.

The present study examines if and how instructional software templates
support domain specialists with low and high experience in producing
instructional software. The domain specialists in these novice and expert groups
are asked to perform the development task of producing an instructional
software product by means of a typical set of templates. First, we hypothesize
that, despite the support from the templates for the developers in the
inexperienced group, the developers in the experienced group will produce more
instructional software because they profit from their previous hands-on
experiences with computers, development tools, and authoring systems. Second,
we hypothesize that developers in both groups will produce final products with
an equal authoring and technical quality. The templates are expected to support
the experienced group while they conduct their regular authoring (e.g., entering
the input, information processing and output facilities in the software) and
technical (e.g., creation and embedding of multimedia files) development
activities, and also to successfully scaffold the inexperienced group so that they
can perform those activities up to the same level. Note that authoring and
technical activities strongly interact, and are therefore combined. Third, we
hypothesize that the developers in the experienced group will produce final
products with a higher didactical quality, because they are more efficient in
performing the authoring and technical task aspects and thus have more time to
pay attention to (a) the instructional design, and (b) how to implement the
design into the production process and product. Furthermore, it is expected that
both groups feel they receive pre-structuring support from the instructional
software templates, and this results in a faster development process and in final
products with a sufficient didactical quality.

Method

Participants

Fourteen educational developers of the Royal Netherlands Army
participated in the study on a voluntary basis. Their mean age was 47 years (SD
= 4.20). All participants were experts in a particular military knowledge domain.
They were developers with different experience in creating traditional
instructional materials and/or instructional software. They expressed their
teaching experience on a 5-point Likert scale as 2.92 (SD = 1.04; 1 = ‘not at all’

 Chapter 4

 59

and 5 = ‘very much’). The participants had little or no experience in using
instructional software as a learner, or for instructional purposes as a teacher.
They were highly motivated to participate in the study because this was one of
the few opportunities during their career to learn about new, innovative ways of
developing instructional software.

They were divided in a novice group (n = 6) and an experienced group (n
= 8) based upon their experience with producing instructional software. This
experience was measured by adding (a) number of years of experience in
producing instructional software x (days per week developing instructional
software / 5), (b) number of products developed, (c) number of years of
experience with the authoring tool Authorware, and (d) number of years of
experience with programming. This practical measurement yields a possible
score between 0 and 46. Participants were regarded novice if they scored lower
than 4, and experienced if they scored higher than 4. Experience was 0.42 for the
novice group (SD = 0.80) and 15.90 for the experienced group (SD = 9.65), Mann-
Whitney’s U(N = 14) = 0, p = .002. The number of years of programming
experience was checked too. The novice group had 0.58 years of programming
experience (SD = 1.20) and the experienced group had 6.00 years of
programming experience (SD = 3.07), U(N = 14) = 1.50, p = .004.
Materials

CBT Generator. The set of instructional software templates used in this
study is part of an authoring tool called the CBT Generator (version 1.0). This
support tool was specifically created for the Royal Netherlands Army to support
military domain specialists in developing instructional software. It is based
upon instructional software templates created by means of the Knowledge
Objects in Macromedia Authorware© (version 5.2). The CBT Generator offers
support with respect to authoring aspects, technical aspects, and didactical
aspects – corresponding as closely as possible with the development procedures,
best practices, and terminology used within the training sector of the Royal
Netherlands Army.

First, authoring support is offered for structuring and programming the
instructional software according to best practices in authoring tools. Wizards
were offered to configure pre-structured pieces of ‘empty’ instructional software
(i.e., templates), a standard graphical user-interface was provided, and
possibilities for tracking and tracing of the learning process were given.

Second, technical support was offered with regard to embedding
multimedia resources according to particular technical formats and presentation
strategies. Wizards were offered to enter and configure—different combinations
of—audio, text, and video in the templates.

Third, didactical support was embedded in the templates, to implement
the instructional design according to guidelines used in the Royal Netherlands
Army (e.g., Gagné’s Nine Events, 1979; the guidelines presented by Leshin,
Pollock, & Reigeluth, 1992). For example, guidelines pertained to the use of (a)
teasers to gain attention; (b) different types of learning activities (12 types are
available in the CBT Generator) to promote an active learning process; (c)

Instructional software templates

 60

different sequencing models; (d) adaptive branching based upon a learner’s
progress; (e) different levels of learner control; (f) different kinds of feedback; (g)
extra learner support through glossaries and help-functions, and (h) formative
and summative tests for assessment of learning. The didactical elements
mentioned above are available in four different categories in order to compose
the actual learning tasks. The first category contains information elements to
present the learner information (1 available type), the second category contains
instructional elements to present the learner explanations (12 available types),
the third category contains question elements to ask the learner to solve a
problem or a case (12 available types), and the fourth category contains learner-
evaluation elements to assess the learning process in a formative or summative
fashion (8 available types). Note that the authoring, technical, and didactical
aspects are implemented in a rather prescriptive manner in order to provide
adequate pre-structuring support for developers to implement interactive and
varied, flexible instruction. Wizards were offered to select and configure the
instructional design implementations.
 Tasks. All participants received the same paper-based assignment. First,
they were given the task of developing (i.e., design and produce) an
instructional software package for a training program in ‘military first aid’,
using the CBT Generator. This topic was familiar to the participants because it is
basic knowledge for all military personnel. Thus, possible initial differences in
domain knowledge between experimental groups were prevented. Second, the
assignment specified the time-constraints, the topic of the course, and the
working procedure (i.e., time schedule, questionnaires that had to be filled out,
etc.). Third, the participants were also told the criteria, in terms of quantity and
authoring, technical and didactical quality, which will be used for the reviews
on product quality. Fourth, for the instructional design, the target group
characteristics and the learning objectives were provided. Fifth, for the software
production, a list was provided with all available multimedia resources
(pictures, texts, audio files, etc.) that could possibly be useful for developing the
course. The participants were explicitly encouraged to reuse multimedia
resources that typically are available in their normal work situation, such as
fragments of manuals, pieces of information from the Internet, promotional
materials from the Royal Netherlands Army, available CD-ROM materials, and
so forth. Next to the assignment, a fully worked-out example was provided of a
representative instructional software package about the topic ‘introduction of
the Euro’, created by developers who were experts in using the CBT Generator.
This worked-out example showed all possible development features of the
available instructional software templates.

Development environment. The participants worked in separate rooms,
equipped with a stand-alone multimedia computer with Microsoft Windows©
and the CBT Generator. The multimedia resources were provided on a separate
CD-ROM. Multimedia editing programs were pre-installed on the computer to
enable the preview of multimedia resources. With these tools it was also
possible to convert the format or the resolution of the resources. However, as the

 Chapter 4

 61

purpose of the study was not to test if the participants were able to edit the
multimedia materials, most resources could be used in the CBT Generator
without modification.
Measurements

Background questionnaire. The background questionnaire was used to
collect information on (1) the participants’ experience with programming
instructional as well as non-instructional software (both in years of experience,
daily experience, number of programmed applications, and usage of authoring
tools); (2) their age; (3) their job profile (e.g., developer of traditional educational
materials or instructional software); (4) their prior education (years and level of
general education, particular Army courses they participated in), and (5) their
experience with instructional software and educational development projects (in
years and number of projects). The two experimental groups differed with
regard to—instructional—programming experience, but were expected to be
similar with regard to the other background variables.

Product reviews. Three reviews on the instructional software products took
place, pertaining to (1) the quantity of materials produced, (2) the quality of the
authoring and technical aspects of the materials, and (3) the quality of the
didactical aspects of the materials.

First, the quantity was determined by the experimenter, as time on
development task and length of the final product as the number of pages, and as
the average number of edited didactical elements (informational, instructional,
question, and learner-evaluation) on each page. Pages and didactical elements
that were created but not filled out, or otherwise not used, were left out from the
counting process.

Second, the quality of the authoring and technical aspects of the materials
were combined and measured in two ways. In the first measurement, the proper
functioning of the product was determined by the experimenters by running the
software and examining its behavior. The behavior was rated as either
insufficient (problems with running the software) or sufficient (no problems).
Extra care was taken to ensure that reported problems were caused by the
instructional software developed by the participant and not by possible faults in
the CBT Generator. Sufficient working of the product was required to proceed to
the second measurement. In this second measurement, the quality of the design
structure of the products was determined by the experimenters by measuring
the number of different types of the instructional, question, and learner-
evaluation elements that are used. Also, it was determined whether a fixed
instructional sequence (low learner control) or an open sequence (high learner
control) was applied, and if a teaser was used to introduce the course in an
attractive manner.

Third, the didactical quality of the products was measured in two ways.
First, participants were asked to give a self-score for the didactical quality of their
product on a 10-point scale (1 = ‘very bad‘; 10 = ‘excellent’). In the Netherlands,
this is the normal scale for grading learning outcomes and thus very familiar to
the participants. Second, using the analytical approach towards determining

Instructional software templates

 62

didactical quality, three expert raters independently scored all products on their
didactical quality. The expert raters were experienced instructional design
researchers from TNO Human Factors and not directly involved in this study.
They received a short training on the technical possibilities and limitations of the
CBT Generator and the embedded didactical model before the expert review, so
they would not have unrealistic expectations. For instance, they should not
consider alternative user-interface designs whilst the CBT Generator only
provides one default interface. The expert raters scored the products in two
phases. In the first phase they used a structured checklist reflecting different
aspects of the embedded didactical model, such as the implementation of
guidelines from the Nine Events of Gagné described above. This structured
checklist gave the expert raters a good insight in the didactical quality. The Intra
Correlation Coefficient (ICC; Fleiss, 1981) for the checklist scores is .72, p = .004,
which is good. To directly compare the expert’s scores to the participants’ self-
scores, the expert raters scored the didactical quality of the product in a second
phase with one total score, on the same 10-point scale utilized by the participants
to score the didactical quality. The ICC for the total scores is .63, p = .02. The
correlation between the checklist scores and the total scores was high
(Spearman’s rho = .90, p = .000).

Didactical perspective questionnaire. This questionnaire inquired for the
didactical perspectives of the participants with regard to learning, instruction,
and technology. The design of the questionnaire is based on a classification
made by Andriessen and Veerman (2000), who identified a traditional and a
progressive design perspective. Participants with a traditional perspective favor
'direct instruction' principles, brought forward by models such as Gagne’s Nine
Events and Merrill’s Component Display Theory (see Reigeluth, 1983).
Participants with a progressive perspective favor ‘learner-centered’ principles,
brought forward by models such as problem-based learning and goal-based
scenarios.
The questionnaire consisted of seven items. The first five items gave a firm
statement on learning, instruction or technology and had to be scored on a 5-
point Likert scale (1 = ‘disagree’; 5 = ‘agree’). Disagreement referred to a
traditional perspective and agreement referred to a progressive perspective. The
remaining two items were ranking questions. They had each four statements on
learning, instruction or technology, which had to be ranked by the participant in
their order of importance. If traditional statements were ranked as most
important, this indicated a traditional perspective. If progressive statements
were ranked as most important, this indicated a progressive perspective. Based
on both the scoring and the ranking of the items, each participant was classified
as having a traditional, a progressive, or—if no explicit preference for a
traditional or progressive perspective could be found—a neutral perspective.
The internal consistency of the seven items, expressed as Cronbach's Alpha, was
.68.

Development style questionnaire. This questionnaire inquired for the
development style of the participants. The design of the questionnaire is based

 Chapter 4

 63

on a classification of Van Boxtel (2000), who defines three typical development
styles: Meaning-directed (‘first thinking then acting’), practical-directed
(‘varying thinking and acting’), and application-directed (‘first acting then
thinking’). The questionnaire consisted of three items. Each item gave a short
description reflecting either a meaning-directed, practical-directed, or
application-directed development style. The participants had to score each item
on a 5-point Likert scale (1 = ‘not fitting me’; 5 = ‘completely fitting me’) and
were then classified on the basis of their average score on the three items. The
internal consistency of the three items, expressed as Cronbach's Alpha, was .69.

Evaluation questionnaire. The evaluation questionnaire consisted of 9
statements about the development process, the use of instructional software
templates, and the characteristics of the resulting products. Participants
expressed their opinion for each statement by scoring them on a 5-point Likert
scale (1 = ‘totally agree; 5 = ‘totally disagree’).

Procedure

To prevent initial differences in knowledge of instructional design and
ability to work with the CBT Generator, the participants first took part in an
eight-day course. The first four-day part focused on Instructional Systems
Development (ISD) and creating and interpreting training blueprints. Thus, all
participants learned the same structured development approach and the same
terminology, preventing the use of different methods and confusion about the
assignment in the current study. In the second four-day part of the course, the
participants learned to work with the CBT Generator and all of its features, by
means of developing a concrete product based on a detailed training blueprint.
In this part of the course additional attention was given to interactivity, adaptive
learning paths, and ‘extra’ functions (e.g., glossary, on-line help, teaser).
Therefore, familiarity with the tool was guaranteed for all participants.

Immediately after the course, the participants filled out the background
questionnaire, the didactical perspective questionnaire, and the development
style questionnaire. Then, the development task was given. This task was to be
completed in two days (2 x 8 hrs.). The participants worked independently on
the task. The experimenter received a list of strict instructions for conducting the
experimental procedure and dealing with questions from the participants. Only
in the case of technical problems or if a participant got stuck for a long time, did
the experimenter offer support. Assistance was provided according to the
instructions and strictly limited to technical problems with the tools or the
computer, or to conceptual problems with understanding the assignment or the
questionnaires. To calculate the effective time spent on the development task,
participants were required to register exact start and end times in a time log. The
experimenter checked if this was accurately performed. After the development
task was finished, the participants filled out the evaluation questionnaire and
the experimenter made all products anonymous for the blind expert reviews.

Results

Instructional software templates

 64

Given the small number of participants, Mann-Whitney tests are used to

check for differences between the novice group and the experienced group. With
regard to the background variables, no differences between both groups were
found with regard to age, job profile, prior education, or experience with
educational development projects.
Quantity and Quality of Products

Table 4.1 provides the means and standard deviations of both groups for
the quantity of work done, the authoring and technical quality of the developed
products, and their didactical quality.

Table 4.1
Means and Standard Deviations from the Product Reviews for the Novice and
Experienced Groups

 Novice group
(n = 6)

Experienced group
(n = 8)

 M SD M SD
Quantity

Time on development task (# hours) 8.75 1.86 8.00 1.41
Length of product (# pages) 15.16 9.15 24.75 8.17
Information elements* 9.50 5.13 18.13 7.22
Instruction elements 8.00 4.10 13.00 5.04
Question elements* 1.33 1.75 5.13 3.40
Learner-evaluation elements 2.17 3.49 1.38 2.07

Authoring and technical quality
Instruction elements types (0-12) 2.50 1.05 2.38 .52
Question elements types (0-12)** 0.83 .98 3.13 1.13
Learner-evaluation elements types
(0-8)

1.33 2.81 0.75 1.17

Open sequence applied (0-1) .41 .17 .37 .08
Teaser applied (0-1) .33 .52 .75 .46

Didactical quality
Participants self-score (1-10) 6.80 .84 5.50 2.43
Expert raters’ checklist score (1-10) 2.36 .99 2.89 .43
Expert raters’ total score (1-10) 3.33 1.34 4.5 .99
*p < .05
**p < .01

With regard to quantity, there is no significant difference between the mean
number of effective hours that participants in the novice group (M = 8.75) and
the experienced group (M = 8.00) spent on the development task, U(N = 14) =
19.50, p = .56. The amount of produced instructional software in number of
pages also does not significantly differ between the novice group (M = 15.16)
and the experienced group (M = 24.75), U(N = 14) = 12.00, p = .21. There is,

 Chapter 4

 65

however, a tendency for the experienced group to produce somewhat more
software, as indicated by a positive correlation between programming
experience and number of produced pages (Kendal’s tau = .52, p = .02).

The average number of information elements used differed significantly
between both groups. The novice group used less information elements (M =
9.50) than the experienced group (M = 18.13), U(N = 14) = 7.50, p = .029. The
same applies for question elements, the novice group used less of these elements
(M = 1.33) than the experienced group (M = 5.13), U(N = 14) = 6.50, p = .002. The
average number of instructional elements and learner-evaluation elements did
not differ significantly between both groups.

With regard to the authoring and technical quality, all products
functioned properly and were rated as of ‘sufficient’ quality. The only
significant difference between the novice group and the experienced group was
found for the number of different types of question elements: The experienced
group used more different types of these elements (M = 3.13) than the novice
group (M = .83), U(N = 14) = 3.00, p = .005. No significant differences were found
for the use of different types of instructional- and learner-evaluation elements,
nor for applied open sequences or teasers.

With regard to the didactical quality, both the participants and three expert
raters gave an overall assessment on a 10-point rating scale. Surprisingly, there
is no significant correlation between the participants’ self-score and the expert
raters’ total score, Kendal’s tau = .14, p = .56. As a second measurement, the
expert raters gave a score based on a structured checklist. Again, there is no
significant correlation between the participants’ self-score and the expert raters’
checklist score, tau = .38, p = .12. The self-scores of the novice group (M = 6.80)
are not significantly different from the self-scores of the experienced group (M =
5.50), U(N = 14) = 9.50, p = .29. The expert’s total-scores and checklist scores are
also not significantly different between the novice group (in order, M = 3.33 and
M = 2.36) and the experienced group (in order, M = 4.50 and U(N = 14) = 11.50, p
= .11 for the total scores; and M = 2.89 and U(N = 14) = 14.50, p = .23 for the
checklist scores). Whereas there are no significant differences between the
groups, it is noteworthy that novice participants rate the didactical quality of
their own products somewhat higher than experienced participants but that the
opposite pattern is observed for expert ratings: Experts rate the didactical
quality somewhat higher for the experienced group than for the novice group.

Didactical Perspective and Development Style

Table 4.2 presents the distribution of didactical perspectives (traditional,
neutral, and progressive) and development styles (meaning-directed, practical-
directed, and application-directed) over the participants in the novice group and
the experienced group.

Instructional software templates

 66

Table 4.2
Number of Participants in the Novice Group and the Experienced Group with
Particular Didactical Perspectives and Development Styles

 Novice Group
(n = 6)

Experienced Group
 (n = 8)

Didactical Perspectivea
Traditional 3 1
Neutral 2 5
Progressive 0 2

Development Style
Meaning-directed 2 1
Practical-directed 4 7
Application-directed 0 0
a The data from 1 participant in the Novice Group are missing

The distribution of didactical perspectives does not significantly differ

between the novice group and the experienced group (χ2(2, N = 14) = .73, p =
.69). A Kruskal-Wallis test shows that there is no significant effect of didactical
perspective on participants’ self-scores or expert raters’ total scores of the
didactical quality of the product, the time spent on the development task, and
the length of the product.

The distribution of development styles also does not significantly differ
between the novice group and the experienced group (χ2(2, N = 14) = .88, p =
.35). A Kruskal-Wallis test shows that there is no significant effect of
development style on participants’ self-scores or expert raters’ total scores of the
didactical quality of the product, the time spent on the development task, and
the length of the product.

Opinions on Templates

Table 4.3 presents the participants’ opinions on the development process
and the use of the instructional software templates, which they expressed in the
evaluation questionnaire. Mann-Whitney tests show no significant differences
between the novice group and the experienced group for any of the test items. It
appears that the variability within the groups is considerable.

 Chapter 4

 67

Table 4.3
Results of the Evaluation Questionnaire Indicating Participants’ Opinions on the Use of
Templates

Novice group
 (n = 6)

Experienced
group (n = 8)

M SD M SD
1. Due to the structure of the templates, I create

instructional software of higher didactical
quality

3.33 1.03 3.38 1.68

2. By using the templates, the overall quality of
my products decreases

3.33 1.03 3.13 1.36

3. Due to the templates, I am able to produce
instructional software faster

1.67 .82 3.00 1.77

4. The templates provide me structure 2.83 .75 2.13 1.46
5. The templates provide me more structure

than I normally experience
3.67 1.03 3.13 1.88

6. The templates force me too much in a
straight-jacket

3.33 1.03 2.13 1.36

7. The number of available types of didactical
elements is insufficient

2.00 .89 2.75 .71

8. The ‘worked-out example’ explains the
possibilities of the templates well

1.83 .41 2.00 .93

9. I have used the ‘worked-out example’ during
the development process when something
was unclear

4.33 1.03 4.63 .74

Note: All statements could be scored from 1 = ‘totally agree’, to 5 = ‘totally
disagree’

Discussion

This study examined the effects of instructional software templates on the
development process, the quality of produced instructional software, and the
perceived level of support. First, the experienced group was expected to
produce more instructional software than the novice group. Indeed, a tendency
in this direction was found and compared to the novice group the experienced
group filled their pages with more information and question elements. The
relatively small difference between the groups was possibly caused by the small
amount of time devoted to the development task.

Second, it was expected that both groups would produce final products
with a comparable authoring and technical quality. Both groups were, indeed,
able to produce working final products and, apart from the use of more question
elements by the experienced group, no other differences were found on
authoring and technical quality. It seems that the instructional software

Instructional software templates

 68

templates may effectively compensate for differences in experience with the
development of instructional software.

Third, it was expected that the experienced group would produce final
products with a higher didactical quality than the novice group, but that the
didactical quality of the products from both groups would at least be sufficient.
Expert ratings and self-ratings of didactical quality showed, however, no clear
differences between the groups. Nevertheless, some measures for authoring and
technical quality suggest that the experienced group put somewhat more
emphasis on active learning tasks because they used more question elements in
their tasks, and varied these learning tasks more often by using different types
of question elements. Furthermore, the experts rated the didactical quality a
little lower for the novice group than for the experienced group, but participants
in the novice group rated the didactical quality of their own final products a
little higher than participants in the experienced group. This may possibly be
explained by the fact that participants in the novice group performed a new task
with a new tool and were, therefore, more likely to be impressed by their final
products than the experienced group.

The results are mixed for the overall didactical quality for both groups
together. The participants rated the didactical quality of their final products
rather positive and their ratings were higher than the expert ratings. The
experts, in contrast, were not very positive about the didactical quality:
Specifically their checklist scores indicated an insufficient didactical quality. It is
not totally impossible that the participants have a better judgment of the
didactical quality than the instructional experts (who shared a background in
instructional design research), because they were more familiar with the subject
matter domain and the target groups. However, we are inclined to give a higher
weight to the expert ratings because they carefully compared the final products
with well-established instructional design principles that are documented in the
literature and grounded in educational practices of the Royal Netherlands
Army. A possible explanation for the low expert ratings is that most final
products had a fixed linear structure, required little active engagement from the
learners, used few additional functions, and applied no adaptive branching. The
amount of variation in the kinds of learning activities (i.e., different didactical
elements) was also rather low. This is despite the fact that before the
experimental task, the developers were told that the criteria for the review on
product quality would emphasize active learning.

With regard to the perceived level of support, it was expected that both
groups would feel they received sufficient pre-structuring support from the
templates, resulting in a faster development process and better products. When
participants were asked if they could reach a higher didactical quality with the
given templates, on the one hand, they reacted rather negative. On the other
hand, they claimed the templates did not decrease quality either and were rather
positive when asked if they could produce the same products in less time thanks
to the templates.

 Chapter 4

 69

With respect to experienced pre-structuring support, participants
indicated they felt that their development process was only moderately
structured by the templates. They did not experience this given structure as
restrictive. If they felt any limiting effect, it was mainly related to technical
changes they could not make, for instance adapting a particular type of
didactical element to their wishes. Despite the large amount of already available
didactical elements in the templates (33 different elements in total), participants
indicated that they would have preferred an even greater choice of didactical
elements.

It may be argued that the instructional software templates biased the
participants towards the implementation of linear and rather passive didactical
models. However, several measures were taken to prevent this. First, the set of
available templates actually offered many opportunities to implement varied
and highly interactive models. Second, the intensive eight-day course that the
participants attended just before the development task covered these
opportunities thoroughly and explicitly. And third, during their work on the
development task participants were able to consult a fully worked-out example
that illustrated these opportunities as well. The participants acknowledged this,
although they also indicated that they hardly studied the worked-out example.
Taken together the three measures did clearly not yield the desired results. This
leads to the general conclusion that the instructional software templates allowed
too much freedom for the developers and lacked the necessary amount of
didactical support. The developers were allowed to express an undesirable bias
towards passive, linear instruction based on an information-transmission view,
and were allowed to focus on the authoring and technical aspects of their final
products at the cost of their didactical qualities. The main beneficial effect of the
templates seems to be related to the efficiency instead of the effectiveness of the
development process (i.e., mediocre final products with fewer costs rather than
superior products with less or equal costs). This is a serious problem because, as
argued earlier, didactical quality is the most important characteristic of
instructional software.

Future studies should focus on the question of how instructional software
templates can help developers create instructional software with a higher
didactical quality without restricting their creative freedom. This is particularly
important for the development of rich, interactive and flexible learning
environments in which meaningful learning tasks are used as the driving force
for learning. Lowyck (2001) describes two approaches to support the
development of such environments. First, the didactically structured approach
directs and supports the developer (a) in applying and filling the information,
communication, and interaction components, (b) in determining their didactical
functionality, and (c) in creating, configuring, and structuring them accordingly.
Instructional software templates will be, thus, fixed in this approach and cannot
be changed by the developer. The didactical quality of the final products is
mostly determined by the quality of the templates. Second, the open approach
only offers a structure to fill in the information, communication, and interaction

Instructional software templates

 70

components. Instructional software templates may be adapted by the developer,
and the didactical quality of the final products is mostly determined by the level
of expertise of the developer. The decision to either apply a didactically
structured or an open approach will then depend on the instructional paradigm,
the characteristics of developers, the available tools and infrastructure, and so
forth.

In conclusion, instructional software templates may positively affect the
efficiency of the development process and compensate for the developers’ lack
of experience with the development of instructional software. This building
block solution can be highly beneficial for the development of instructional
software because more and more people with low instructional design and,
particularly, software production skills will become involved. These novice
developers often have much (tacit) knowledge of the workplace, subject matter
domains, and target groups, as well as good access to a wide range of
multimedia materials that can be used to develop instructional software with a
high level of authenticity and attractiveness. Even if these developers produce
software by means of instructional software templates that do not necessarily
enforce the highest didactical quality, the resulting products can be very useful
for demonstration and communication of ideas (cf., rapid prototyping, Tripp &
Bichelmeyer, 1990). Furthermore, the creation of instructional software
templates could be made an integral part of the development process, because it
forces designers to reflect on their work and to make their didactical
perspectives on learning and instruction explicit. In turn, “best practices” of
(experienced) developers with regard tot authoring, technical, and didactical
issues can be captured in a design-patterns language. As described above, design
patterns are standard solutions to common problems, each capturing the essence
of a particular practice. Although each of these patterns can be simple, from a set
of design patterns that work together to generate complex behavior and
complex artifacts, a design pattern language can arise (see for example
http://www.pedagogicalpatterns.org). Such a language can feed the creation of
new templates that connect better to the needs, abilities, and limitations of
developers.

 Chapter 4

 71

References

Andriessen, A., & Veerman, A. L. (2000). Samenwerkend telestuderen in het
universitair onderwijs. In J. van der Linden & E. Roelofs (Eds.),
Pedagogische studiën: Leren in dialoog [Pedagogical Studies: Learning in
Dialogue] (pp. 157-179). Groningen, The Netherlands: Wolters-
Noordhoff.

Boot, E. W., & Bots, M. (2002). Learning object creation, management and reuse
by non-experienced content developers. Proceedings of the I/ITSEC 2002
(pp. 446-453). Orlando, FL.

Boot, E. W., & van Rooij, J. C. G. M. (1999). Gestructureerde ontwikkeling van
Computer-Ondersteund Onderwijs met behulp van templates: Analyse
[Structured development of Computer Based Training with templates:
Analysis] (Report TM-99-A068). Soesterberg, The Netherlands: TNO
Human Factors Research Institute.

Chapman, B. (2003). LCMS report: Comparative analysis of enterprise learning
content management systems. Sunnyvale, CA: Brandon-Hall.com.

Cline, R. W., & Merrill, M. D. (1995). Automated instructional design via
instructional transactions. In R. D. Tennyson & A. E. Barron (Eds.),
Automating instructional design: Computer-based development and delivery
tools (pp. 317-353). New York: Springer.

De Hoog, R., Kabel, S., Barnard, Y., Boy, G., DeLuca, P., Desmoulins, C.,
Riemersma, J., & Verstegen, D. (2002). Re-using technical manuals for
instruction: Creating instructional material with the tools of the IMAT
project. ITS 2002 Conference - Integrating Technical and Training
Documentation Workshop. San Sebastian, Spain.

De Jong, T., Limbach, R., Gellevij, M., Kuyper, M., Pieters, J., & van Joolingen,
W. R. (1999). Cognitive tools to support the instructional design of
simulation-based discovery learning environments: The SimQuest
authoring system. In J. van den Akker, R. M. Branch, K. Gustafson, N.
Nieveen, & Tj. Plomp (Eds.), Design approaches and tools in education and
training (pp. 215-225). Dordrecht, The Netherlands: Kluwer.

Fleiss, J. L. (1981) Statistical methods for rates and proportions (2nd Ed.). New York:
Wiley.

Gagné, R. M., & Briggs, L. J. (1979). Instructional technology: Foundations.
Hillsdale, NJ: Lawrence Erlbaum.

Instructional software templates

 72

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns. Reading,
MA: Addison-Wesley.

Gettman, D., McNelly, T., & Muraida, D. (1999). The guided approach to
instructional design advising (GAIDA): A case-based approach to
developing instructional design expertise. In J. van den Akker, R. M.
Branch, K. Gustafson, N. Nieveen, & Tj. Plomp (Eds.), Design approaches
and tools in education and training (pp. 175-182). Dordrecht, The
Netherlands: Kluwer.

Gibbons, A. S., Nelson, J., & Richards, R. (2001). The nature and origin of
instructional objects. In D. A. Wiley (Ed.), The instructional use of learning
objects (pp. 25-58). Bloomington, IN: Association for Educational
Communications and Technology.

Goodyear, P. (1997) Instructional design environments: Methods and tools for
the design of complex instructional systems. In S. Dijkstra & N. Seel
(Eds.), Instructional design: International perspectives (pp. 83-111). Hillsdale,
NJ: Lawrence Erlbaum.

Kolodner, J. L. (1997). Educational implications of analogy, a view from case-
based reasoning. American Psychologist, 52, 57-66.

Leshin, C. B., Pollock, J., & Reigeluth, C. (1992). Instructional design strategies and
tactics. Englewood Cliffs, NJ: Educational Technology Publications.

Locatis, C., & Al-Nuaim, H. (1999). Interactive technology and authoring tools: A
historical review and analysis. Educational Technology, Research and
Development, 47, 63-76.

Lowyck, J. (2000), Van personal computer tot E-platform, implicaties voor een
ontwerpkunde. In R. Koper, J. Lowyck, & W. Jochems. Van verandering
naar vernieuwing [From change to renewal] (pp. 53-71). Heerlen, The
Netherlands: Open University of the Netherlands.

Mayer, R. E. (2001). Multimedia learning. Cambridge, UK: Cambridge University
Press.

Merrill, M. D. (2002). First principles of instruction. Educational Technology,
Research and Development, 50, 43-59.

Merrill, M. D., & ID2 Research Group (1998). ID expert: A second generation
instructional development system. Instructional Science, 26(3-4), 234-262.

 Chapter 4

 73

Merrill, M. D. (1997). Learning-oriented instructional development tools.
Performance Improvement, 36(3), 51-55.

Nantel, R. (2003). Authoring tools 2004: A buyer’s guide to the best e-learning content
development applications (executive summary). Retrieved February 12,
2004, from http://www.brandon-hall.com

Reigeluth, C. M. (Ed.). (1983). Instructional design theories and Models. Hillsdale,
NJ: Lawrence Erlbaum.

Rosenberg, M. J. (2000). E-learning, strategies for delivering knowledge in the digital
age. New York: McGraw-Hill.

Simons, R. J. (2002). Digitale didactiek: Hoe (kunnen) academici leren ICT te gebruiken
in hun onderwijs [Digital learning and instruction: How academics (can)
learn to use ICT in their education]. Inaugural address. Utrecht, The
Netherlands: University of Utrecht.

Spector, J., & Muraida, D. (1997). Automating design instruction. In S. Dijkstra,
N. Seel, F. Schott, & D. Tennyson (Eds.), Instructional design: International
perspectives (Vol. 2) (pp. 59-81). Mahwah, NJ: Lawrence Erlbaum.

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and
instructional design. Educational Psychology Review, 10, 251-296.

Tennyson, R. D., & Baron, A. E. (Eds.). (1995). Automating instructional design:
Computer-based development and delivery tools. New York: Springer-Verlag.

Tripp, S., & Bichelmeyer, B. (1990). Rapid prototyping: An alternative
instructional design strategy. Educational Technology, Research and
Development, 38, 31-44.

Van Merriënboer, J. J. G. (2002). De ontbrekende didactiek van E-leren [The
missing didactics of e-learning]. Pedagogische Studieën, 79, 494-502.

Van Merriënboer, J. J. G., & Martens, R. (2002). Computer-based tools for
instructional design. Educational Technology, Research and Development, 50,
5-9.

WBTIC (2004). Overview of tools to design, author, deliver, and manage online
learning. Retrieved March 2, 2004, from
http://www.wbtic.com/resources_tools.aspx?au=1

Wiley, D. A. (Ed.). (2001). The instructional use of learning objects. Bloomington,
IN: Association for Educational Communications and Technology.

Instructional software templates

 74

 Learning objects

 75

Chapter 5

Solutions for Developing Instructional Software by Creating and
Reusing Learning Objects4

Abstract

Two studies test the potential of template, automation, and intermediate
product solutions to overcome problems that hamper the efficient development
of instructional software by reuse of learning objects. In the first study, the
templates and automation solutions were applied by developers (N = 8) who
created and reused large as well as smaller multimedia learning objects—in a
familiar and an unfamiliar domain. Developers judged both solutions positively,
and rated working with didactical meaningful learning objects higher than
working with multimedia objects. However, no differences between the familiar
and unfamiliar domain were found and the developers made several remarks
on the limitations of reuse. In the second study, the automation solution in
combination with a set of (a) regular templates, (b) extended templates, and (c)
intermediate products were applied by developers (N = 15) who created and
reused learning objects. As expected, the automation solution in combination
with the intermediate products yielded the highest quality learning objects,
followed by the extended templates and, finally, the regular templates. The two
studies show that there is no single solution for all problems of reuse: The
problems will only be solved if a well-chosen combination of solutions is
applied.

4 Boot, E., & van Merriënboer, J.J.G. (submitted). Solutions for Developing Instructional
Software by Creating and Reusing Learning Objects

Chapter 5

 76

Reuse of learning objects (LOs)—digital units of information with an
instructional purpose—is believed to promote the efficient development of
instructional software. Two kinds of LOs can be identified in this modular
approach. First, didactically meaningful LOs are relatively large units of
learning material (e.g., Computer-Based Training modules or web pages) that
contain interaction possibilities such as questions and tests that can be tracked
by e-learning systems. Second, multimedia LOs are smaller components such as
text documents, pictures, and interactive animations that contain interaction
possibilities that are not tracked by e-learning systems. Both kinds of LOs are
created, centrally stored, retrievable, and applicable for multiple purposes (i.e.,
“once made - used many”). Learning-technology standards provide the common
frameworks to technically enable this type of reuse.

The need for reuse is currently increasing, as modern task-directed and
competency-based teaching models promote the development of powerful
electronic learning environments. Such environments are multimedia-rich,
requiring many multimedia LOs. Also, they often include adaptive learning
trajectories, requiring multiple sets of didactically meaningful LOs to tailor the
instruction towards the needs of individual learners. To save development costs,
novice developers with low production experience, such as subject matter
experts, teachers, and instructional designers, are often involved in the process
of reusing LOs. However, the many complex didactical and technical issues
potentially exclude such inexperienced developers from a smooth reuse process.
Mostly, they are only involved in the development of instructional software for
a short period of their career, which makes it difficult to gain the necessary
experience. An important question is how to assist these developers by means of
new support solutions. In this article, first, five problems of reuse are presented
as well as three possible solutions to overcome these problems. Subsequently,
two studies are described that empirically test the effectiveness of different
combinations of those solutions. The article ends with a general discussion,
presenting the conclusions as well as the theoretical and practical implications of
the presented studies.

Problems of Reuse

Van Merriënboer and Boot (2005) identify five problems of reuse: The

metadata problem, the arrangement problem, the exchange problem, the context
problem, and the pedagogical function problem.

The Metadata Problem

 This problem refers to the fact that it is difficult and extremely labor
intensive to specify metadata for large sets of LOs. Metadata is information to
“label” LOs in order to enable an efficient search for them in databases.
Examples of metadata are the title, the producer, the possible application, the
content, the size, and so forth. There is a lively discussion on the number of
necessary metadata fields. If a developer of an object fills out too few fields,

 Learning objects

 77

other developers, searching for objects, will probably be overwhelmed with a
large amount of possibly relevant LOs. However, using more fields heavily
increases the workload associated with the specification of LOs. And while it
may help other developers to find exactly what they want, it reduces the chance
that they find anything at all because the chance that an object has the features a,
b, and c is smaller than the chance that it has only the features a and b.
Furthermore, there is also discussion on the nature of the metadata. For instance,
well-defined metadata fields make it difficult or even impossible for an
individual developer to express his intentions unambiguously, while loosely
defined fields yield communication problems between developers and,
eventually, between e-learning systems.

The Arrangement Problem

This problem refers to the fact that combining and sequencing LOs into
larger arrangements is not always easy and self-evident. This can be illustrated
by the LEGO© metaphor. Basic LEGO© bricks are only appropriate to build
simple structures. For building more complex structures, one requires the
equivalent of more advanced LEGO© bricks, as found in Technical LEGO© (e.g.,
axles, gearwheels, receptors, programmable bricks etc.). In contrast to basic
LEGO© bricks, Technical LEGO© elements differ in their external structures (i.e.,
the way they can be attached to each other) and thus cannot be combined with
every other element. Also, they differ in their internal structures (i.e., the
function of the element, like an axle or gearwheel) so that they can only be
combined into certain arrangements to form bigger elements. This metaphor
illustrates that differences between LOs can prevent valid arrangements. For
instance, if two LOs differ in their external structures because they yield
incommensurable assessment information (e.g., one is using American A-B-C
grading, the other the European 10-point scale), they cannot easily be combined
into one valid arrangement. As an example for difference in internal structure,
two LOs (e.g., an annotated picture and a piece of text) may together yield an
invalid arrangement because in one LO another word is used to refer to the
same thing as in the other LO (e.g., the word “screen” is used in the annotated
figure and the word “monitor” is used in the piece of text), which will make the
arrangement highly confusing for the learner. With regard to the arrangement
problem, it may even be argued that only large instructional arrangements like
complete lessons or courses can be reused effectively (Wiley, 2000).

The Exchange Problem

This problem refers to the fact that it may be difficult to exchange LOs
between developers and e-learning systems. From a psychological viewpoint,
the readiness to share LOs is not self-evident, as this implies access to personal
notions and ideas by others. This raises a psychological threshold for developers
to let others reuse their materials. But the other side of the coin is that
developers do not easily accept objects that were not developed by them,
something known as the “not-invented-here” syndrome. Second, organizational

Chapter 5

 78

factors like security policies (e.g., for military information) and infrastructure
(e.g., firewalls that prevent using plug-ins or java applets) may prohibit an
effective exchange of LOs. Third, current regulations concerning Intellectual
Property Rights (IPRs) often limit the sharing of LOs.

The Context Problem

This problem refers to the fact that effective LOs cannot be created in
isolation without an implicit or explicit instructional setting, target group, or
other contextual descriptors. This may seriously hinder reuse. Suppose, for
example, that a LO is created consisting of a picture of a piece of machinery, one
part of the machine that is highlighted by color-coding, and an explanatory text
for this highlighted part. This LO can be effectively used for a presentation, but
not for a test because the explanatory text may not be used as feedback (i.e.,
another pedagogical purpose); it can be effectively used for individual e-
learning but not for teacher-led instruction because the explanatory text may be
redundant with the explanation of the teacher and deteriorate learners’
performance (i.e., another instructional setting causing the so-called
“redundancy effect”; see van Merriënboer & Sweller, 2005), and it can be
effectively used for most learners but not for the color-blind because of the
color-coding (i.e., another target group). In sum, this implies that every LO has
its own context-specificity, which makes it hard to apply it in a context other
than that for which it was originally created.

The Pedagogical Function Problem

This problem refers to the fact that it is difficult to express the
pedagogical intentions of a LO by means of technical properties such as
metadata, leading to sub-optimal reuse. Properties like size or format can be
sufficiently described in metadata, but the pedagogical function is extremely
hard to specify. First, this is caused by the fact that LOs can often fulfill different
functions. For instance, according to Merrill’s Component Display Theory (1983)
a photograph of an eagle can be used (1) as an example or instance of the
concept “bird”; (2) as a test item where learners must classify the bird as an
eagle; (3) as an alternate representation of a textual description of an eagle, and
so on. Furthermore, the pedagogical function of one LO may require other
complimentary LOs, which may or may not be available to the developer. For
instance, the pedagogical function of the photograph of the eagle may be that of
an example, but this requires the joint availability of another LO with the
pedagogical function of a generality (i.e., a definition of the concept ”bird”).

Solutions for Reuse

Van Merriënboer and Boot (2005) proposed three solutions to overcome
the problems of reuse: Templates instead of instantiations, technically automate
what can be automated, and intermediate instead of final products.

 Learning objects

 79

Templates Instead of Instantiations
Developers often make ample use of implicit or explicit templates: Pre-

structured “moulds” of instructional software. These can be used (a) to organize
lessons (e.g., presenting content–providing practice with feedback—discussing
results, etc.); (b) to reach particular types of instructional objectives (e.g., to
support learning a procedure, state the general steps of procedure—provide
several demonstrations—require learners to perform the procedure, and so on in
accordance with Component Display Theory; see Merrill, 1983), and (c) to
design computer screens of the lessons. A focus on templates rather than
instantiations may increase the effectiveness of reuse. A similar orientation on
templates can be found in Object Oriented Programming (OOP), which offers a
solution for dealing with highly complex development processes by
decomposing the software into independent units that can be easily reused
because of the level of abstraction provided (Booch, 1994).

Templates diminish the arrangement problem because they offer better
opportunities than instantiations to make valid combinations of LOs. For
instance, two instantiations of which one uses the American A-B-C grading
system and the other uses the European 10-point grading system are difficult to
combine in one arrangement. If two templates were used rather than two
instantiations, offering the opportunity to specify the required grading system
(e.g., by selecting it from a list of possible options), there would be no
arrangement problem because one could simply specify the same grading
system for each LO. Furthermore, the exchange problem and, in particular, the
“not-invented-here” syndrome are at least partly solved because developers are
expected to specify the instantiations according to their own preferences. Such
specification will help to develop a sense of ownership. Templates partly solve
the context problem because the context-sensitive information needs not be in
the templates but only in the instantiation of this template. Templates offer the
developer the opportunity to specify the context-sensitive information. For
instance, if a developer is using a template for reaching an instructional
objective of the type “using a procedure” (i.e., give general steps of the
procedure, give several demonstrations, ask learner for applications), the
developer may specify a demonstration that is explained in English for one
context or target group, and a demonstration that is explained in another
language for another context or target group. Summarizing, a focus on
templates instead of instantiations may help to solve the arrangement, exchange,
and context problem. However, an important implication is that templates
should contain as little contextual information as possible so that the developer
can precisely specify this context-specific information.

Technically Automate What Can be Automated

Advancements in information technology may also offer facilities that
support reuse of instructional materials. Automation is especially beneficial for
processing large amounts of information. The best example pertains to the
problem of metadata creation and exchange. Current research (Boot & Veerman,

Chapter 5

 80

2003) aims at the development of algorithms for the automatic analysis of
multimedia content and the semantic indexing of this content in metadata fields.
Such automation may not only be more cost-effective but also yield more
objective metadata than indexing by hand. Even if complete automation is not
feasible, the specification of metadata and the search for LOs on the basis of
metadata can be strongly supported with automated tools. For instance,
objective features of LOs, such as format, size, and language can automatically
be generated and added to the metadata specification of that LO. The same
applies for objective features of the developer, such as his name, organization
and IPRs, and for information from formal vocabularies, such as classifications
(e.g., a scalpel is an instance of the category of medical instruments) and
particular keywords (e.g., Healthcare, Surgery). Finally, search and retrieval
features of e-learning systems can provide intuitive user interfaces that make it
easier to use these types of metadata.

Intermediate instead of Final Products

While LOs are generally defined as “digital units of information with an
instructional purpose”, they are typically limited to the final products that can
be directly presented to learners. Of course, there are many other informational
units with an instructional purpose, such as (a) the results of a contextual
analysis, target group analysis, or task analysis; (b) descriptions of performance
and instructional objectives for a particular lesson or course; (c) blueprints
including learning activities providing the basis for the development of
instructional materials, and so forth. These intermediate products contain rich
information that describes the final products for which they were made, but
they are suitable for reuse as well.

Intermediate products may help solve the arrangement problem because
they provide insight into valid arrangements and so guide the selection and
sequencing of final products. For example, if the results of a task analysis (i.e.,
intermediate product) provide an ordered sequence of decision steps, this
facilitates the search and arrangement of demonstrations (i.e., final products) for
each step. And if a list of instructional objectives (i.e., intermediate product) is
available for a new educational program, this facilitates the search and
arrangement of courses (i.e., final products) that constitute the program.
Intermediate products may also help to solve the context problem because they
provide rich information about the final products, which facilitates the finding
of LOs that fit a new context. Actually, the intermediate products can fulfill the
same role as the metadata specified for final products, but they are expected to
be more effective because they provide more content-related information. For
instance, if a developer is searching for a picture of a particular type of milling
machine, the result of a task analysis on milling (i.e., intermediate product) will
be very helpful for finding the most effective picture (i.e., final product) because
it indicates the controls and displays that need to be operated by the learners
and, therefore, should be visible in the picture. Typically, this type of
information (i.e., which displays and controls are visible on the machine) is not

 Learning objects

 81

part of the picture’s metadata. Furthermore, intermediate products may also
help to solve the pedagogical function problem because they provide rich
information that helps the developer to determine which pedagogical functions
can or cannot be fulfilled by a final product. For instance, in our example it is
possible that the results from the task analysis allow the developer to determine
that all controls and displays—necessary to operate the milling machine—are
visible on the picture. The developer may then decide to use this picture not as
an illustration but as a test, in which the learner must describe the steps and
simultaneously point out the necessary controls and displays for operating the
machine.

An important condition for the intermediate product solution is that
developers carefully document these intermediate products in a digital form,
preferably in databases that interrelate intermediate and final products.
Computer-based instructional design tools may help to do so (for an example of
such a tool based on the 4C/ID-model, see de Croock, Paas, Schlanbusch, & van
Merriënboer, 2002, and www.enovateas.com).

Testing Possible Solutions for Problems with Reuse

The three presented solutions (templates, automation, intermediate

products) and, especially, combinations of the three are believed to support
developers to solve the five presented problems of reuse. However, there is no
empirical evidence yet that they will actually provide support. Therefore, two
studies are conducted to test if different combinations of these solutions, as
embedded in computer-based tools for creating and reusing LOs, really support
developers. These studies are set up in an authentic setting to investigate how
implementations of the proposed solutions are perceived by the developers
(Study 1) and how they affect the quality of created LOs (Study 2).

The first study focuses on a combination of the template and automation
solutions. Inexperienced developers create and reuse didactically meaningful
LOs and multimedia LOs in a familiar and an unfamiliar subject matter domain.
In general, it is expected that developers will positively perceive the support
provided by the combined templates and automation solution and the quality of
their created LOs. A first hypothesis is that developers more positively perceive
the support when they are working with didactically meaningful LOs than
when they are working with multimedia LOs. This is true because metadata
become increasingly important when you search semantically rich elements,
which must be assessed on their potential pedagogical application and their
possible combinations with other LOs. A second hypothesis is that developers
more positively perceive the provided support when they are working in an
unfamiliar domain compared to a familiar domain, because an unfamiliar
domain forces them to rely more on metadata.

The second study focuses on the effectiveness of combinations of the
template, automation, and intermediate product solutions. In a familiar domain,
inexperienced developers create and reuse LOs that take the form of cases, that

Chapter 5

 82

is, learning tasks that describe an authentic problem situation and ask learners
for possible solutions (Schank, Berman, & MacPherson, 1999). Three conditions
are distinguished and compared with regard to the quality of created cases. The
condition that combines the “regular” template and automation solutions serves
as a baseline and is comparable to the combined solution applied in Study 1.
First, it is hypothesized that a combined solution with extended templates and
automation results in a higher quality of created cases than the baseline
condition because the extended templates contain job aids that provide
meaningful information on how to use the templates. Second, it is hypothesized
that an integrated solution with regular templates, automation, as well as
intermediate products also results in higher quality of created cases than the
baseline condition because the intermediate products provide meaningful
information on how to use the LOs.

Study 1: Perceptions of the Automation and Template Solutions
Method

Participants
Eight developers of—paper-based and computer-based—educational

materials from the Royal Netherlands Army (RNA) participated in this study.
They had a background in a military domain (engineering, medical support,
artillery, or air defense) and worked at one of the Educational Development
Centers of the RNA. The participants worked in four teams of two persons each,
who were both employed at the same Educational Development Center.

Materials

Development tools. The Integrated Development Environment (IDE) used
by the participants consisted of (a) the Sharable Content Object (SCO) Generator,
and (b) a Repository. The SCO Generator provided the template solution for
this study, by offering pre-structured support on (a) didactical, (b) authoring,
and (c) technical aspects of developing LOs. With respect to the didactical
aspects, the templates provided a number of default instructional design
structures that are familiar to the participants, such as Gagné’s Nine Events
(1965), presentation-practice-feedback sequences, and simple-to-complex
orderings of learning tasks (see, e.g., Leshin, Pollock, & Reigeluth, 1992). With
respect to the authoring aspects, the templates provided a number of empty
software structures that could easily be instantiated with multimedia materials
to become LOs. Aspects such as timing of feedback, tracking and tracing of
learning results, interaction design, and navigation structures could easily be
(re)configured. With respect to the technical aspects, the templates provided a
number of structures for “packaging” LOs, that is, storing them according to the
specifications of ADL-SCORM (2004). A distinction is made between SCOs and
Assets. The first are didactically meaningful objects provided with metadata,
which can be executed by a learning management system (e.g., modules,
lessons, learning tasks). The second are multimedia objects provided with

 Learning objects

 83

metadata, which are used to build an SCO and cannot be executed themselves
(e.g., graphics, text documents, video and audio clips).

The Repository is a database that supports the storage and retrieval of
LOs. It provides the automation solution for this study and is based upon the
Teletop learning management system (Strijker, 2004). The process of storing LOs
is largely automated because the participant (1) can upload a new LO to the
database by operating a simple user interface, and (2) needs to specify only a
selected, limited set of metadata fields suggested by the system. Metadata that
can be automatically generated are specified by the system, which analyzes the
objective features of the LO (e.g., size, language) and the user-profile (e.g., name
and organization of the author).

Table 5.1
An Overview of the Used Metadata Fields with Typical Examples Specified
Category Metadata

Field
Examples of specified metadata

General Title “Theory on Medical Instruments”
 Description “Lesson on the theory of Medical Instruments”
 Keywords “Medical Instruments”, “Scalpels”, “Pliers”

Technical File format “Word document”

Classification Purpose “Medical Discipline”
 Description “NL”, “Army”, “Logistics”, “Healthcare”, “Medical

Services”, “Operational Healthcare”, “Medical
Treatment”

 Keyword “Medical Instruments”

Table 5.1 provides an overview of the used metadata fields, based on the
specifications of ADL-SCORM. The process of retrieving LOs is partly automated
through advanced search methods. A search on metadata fields yields an
overview of all applicable LOs. A search on icons yields a “thumbnail” overview
of all graphical files. A search on operators offers an overview of LOs that
contain particular keywords and/or are created in a particular time frame.

Tasks. The development tasks were performed in two sessions of three
days each. In both Session 1 and Session 2, five assignments were conducted by
all four teams:

1. Storing Assets that were pre-installed on participants' computers, into the
Repository. This assignment took 4 hours and was used to test the
automation solution.

2. Retrieving Assets that were stored by one of the other teams as part of
Assignment 1, from the Repository. This assignment also took 4 hours
and was used to test the automation solution.

3. Developing learning content with the SCO generator, based upon a small
training blueprint, describing the learning objectives and the training

Chapter 5

 84

context. The learning content was created from the SCOs built by the
Assets retrieved as part of Assignment 2. Sometimes, multiple SCOs had
to be reconfigured to make valid arrangements. This assignment took 8
hours and was used to test the template solution.

4. Storing SCOs that were created as part of Assignment 3, into the
Repository. This assignment took 4 hours and was used to test the
automation solution.

5. Retrieving SCOs that were stored by one of the other teams as part of
Assignment 4, from the Repository. This assignment took 4 hours and
was used to test the automation solution.

 Session 1 and 2 differed from each other with regard to the familiarity of
the participants with the subject matter domain. Session 1 dealt with medical
instruments and field orientation, topics that were unfamiliar to the participants.
Session 2 dealt with ammunition awareness, medical materials, tank
recognition, and aircraft recognition—topics the members of each team were
specialized in. This allowed for testing the hypothesis that the template and
automation solutions are rated more useful for unfamiliar domains than for
familiar domains, because in the unfamiliar domain the participants are forced
to rely more on metadata.

Experimental rooms. The four teams worked independently of each other,
in rooms equipped with one computer for each participant. Each computer had
the SCO Generator installed and broadband LAN access to the Repository
which was installed on a central server. The Assets for the first assignment of
each session were available in a map presented on the desktop of each
computer. The Repository was filled with more than 1000 Assets in a variety of
file formats in order to represent a realistic working situation.

Measurements

Background questionnaire. This questionnaire collected information on
participants’ (a) experience with developing educational materials including the
production of instructional software, (b) previous coursework, and (c)
experience with reusing multimedia components and parts of lessons.
Participants were asked with an open question about their current experiences
with regard to reuse.

Monitoring. In a log file, the Repository automatically recorded the
number of stored and retrieved LOs and the related time in minutes.

Evaluation questionnaire. The questionnaire consisted of two parts. The
first part contained 10 questions pertaining to particular aspects of the SCO
Generator and the template solution. For questions 1-5, the participants used a
5-point Likert scale; for question 6, they used a “yes-no” scale, and for questions
7-10, they used a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 10 =
“excellent”) (see Table 5.2). The second part contained 8 questions pertaining to
the automation solution. The participants rated particular aspects on a 10-point
scale for both SCOs and Assets, to enable the comparison between didactically
oriented LOs and multimedia LOs (see bottom part of Table 5.3). This allowed

 Learning objects

 85

for testing the hypothesis that the automation solution is rated as more useful
for SCOs than for Assets. Participants were asked to write down any remarks
they had with regard to the assignments, the process of reusing LOs, and the
development process in general.

Product reviews. The experimenter rated the technical functioning of all
products as sufficient or insufficient.

Procedure
All participants took part in a one-day training session. The purpose and

procedure of the study were explained and the SCO Generator and Repository
were demonstrated. The purpose of LOs and the use of metadata fields were
discussed, without discussion about which values should be used to fill out the
fields. A worked-out example of a course created with the SCO Generator was
shown. A paper-based job-aid with instructions for how to use the Repository
was made available. The participants filled out the background questionnaire
before Session 1. In both sessions, the four teams could not consult with each
other, forcing participants to rely on available metadata specified by other
teams, rather than personal communication. An experimenter was always
present to answer questions, but this assistance was limited to technical
problems and difficulties with understanding the assignments. The participants
filled out the evaluation questionnaire after each session to enable a comparison
between an unfamiliar domain (Session 1) and a familiar domain (Session 2).
Finally, the experimenter reviewed all products.

Results

Participants mean development experience (design and production

activities) was 4.75 years (SD = 3.01); they completed an average of 3.87
instructional software products (SD = 3.52), and they took an average of 2.62
courses on the development of educational materials (SD = 1.41). They rated
their experience with template-based development tools as “below average” (M
= 1.75, SD = 0.71 on a 5-point Likert scale on which 1 = not experienced and 5 =
very experienced) and their experience with the CBT generator, a predecessor of
the SCO Generator, as “average” (M = 2.50, SD = 1.07). The Repository was
completely new to them. Seven participants had experience with reusing
Assets—four participants reused assets from only one course and three
participants reused assets from multiple courses. Four participants had
experience with reusing SCOs—two participants reused SCOs from only one
course and two participants reused SCOs from multiple courses.
 From the participant’s current experience of reuse, four central issues
appeared. First, all participants think that there is much reusable learning
content available in their organization. Second, they often find it difficult to find
relevant learning content. Third, they find it difficult and laborious to adapt
learning content from other resources for their own use. Fourth, they also find it
difficult and laborious to create metadata files and specify relevant metadata.

Chapter 5

 86

Template Solution
The participants developed roughly the same number of SCOs in the

unfamiliar domain (Session 1, M = 12.38, SD = 5.55) and the familiar domain
(Session 2; M = 13.50, SD = 7.87). Table 5.2 presents an overview of the means
and standard deviations of participants’ ratings of specific aspects of the SCO
Generator and the template solution.

Table 5.2
Study 1: Participant Ratings for the SCO Generator and Template Solution

Unfamiliar
domain

(Session 1)

Familiar
Domain

(Session 2)

M SD M SD
1. Quality of user interface of SCO

generator a
3.50 .93 3.63 .74

2. Quality of structure of SCO generator 2.37 1.51 2.25 1.38
3. Quality of information presentation by

SCO generator
1.75 1.04 3.50 1.41

4. Quality of didactical templates in SCO
generator

3.13 1.55 3.13 .64

5. Possibility to apply own ideas 1.88 .99 2.37 1.18
6. Desire to have influence on reuse of

others by own materials b
.75 .46 .43 .53

7. Satisfaction with end result (i.e., the
created reusable LOs)

5.87 1.88 5.13 2.58

8. Expectation of availability of reusable
material in RNA

6.50 1.77 6.17 1.72

9. Usability of SCO Generator for
developing reusable LOs

5.75 1.38 5.88 1.46

10. Suitability of complete template solution
for developing reusable LOs

5.75 1.67 5.75 1.48

a Questions 1-5 are rated on a 5-point scale (1 = “very bad”; 5 = “very good”).
b Rated as “no” (0) or” yes” (1).
c Questions 7-10 are rated on a 10-point scale (1 = “very bad”, 6 = “satisfactory”,
10 = “excellent”).

Participants rated the quality of information presentation by the SCO
Generator (question 3) lower when working with unfamiliar content (M = 1.75,
SD = 1.04) than when working with familiar content (M = 3.50, SD = 1.41;
Wilcoxon Signed Rank test: W = 0.00, p < .05. No other significant differences
between the unfamiliar and familiar domain were found.

The quality of the interface (question 1) and the didactical templates
(question 4) were rated above satisfactory, and the participants expected a high
availability of reusable materials in the RNA (question 8). The rating on the

 Learning objects

 87

desire to have influence on the reuse of self-developed materials by others was
between “yes” and “no” (question 6). Participants rated their satisfaction with
the end result (question 7), their perceived usability of the SCO Generator
(question 9), and the suitability of the complete template solution (question 10)
as almost satisfactory. Finally, the quality of the structure (question 2) and the
possibility to apply their own ideas (question 5) were rated below satisfactory.

The product review indicated that all teams created working LOs with
the SCO Generator. There were some minor technical problems with three of the
products due to bugs in the SCO Generator.

Automation Solution

All participants were able to store and retrieve LOs. Table 5.3 presents an
overview of the means and standard deviations of the times for storing and
retrieving LOs, the number of retrieved LOs, and the participants’ ratings on
eight aspects of the Repository and the automation solution.

C
ha

pt
er

 5

88Ta

bl
e

5.
3

St

ud
y

1:
 P

ar
tic

ip
an

t R
at

in
gs

 fo
r t

he
 R

ep
os

ito
ry

 a
nd

 A
ut

om
at

io
n

So
lu

tio
n

U

nf
am

ili
ar

 c
on

te
nt

(S

es
si

on
 1

)
Fa

m
ili

ar
 c

on
te

nt

(S
es

si
on

 2
)

To
ta

l
(S

es
si

on
 1

 p
lu

s
2)

SC
O

s
A

ss
et

s
SC

O
s

A
ss

et
s

SC
O

s
A

ss
et

s

M

SD

M

SD

M

SD

M

SD

M

SD

M

SD

A
ve

ra
ge

 ti
m

e
fo

r s
to

ri
ng

 L
O

s (
m

in
ut

es
)

(a
ss

ig
nm

en
ts

 1
 a

nd
 4

)
4.

25

3.
41

3.

87

1.
88

2.

75

1.
98

7.

43

10
.3

6
3.

50

2.
22

5.

57

6.
00

A
ve

ra
ge

 ti
m

e
fo

r r
et

ri
ev

in
g

LO
s (

as
si

gn
m

en
ts

 2

an
d

5)

2.
50

.9

3
4.

00

3.
29

1.

50

1.
07

2.

75

1.
16

2.

00

0.
53

3.

37

1.
48

A
ve

ra
ge

 n
um

be
r o

f r
et

ri
ev

ed
 L

O
s (

as
si

gn
m

en
ts

 2

an
d

5)

20
.2

5
17

.3
6

27
.1

3
11

.2
3

14
.1

3
7.

06

28
.0

0
8.

83

17
.1

8
9.

15

27
.5

8
8.

89

Ra

tin
gs

 o
n

as
pe

ct
s o

f t
he

 R
ep

os
ito

ry
 a

nd
 a

ut
om

at
io

n
so

lu
tio

ns

10
-p

oi
nt

 s
ca

le
 fr

om
 1

 (v
er

y
ba

d)
 to

 1
0

(e
xc

el
le

nt
)

1.

Re

le
va

nc
e

of
 m

et
ad

at
a

se
t

7.
25

1.

04

6.
37

1.

18

6.
75

.7

1
7.

00

.7
5

7.
00

.5

3
6.

68

.6
5

2.

U
ne

qu
iv

oc
al

ne
ss

 o
f m

et
ad

at
a

se
t

6.
83

.7

5
5.

63

2.
26

6.

62

.7
4

5.
63

1.

51

6.
83

.6

8
5.

63

1.
15

3.

U

se
fu

ln
es

s o
f m

et
ad

at
a

se
t

6.
75

.7

1
6.

37

.5
2

6.
25

1.

38

6.
63

.5

2
6.

50

.7
5

6.
50

.3

7
4.

U

sa
bi

lit
y

of
 th

e
sp

ec
ifi

ed
 m

et
ad

at
a

fo
r o

th
er

s
7.

28

.9
5

6.
13

2.

03

7.
14

.8

9
7.

00

.8
2

7.
00

0.

54

6.
28

.6

4
5.

U

sa
bi

lit
y

of
 th

e
Re

po
si

to
ry

 fo
r s

to
ri

ng
 L

O
s

6.
87

.9

9
6.

43

1.
27

6.

71

.7
5

6.
50

.9

3
6.

64

0.
55

6.

50

1.
00

6.

U

sa
bi

lit
y

of
 th

e
Re

po
si

to
ry

 fo
r

re
tr

ie
vi

ng
 L

O
s

7.
00

.8

2
6.

00

1.
07

6.

25

1.
48

6.

25

.8
8

6.
86

.6

9
6.

13

.6
4

7.

Th
e

co
m

pl
et

e
au

to
m

at
io

n
so

lu
tio

n
fo

r s
to

ri
ng

LO

s
7.

25

1.
16

4.

87

1.
73

6.

63

.7
4

6.
25

.7

1
6.

94

1.
25

5.

56

.9
4

8.

Th
e

co
m

pl
et

e
au

to
m

at
io

n
so

lu
tio

n
fo

r
re

tr
ie

vi
ng

 L
O

s
6.

75

.7
1

5.
75

1.

28

6.
50

.7

5
6.

63

1.
06

6.

25

.5
8

6.
18

.6

5

 Learning objects

 89

As indicated in the top of Table 5.3, participants spent between 2.75 and
7.43 minutes for storing a new LO, between 1.50 and 4.00 minutes for retrieving
a LO, and retrieved a minimum of 14 and a maximum of 28 LOs. The following
significant differences are found by Wilcoxon Signed Rank tests. When working
with familiar content, participants retrieved more Assets (M = 28.00, SD = 8.83)
than SCOs (M = 14.13, SD = 7.06; W = 0.00, p < .05). Also, over both sessions,
participants retrieved more Assets (M = 27.58, SD = 8.89) than SCOs (M = 17.18,
SD = 9.15; W = 3.00, p < .05). Over both sessions, participants needed less time
to retrieve SCOs (M = 2.00, SD = .53) than Assets (M = 3.37, SD = 1.48; W = 4.00,
p < .05).

On eight occasions, SCOs were rated higher than Assets on one particular
aspect. The relevance of the metadata set (Question 1) was rated 7.25 for SCOs
and 6.37 for Assets (W = 6.00, p < 0.5) in Session 1. Unequivocalness of the
metadata set (Question 2) was rated 6.62 for SCOs and 5.63 for Assets in Session
2 (W = 0.00, p < .05). The usability of the specified metadata for others (Question
4) was rated 7.28 for SCOs and 6.13 for Assets (W = 2.00, p < 0.5) in Session 1,
and rated 7.00 for SCOs and 6.28 for Assets (W = 0.00, p < 0.5) over both
sessions. The usability of the Repository for retrieving LOs (Question 6) was
rated 6.86 for SCOs and 6.13 for Assets (W = 0.00, p < 0.5) over both sessions. The
complete automation solution for storing LOs (Question 7) was rated 7.25 for
SCOs and 4.87 for Assets (W = 0.00, p < 0.5) in Session 1, and rated 6.94 for SCOs
and 5.56 for Assets (W = 0.00, p < .05) over both sessions. Finally, the complete
automation solution for retrieving LOs (Question 8) was rated 6.75 for SCOs and
5.75 for Assets (W = 0.00, p < 0.5) in Session 1.

With regard to familiarity of domain, the unfamiliar domain was not
rated significantly higher than the familiar domain on any aspect.

With regard to absolute ratings for the Repository and automation
solution, the relevance of the metadata set (question 1), the usefulness of the
metadata set (question 3), the usability of metadata for others (question 4), the
usability of the Repository for storing LOs (question 5), the usability of the
Repository for retrieving LOs (question 6), and the complete automation
solution for retrieving LOs (question 8) were rated above satisfactory. The
unequivocalness of the metadata set (question 2) and the complete automation
solution for storing LOs (question 7) were rated almost satisfactory for Assets
but above satisfactory for SCOs.

Remarks from Participants

The participants experienced the rapid increase of key words in the
Repository as problematic. The initial number of 103 keywords increased to 207
keywords after both sessions, through incorporating new keywords entered by
the participants. This threatened the efficiency of searching by keywords (i.e.,
the overview of found LOs became too large to review in a reasonable time) as
well as entering keywords in the metadata (i.e., the list of suggested keywords
became too large).

Chapter 5

 90

Furthermore, although none of the participants had objections against the
reuse of self-developed materials by others, they emphasized that it may be
important to consult the original creator of LOs for domain validity reasons (Is
the content still up-to-date?, Is the content representative of the real working
situation?), instructional validity reasons (Is the sequence and navigation of
learning experiences didactically sound?, Is the assessment method still
correct?), and security reasons (Are new developers or learners allowed to
interact with the LOs?) Thus, even if it is no problem to develop learning
materials by means of adapting the structure or content of existing LOs from
other subject matter domains or development teams, the participants find it still
important to be able to consult the original creator.

Discussion

The IDE, based upon the integrative approach, was able to support

inexperienced developers with reusing LOs. The first hypothesis stated that
when working with SCOs, developers would rate the automation solution
higher than when working with Assets. Clear support for this hypothesis was
found. Working with SCOs was rated higher than working with Assets on eight
aspects. In agreement with this finding, developers need less time to retrieve an
SCO they wanted than to retrieve an Asset they wanted, irrespective of the fact
that it was easier to review and assess the latter. The finding that they retrieved
a smaller number of SCOs than Assets (at least for the familiar content) does not
alter this fact because an SCO is usually made up of multiple Assets.

The second hypothesis stated that participants, when working in an
unfamiliar domain, would rate the templates and automation solutions higher
than when working in a familiar domain. No support for this hypothesis was
found. First, the quality of the information presented by the SCO generator was
rated higher in the familiar domain than in the unfamiliar domain. Second, the
complete automation solution for storing LOs in the Repository was rated
higher for Assets in the familiar domain than in the unfamiliar domain. A
possible explanation is that developers were more acquainted with the IDE
when working with the familiar content, which was always dealt with in the
second session. Being more comfortable with the development environment
may have led to higher ratings. Obviously, future research should use more
participants and counterbalance the familiarity of the domain over experimental
sessions.

Developers indicated in the background questionnaire that they see good
possibilities for reuse in their working situations. The implemented templates
and automation solutions seem to be able to realize these possibilities because
most aspects of those solutions were rated as more than satisfactory. Two
remarks relate to the rapidly increasing number of keywords as a bottleneck for
specifying metadata, and the desirability to be able to contact the original
creator of LOs. In practice, these two problems may become a serious bottleneck
for reuse.

 Learning objects

 91

Study 2: Quality of LOs Produced with the Combined Solutions

The second study uses not only the template and automation solutions,
but also the intermediate product solution. Furthermore, the quality of created
LOs is studied in addition to the perceptions of the developers.

Method

Participants
Fifteen instructors of the Royal Netherlands Air Force (RNLAF)

participated in this study. Their average age was 41.53 years (SD = 7.75). They
were all subject matter experts and instructors in a particular technical military
domain, and responsible for delivering instruction and designing instructional
materials for their own lessons. Three participants were dedicated developers of
paper-based or computer-based educational materials.
Materials

Development tools. The IDE was largely identical to the one used in Study
1, but extended with case-based templates, extended templates, and design
documents. Case-based templates helped to construct cases consisting of four
elements: (1) a problem presentation to introduce the learning task; (2) related
information offering background knowledge for the learning task; (3) a
problem-solving space in which the task was performed, and (4) reflection
offering an assessment of the problem-solving process and resulting products.
Extended templates only differed from case-based templates in that they
included job-aids, small documents linked to a particular template providing
information about how to use this template to better implement the instructional
design. Concrete guidelines and structured flow diagrams systematically
explained how to design the four case elements according to guidelines from
Schank et al. (1999) and Jonassen (1999). Design documents were intermediate
products, providing instructional design information and keywords for a
particular LO. They took the form of small training blueprints and could be used
for reviewing, creating, and reusing LOs.

Three conditions were distinguished. The first condition implemented the
Automation and Regular Template solutions (A+RT). It combined the
automation solution as used in Study 1 with the regular template solution. The
second condition implemented the Automation and Extended Template
solutions (A+ET). The third condition implemented the Automation, Regular
Template, and Intermediate Product solutions (A+RT+IP). A comparison of
condition 1 and condition 2 allowed for testing the hypothesis that Extended
templates are superior to Regular templates, and a comparison of condition 1
and condition 3 allowed for testing the hypothesis that Intermediate products
provide meaningful information on how to use the templates and so increases
the quality of the created LOs.

Tasks. The development tasks were performed in one session during two
days. Table 5.4 provides a description of the five assignments that were

Chapter 5

 92

conducted by the participants. The introductory assignment was primarily
intended to make the participants familiar with the tools. The subsequent three
assignments, representing the A+RT, A+ET, and A+RT+IP condition, consisted
of two parts each. These three assignments were offered in three different
orders, according to a Latin Square. They described the purpose of the case to be
developed, the learning goals for the prospective learners, characteristics of
those learners, the quality criteria the case had to satisfy, and hints to operate the
IDE. The concluding assignment asked the participants to upload their final LOs
in the Repository.

Table 5.4
Study 2: Overview of Assignments
Assignment Time Content of Assignment
Introductory 30 min Creating the basic course structure to fit in the case

LOs and a general introduction
A+RT a

90 min Creating an exercise case with case-based templates
and automation support

 90 min Creating a real case with case-based templates and
automation support

A+ET b

90 min Creating an exercise case with extended templates
and automation support

 90 min Creating a real case with extended templates and
automation support

A+RT+IP c

90 min Creating an exercise case with design documents
and automation support

 90 min Creating an real case with design documents and
automation support

Conclusion 30 min Uploading the course with the 6 case-based LOs to
the Repository and specify relevant metadata

aAutomation and Regular Templates.
bAutomation and Extended Templates.
cAutomation, Regular Templates, and Intermediate Products.

Participants developed cases in the subject matter domain of Safety
Wiring: Securing mechanical airplane parts such as bolts or switches by means
of wires or glue according to a strict procedure. Most RNLAF technicians and
instructors are familiar with this domain. Each case developed by the
participants had to contain all four case elements described above.

Experimental room. The participants worked independently of each other
in a room equipped with one computer for each participant with the same
configuration as used in Study 1. The Repository was filled with 130 Assets, half
of which were sufficient to complete the assignments in this study, and half of
which were irrelevant but used to mimic the normal working situation.

 Learning objects

 93

Measurements

Background questionnaire. The questionnaire collects information on
participants’ (a) years of teaching experience and experience with developing
educational materials including the production of instructional software; (b)
experiences and expectations with case-based teaching (5-point Likert scale),
and (c) knowledge of the Safety Wiring domain (ranging from no experience to
expert).

Evaluation questionnaire. The questionnaire contained five questions
pertaining to the experienced support and satisfaction with the final products
(see Table 5.5).
Product reviews. The experimenter scored quantitative aspects of created cases
by counting the number of pages of each case and, on each page, the number of
different question types, video clips, and hyperlinks (see Table 5.6). Second, the
created cases were reviewed on qualitative aspects. Three expert raters who
were not involved in this study, two from the RNLAF and one from the
Netherlands Organization for Applied Scientific Research TNO, independently
scored all created cases on the quality of the four case elements and on their
overall quality. Before the review, they participated in a short training on the
technical possibilities and limitations of the IDE and the embedded didactical
model. The cases were scored anonymously, in another randomized order for
each expert rater. A checklist of 21 items was used (see Table 5.7) with 5-point
Likert scales (1 = “very bad”, 5 = “very good”). The Intra Correlation Coefficient
is .94, which is good (Fleiss, 1981).

Final questionnaire. This questionnaire contained three questions
pertaining to the participants’ overall satisfaction with the SCO generator, the
Repository, and the created cases (see Table 5.8).

Procedure
All participants took part in a one-day training session, in which the

central concepts of this study were explained. Before the experimental session,
the participants filled out the background questionnaire. A within-subject
design was used, with a Latin Square to control for the order of the three
conditions. Thus, five participants proceeded through conditions 1, 2 and 3; five
participants proceeded through conditions 2, 3 and 1, and five participants
proceeded through conditions 3, 1 and 2. An experimenter was always present
to answer questions, but this assistance was limited to technical problems and
difficulties with understanding the assignments. After each assignment specific
for one of the three conditions, the participants filled out the evaluation
questionnaire.

Results

Participants mean experience within the RNLAF was 19.87 years (SD =

8.76). With respect to teaching experience, one participant had no experience,

Chapter 5

 94

five had 0-2, three had 2-4, one had 4-6, and five had more than 6 years
experience. With respect to computer experience, three participants had 2-4, five
had 4-6, and seven had more than 6 years experience. None of the participants
had experience with the specific tools used in this study. The mean score on the
question: “Have you applied case-based learning in your teaching?” was 3.47
(SD = 1.30) on a 5-point scale, indicating more than average experience. With
respect to the question: “Are you motivated to develop case-based learning
materials yourself?” the mean score was 2.47 (SD = 1.13), indicating less than
average motivation. The mean score on the question: “Do you feel that you need
support in developing such material?” was 2.33 (SD = 1.30), indicating low need.
With respect to knowledge of Safety Wiring, four participants rated themselves
as experts, five as advanced, two as basic and four as having no experience.

The following sections discuss the experienced support and satisfaction,
the quantitative aspects, and the qualitative aspects of the created cases. No
relation was found between the order in which the conditions were presented to
the participants and the results discussed in those sections. The last section
discusses the final ratings by the participants.

Experienced support and satisfaction. Table 5.5 presents the means and
standard deviations for the participant ratings on support and final products.
No significant differences were found between the conditions A+RT and A+ET,
or between A+RT and A+RT+IP. Furthermore, the experienced difference of
support in the conditions A+RT and A+ET (question 2), and in the conditions
A+RT and A+RT+IP (question 3) did not significantly differ from the neutral
score of 3.

Table 5.5
Study 2: Participant Ratings on Support and Final Products

Condition

A+RT A+ET A+RT+IP

M SD M SD M SD

1. Did you have enough time to
complete the assignment? a

.53 .52 .47 .52 .47 .52

2. Did you experience more support
from the A+ET than the A+RT
condition? b

- - 3.20 .86 - -

3. Did you experience more support
from the A+RT+IP than the A+RT
condition? b

- - - - 3.13 .92

4. Are you satisfied with the working
of the SCO generator? c

5.13 1.64 5.47 1.68 5.53 1.51

 Learning objects

 95

5. Are you satisfied with the case you
have created? b

3.00 1.00 3.33 1.11 3.53 .92

a Rated as “no” (0) or “yes” (1).
b Rated on a 5-point scale (1 = “totally agree”; 5 = “totally disagree”).
c Rated on a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 10 = “excellent”).

Quantitative aspects. Table 5.6 presents the means and standard deviations
of the quantitative aspects of the created cases. A McNemar test showed
significant difference in the amount of use of video clips between the A+RT
condition (no clips) and the A+ET condition (M = .74, SD = .46; N = 15, p < .01).
Also, there is a significant difference in the use of video clips between the A+RT
condition (no clips) and the A+RT+IP condition (M = .66, SD = .48; N = 15, p <
.01). No other significant differences between conditions were found.

Table 5.6
Study 2: Quantitative Aspects of Created Cases

Condition

A+RT A+ET A+RT+IP

M SD M SD M SD

1. Average number of pages per case 7.60 3.58 8.93 4.03 8.13 3.80

2. Average number of question types
per page

1.87 .92 1.80 1.37 1.60 1.29

3. Presence of video clips on each
pagea

.00 .00 .74 .46 .66 .48

4. Presence of hyperlinks on each
pagea

.60 .51 .47 .52 .54 .52

a Rated as “no” (0) or “yes” (1).

Qualitative aspects. Table 5.7 presents the means and standard deviations
of the qualitative aspects of the created cases. In general, the three experts scored
the created cases rather low on all 21 aspects.

Chapter 5

 96

Table 5.7
Study 2: Expert Review on Quality of Cases

Support Conditions

A+RT A+ET A+RT+IP

M SD M SD M SD

1. Realistic problem definition in
problem presentation part a

2.77 .95 2.46 1.13 2.68 1.01

2. Clear expectations offered in
problem presentation part

2.12 .96 1.97 .82 2.25 .83

3. Clear central problem present in
problem presentation part

2.22 .87 1.74 .69 2.17 .86

4. Extra features present in problem
presentation part

2.06 .76 1.76 .74 2.20 .66

5. Amount of learning in problem
presentation part

1.75 .88 1.80 .78 1.82 .86

6. Added value of multimedia in
problem presentation part

1.88 .53 2.05 .63 2.08 .55

7. Availability of additional info part 2.48 .63 1.94 .68 2.68 .77

8. Relevance of links to background
information in additional info part

2.79 .68 2.21 .87 2.36 .61

9. Clear link descriptions in
additional info part

2.58 .97 2.63 1.07 2.13 .85

10. Correct match between problem
presentation part and problem
solving part

1.73 .56 1.73 .59 1.97 .66

11. Correct match between question
types and learning objectives in
problem solving part

1.78 .66 1.64 .63 2.16 .66

12. Clear feedback in questions within
problem solving part

1.61 .65 1.81 .71 1.86 .43

13. Clear expectations what to do in
problem solving part

1.74 .57 1.58 .55 1.82 .51

14. Amount of learning in problem
solving part

1.56 .54 1.64 .80 1.62 .62

15. Added value of multimedia in
problem solving part

1.35 .53 1.78 .75 1.51 .56

 Learning objects

 97

16. Added value multimedia in
reflection part

1.80 .56 1.63 .57 1.90 .50

17. Amount of learning objectives
covered in whole case

1.76 .71 1.80 .67 1.97 .64

18. Appropriateness of multimedia in
whole case

1.82 .67 2.02 .80 2.04 .71

19. Variation of presentation elements
in whole case

1.76 .55 2.22 .77 2.17 .69

20. Amount of learning in whole case 2.02 .76 .1.98 .77 2.24 .58

21. Attractiveness of whole case 1.62 .67 1.84 .74 1.75 .72

a Expert rating an all items is expressed on a 5-point Likert scale (1 = “very bad”;
5 = “very good”).

The following significant differences are found by Wilcoxon Signed Rank
tests. With respect to “clear central problem” (item 3), A+RT+IP was rated
higher than A+ET (W = 21.00, p < .05). With respect to “extra features” (item 4),
A+RT+IP was rated higher than A+ET (W = 18.00, p < .05). With respect to
“availability of additional info” (item 7), A+RT+IP was rated higher than A+ET
(W = 18.00, p < .05). With respect to “added value of multimedia” (item 15),
A+ET was rated higher than A+RT (W = 14.00, p < .05). With respect to
“variation of presentation elements” (item 19), A+ET was rated higher than
A+RT (W = 8.50, p < .05), and A+RT+IP was rated higher than A+RT (W = 23.50,
p < .05). With respect to “amount of learning” (item 20), A+RT+IP was rated
higher than A+RT (W = 14.50, p < .05). The other expert ratings showed no
significant differences. Thus, A+RT+IP was superior to A+ET on three aspects,
and superior to A+RT on two aspects; A+ET was superior to A+RT on two
aspects.
 Overall ratings of tools and created cases. Table 5.8 presents the ratings of the
participants on the process and products. It appears that both the SCO
Generator and the Repository were rated satisfactory. The majority of the
participants were satisfied with the quality of the resulting cases.

Chapter 5

 98

Table 5.8
Study 2: Participants Overall Ratings on Support Tools and Resulting Cases

Statements:

 M SD

1. I am satisfied with the SCO Generator a 5.77 .94

2. I am satisfied with the Repository a 5.93 1.91

3. I am satisfied with the quality of the resulting cases b .73 .46

a Rated on a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 10 = “excellent”).
b Rated as “no” (0) or “yes” (1).

Discussion

The combination of extended templates and the automation solution

(A+ET condition) resulted for two aspects of the final products in a better
quality than the combination of regular templates and the automation solution
(A+RT condition), namely the added value of multimedia in the problem
solving part and the amount of variation in presentation elements. The
combination of the intermediate products with the automation and regular
template solutions (A+RT+IP condition) resulted for three aspects in a better
quality than the combination of only the automation and extended template
solution (A+ET condition), namely the presence of clear central problems, extra
features, and multimedia with added value in the problem solving part. In
addition, it resulted for two aspects in a better quality than the combination of
only the automation and regular template solution (A+RT condition), namely
the variation of presentation elements and the amount of learning for the whole
case. However, the overall quality of the products was noticeably low, as none
of the experts scored an aspect of a product higher than neutral. This can
possibly be explained by insufficient time: About half of the participants
indicated they felt the assignment was not completed in time. Also, whilst
considering the limitations of the study, the participants themselves were not so
negative on the final products, as they rated the satisfaction with created cases
(higher than) neutral for each condition and above satisfactory in their overall
rating.

 Learning objects

 99

General Discussion

Two studies investigated different combinations of support solutions for
solving problems in creating and reusing LOs. The results show that these
combinations contribute to overcoming at least some of these problems.

First, the template solution seems to overcome the exchange problem in
particular, because it allows changing the instantiations of the templates
according to personal preferences. This may lower the “not-invented-here”
syndrome. However, developers yet emphasized the importance of consulting
the original creator of LOs for validity and security reasons.

Second, the automation solution seems to overcome the problem of
specifying metadata and finding LOs based upon metadata. This is not
influenced by familiarity of the domain, but the automation of metadata
supports working with SCOs more than working with Assets, because
developers then have to rely more on metadata for quickly reviewing the
reusability of the found LOs. For Assets, reliance on metadata is less of a
problem, as they are more susceptible to quick review, for instance by thumbnail
overviews for pictures and preview modes for audio, video, and animation.
Further research should indicate if the automation solution could also diminish
the context problem through automatic translation. Translations from speech to
written text (i.e., speech recognition) and from written text to speech (i.e., speech
synthesis) may increase reuse between target groups. In addition, translations
between different languages may increase reuse between regions.

Third, the intermediate product solution seems to overcome the
arrangement problem, because it provides more insight in valid arrangements of
LOs; the context problem, because it assists in finding LOs that fit in particular
contexts; and—in particular—the pedagogical function problem, because it
helps in determining the appropriate pedagogical function of a LO. Determining
the pedagogical function is especially important in competency-based
approaches such as applied in Study 2, and indicates that a fundamentally
different view on LOs may be necessary to accommodate approaches that use
cases, projects, and rich problems as the driving force for learning.

The practical implications of the reported studies are straightforward.
The studies show that there is not one direction to solve all reuse problems; each
proposed direction solves more than one problem, but all problems will only be
solved if several directions are taken simultaneously. For practical applications a
multi-path solution is proposed, taking several directions to facilitate desired
reuse. Thus, it is best to use the template, automation, and intermediate product
solutions next to each other.

The combined solutions proved to support inexperienced developers.
Further research should indicate if this also applies to experienced developers.
The automation solution for the routine aspects of reuse is likely to be
appreciated, because it allows experienced developers to concentrate on the
problem-solving aspects of reuse. Furthermore, the intermediate product
solution is also likely to be accepted. Experts tend to spend more time than

Chapter 5

 100

novices on exploring and interpreting design problems (e.g., Kirschner, Carr, &
van Merriënboer, 2002), a phase in which design documents play an important
role. Third, with regard to the template solution, experts could experience
undesirable constraints to their creativity. A fourth solution for reuse, as
proposed by van Merriënboer et al. (2005), is called “reedit and reuse instead of
reuse only” and focuses on changing found learning objects in order to meet
new requirements before reusing them. Especially for experts, this could be a
successful alternative for the template solution. The reedit solution solves at
least the same problems as the template solution, is more flexible than the
template solution, and experts will be well able to change learning objects
without pre-structured template support.

 Learning objects

 101

References

ADL SCORM™ (2004). Advanced Distributed Learning (ADL) Sharable Content
Object Reference Model (SCORM®) 2004 Conformance Requirements (CR)
Version 1.0. Retrieved July 19, 2004, from the World Wide Web:
http://www.adlnet.org.

Booch, G. (1994). Object-oriented analysis and design with applications. Redwood
City, CA: Benjamin/Cummings.

Boot, E.W., & Veerman, A. L. (2004). Support tools for e-learning from a user
perspective. Moroccan Journal of Control, Computer Science, and Signal
Processing (Jan 2004), 49-60.

De Croock, M. B. M., Paas, F., Schlanbusch, H., & van Merriënboer, J. J. G.
(2002). ADAPTit: Tools for training design and evaluation. Educational
Technology, Research and Development, 50(4), 47-58.

Fleiss, J. L. (1981) Statistical methods for rates and proportions (2nd Ed.). New York:
Wiley.

Gagné, R. M. (1965). The conditions of learning (1st Ed.). New York: Holt, Rinehart,
& Winston.

Jonassen, D. (1999). Designing constructivist learning environments. In C. M.
Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of
instructional theory (pp. 215-239). Mahwah, NJ: Lawrence Erlbaum.

Kirschner, P. A., & van Merriënboer, J. J. G., & Carr, C. S. (2002). How expert
designers design. Performance Improvement Quarterly, 15(4), 86-104.

Leshin, C. B., Pollock, J., & Reigeluth, C. M. (1992). Instructional design strategies
and tactics. Englewood Cliffs, NJ: Educational Technology Publications.

Merrill, M. D. (1983). Component display theory. In C. M. Reigeluth (Ed.),
Instructional-design theories and models: An overview of their current status
(pp. 278-333). Hillsdale, NJ: Lawrence Erlbaum.

Schank, R. C., Berman, T. R., & MacPherson, K. A. (1999). Learning by doing. In
C. M. Reigeluth (Ed.), Instructional-design theories and models: A new
paradigm of instructional theory (pp. 161-181). Hillsdale, NJ: Lawrence
Erlbaum.

Chapter 5

 102

Strijker, A. (2004). Reusability in context: Technical and human aspects. PhD
dissertation, Faculty of Behavioural Sciences, University of Twente,
Enschede, The Netherlands.

Van Merriënboer, J. J. G., & Boot, E. W. (2005). A holistic pedagogical view of
learning objects: Future directions for reuse. In J. M. Spector, C. Ohrazda,
A. Van Schaack, & D. Wiley (Eds.). Innovations to instructional technology:
Essays in honor of M. David Merrill (pp. 43-62). Mahwah, NJ: Lawrence
Erlbaum.

Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and
complex learning: Recent developments and future directions. Educational
Psychology Review, 17(2), 147-177.

Wiley, D. A. (2000). Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy. In D. A. Wiley (Ed.). The
instructional use of learning objects: Online version. Retrieved June 16, 2003,
from the World Wide Web:
http://reusability.org/read/chapters/wiley.doc

General discussion

 103

Chapter 6

General discussion

Abstract

The main aim of this dissertation was to investigate the difficulties instructional
designers experience in ensuring an unequivocal interpretation of their designs
by software producers. It was shown that three building-block solutions, namely
(a) the Developing Design Documents (3D) model; (b) instructional software
templates, and (c) an integrative method for reuse, indeed supported
instructional designers in overcoming the transition bottleneck between the
design phase and the production phase. Starting from this main conclusion, the
theoretical and practical implications, the limitations of the reported studies,
and suggestions for future research are discussed. The chapter concludes with a
scenario illustrating the practical use of the three building-block solutions.

General discussion

 104

The main aim of this dissertation was to investigate if the development of
instructional software could be improved to meet the new criteria set by
educational, technical, and organizational innovations. These criteria are (a)
adaptivity, (b) generativity, (c) scalability, and (d) modeling of instructional
software. Theoretical and empirical analyses, described in Chapter 2, show that
the application of current development approaches does not satisfy these four
criteria. A new model, namely “lean production”, is introduced as an alternative
approach to the development of instructional software. This model promises to
satisfy the criteria of adaptivity, generativity, and scalability – but not the
criterion of modeling, which is a prerequisite to reaching the other criteria
because these all depend on an adequate modeling process. Modeling is done
according to three dimensions: Domain modeling of tasks and systems,
pedagogical modeling of the instructional design, and functional modeling to
enable the transfer of domain models and pedagogical models from the design
phase to the production phase. The transition bottleneck between design and
production makes functional modeling particularly problematic. This bottleneck
is caused by the lack of common design languages that are shared by
instructional designers and software producers.

In this dissertation, three building-block solutions were proposed to
overcome the transition bottleneck: (a) The Developing Design Documents (3D)
model to support instructional designers in improving their design documents,
(b) instructional software templates to support instructional designers in creating
programming structures, and (c) an integrative approach for reuse to support
instructional designers in reusing learning objects.

The three studies described in this dissertation investigated the effects of
the three building-block solutions. In this Chapter, first, the results of these three
studies are reviewed and the main conclusions are described. Second, the
practical implications of this research are described in terms of the use of the
building-block solutions to improve the development of instructional software.
Third, the limitations of the research are discussed with respect to the
experimental design of the studies. Fourth, suggestions for future research are
presented, concerning further improvement and validation of the building-block
methods. This chapter concludes with a scenario describing the practical use of
the proposed solutions.

Review of Results

 Chapter 2 explained the proposed building-block solutions, namely, the
3D-model, instructional software templates, and the integrative approach to
reuse. These solutions should better interrelate design and production activities
by supporting instructional designers’ use of building blocks that contain
production-related information, during the instructional development process.
This prevents the need to rely solely on formal transfers of design documents for
functional modeling. Instructional designers keep their traditional role in the
first building-block solution. Supported by the 3D-model, they are able to

General discussion

 105

provide software producers with more production-related information in their
design documents. Instructional designers have a new role in the second and
third building-block solutions, because they take over the role of software
producers and create final products themselves, without involvement of
producers. This is made possible by the support from instructional software
templates and the integrative approach to reuse. The following paragraphs
describe the studies in which the building-block solutions were tested.

In Chapter 3, the 3D-model was introduced as an aid to stratify,
elaborate, and formalize design documents. The study tested whether software
producers, who have to make technical specifications, will interpret design
documents based on the 3D-model more accurately than traditional design
documents (based upon training blueprints and storyboards as commonly used
in development projects). The results showed that the improved design
documents indeed promote a higher level of understanding among producers,
which is required to translate the functional model into technical specifications,
than conventional design documents. Also, working with the improved design
documents required less time and the software producers perceived less
cognitive load. However, there were no differences in producers’ satisfaction
with the two kinds of design documents. The 3D-model showed a significant
increase in efficiency of creating technical specifications. Thus, the 3D-model
enables instructional designers to transfer their designs to software producers in
a more accurate fashion. The study also indicated that instructional designers
are in the best position to enhance the efficiency of the translation process
through the improvement of instructional design documents. Because there is
no relation between producers’ satisfaction and the different kinds of design
documents, it appears that producers cannot correctly judge the quality of those
documents and are thus not in a good position to improve the transition process.
 In Chapter 4, instructional software templates were introduced to
support instructional designers in creating final products themselves. It was
tested if developers with low production experience (comparable to typical
instructional designers) and high production experience (comparable to
software producers) were able to use the instructional software templates.
Moreover, it was studied if the low-experience developers were able to produce
software with the same technical, authoring, and didactical quality as the high-
experience developers. No differences with regard to technical and authoring
quality were expected, because the instructional software templates were
expected to level up the differences between developers. The results showed
that the developers with low production experience indeed created the same
amount of instructional software, with the same didactical, technical, and
authoring quality, as high experience developers. Their didactical perspective
and development style did not affect the results. For both groups the didactical
quality was unsatisfactory, and both groups had mixed feelings with respect to
the question if working with templates was satisfactory. The study indicated
that the templates level up the differences between developers with low and
high production experience. This implies that instructional designers are able to

General discussion

 106

produce the same technical and authoring quality as software producers. It also
showed that didactical quality is not self-evident; working with the templates
requires a solid background in instructional design to guarantee acceptable
didactical quality. This is often not the case with subject matter experts and
instructors who act as instructional designers, as in our study.
 In Chapter 5, an integrative approach was introduced to support
instructional designers in independently creating final products. Two
experiments were described, in which developers with low production
experience retrieved and combined learning objects to assemble an instructional
software product – based upon a given instructional design. The first
experiment compared developers reusing large, didactically meaningful
learning objects versus small, multimedia learning objects, from both familiar
and unfamiliar domains. The developers were supported by the template and
automation solutions of the integrative approach. The results showed that the
developers judged both solutions positively, and rated working with
didactically meaningful objects higher than working with multimedia objects.
No differences between the familiar and the unfamiliar domain were found. The
second experiment compared developers reusing learning objects supported by
the automation solution in combination with either a set of (a) regular templates,
(b) extended templates, or (c) intermediate products. The results indicated that
the automation solution in combination with intermediate products yielded
highest-quality learning objects, followed by the extended templates and,
finally, the regular templates condition. Again, in all conditions, the didactical
quality was unsatisfactory. In both experiments, developers had mixed feelings
with respect to the feasibility of reusing learning objects. The study showed that
the integrative approach enabled developers with low production experience to
perform production tasks related to assembling the instructional software. Also,
it appears that to guarantee acceptable didactical quality, working with learning
objects requires the same solid instructional design background as working with
instructional software templates.
 The results of the three studies indicate that – one or more of the – the
building-block solutions help to overcome the transition bottleneck, thereby
satisfying the criterion of modeling and promoting the implementation of lean
production in developing instructional software.

Practical Implications

Four practical implications of the research presented in this dissertation
concern (a) criteria for applying the building-block solutions, (b) adaptivity of
building-block solutions, (c) design languages required for lean production, and
(d) alternative applications of lean production.

Criteria for Applying Building-block Solutions

The building-block solutions have a tool-based orientation, and support
instructional designers in either (a) providing software producers with better

General discussion

 107

information (the 3D-model), or (b) performing production tasks themselves (the
templates and integrative approach). On the one hand, the support from the 3D-
model does not imply that instructional design expertise can be completely
substituted, because the studies showed that a solid background in instructional
design is still required to ensure acceptable didactical quality as an outcome of
the transition process. This implies a need for better selection or training of
developers, and the application of sound instructional design models and
guidelines in the modeling process. On the other hand, the support from the
templates and the integrative approach does not imply that production expertise
can be completely substituted, because the studies showed that for complex
development issues—consultation with—professional software producers is still
required. This implies a need to involve professional software producers in
complex development situations.

When the developers produced final products with the building-block
solutions, they had mixed feelings with regard to the instructional software
templates and the feasibility of reusing learning objects. This indicates that
successful application of these building blocks for software production activities
is not self-evident. An alternative solution might be the use of independent
consultants who act as neutral intermediates. These (external) consultants, with
instructional design as well as software production experience, may assist
instructional designers in their functional modeling process, and assist
producers in formulating relevant questions for designers.

Adaptivity of Building-block Solutions

In order to promote successful application of building-block solutions, a
possible enhancement might be adaptivity of the solutions to meet the specific
needs of particular users. Currently, user profiles for learners as well as
developers of instructional software are being standardized (see
http://www.imsglobal.org). These profiles contain the users’ needs,
preferences, and activity histories, and they may steer adaptation by
configuration of the building-block solutions in at least three ways. First, the 3D-
model can be pre-structured in a particular configuration to fit the needs of a
particular instructional designer based upon his or her profile. Second, based
upon the same instructional designers’ profile, the instructional software
templates can be configured to provide tailored pedagogical, authoring, and
technical support. Third, e-learning tools may use the instructional designers’
profile to provide one or more of the four solutions of the integrated approach
for reuse by means of, for example, search tools, repositories, metadata
generators, translation tools, learning object template editors, and so forth.

Design Languages Required for Lean Production

The implementation of lean production emphasizes the use of design
languages, with explicit notation systems to enable functional modeling. This is
not only helpful for instructional designers and software producers, but also for
other stakeholders (e.g., project managers, clients, lawyers, learners) who must

General discussion

 108

review and judge the functional model information. Other development fields,
such as building construction and electrical engineering, have already realized
this in the past and use common notation systems such as architectural
blueprints and circuit schemes that satisfy standard conventions. These
blueprints and schemes can be read by the client, the engineer/architect (i.e., the
designer), the contractor, and the builder. They exemplify the universality of
design languages to serve the needs of several stakeholders, and stress the
usefulness of notation systems for the specification of (legal) documents
resulting from complex design enterprises.

In the field of instructional software development, however, instructional
designers and software producers have just started to draft these design
languages (e.g., see Koper & Tattersall, 2005). Their actual use is still limited.
Important objections of instructional designers against the use of design
languages are: (a) The required proficiency in technical aspects; (b) the extra
time and effort they have to invest in learning and, in particular, applying these
languages, and (c) the low yield compared to the required efforts. It can be
expected that the first two objections will quickly become obsolete. With an
increase of standardization of design languages for instructional software
development, more support will become available to increase their efficient use.
For example, support mechanisms such as automation and templates,
embedded in modeling environments and tools, will lower both the required
technical proficiency and the required time and efforts of usage. The third
objection is more difficult to refute. As long as instructional designers work
according to the push principle associated with craft and mass production
models, they will leave it up to the software producers to interpret their
functional models. It is not until production models such as lean production are
implemented, that the need for using standardized design languages becomes
apparent. The chicken-or-the-egg paradox is that organizations will not
implement lean production on a broad scale until they are able to unequivocally
transfer and communicate their designs, but the standardized design languages
required for doing this will not be drafted and standardized until organizations
implement lean production on a broad scale. As long as this situation remains
unchanged, the building-block solutions of instructional software templates and
the integrative approach towards reuse stay relevant.

Alternative Applications of Lean Production

At first sight, lean production seems to be particularly relevant for large
organizations and complex development projects, in which design and
production teams need to cooperate. However, smaller development settings
can also benefit from lean production, because they experience the same
increasing complexity of instructional design (e.g., new models of learning) and
learning technologies. As a result, the participants who operate in
multidisciplinary design and production teams in the development process
require many different and specialized skills, each with their own design
languages, methods, and tools. This dissertation was directed at transfer of

General discussion

 109

information between design and production teams. However, the same building
blocks may be used for the transfer within design and production teams.

Furthermore, software for more traditional instructional purposes can
also experience the criteria of adaptivity, generativity, and scalability–only
maybe to a lesser extend as can be seen in the next three examples. Adaptivity is
required if, for example, Bloom’s Mastery Learning (1971) is applied.
Furthermore, generativity is at the core of the modular Knowledge Objects used
in Merrill’s Component Design Theory (CDT2; Merrill, 2000). Finally, scalability,
directed particularly at traditional instructional settings, is one of the prime
objectives of the current e-learning standardization efforts (see Van Merriënboer
& Boot, 2005).

Limitations of the Research

The limitations of the research presented in this dissertation concern: (a)

The experimental materials used in the 3D-model study; (b) using “real”
designers as participants in the templates and integrative-approach studies, and
(c) shortcomings of expert reviews.

Experimental Materials Used in the 3D-model Study

In the 3D-model study (Chapter 3), a questionnaire was used to
determine software producers’ understanding of two kinds of design documents
and their ability to translate the documents into technical specifications. The
questionnaire, consisting of 25 questions and validated by other software
producers, was created by the experimenters. It might be argued that reviewing
the actually created technical specifications, or even the software produced on
the basis of these technical specifications, is a more valid measurement.
However, this would be very difficult to arrange. Besides practical issues such as
requiring much more time from the participants, there is the fundamental issue
that the process of creating the technical specifications and subsequently the
final products should be exactly the same for both groups – apart from the
experimental manipulation of either presenting the 3D-model or not.

Real Designers as Participants

In order to obtain a high ecological validity, representative participants
(i.e., real developers) were used in the templates and integrative-approach
studies (Chapters 4 and 5). The studies took place in realistic though controlled
settings with professional development tools such as authoring systems, search
tools, repositories, and actual learning materials. Although the high ecological
validity makes it relatively easy to generalize our findings to real-life settings, it
also limited the number of participants and their available development time.

The use of real developers as participants is a possible explanation for the
unsatisfactory didactical quality of the final products. The developers were
mostly domain specialists, that is, subject matter experts and instructors with
little production experience. This is not uncommon for instructional designers in

General discussion

 110

large organizations, who often have limited design experience but are
nonetheless responsible for the instructional design projects in their
organization. For example, hardly any of the developers had formal education
on a higher vocational or academic level in instructional design, learning
technologies, or a related field. Most of their instructional design education
consisted of in-house training programs, supplemented with practical
experience in their own design projects and short courses from vendors in
operating design and authoring tools. Therefore, it might be argued that the
developers not only had little production experience but also little design
experience and should thus be considered as novice instructional designers.
Perez, Fleming-Johnson, and Emery (1995) report that novice instructional
designers often have no systematic plan of action because they lack strategic
knowledge. Therefore, they often apply an overly simplified information-
transmission model in their design. This finding is confirmed by the review of
the final products from the studies reported in Chapters 4 and 5: The expert
reviewers noticed a highly linear approach towards instruction in these
products, which was one of the main reasons they scored the didactical quality
as unsatisfactory. Further studies on the building-block solutions should use
more proficient instructional designers to ensure an acceptable didactical quality
of the final products.

For the practical field of instructional design, the finding that most
participating developers should be considered novice instructional designers
implies that they should receive extra support in their design tasks, and in
working with the building-block solutions. This support should at least
emphasize the acquisition of strategic knowledge necessary to translate
instructional design theory and learning technology into practice (Perez et al.,
1995). This can be done by providing explicit instructional design guidelines, if
feasible embedded in support tools. However, as Van Berlo (2005) remarks,
providing the guidelines in a “top-down” fashion will not be sufficient.
Instructional designers or domain specialists should at least be able to
supplement those guidelines with lessons learned, best practices, and worked
examples to make them applicable in their own working environment.

Expert Reviews

All studies used expert reviews to measure the quality of the results of
the experimental tasks. In the 3D-model study (Chapter 3), the instructional
design results were tested by software producers. This provided a good
indicator of the ability to overcome the transition bottleneck between design and
production, as the software producers had to judge and interpret the results as
input for production activities just as they would normally do. In the studies in
Chapters 4 and 5, the quality of the products resulting from the production
activities was determined by expert instructional designers. This provided an
even more valid indicator, as the experts did not judge the intermediate
products (i.e., technical specifications such as in Chapter 3) but the final

General discussion

 111

products (i.e., instructional software the instructional designers made with
templates or learning objects).

However, any expert review remains a subjective estimate, despite the
experts’ proficiency in judging quality and high inter-observer reliability scores.
Subjective ratings cannot replace objective measurements of product quality. For
instance, measurements should also pertain to the effectiveness of final products
(i.e., the instructional software) used to train a large number of learners. Besides
practical issues such as including learners in the experiments and strictly
controlling the learning and testing process to allow for comparisons, there is a
more fundamental problem. The emphasis on authentic, rich learning tasks in
the new holistic pedagogical view is intended to combine the “world of
knowledge” with the “world of work” (Van Merriënboer & Kirschner, 2001).
Learning results should be directed at dealing with the complexity of whole-task
performance and solving (new) problems in the professional situation.
Therefore, any assessment of learning results, in order to determine the quality
of the final products, should not only be directed at measuring the direct
learning results, but also at measuring the transfer of what has been learned to
new problems. And measuring transfer of learning in a valid and reliable
manner is extremely difficult.

Future Research

The complex partnership between instructional designers and software

producers, central in this dissertation, reflects the problematic relation between
instructional design theory and learning technology in general (Van
Merriënboer & Boot, 2005). In the field of learning technologies, on the one
hand, the focus has mostly been on technical, organizational, and economical
issues. For instance, proposals for the use of e-learning systems and learning
objects largely neglected pedagogical issues, claiming the importance of
“pedagogically neutral” standards (Friesen, 2004). However, an undesirable
effect is that learning technologies sustain traditional pedagogical models, but
not the more recent pedagogical models that rest on a holistic approach and aim
at authentic learning tasks. In the field of instructional design theory, on the
other hand, the focus has mostly been on pedagogical issues. The questions how
particular pedagogical models can be technically realized, flexibly applied in
different contexts, and developed in a cost-effective way have not been taken
seriously enough. Therefore, too many educators and instructional designers
view developments in the field of learning technologies as not directly relevant
to their own work. They simply assume that their new pedagogical models will
be sustained by new learning technologies and standards, but they seem to be
unaware of the fact that those learning technologies may—in the worst case—
block educational innovations rather than facilitate them.

Successful educational innovations require a complete synthesis of
instructional design theories and learning technologies. Pedagogical, technical,
organizational, and economic factors cannot be isolated from each other but

General discussion

 112

should always be studied in combination (e.g., see Jochems, van Merriënboer, &
Koper, 2003). The importance of such an integrated approach should not be
underestimated because there are vital interests for many different stakeholders,
and the investments are huge in terms of money, time, and manpower. The
studies in this dissertation were an example of interrelating instructional design
aspects with instructional software aspects, for which three building-block
solutions were proposed and tested. Besides more validation and testing of
these solutions, future research should also have a broader focus. For example,
additional building-block solutions might be proposed, perhaps suitable for
developers with either low or high experience in design. Furthermore, the
studies in this dissertation predominantly focused on pedagogical and learning-
technology issues. Future research should include organizational issues as well,
such as the economical impact of particular methods. Finally, the usage of the
building-block solutions in development processes that are completely based on
a lean production model should be investigated. We expect that the value of the
building-block solutions will become even more apparent in these lean
production settings.

An Illustrative Scenario: The Improved Situation

 “Willem’s update of the policy document on developing instructional software
just got approval from his superiors. The update concerns some new solutions for the
problems that resulted from carrying out the guidelines of the first version of his policy
document. It appeared that the transition of design information from the companies’
instructional designers to the external software producers was quite problematic. Willem
has introduced three new solutions to overcome those problems. First, he suggests using
the so-called 3D-model. This model supports his instructional designers establish design
documents that will be unequivocally understood by software producers, even when
those producers are in foreign countries due to outsourcing. Second, Willem suggests
using a new authoring tool. This tool contains instructional software templates that pre-
structure the didactical, authoring, and technical aspects of the production process. This
should allow his instructional designers to independently create instructional software
as either final products, without involvement of producers at all, or as prototypical
examples for the producers. Third, he suggests using an integrative solution for the
reuse of learning objects. This approach provides the solutions of (a) reediting learning
objects, (b) filling out learning-object templates, (c) relying on automated processes, and
(d) reusing intermediate products. Where relevant, the integrative approach is
implemented in a repository system, which stores learning objects, supports the
specification of metadata, and includes advanced search tools. This should allow his
instructional designers to independently assemble instructional software from learning
objects, either as final products or as examples for the software producers. The three
solutions Willem has introduced share a focus on using production building blocks by
instructional designers, in order to bridge the gap between design and production. It is
Willem’s conviction that these solutions will enable his company to realize a more
professional and efficient development process.

General discussion

 113

Jon studies the three new solutions in the revised policy document, as they have
to be used by him and his team of instructional designers in an upcoming, large
development project. This project concerns the development of a training program for
operating a radar system. The design team starts with creating a representation of the
domain by modeling the operator tasks, radar systems, and operational environment. At
the same time, they create a representation of the instructional design by modeling
authentic learning tasks and learner support, based upon the Four Components
Instructional Design model. Jon decides this is a good point to start using the first
solution Willem has suggested, namely the 3D-model. The instructional designers create
a functional model of the instructional design and instructional software issues,
distributed over the different design layers along the stratification dimension. Jon
decides that the final product will combine two learning environments. First, a
simulation-based environment for learning to operate the radar, and second, a case-based
learning environment for learning when to apply the radar system and how to interpret
the radar results. When expanding the two designs along the elaboration dimension of
the 3D-model, the instructional designers find out that the case-based learning
environment requires a low fidelity, and that the instructional software issues are quite
straightforward. In contrast, the simulation environment requires a high fidelity, and
the instructional software issues are highly complex and technical. Therefore, Jon decides
that the case-based learning environment will be produced by his own group, but that
the production of the simulation environment will be outsourced. As a result, the design
team elaborates and formalizes the functional model for the simulation environment as
much as possible to make sure the external software producers will understand it. The
case-based learning environment needs less elaboration and formalization at this stage of
the development process, because it will be further produced by themselves. After
finishing the design phase, the instructional designers start with producing the case-
based learning environment, whilst Jon submits the functional model for the simulation-
based environment to his project leader for outsourcing.

The instructional designers start to produce the case-based learning environment
with the company’s new authoring tool, which includes instructional software
templates. These templates provide dedicated support for implementing case-based
learning, and are able to help them to overcome their lack of authoring and technical
skills. Second, the instructional designers study the integrative solution for reuse. They
learn to operate a large repository with support mechanisms for (re)using learning
objects, such as learning object template editors, automated metadata generators, search
tools, and so forth.

Then the production phase begins. The instructional designers find some relevant
learning objects in Internet repositories from a large Radar Systems user group.
Although the found objects pertain to slightly different versions of the radar system, the
instructional designers are able to make the learning objects suitable for their situation
with some reediting. Fortunately, some of the found learning objects are created on the
basis of templates, which makes reediting even easier. And some objects are accompanied
by intermediate products such as design documents that explain their structure and
purpose, which also makes them easy to use. One of the design documents even describes
a complete lesson plan for maintaining the radar system. Although copyrights probably
apply, and maintaining the radar is different from operating it, this document could

General discussion

 114

have been used earlier by the instructional designers to provide some insight in how to
model the domain. Jon therefore makes a mental note to start searching for learning
objects earlier in their next project.

The found learning objects provide most of the necessary resources for the case-
based learning environment, such as interactive electronic technical manuals (IETMs),
video-clips of experts operating the radar, and even a complete lesson with theory on how
radar works. Because most of the larger learning objects, which include complete lessons
and learning tasks, were not created according to the model of case-based learning and
were difficult to reedit, the designers decide to create the cases for the case-based learning
environment themselves. They create all cases by means of the instructional software
templates and subsequently store them as learning objects, accompanied by pieces of the
design documents based upon the 3D-model to function as intermediate products. Each
“case learning object” starts with presenting the problem, and a number of resources
that contain relevant information for solving the problem, to the student. Then, a
problem-solving space is provided with a low-fidelity presentation of the radar and its
context, to solve the problem. Finally, a reflection part assesses the student’s problem
solving process and results.

Michael has now produced several instructional software packages for Willem’s
and Jon’s company. He receives the design documents for the new project from his
project leader, containing the functional model for a simulation environment for
operating a radar system. The project leader instructs him to keep the time for technical
specification as limited as possible. Michael’s company nowadays experiences fierce
competition from cheaper, off-shore companies, so they try to cut costs in order to remain
an attractive partner for producing instructional software. To his pleasant surprise,
Michael immediately notices that the new documents have a clear organization, in which
design and software issues are meaningfully interconnected. Where possible, the
instructional designers have even included instructional software specifications as much
as they are able to. Some do not make immediate sense to an experienced software
producer such as Michael, but this is easily overcome because he can trace the
specifications back to their conceptual background. What helps even more is that most of
the information is described in detailed UML diagrams. They provide him with detailed
information that can easily be completed or improved, even though some diagrams are
not perfect yet. Last but not least, Michael notices that Jon has enclosed a CD-ROM
with some learning objects his instructional designers found, providing examples of
simulation environments similar to the radar simulation environment as they envision
it. Michael quickly has a concrete idea about the intended final product, and starts with
creating technical specifications that precisely express the intended simulation
environment.”

General discussion

 115

References

Block, J. H. (1971). Mastery learning: Theory and practice. New York: Holt, Rinehart
& Winston.

Friesen, N. (2004). Three objections to learning objects and e-learning standards.
In R. McGreal (Ed.), Online education using learning objects (pp. 59-70).
London: Routledge.

Jochems, W., van Merriënboer, J. J. G., & Koper, R. (Eds.) (2003). Integrated E-
learning: Implications for pedagogy, technology, and organization. London, UK:
RoutledgeFalmer.

Koper, R., & Tattersall, C. (Eds.) (2005). Learning design: A handbook on modelling
and delivering networked education and training. Berlin, Germany:
SpringerVerlag.

Merrill, M. D. (2000). Knowledge objects and mental models. In D. A. Wiley
(Ed.), The instructional use of learning objects: Online version. Retrieved July
20, 2005, from the World Wide Web:
http://reusability.org/read/chapters/merrill.doc

Perez, R. S., Fleming-Johnson, J., & Emery, C. D. (1995). Instructional design
expertise: A cognitive model of design. Instructional Science, 23, 321-349.

Van Berlo, M. P. W. (2005). Instructional design for team training: Development and
validation of guidelines. Unpublished PhD dissertation. Catholic University
of Leuven, Leuven, Belgium.

Van Merriënboer, J. J. G., & Boot, E. W. (2005). A holistic pedagogical view of
learning objects. In J. M. Spector, S. Ohrazda, P. van Schaaik, & D. A.
Wiley (Eds.), Innovations in instructional technology: Essays in honor of M.
David Merrill (pp. 43-64). Mahwah, NJ: Lawrence Erlbaum.

Van Merriënboer, J. J. G., & Kirschner, P. A. (2001). Three worlds of instructional
design: State of the art and future directions. Instructional Science, 29, 429-
441.

General discussion

 116

Summary

 117

Summary

Current educational, technological, and organizational innovations are
rapidly changing the way instructional software is developed. Modern
instructional software is applied to enable the integration of working and
learning, in terms of time- and place independent learning, and is preferably
adapted and personalized to individual learners. This sets new criteria for
developing instructional software. A first criterion is adaptivity, which is the
ability to adjust the software to the needs and the progress of the individual
learner. A second criterion is generativity, which is the ability to assemble the
software from some combination of parts and sources precisely at the moment
of delivery. And a third criterion is scalability, which is the ability to increase the
production capacity for more and larger target groups without a corresponding
increase in costs. Satisfying these three criteria mostly results in a highly
complex design process for the instructional software. The fourth criterion is
therefore modeling, which is the ability to deal with the designs’ complexity by
representing the task domain and the instructional design in an accurate
functional model. This functional model will be transferred to producers by
means of design documents. The producers have to interpret the functional
model, translate it into technical specifications, and finally create the
instructional software.

Chapter 2 describes theoretical and empirical analyses that show that
traditional development methods do not satisfy the four new criteria. Modern
development approaches such as lean production, directed at producing a broad
variation of products that are flexibly tailored to individual users (i.e., “mass-
customization”), are better able to satisfy the criteria of adaptivity, generativity,
and scalability. However, satisfying the fourth criterion of modeling is more
difficult. The lack of standardized design languages that are familiar to both
instructional designers and software producers prevent instructional designers
from expressing their design in a functional model that is unequivocally
interpreted by producers. As a result, the transition of the functional model
between the design and production phases will often lead to distortion and loss
of valuable information.

In this dissertation, three building-block solutions are proposed and
studied, which should overcome the design-production transition bottleneck.
The solutions have in common that they support instructional designers in using
building blocks that contain production-related information: (a) Design
documents; (b) programming structures, and (c) learning materials. The main
research question of this dissertation is if the transition bottleneck can be
overcome by means of three proposed building-block solutions (a) A 3D-model
for making design documents; (b) instructional software templates offering
programming structures, and (c) an integrative approach for the reuse of
learning materials. The three solutions focus on instructional designers and not

Summary

 118

on software producers or other stakeholders, because the instructional designers
are pre-eminently responsible for the didactical quality of the final products
(defined as the extent to which desired learning outcomes are attained in an
efficient manner). This didactical quality is of utmost importance because
technical quality (defined as the extent to which the software takes care of the
input, information processing, and output as intended) alone is a necessary but
not sufficient condition to stimulate the desired learning processes.

The first solution is the use of the Developing Design Documents (3D)
model to support instructional designers in their traditional role of creating
design documents containing the functional model. The 3D-model is a decision
model based upon three dimensions, supporting instructional designers in
creating design documents that are more or less stratified, elaborated, and
formalized. This should ensure that producers are confronted with one-to-one
relations between instructional design aspects and software aspects, the right
level of detail of the descriptions, and unambiguous notation systems.

The second solution is the use of instructional software templates to support
instructional designers in a new role, namely producing instructional software
based upon their own design documents. Instructional software templates are
pre-structured software “moulds” that are easy to use, and allow instructional
designers to create the programming structures (i.e. the software code) that
make up the instructional software – without any involvement of producers. By
completely designing and producing the software, the instructional designers
avoid the need to transfer design documents, containing a functional model, to
producers. Or, by only producing the software prototypically, they can transfer
both their design documents as well as the example-prototypes to the producers,
preventing the need to solely rely on design documents and improving the
efficiency of the transition process.

The third solution is the use of an integrative approach, also to support
instructional designers in their new role of producer. The integrative approach is
a method to support the reuse process of learning materials, consisting of the
sub-solutions (a) templates, (b) re-editing, (c) automation, and (d) intermediate
products. These solutions allow instructional designers to combine reusable
learning objects (i.e., small, modular chunks of learning materials) into
instructional software, without the involvement of producers. Similar to
instructional software templates, the integrative approach allows instructional
designers to design and produce the instructional software independently, either
completely or prototypical as examples.

To verify if the three proposed building-block solutions actually support
instructional designers in overcoming the transition bottleneck, three empirical
studies were conducted to respectively test the 3D-model (Chapter 3), the
instructional templates (Chapter 4), and the integrative approach (Chapter 5).

Chapter 3 reports the study testing the 3D-model (Study 1). The study is
designed to find out if producers have a better understanding of the intended
instructional software design from design documents based on the 3D-model,
than from traditional design documents that consist of training blueprints and

Summary

 119

storyboards. The results show that the design documents based upon the 3D-
model indeed significantly promotes a better understanding, and require
significantly less time and less cognitive load than the traditional design
documents. There are no differences in satisfaction with the 3D and traditional
design documents. The study indicates that the instructional designers
supported by the 3D-model are able to provide producers with better design
documents. The 3D-model does not solve the lack of common design languages.
On the contrary, such languages are exactly required for optimal usage of the
3D-model. However, if these languages are not available, it yet provides
producers with better insight in the design and the intentions of the
instructional designer.

Chapter 4 reports the study testing the instructional software templates
(Study 2). The study is designed to find out if developers with high production
experience (which is typical for real producers) who are working with the
templates, are more productive and develop software with a higher didactical,
technical, and authoring quality than developers with low production
experience (which is typical for instructional designers) who work with the
identical templates. The results show that the developers with low production
experience produce the same amount of instructional software, with the same
didactical, technical, and authoring quality, as those with high production
experience. Didactical perspective and development style does not influence
these results. For both groups, the didactical quality of the resulting products is
unsatisfactory. The study indicates that the support from the instructional
software templates can level the differences between developers with low and
high production experience. This implies that instructional designers are able to
produce software with the same technical and authoring quality as producers,
and can therefore choose to produce their own designs to avoid the transition
bottleneck. A limiting factor, however, is the fact that an acceptable didactical
quality of these products is not self-evident. Working with the instructional
software templates requires a solid background in instructional design to
guarantee sufficient didactical quality. Although the developers participating in
this study were comparable with instructional designers with regard to their
low production experience, they also had less instructional design experience as
expected. It seems that, in order to level differences in production experience
with regard to technical, authoring and didactical quality of instructional
software, instructional designers with a more solid background in instructional
design are required.

Chapter 5 reports the study testing the integrative approach (Study 3).
The study is designed to find out if developers with low production experience,
supported by particular configurations of the integrative approach, are able to
reuse learning objects to make up instructional software. Two experiments are
described. In the first experiment, developers are supported with the template
and automation solutions of the integrative approach. They reuse both small
learning objects (e.g., pictures or texts) and large learning objects (e.g., lessons or
modules)—from both familiar and unfamiliar task domains, to create

Summary

 120

instructional software. It is tested if developers with low production experience
are indeed able to reuse learning objects, and if the type of learning object or the
familiarity of the domain makes a difference. The results show that the
developers judge both solutions positively, and rate working with larger
learning objects higher than working with smaller learning objects. No
differences between the familiar and the unfamiliar domain are found.

In the second experiment of Study 3, developers are supported by the
automation solution in combination with a set of (a) regular templates, (b)
extended templates, or (c) intermediate products. It is tested what the most
effective configuration of these three combined solutions is. The results of an
expert review show that the automation solution in combination with
intermediate products yields the highest-quality learning objects, followed by
the extended templates and, finally, the regular templates condition. Similar to
Study 2, the didactical quality is unsatisfactory in all conditions. The two
experiments indicate that the integrative approach enables developers with low
production experience, such as most instructional designers, to perform
production tasks related to assembling the instructional software by learning
objects. Therefore, they are able to choose to produce their own designs to avoid
the transition bottleneck. However, it appears that to guarantee a sufficient
didactical quality, working with learning objects requires the same solid
instructional design background as working with instructional software
templates.

Chapter 6 is the final chapter of this dissertation and presents a general
discussion of the results of all studies. The combined results of the three studies
indicate that instructional designers, supported by—one or more of—the three
building-block solutions, are able either to transfer a better understandable
functional modeling to producers, or to implement the functional model by
producing the instructional software products without involvement of
producers. The results also indicate that an acceptable didactical quality of
developed software products, however, is not self-evident. In the practical field,
instructional design is mostly the responsibility of domain specialists such as
subject matter experts and instructors. Therefore, these novice designers must
receive additional support directed at increasing the didactical quality of the
products they develop. Which—combination —of the three solutions is best to
be used depends on factors such as the time instructional designers have
available, their capabilities, and available support tools (e.g., templates, learning
material repositories).

Summarizing, the criterion of modeling can be satisfied because the
application of the three building-block solutions overcomes the transition
bottleneck. This enables the implementation of modern development
approaches such as lean production. These approaches will promote the
development of instructional software that meets the demands of current
educational, technological, and organizational innovations.

` Nederlandse samenvatting

 121

Dutch summary / Nederlandse
samenvatting

Huidige onderwijskundige, technologische en organisatorische eisen aan

innovaties veranderen in hoog tempo de wijze waarop educatieve software
wordt ontwikkeld. Moderne educatieve software wordt toegepast om de
integratie van werken en leren te bevorderen, om leren tijd- en
plaatsonafhankelijk te maken, en om leren waar mogelijk aan te passen en af te
stemmen op individuele lerenden. Hierdoor ontstaan nieuwe criteria voor het
ontwikkelen van educatieve software. Een eerste criterium is adaptiviteit, wat de
mogelijkheid betreft om de software aan te passen aan de behoeften en de
voortgang van de individuele lerende. Een tweede criterium is generativiteit, wat
de mogelijkheid betreft om de software samen te stellen uit een combinatie van
onderdelen en bronnen, precies op het moment dat de software gebruikt wordt.
En een derde criterium is schaalbaarheid, wat de mogelijkheid betreft om de
productiecapaciteit te verhogen voor meerdere of grotere doelgroepen zonder
dat de kosten evenredig stijgen. Het voldoen aan deze drie criteria resulteert in
een zeer complex ontwerpproces voor de educatieve software. Het vierde
criteria is dan ook modelleren, wat de mogelijkheid betreft om goed met deze
ontwerpcomplexiteit om te gaan door de vakinhoud en het onderwijskundige
ontwerp in een accuraat functioneel model te representeren. Dit functionele
model wordt overgedragen aan producenten door middel van
ontwerpdocumenten. De producenten gebruiken deze documenten om het
functionele model te interpreteren, de interpretatie te vertalen naar technische
specificaties, en op basis van deze specificaties de educatieve software te
programmeren.

Hoofdstuk 2 beschrijft theoretische en empirische analyses die aantonen
dat traditionele ontwikkelmethoden niet voldoen aan de vier nieuwe criteria.
Moderne ontwikkelmethoden zoals lean production, gericht op het produceren
van een grote variatie van producten die flexibel zijn toegesneden op
individuele gebruikers (zogenaamde ‘mass customization’), zijn beter in staat
om te voldoen aan de criteria adaptiviteit, generativiteit en schaalbaarheid. Het
voldoen aan het vierde criterium, modelleren, is echter moeilijker. Het
ontbreken van gestandaardiseerde onderwijstechnologische ontwerptalen, die
beheerst worden door zowel onderwijskundig ontwerpers als
softwareproducenten, maakt het onmogelijk dat onderwijskundig ontwerpers
hun ontwerp op zo’n manier kunnen uitdrukken in een functioneel model dat
een eenduidige interpretatie door softwareproducenten gewaarborgd is. Een
gevolg is dat de transitie van het functionele model van de ontwerpfase naar de
productiefase vaak leidt tot vervorming en verlies van waardevolle informatie.

In dit proefschrift worden drie bouwsteenoplossingen voorgesteld en
onderzocht, die het ontwerp-productie transitieprobleem kunnen oplossen. De
oplossingen hebben gemeen dat zij onderwijskundig ontwerpers ondersteunen

Nederlandse samenvatting

 122

in het gebruik van bouwstenen die productiegerelateerde informatie bevatten:
(a) ontwerpdocumenten; (b) programmastructuren, en (c) leermaterialen. De
belangrijkste onderzoeksvraag van dit proefschrift is of het transitieprobleem
opgelost kan worden door middel van de volgende drie bouwsteenoplossingen:
(a) Een 3D-model voor het maken van ontwerpdocumenten; (b) educatieve
software-templates die programmastructuren aanbieden, en (c) een integratieve
benadering voor het hergebruik van leermaterialen. De drie oplossingen richten
zich op onderwijskundig ontwerpers en niet op softwareproducenten of andere
betrokkenen, omdat vooral de ontwerpers verantwoordelijk zijn voor de
didactische kwaliteit van de uiteindelijke producten (d.w.z., de mate waarin de
gewenste leeruitkomsten behaald worden op een doelmatige wijze). Deze
didactische kwaliteit is nog belangrijker dan de technische kwaliteit (d.w.z., de
mate waarin de software omgaat met de invoer, verwerking en uitvoer van
informatie zoals gepland), omdat de technische kwaliteit weliswaar
noodzakelijk maar nog niet voldoende is om de gewenste leerprocessen bij
studenten te bewerkstelligen.

De eerste oplossing is het gebruik van het 3D-model, dat niet alleen staat
voor drie dimensies maar ook voor Developing Design Documents
(Ontwikkelen van Ontwerp Documenten). Het model ondersteunt
onderwijskundig ontwerpers in hun traditionele rol van het specificeren van
ontwerpdocumenten waar een functioneel model deel van uitmaakt. Het 3D-
model is een beslismodel dat ontwerpers ondersteunt in het maken van
ontwerpdocumenten die meer of minder gelaagd, uitgebreid en formeel zijn. Dit
moet garanderen dat producenten worden geconfronteerd met één-op-één
relaties tussen onderwijskundige ontwerpaspecten en softwareaspecten, met
beschrijvingen op het juiste niveau van detaillering, en gebruik makend van
eenduidige notatiesystemen.

De tweede oplossing is het gebruik van educatieve software-templates
die onderwijskundig ontwerpers ondersteunen in een nieuwe rol: Het
produceren van educatieve software op basis van eigen ontwerpdocumenten.
Educatieve software-templates zijn voorgestructureerde ‘mallen’ die
gemakkelijk te gebruiken zijn en onderwijskundig ontwerpers in staat stellen
om zelf de programmastructuren (d.w.z, de softwarecode) voor educatieve
software te maken, zonder inzet van producenten. Door de hele software te
ontwerpen en te produceren hoeven de onderwijskundig ontwerpers hun
ontwerpdocumenten, inclusief het functionele model, niet meer over te dragen
naar producers. Of ze kunnen prototypes van de educatieve software maken en
dan zowel hun ontwerpdocumenten als hun prototypische voorbeelden
overdragen aan producers. Hiermee wordt voorkomen dat ontwerpers geheel
moeten vertrouwen op het gebruik van ontwerpdocumenten en kunnen ze de
doelmatigheid van het transitieproces verhogen door het in eigen hand te
houden.

De derde oplossing is het gebruik van een integratieve benadering die
onderwijskundig ontwerpers expliciet ondersteund in hun nieuwe rol van
producer. De integratieve benadering is een manier om het hergebruik van

` Nederlandse samenvatting

 123

leermaterialen te vergemakkelijken middels de deeloplossingen (a) templates,
(b) herbewerken, (c) automatiseren, en (d) halffabrikaten. Deze oplossingen
stellen onderwijskundig ontwerpers in staat om zelf, zonder inmenging van
producers, herbruikbare leerobjecten (kleine, modulaire eenheden van
leermaterialen) te combineren tot educatieve software. Net zoals de educatieve
software-templates stelt de integratieve methode onderwijskundig ontwerpers
in staat om zelfstandig de software te ontwerpen en te produceren, hetzij geheel
of in de vorm van prototypische voorbeelden.

Om na te gaan of de drie voorgestelde bouwsteenoplossingen
daadwerkelijk ondersteuning bieden aan onderwijskundig ontwerpers, zijn drie
studies uitgevoerd om respectievelijk het 3D-model (Hoofdstuk 3), de
onderwijskundige software-templates (Hoofdstuk 4), en de integratieve
benadering (Hoofdstuk 5) te testen.

Hoofdstuk 3 beschrijft een studie naar het 3D-model (Studie 1). Deze
studie onderzoekt of producenten de bedoelingen van een onderwijskundig
ontwerp beter begrijpen uit ontwerpdocumenten gebaseerd op het 3D-model
dan uit traditionele ontwerpdocumenten gebaseerd op opleidingsblauwdrukken
en “storyboards”. De resultaten tonen aan dat de ontwerpdocumenten
gebaseerd op het 3D-model inderdaad leiden tot een significant beter begrip en
ook significant minder tijd en minder cognitieve belasting vergen dan
traditionele ontwerpdocumenten. De tevredenheid over de 3D en de traditionele
ontwerpdocumenten verschilt niet. Deze studie geeft aan dat onderwijskundig
ontwerpers die ondersteund worden door het 3D-model producenten inderdaad
van betere ontwerpdocumenten kunnen voorzien. Het 3D-model lost het
probleem van het gebrek aan gemeenschappelijke ontwerptalen echter niet op.
Integendeel, zulke talen zijn juist noodzakelijk voor een optimaal functioneren
van het 3D-model. Maar ook als deze talen niet beschikbaar zijn geeft het 3D-
model producers nog steeds een beter inzicht in het ontwerp en de bedoelingen
van de onderwijskundig ontwerper.

Hoofdstuk 4 beschrijft een studie naar educatieve software-templates
(Studie 2). Ontwikkelaars met veel en weinig productie-ervaring werken met
dezelfde templates. Er wordt onderzocht of ontwikkelaars met veel productie-
ervaring (vergelijkbaar met echte producers) productiever zijn en software
ontwerpen met een hogere didactische, technische en programmeerkwaliteit
dan ontwikkelaars met weinig productie-ervaring (vergelijkbaar met
onderwijskundig ontwerpers). De resultaten tonen aan dat ontwikkelaars met
weinig productie-ervaring dezelfde hoeveelheid software, met dezelfde
didactische, technische en programmeerkwaliteit produceren als ontwikkelaars
met veel productie-ervaring. Deze resultaten worden niet beïnvloed door de
didactische houding of de ontwikkelstijl van de ontwikkelaars. Voor beide
groepen geldt dat de didactische kwaliteit van de resulterende producten
onbevredigend is. Deze studie geeft aan dat ondersteuning met educatieve
software-templates de verschillen tussen ontwikkelaars met weinig en veel
productie-ervaring kan opheffen. Dit houdt in dat onderwijskundig ontwerpers
in staat zijn om software met dezelfde technische- en programmeerkwaliteit te

Nederlandse samenvatting

 124

maken als producenten, en derhalve kunnen kiezen om zelf hun ontwerpen te
produceren en zo het transitieprobleem te vermijden. Een beperkende factor is
echter dat een acceptabele didactische kwaliteit van deze producten beslist niet
vanzelfsprekend is. Werken met educatieve software-templates vereist een
solide achtergrond in onderwijskundig ontwerpen om voldoende didactische
kwaliteit te garanderen. Wat hun geringe productie-ervaring betreft waren de
ontwikkelaars in onze studie vergelijkbaar met onderwijskundig ontwerpers,
maar zij bezaten ook minder onderwijskundige ontwerpervaring dan verwacht.
Het lijkt er op dat onderwijskundig ontwerpers met een meer solide
achtergrond in ontwerpen noodzakelijk zijn om de verschillen in productie-
ervaring niet alleen op te heffen voor de technische kwaliteit en de
programmeerkwaliteit maar ook voor de didactische kwaliteit van de educatieve
software.

Hoofdstuk 5 beschrijft een studie naar het gebruik van de integratieve
benadering (Studie 3). Onderzocht wordt of ontwikkelaars met weinig
productie-ervaring, die ondersteund worden door een specifieke configuratie
van de integratieve methode, in staat zijn om leerobjecten te hergebruiken bij het
produceren van educatieve software. Er worden twee experimenten beschreven.
In het eerste experiment worden ontwikkelaars ondersteund door de template-
oplossing en de automatiseringsoplossing van de integratieve benadering. Zij
hergebruiken zowel kleine leerobjecten (bijv. plaatjes of teksten) als grote,
didactische leerobjecten (bijv. lessen of modules) om educatieve software te
maken–in zowel bekende als onbekende vakgebieden. Getest wordt of
ontwikkelaars met weinig productie-ervaring daadwerkelijk in staat zijn om
leerobjecten te hergebruiken en of het type leerobject of de bekendheid met het
vakgebied hierbij een rol speelt. De ontwikkelaars beoordelen beide oplossingen
positief en waarderen het werken met kleine leerobjecten hoger dan het werken
met grote, didactische leerobjecten. Er worden geen verschillen gevonden tussen
het werken met leerobjecten uit een bekend vakgebied en het werken met
objecten uit een onbekend vakgebied.

In het tweede onderzoek van Studie 3 worden ontwikkelaars
ondersteund door de automatiseringsoplossing in combinatie met een set (a)
normale templates, (b) uitgebreide templates, of (c) halffabrikaten. Getest wordt
wat de meest effectieve configuratie van de drie gecombineerde oplossingen is.
Volgens expertbeoordelingen resulteert de automatiseringsoplossing in
combinatie met de halffabrikaten in software met de hoogste kwaliteit, gevolgd
door de combinatie met uitgebreide templates en, tot slot, de combinatie met de
normale templates. Evenals in Studie 2 is de didactische kwaliteit van de
ontwikkelde software laag. De twee experimenten tonen aan dat de integratieve
benadering ontwikkelaars met weinig productie-ervaring, zoals de meeste
onderwijskundig ontwerpers, effectief kan ondersteunen bij het uitvoeren van
productietaken die gerelateerd zijn aan het samenstellen van educatieve
software uit leerobjecten. Dit stelt ontwerpers in staat om zelf hun ontwerpen te
produceren en zo het transitieprobleem te vermijden. Net als bij het werken met
educatieve software-templates is echter ook bij het werken met leerobjecten een

` Nederlandse samenvatting

 125

solide onderwijskundige ontwerpachtergrond vereist om voldoende didactische
kwaliteit van de educatieve software te garanderen.

Hoofdstuk 6 sluit het proefschrift af en bevat een algemene discussie van
de resultaten van alle studies. De gecombineerde resultaten van de drie studies
laten zien dat onderwijskundig ontwerpers die ondersteund worden door—een
of meer van—de drie bouwsteenoplossingen, in staat zijn om een beter te
begrijpen functioneel model over te dragen naar producers, dan wel om op basis
van hun eigen functionele model educatieve software te produceren zonder
steun van producenten. De resultaten tonen ook aan dat een acceptabele
didactische kwaliteit van de ontwikkelde software niet vanzelfsprekend is. In de
praktijk zijn het veelal domeinexperts, zoals vakspecialisten of docenten, die
verantwoordelijk zijn voor het onderwijskundige ontwerp. Omdat de meeste
domeinexperts weinig ervaring hebben met ontwerpen is het van belang dat zij
extra ondersteuning krijgen, die primair gericht is op het verhogen van de
didactische kwaliteit van ontwikkelde producten. Welke—combinatie—van de
drie bouwsteenoplossingen het best gehanteerd kan worden hangt af van
factoren zoals de tijd die onderwijskundig ontwerpers beschikbaar hebben, hun
competenties en de beschikbaarheid van hulpmiddelen (bijv. templates of
educatieve databases).

Samenvattend kan gesteld worden dat de drie bouwsteenoplossingen
bijdragen aan het oplossen van het transitieprobleem, zodat beter aan het
criterium van modellering voldaan kan worden. Dit maakt het mogelijk om
moderne ontwikkelmethoden zoals lean production in te voeren bij de
ontwikkeling van educatieve software. Zulke methoden worden noodzakelijk
geacht voor de ontwikkeling van educatieve software die voldoet aan de
huidige onderwijskundige, technologische en organisatorische eisen bij
innovaties in het onderwijs.

 126

All materials used in the studies described in this dissertation can be obtained
by contacting the author:

Eddy Boot
TNO Defence, Security and Safety
Business Unit Human Factors
Department Training & Instruction
P.O.Box 23
3769 ZG Soesterberg
The Netherlands
Email: eddy.boot@tno.nl

 127

Curriculum Vitae

Eddy Boot was born in Ommen, on May 25th, 1969. After finishing secondary
education at the Chr. MAVO in Den Ham, he completed the program for
electro-technical engineering at the Chr. MTS in Almelo, followed by a teacher
training program in the field of electronic engineering at the PTH in Zwolle. In
1994, he started his Master’s study at the University of Twente in the Faculty of
Educational Science and Technology. He conducted his thesis work for the
National Aerospace Laboratory in Amsterdam, on a development method for
aviation training based upon the 4C/ID model. Since 1997, he works at TNO
Human Factors in Soesterberg as a scientific researcher and project leader. He is
involved in a wide range of projects related to pedagogical and technological
innovations in (developing) instructional software for large military,
governmental and commercial organizations.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

