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Chapter 1  
 

Introduction 
 

 
 

Abstract 
 

This introduction consists of five parts. First, the central problem of this 
dissertation, namely, the difficulties instructional designers experience in 
ensuring an unequivocal interpretation of their designs by software producers, 
is introduced by means of an illustrative scenario. Second, this “transition 
bottleneck” is further explored and, third, possible solutions are proposed, 
emphasizing new roles for instructional designers who have to interact more 
and more with the building blocks of the development process normally 
intended for software producers rather than instructional designers. Fourth, the 
main research questions of this dissertation are formulated, directed at testing 
three building-block solutions that support instructional designers in their new 
roles: (1) The Developing Design Documents (3D) model to support designers in 
stratifying, elaborating, and formalizing design documents; (2) instructional 
software templates to support designers in producing software themselves, and 
(3) an integrative approach to support designers in reusing learning objects. 
Finally, the structure of the dissertation is presented by briefly describing each 
of the four reported studies.  
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An Illustrative Scenario 
 

“Willem, a staff employee at the training division of a large company, has just 
finished writing the new company policy document about developing instructional 
software. With his academic background in educational technology, he is always very 
interested in the latest innovations in his field.  In his policy document, he has taken into 
account two recent innovations he thinks are particularly useful for his company. The 
first innovation is the increased focus on authentic learning tasks, based on real-life 
tasks, as the driving force for learning. Such tasks help learners to integrate the 
knowledge, skills, and attitudes necessary for effective task performance; give them the 
opportunity to learn to coordinate constituent skills that make up complex task 
performance, and eventually enable them to transfer what is learned to their daily life or 
work settings. Especially transfer to new situations is necessary within Willem’s 
company because it is absolutely impossible to train employees for each new system and 
each new task, introduced at an ever-increasing rate. The second innovation Willem has 
included in the policy document is the application of blended learning or integrated e-
learning: The combination of face-to-face learning, distance learning, and on-the-job 
learning. Blended learning is supported by a balanced media-mix of traditional and 
advanced learning technologies such as books, e-learning, mobile learning, and 
simulations. Implementing both innovations should provide Willem’s company with the 
flexibility to promote the integration of working and learning, in terms of time- and 
place independent learning, as well as adaptive learning, personalized for individual 
learners with different backgrounds.  

It is one week later. Jon, an instructional designer, works in the training 
development department of the same company as Willem. He has just received two 
documents. The first document is an assignment from the company’s Technical 
Maintenance division to create a new instructional software product for training 
maintenance engineers for a complex system the company is about to introduce. The 
second document describes the new company training policy prepared by Willem. Jon 
briefly reads the first document and already starts to sketch in his mind a possible design 
for the new product. After that, he reads Willem’s policy document. As a developer, he is 
particularly interested in the consequences of the new innovations, introduced by 
Willem, for the development processes and products. First, for the development process it 
appears that the new focus on authentic learning tasks makes it more important than 
ever to describe the task environment and the learning environment sufficiently detailed 
in design documents, which help to properly transfer this information to software 
producers. Second, for the development products, it appears that future instructional 
software packages must become much more flexible than they used to be. This flexibility 
is expressed in terms of adaptivity towards individual learners, generativity to assemble 
new configurations easily, and scalability to quickly expand and enlarge the possible 
target groups. Jon realizes that this will lead to a higher complexity of the instructional 
design process, and that he faces the difficult task to make his design documents as 
complete, concrete, and clear as possible.  

Together with his team of instructional designers, Jon starts to create the new 
instructional design for the maintenance engineer training. Based upon the Four 
Components Instructional Design model they normally use in their training 
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development department, the designers start with an analysis of the task domain and the 
target group, in order to establish a task hierarchy and a global training sequence.  Also, 
they analyze the task domain in terms of systems and the task environment of the 
maintenance engineers.  Subsequently, they create the instructional design based on the 
domain representations and selected training strategies, and record this in a training 
blueprint. In addition, they provide guidelines for the implementation of the training 
blueprint in the instructional software by means of a storyboard. The storyboard 
contains sketches of the screen layouts and guidelines for media selection and 
navigation. After both types of design documents are finished, representing the total 
instructional design, Jon sends them to his project leader. The project leader will make a 
Request for Proposal (RFP) based upon these documents. This RFP will contain a brief 
description of the design requirements as well as other demands, and invite external 
production companies to submit a proposal. As usual, this proposal is based upon a fixed 
price: The external company must promise to create the whole instructional software 
program for the price stated in their reply to the proposal.  

Michael works for a multimedia company creating instructional software for 
other companies. Michael’s company submitted the lowest offer in the bidding process, 
and now he and his team will produce the new instructional software product for 
training maintenance engineers. He has received Jon’s two design documents, and 
Michael starts reading the training blueprint and the storyboard. Quickly, he more or 
less foresees what kind of product he has to make, and how he should do it. He will start 
with creating the technical specifications. However, some issues bother him. First, he 
notices there are several, well-explained instructional design concepts in the training 
blueprint, such as feedback, modeling examples, scaffolding, and just-in-time 
information presentation items. However, the relations between these instructional 
design concepts and the instructional software concepts are not particularly clear. For 
instance, if the design documents propose video clips to represent a particular learning 
task and Michael wants to use photographs, which are cheaper to make, he doesn’t know 
if and how such a static representation instead of a dynamic representation will affect the 
instructional strategies and thereby the learning outcomes. Second, parts of the 
instructional design lack sufficient detail. For Michael, the application of delayed 
cognitive feedback following a particular learning task, for instance, requires highly 
detailed descriptions of timing, content, and presentation to be able to specify and 
implement the feedback as intended by the instructional designer. Third, Michael notices 
that the textual descriptions in the training blueprint and the sketches in the storyboard 
leave him considerable room for own interpretation. This provides him some freedom in 
production choices, but also the danger that his product will not reflect Jon’s design 
intentions. Furthermore, there is the danger of inconsequent translations of design 
principles to specifications. For example, similar types of delayed feedback may be 
interpreted differently in various parts of the design, resulting in different 
implementations of the same feedback in the product. In summary, Michael would have 
preferred (a) a rigorous one-to-one relation between design and software issues, (b) with 
a higher level of detail in the design descriptions, and (c) using notation systems that are 
less ambiguous. Note that Michael feels responsible for a good implementation of the 
design in the resulting products. Other software producers may not even think about 
these issues, and produce what is feasible within their budget. Such producers will think 
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they understand the design completely, whilst they are often only loosely interpreting 
the design. Nevertheless, Michael resolves to make the best of the situation. He sends 
Jon’s design documents to his production team, and opens the group agenda to plan the 
kick-off meeting to start the technical specification process.”  
 The scenario above demonstrates an important problem in the process of 
modern instructional software development, namely, the distortion and/or loss 
of relevant design information between the design and production phases – a 
phenomenon that will be referred to as the “transition bottleneck”. Due to the 
criteria set by educational innovations, such as using authentic tasks and 
increasing flexibility, this problem becomes more prominent than ever before. It 
appears to be difficult for instructional designers to describe their design in such 
a way that unequivocal interpretation by software producers is ensured. This 
introductory chapter first presents an exploration of this problem. Second, 
possible solutions are proposed. Third, the main research questions of this 
dissertation are formulated. Finally, a brief overview of the dissertation is given.  

 
Problem Exploration 

 
New criteria for instructional software development, such as the use of 

authentic learning tasks (see Merrill, 2002; Reigeluth, 1999) and high flexibility 
(see Jochems, van Merriënboer, & Koper, 2004), pose high demands to the 
design and development process. To improve the efficiency of developing 
instructional software, lean production has been introduced (Woll, 2003). Lean 
production originates from the manufacturing industry and is a development 
approach that is directed at producing a broad variation of products, which are 
flexibly to adapt to individual users. This “mass-customization” should ensure 
adaptivity, generativity, and scalability of the instructional software products, 
satisfying the main features of flexibility. However, lean production does not 
solve the transition bottleneck, that is, the distortion and loss of information 
between the design and production phase. In contrast, lean production may 
make this problem even more prominent. One of the basic principles of lean 
production is that design information should be optimally interrelated to 
production information by placing emphasis on the manufacturability of the 
product as early as possible. This implies that instructional designers rather than 
software producers are actually responsible for overcoming the design-
production transition bottleneck, and should try to accommodate to the 
information needs of software producers. 
 A fundamental problem in the transition between the design and 
production phase is the lack of standardized design languages that are familiar to 
both instructional designers and software producers. In other domains than the 
instructional design field (e.g., architecture, music, mechanics), such powerful 
design languages are able to capture and describe the design (i.e., blueprints, 
storyboards) with such a level of detail that software producers will interpret it 
unequivocally (Waters & Gibbons, 2004). But as a result of the lack of 
appropriate instructional design languages, it is very difficult for an 
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instructional designer to transfer his design and make sure that different 
software producers will interpret it in the same way, reach the same technical 
realization, and make the same calculation for costs and time necessary for 
producing the instructional software. This is especially important in the case of 
outsourcing, but also relevant for project calculations and task allocation 
decisions for production groups within the same organization. 

Of course, there are alternative ways to improve the transfer of 
information from the design to the production phase. For instance, a software 
producer might decide to discuss indistinctnesses in the blueprint and 
storyboard with the instructional designer(s) during the drafting of technical 
specifications. Or the software producer might decide to apply a rapid 
prototyping approach and frequently show prototypes to the instructional 
designer to trigger discussions. However, both approaches are often undesirable 
from a project management point of view. Discussion costs considerable time. 
Prototyping will cost even more time, and evaluation of instructional software 
prototypes with learners is often difficult. Mostly, such extra time expenditures 
are not included in the initially set price. Also, during discussing or reviewing 
prototypes, instructional designers will likely give suggestions to the software 
producers that change and embellish the design and thus expand the necessary 
production activities.  

Ideally, the design should be transferred from the instructional designer 
or design team to the software producer or production team only once, and be 
completely understood by the software producer(s).  This way, there is either no 
further information exchange necessary, or developers can formulate clear and 
concrete questions about, for instance, details of the task domain. Thus, an ideal 
design should allow the production company to make an exact estimation of 
costs and time (before the contract is signed), and ensure a product that is fully 
compatible with the original design (after the contract is signed). A good 
solution should focus on supporting instructional designers to provide software 
producers with exactly the product-related information they need. The focus on 
instructional designers rather than software producers or other stakeholders is 
important, because the designers are pre-eminently responsible for the 
didactical quality of the final products (defined as the extent to which desired 
learning outcomes are attained in an efficient manner). This didactical quality is 
of utmost importance because technical quality (defined as the extent to which 
the software takes care of the input, information processing, and output as 
intended, and the responsibility of the producers) alone is a necessary but not 
sufficient condition to stimulate the desired learning processes and reach 
intended learning outcomes.   

 
Possible Solutions 

 
Currently, production-related information is typically embedded in three 

types of building blocks for the production process: (a) design documents as 
input; (b) programming structures as throughput, and (c) learning materials as 
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output. In order to better interrelate the design phase with the production phase, 
it is proposed to focus instructional designers’ attention on these three particular 
types of building blocks. First, instructional designers could be supported to 
create design documents that are better organized, more detailed, and 
standardized according to particular formalisms. This should ensure that 
software producers are confronted with one-to-one relations between 
instructional design aspects and software aspects, the right level of detail, and 
unambiguous notation systems.  Second, instructional designers could be 
supported in creating the programming structures (i.e., the software code) that 
make up didactically sound instructional software themselves, without the 
involvement of software producers. Modern authoring tools enable the quick 
and easy development of programming structures for instructional software, 
and are often used by software producers to make the production process more 
efficient. However, instructional designers can also choose to create these 
programming structures themselves in stead of the producers, because modern 
authoring tools require no or little technical programming skills. Third, 
instructional designers could be supported in reusing learning objects, another 
activity that is normally performed by software producers. Learning objects are 
small, modular chunks of learning materials and are normally used by software 
producers to make the production process more efficient. Again, instructional 
designers can choose to create the product they want from existing learning 
objects themselves in stead of the producers, as selecting and reusing 
appropriate learning objects is a fairly straightforward and standardized process 
that requires no or little technical programming skills.  
 Despite the increasing availability of support tools, it is still difficult for 
instructional designers to improve the quality of their design documents, to 
create programming structures, and to reuse learning objects. Domain specialists 
and senior instructors often act as instructional designers in the practical field, 
and are typically inexperienced with production tasks. Therefore, three 
building-block solutions are proposed in this dissertation. First, a Developing 
Design Documents (3D) model is presented as a three-dimensional decision tool 
that may help instructional designers to improve their design documents. 
Second, instructional software templates are presented as a promising tool to 
support instructional designers with the creation of sound instructional 
software. And third, an integrative approach is introduced that may help 
instructional designers with the reuse of learning objects. In the first solution, 
instructional designers work in their traditional role but more explicitly tune 
their design products (blueprints, storyboards, and so forth.) to the production 
requirements. In the second and third solutions, instructional designers operate 
in a new production-like role, interrelating the design phase with the production 
phase by implementing their designs in programming structures and learning 
objects. Which—combination of—the three solutions can be used depends on 
factors such as available time of the instructional designers, their capabilities, 
and suitable support tools (e.g., templates, repositories).    
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Research Questions 
 

The main research question of this dissertation is if it is possible to 
support instructional designers to overcome the transition bottleneck by the 
three proposed building-block solutions. The first research question is if the 3D-
model supports the development of design documents that improve software 
producers’ understanding of the design and its translation into technical 
specifications. The second research question is if instructional software 
templates support instructional designers in the creation of programming 
structures that make up didactically sound instructional software. The third 
research question is if the integrative approach supports instructional designers 
in the reuse of learning objects that make up didactically sound instructional 
software. 

 
Overview of the Dissertation 

 
One explorative and three empirical studies are conducted to answer the 

research questions. Chapter 2 discusses new innovations in the educational field 
as well as criteria for developing instructional software resulting from these 
innovations. In this explorative study, theoretical and empirical analyses show 
that current development approaches for instructional software are not able to 
satisfy the new criteria of developing instructional software. Lean production is 
introduced as a promising new development approach that does satisfy all but 
one criterion. It appears that the criterion of “modeling” is not satisfied due to a 
lack of design languages that help to transfer design information to the 
production phase. In order to overcome this problem, and to enable the broader 
implementation of lean production, design and production should be better 
interrelated to each other. Three building-block solutions are proposed to 
accomplish this, focusing the instructional designer’s attention on: (1) improving 
design documents, (2) creating programming structures, and (3) reusing 
learning objects. 

Chapter 3 describes the first empirical study, in which the building-block 
solution of “improving design documents” is investigated. The lack of 
organization, detail, and standardization of traditional design documents is 
discussed. The 3D-model is introduced, which supports instructional designers 
in creating design documents that are more or less stratified, elaborated, and 
formalized. The effects of design documents based on the 3D-model are 
compared with the effects of traditional design documents. The goal of the study 
is to see if software producers are better able to interpret design documents 
based on the 3D-model than traditional documents and if this improves their 
understanding. The degree of agreement between the design documents and 
scores on technical specification questions is measured, as well as software 
producers’ perceived cognitive load, time investment, and satisfaction.  

Chapter 4 describes the second study, in which the building-block 
solution of “creating programming structures” is investigated. It studies if 
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software templates can help instructional designers, with little production 
experience, to create instructional software with an adequate didactical, 
technical, and authoring quality. Domain specialists who act as instructional 
designers in their field, with low and high production experience, work with the 
software templates. The goal of the study is to see if instructional designers with 
high production experience who work with software templates make products 
of higher didactical quality and size than instructional designers with low 
production experience. No differences with regard to technical and authoring 
quality were expected, as the instructional software templates should level the 
differences between instructional designers. The volume and quality of the 
resulting products is measured as well as the satisfaction of the instructional 
designers. Furthermore, the effects of instructional designers’ didactical 
perspective and development style are explored.   

Chapter 5 describes the third study, in which the building-block solution 
of “reusing learning objects” is investigated. An integrative approach is 
introduced to improve the reuse of learning objects, with (a) templates, (b) 
automation, and (c) intermediate product solutions to overcome problems 
hampering the efficient development of instructional software. Two experiments 
are described. In the first experiment, domain specialists with low production 
experience are supported with a combination of the templates and automation 
solutions: They reuse both small and large learning objects, from both familiar 
and unfamiliar task domains, to develop instructional software. This experiment 
is intended to see if domain specialists with little production experience are 
indeed able to reuse learning objects, and if the type of learning object and the 
familiarity of the domain does make a difference. The number of reused 
learning objects, time invested, and instructional designers’ opinions were 
measured. In the second experiment, domain specialists with low production 
experience are supported by the automation solution in combination with a set 
of (1) regular templates, (2) extended templates, and (3) intermediate products. 
The goal of the study is to see what the most effective configuration of these 
three solutions is. The quality of the resulting products is measured as well as 
domain specialists’ opinions on the provided solutions.  

Chapter 6 is the final chapter of the dissertation and presents a general 
discussion of the reported studies. A review of the main results is given, 
followed by the main conclusions and practical implications of the studies. Next, 
the limitations of the conducted studies are discussed. Finally, suggestions for 
further research are presented and a scenario is described that illustrates how 
the building-block solutions might work in practice.  
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Chapter 2  
 

Improving the Development of Instructional Software: Three 
Building-Block Solutions to Interrelate Design and Production1 

 
                                                       
 

Abstract 
 

Currently, there is a focus on authentic tasks as the driving force for learning in 
integrated e-learning systems. This sets new criteria for instructional software, 
which should become much more flexible and allow for domain modeling and 
pedagogical modeling. A theoretical analysis and a survey (N = 37) amongst 
experienced developers show that current development methods are unsuitable 
to develop such instructional software. New development methods based on 
lean production promise to satisfy the new criteria, as they emphasize mass-
customization by rigorously applying a pull principle throughout the whole 
development process. However, a potential bottleneck is the lack of design 
languages to properly transfer the design outcomes to the production phase. 
Three building-block solutions are proposed to overcome the “transition 
bottleneck”: (1) a Developing Design Documents (3D) model to support 
designers in stratifying, elaborating, and formalizing design documents; (2) 
instructional software templates to support designers in producing software 
independently from producers, and (3) an integrative approach to support 
designers in reusing learning objects.   

 

                                                 
1 Boot, E., van Merriënboer, J.J.G., & Theunissen, N.C.M. (submitted). Improving the 
Development of Instructional Software: Three Building-Block Solutions to Interrelate 
Design and Production  
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Current educational, technological, and organizational innovations are 
rapidly changing the nature of instructional software, and, thereby, the way it is 
developed. Recent theories of instruction tend to focus on authentic learning 
tasks that are based on real-life tasks as the driving force for learning (Merrill, 
2002; Reigeluth, 1999). The general assumption is that such authentic tasks help 
learners to integrate the knowledge, skills, and attitudes necessary for effective 
task performance; give them the opportunity to learn to coordinate constituent 
skills that make up complex task performance; and eventually enable them to 
transfer what is learned to their daily life or work settings. This focus on 
authentic, whole tasks can be found in practical educational approaches, such as 
project-based education, the case method, problem-based learning, and 
competency-based learning; in theoretical models, such as Collins, Brown and 
Newman's (1989) theory of Cognitive Apprenticeship Learning, Jonassen’s 
(1999) theory of Constructive Learning Environments, Nelson’s (1999) theory of 
Collaborative Problem Solving, and Schank’s theory of Goal Based Scenario’s 
(Schank, Berman, & MacPerson, 1999); and in instructional design models, such 
as the Four Component Instructional Design model (Van Merriënboer, 1997). 

In addition to educational changes, technological and organizational 
innovations enable the application of blended learning or integrated e-learning: 
The combination of face-to-face learning, distance learning, and on-the-job 
learning. Blended learning is supported by a balanced media-mix of traditional 
and advanced learning technologies such as books, e-learning, mobile learning, 
and simulations (Jochems, van Merriënboer, & Koper, 2004). Such integrated e-
learning provides both the flexibility to enable the integration of working and 
learning, in terms of time and place independent learning, and adaptive 
learning, personalized for individual learners.  

The resulting combination of pedagogical considerations (e.g., “How can 
authentic learning tasks be implemented in the instructional software?”), 
technological considerations (e.g., “Which media mix is most optimal?”), and 
organizational considerations (e.g., “How can working and learning be 
efficiently integrated by means of instructional software?”) makes the 
development process highly complex, requiring a structural approach towards 
design, production, and implementation.  

In this Chapter, we investigate if current development methods provide 
for such a structural approach to the development of innovative instructional 
software. First, the new criteria that result from the recent innovations are 
discussed. Second, a theoretical analysis of current development methods is 
described. Third, the theoretical analysis is complemented by an empirical 
analysis, in the form of a survey study. Fourth, lean production is introduced as 
a new development approach that promises to fit the new situation better. Fifth, 
the problem of lack of design languages, which hampers the implementation of 
lean production, is discussed. Sixth, three building-block solutions are proposed 
to enable the implementation of lean production approaches by supporting 
designers to (1) improve design documents; (2) use instructional software 
templates, and (3) reuse learning objects. Finally, conclusions will be drawn 
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about the consequences of criteria and building blocks for future development 
of instructional software  

 
New Criteria for Developing Instructional Software 

 
The educational, technological, and organizational innovations lead to 

four new criteria for instructional software development. The first three criteria 
are related to the flexibility of development processes and products. For 
example, a blended learning approach requires the efficient and fast creation of 
multiple configurations of instructional methods and media (“packages”). 
Atkinson and Wilson (1969; for more recent discussions, see Gibbons, Nelson, & 
Richards, 2000; Parrish, 2004) have identified three criteria for developing 
instructional software related to flexibility. First, adaptivity, which is the ability 
of an instructional software product to adjust itself to learner needs, learner 
progress, preferences, and choices, provides personalized learning for 
individual learners. Second, generativity, which is the ability to assemble the 
instructional software product from some combination of parts and sources at 
the moment of delivery, frees the designer from having to create an infinite 
variety of products with static designs. Finally, scalability, which is the ability to 
increase the production capacity of instructional software products without a 
corresponding increase in costs, enables the serving of more and larger target 
groups.  

The fourth, most important criterion is related to the holistic pedagogical 
view (van Merriënboer & Boot, 2005), central in current educational innovations. 
A holistic view on learning assumes that complex knowledge and skills are best 
learnt through cognitive apprenticeship on the part of the learner in a rich 
environment (Collins, 1988). Experiences are provided for the learners that 
mimic the apprenticeship programs of adults in trades, or teachers in internship. 
It is not possible to immerse the learner to the extent that a traditional internship 
would imply. However, through the use of simulations and meaningful 
experiences, the learner would learn the ways of knowing of an expert. As a 
result, the most important problem of a holistic approach is how to deal with 
complexity.  

Most authors introduce some notion of “modeling” to attack this 
problem. For example, Achtenhagen’s (2001) notion of “modeling the model” 
prescribes a two-step approach to modeling, namely modeling reality and then 
modeling those models of reality from a pedagogical perspective. For 
developing instructional software, this implies first the domain modeling of 
realistic tasks and systems in such a way that they are simplified (i.e., reduction 
of complexity) towards the learner’s level of ability while at the same time 
remaining representative for the “real” world. Second, it implies pedagogical 
modeling of these domain models to facilitate learning, such as the use of 
modeling examples, coaching, and scaffolding attuned to the expertise, 
progress, and interests of the learner.  This modeling of the model for 
instructional purposes allows the designer to determine which elements of the 
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original model can be omitted, and which elements can be increased (not in the 
original, but introduced for supporting the functions of the model) (Gibbons, 
Bunderson, Olsen, & Robertson, 1995). For developing instructional materials, a 
third facet should be added to this modeling process, namely functional modeling. 
This works out the two previous models in order to transfer them by means of 
design documents from the design phase to the production phase. Functional 
modeling allows the designer to determine how each element should be 
presented to the learner. The development criterion of modeling, actually 
consisting of the three sub-criteria domain, pedagogical, and functional 
modeling, is conditional for the other three criteria, as adaptivity, generativity, 
and scalability all depend on an adequate modeling process. 

To which degree do current development methods meet the four criteria 
discussed above? This question could be answered from a theoretical 
perspective and an empirical perspective, discussed in the next sections.  

 
Theoretical Analysis of Current Development Methods 

 
The vast majority of development methods is based upon the standard 

Instructional Systems Development (ISD) model, an instantiation of the generic 
Analysis, Design, Development (also called Production; the technical realization 
of the design), Implementation, and Evaluation model (ADDIE; Dick & Carey, 
1996). Every phase in the ISD model identifies specific types of activities and 
outcomes, for which different specialists (e.g., designers, producers, visual 
artists, and so forth) are responsible. Applying the ISD model is typically based 
upon either a craft production approach or a mass production approach (Woll, 
2003). Craft production approaches are directed at providing the highest-quality 
products, completely adapted towards a specific target group.  Development 
involves highly skilled professionals using flexible, often custom-build tools, in 
a flexible work process. Products, processes, and tools are not standardized. 
Developers focus on producing limited quantities: In expanding the volume, 
costs will rise proportionally. The development of Computer-Based Training 
(CBT) is a good example of how craft production is applied in the field of 
instructional software (see, for example, Gibbons & Fairweather, 1998). The first 
row of Table 2.1 shows that craft production approaches are not able to satisfy 
any of the new criteria for developing instructional software. Craft production is 
focused on single solutions for a highly specific target group with particular 
needs. So design, production, as well as final products, will be focused on that 
single solution, with very limited use of modeling and adaptivity. There is also 
no need for products to be modular, so generativity will be difficult to realize. 
Finally, due to the focus on producing small quantities of unique products, costs 
will proportionally rise with increase of volume.   
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Table 2.1 
Production Approaches and their Satisfaction of Criteria for Developing Instructional 
Software  
 

Criteria  
 
Type of 
production 
approach Adaptive Generative Scalable Modeling 

1. Craft production No, because 
it is not 
necessary for 
custom-build 
single-
purpose 
solution  

No, because 
no standards 
are used and 
products are 
monolithic 

No, because of 
the 
proportional 
increase in 
costs of 
customized 
processes 

No, because 
modeling is 
not used as 
only single-
purpose 
solutions are 
created 
 

2. Mass production No, because 
only single-
purpose 
solutions are 
created to 
allow for 
efficient 
production 

Yes, reached 
through 
standardizati
on and 
modularity 
of products  

Yes, it is an 
explicit 
objective, and 
reached 
through 
standardization 
and modularity 
of process 
 

No, because 
modeling is 
not used as 
only single-
purpose 
solutions are 
created 

3. Lean Production  Yes, it is an 
explicit 
objective and 
reached 
through the 
pull principle 

Yes, reached 
through 
standardizati
on and 
modularity 
of products 

Yes, it is an 
explicit 
objective, and 
reached 
through 
standardization 
and modularity 
of process 

No, because 
the lack of 
design 
languages 
will limit 
transfer of 
modeling 
information 

 
The counterparts of craft production approaches are mass production 

approaches. These are directed at providing (somewhat) similar products for a 
broad target group. Development involves narrowly skilled, interchangeable 
specialists, using expensive, single-purpose tools, in a continuous work process. 
Products, processes and tools are highly standardized and modularized. 
Developers focus on producing large quantities: With every increase in volume, 
costs per unit will decrease. The development of e-learning materials is a good 
example of how mass production is applied in the field of instructional software. 
For example, recent standardization efforts (see Collis & Strijker, 2004, for 
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examples in the military, commercial, and academic fields) explicitly refer to 
standardized, modularized approaches to increase scalability. The second row 
of Table 2.1 shows that mass production approaches are not able to satisfy the 
criteria of modeling and adaptivity for the same reasons as craft production 
models. However, the criterion of generativity can be satisfied as resulting 
products are highly standardized and modular. Also, scalability is an explicit 
objective of mass production.  

A third development approach, lean production (third row of Table 2.1), 
may better meet the new criteria for developing instructional software. Before 
we discuss this alternative, however, the empirical analysis of the craft and mass 
production approaches will be presented.  

 
Empirical Analysis of Current Development Methods 

 
To investigate the practical application of current development methods 

and the degree to which they meet the criteria, a survey study has been 
conducted. In this study, a questionnaire was used to gather opinions of 
experienced developers of instructional software on their current practices and 
experienced problems. A special focus is on the transition of information 
between the design phase and the production phase (the “transition 
bottleneck”), as defined by the third modeling step, namely, functional 
modeling. 

 
Method 

Respondents. Thirty-seven developers of instructional software from the 
United States of America (n = 17) and the Netherlands (n = 18), working in large 
academic, commercial, and military organizations, participated in the study. All 
participants were male and their age varied between 24 and 58 years.  

Materials. An on-line questionnaire was used to gather information on the 
respondents and the problems they experienced in the development process. 
First, to investigate the respondents’ background, they were asked to indicate 
their overall experience, and the different roles they fulfilled, relevant to 
developing instructional software. They were also asked whether or not they 
applied structural, phased approaches based upon the ISD model, and who the 
responsible persons were for creating the design documents as output of the 
design phase. Second, to investigate possible development problems, the 
respondents were asked to rate on a 5-point scale for each of the five ADDIE 
phases the occurrence of seven typical development problems. Third, the 
respondents were asked to rate on a 5-point scale 21 statements that focused on 
possible causes and consequences of problems in transferring information from 
the design phase to the production phase (see Table 2.4; note that questions 7 to 
21 were only presented to the USA respondents). The 21 statements were 
established on the basis of suggestions from experienced developers. Fourth, to 
investigate the need for new solutions for the design-production transition 
bottleneck, the respondents were asked to indicate on a 5-point scale whether 
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they needed solutions for the transition bottleneck for either themselves or for 
their organization (questions 22 and 23 of Table 2.4).  

Data analysis. A factor analysis (Principle Component analysis with 
Varimax rotation) was used to identify the main development problems from 
the scores of the seven problems for each of the five ADDIE phases (35 items). 
Using a factor analysis for data reduction, a small number of issues could be 
identified that explains most of the variance observed in the larger number of 
item scores. Next, to determine the intra-item reliability of items within each 
factor, Cronbach’s alpha is computed. In general, an alpha larger than .70 is 
regarded as satisfactory for drawing conclusions about different groups. Scale 
scores for each factor were obtained by adding item scores within the scale, and 
transforming crude scale scores linearly to a 0-100 range, with higher scores 
indicating more problems. Differences between groups (nationality, role, or type 
of organization) with respect to the issues were tested by MANOVA.   

With regard to the possible causes and consequences of the transition 
bottleneck, and the perceived need for new solutions, one-sample T-tests were 
used to test for differences between the ratings and the neutral score of 3.  
Results 

 First, the number of years of experience in a particular role was used to 
determine the main specialization of the respondents. The respondents’ mean 
experience with developing instructional software was 16.97 years (SD = 12.69). 
Their main specialization was designer, with a mean experience of 6.11 years 
(SD = 5.39). Furthermore, they were experienced as project leader (M = 4.97 
years, SD = 4.42), manager or policy-maker (M = 2.03 years, SD = 3.84), multi-
media specialist (M = 3.05 years, SD = 4.55), or programmer (M = 0.81 years, SD 
= 3.09). All respondents indicated that they used structural, phased approaches 
based upon the ISD model. The respondents indicated that in their organization 
the following persons were responsible for creating training blueprints: In 16 
cases, only the designers were responsible; in 6 cases, only producers, and in 15 
cases, combinations of designers and producers. So, in most cases, designers 
were either responsible for or directly involved in the creation of design 
documents. 

Second, with respect to possible development problems, the factor 
analysis identified four factors (see Table 2.2). Combined, they explained 53% of 
the total variance. 
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The first factor can be interpreted as internal design and production 
difficulties:  Respondents experience problems in organizing and executing (i.e., 
designing, producing) the design and production phases. The second issue can 
be interpreted as rolling-out difficulties: Respondents experience difficulties with 
executing the implementation and evaluation phases. The third factor can be 
interpreted as external design and production difficulties: Respondents experience 
problems in dealing with external conditions such as quality of input, 
cooperation between stakeholders, and changing requirements and conditions 
of the design and production phases. The fourth factor can be interpreted as 
front-end analysis difficulties: Respondents experience problems with executing 
the analysis phase. Table 2.3 presents the number of associated items with a 
particular factor, and Cronbachs’ Alpha for the items contributing to that factor. 
MANOVA’s showed no significant differences for nationality, role, or type of 
organization on any of the factors.   
 
Table 2.3 
Number of Items, Cronbach Alpha’s, and Percentages of Explained Variance for the 
Four Factors 
 
Factors Number 

of items 
Cronbach’s 
Alpha 

Explained 
Variance 

Internal design and 
production difficulties 

12 .85 16 % 

Rolling-out difficulties 10 .85 15 % 
External design and 
production difficulties 

8 .84 12 % 

Front-end analysis 
difficulties 

5 .67 9 % 

 
Finally, Table 2.4 shows the ratings on possible causes and consequences of the 
transition bottleneck, as well as the need for new solutions for that bottleneck.  
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Table 2.4 
Ratings on Causes, Consequences, and Need for New Solutions for the Transition 
Bottleneck 

  
Questions 

M SD 
 

Causes of problems in transferring information from design to production  
1. Lack of instructional design information 2.60 1.22 
2. Lack of modularization 2.76 1.25 
3. Lack of clear design languages 2.80 1.21 
4. Lack of structure in design languages  2.50 1.22 
5. Too much  information transferred in design documents  2.13* .86 
6. Too little information transferred in design documents 2.70 1.05 
7. Producers’ lack of design knowledge 2.65 1.22 
8. Producers making design decisions 2.70 1.26 
9. Designers’ lack of production knowledge 3.00 1.00 
10. Designers making production decisions 2.82 1.07 
11. Communication between designers and producers starts 

too late 
3.00 1.32 

12. Communication between designers and producers starts 
too early 

1.94** 0.83 

13. Cooperation between designers and producers starts too 
late 

2.82 1.27 

14. Cooperation between designers and producers starts too 
early 

2.11** 0.78 

15. Instructional Design models incomplete 2.76 1.14 
16. Instructional Design models providing too little guidance 2.71 1.10 

 
Consequences of problems in transferring information from design to production 

17. Too long development process 3.47 1.33 
18. Planning of development process difficult  3.41 1.12 
19. Structuring development teams difficult 3.00 1.22 
20. Unpredictability of character of end product 2.76 1.09 
21. Unpredictability of pedagogical quality of end product 2.65 1.27 

 
Need for new solutions 

22. For the transition bottleneck for myself 2.88 1.26 
23. For the transition bottleneck for my organization  3.06 1.34 
All questions scored on a 5-point Likert-scale ranging from 1 (“totally disagree”) 
to 5 (“totally agree”) 
* p < .05 
** p < .01 
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First, respondents rated the possible cause “too much information transferred in 
design documents” as less relevant than the neutral score (M = 2.13, SD = .86; t = 
-3.33, p < .05). Second, they rated the possible cause “communication between 
designers and producers starts too early” as less relevant than neutral (M = 1.94, 
SD = .83; t = -5.29, p < .01). Third, respondents rated the possible cause 
“cooperation between designers and producers starts too early” as less relevant 
than neutral (M = 2.11, SD = .78; t = -4.65, p < .01). There were no significant 
differences between nationality, organization, and role on the ratings for 
possible causes and consequences and the need for new solutions.  
 
Discussion 

 It appears that developers experience problems in organizing, managing 
and executing each phase, particularly in the design and production phases as 
indicated by the factors “internal design and production difficulties” and 
“external design and production difficulties”, together explaining 28% of the 
variance. However, developers were not able to indicate clear causes of these 
problems. On the contrary, they indicated for three issues that they are not the 
cause of the identified problems, namely, “too much information transferred,” 
“too early communication,” and “too early cooperation.” Furthermore, they did 
not indicate possible consequences of the problems. Finally, they did not 
indicate a need for new solutions for themselves or for their organizations. It 
seems that designers report problems from a vague feeling rather than from 
experiencing concrete bottlenecks. A possible explanation is that they are 
educated in, and experienced with ISD-based development methods, and are 
not familiar with alternative methods that could help to overcome the transition 
bottleneck. Or, as Womack, Jones, and Roos (1990) stated, workers in a 
particular manufacturing model will not criticize this model nor move to 
another model unless there is a real crisis. The absence of a need for new 
solutions also implies that developers will probably be rather skeptical in 
implementing new improvements. 

A limitation of this study is that the respondents predominately had 
design experience and less production experience. This could possibly explain 
why they were not able to indicate clear causes and consequences of 
development problems. Producers, for example, could have been better able to 
indicate what they would need to improve the development process. A second 
limitation concerns the modest number of respondents, which limits the results 
of the factor analysis. Setting aside these limitations, the results of our empirical 
analysis are fully in line with the theoretical analysis.  

 
Lean Production as an Alternative Development Approach 

 
The theoretical and empirical analyses show that development methods 

based upon current craft and mass production approaches do not satisfy the 
new criteria for developing instructional software. The practical application of 
these production approaches is not without problems either. In the 
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manufacturing industry, lean production is introduced as a new approach for 
development methods, to overcome the problems of craft and mass production 
(Womack et al., 1990). Lean production aims to provide a high variability of 
high quality products, which are flexibly to adapt to different clients. 
Development according to the lean production approach involves autonomous, 
multi-skilled expert-teams, using flexible automated tools in a standardized and 
modularized work process. Lean production raises efficiency through the 
continuous, incremental improvement of work processes.  

One important implication of lean production is the radical application of 
the “pull principle.” Craft- and mass-production approaches are supply-
oriented: Developers “push” the product they think is appropriate for the client 
forward through the work process. Lean production, however, is demand-
oriented. In the field of Instructional Systems Development (ISD), this implies 
that developers have to consider the specific needs of clients and create their 
products accordingly. The pull principle applies to both intermediate products, 
transferred between the phases, and final products. Figure 2.1 compares the 
supply-oriented model with the demand-oriented model, indicating that 
according to the pull principle, designers pull information from the analysts, 
producers pull information from the designers, implementers pull information 
from the producers, and evaluators pull information from the implementers. 
This demand-oriented principle ensures a more effective transition process of 
information and products. 

 
 

 
 

Figure 2.1. Supply versus demand oriented Instructional Systems Development 
(ISD) models. 
 

Another important implication of lean production is “waste-reduction,” 
which is the continuous process of measuring and analyzing the development 
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process and (intermediate) products to improve quality, increase 
standardization, and limit waste (Ohno, 1988). Waste is defined as unnecessary 
delays, defects, and redundancies in the development process. This puts much 
emphasis on the quality of the transition of information or products, because 
each transition must be optimal the first time. Otherwise, time-consuming 
iterations are necessary to provide additional explanations or correct errors.  

With respect to the criteria presented in our theoretical analysis of current 
development methods, the lean production approach is the only approach that 
meets the criterion of adaptivity (see Table 2.1). Therefore, lean production is 
suitable for the development of innovative instructional software (Woll, 2003). 
Schellekens (2004) suggests a similar, process-focused strategy, which promotes 
“mass-customization” with a high degree of adaptation to the needs of clients, 
high design quality, and volume flexibility.  

As can be seen in the third row of Table 2.1, satisfying the criterion of 
modeling, particularly the step of functional modeling, remains difficult in the 
lean production approach. The application of the pull principle between the 
design and development phases implies that developers have to pull the 
information they require from designers. However, the designers lack the 
necessary means to provide the producers with information that ensures an 
unequivocal interpretation by producers. They have a different background 
than producers (educational vs. technological) and use different tools (analysis 
and design tools vs. technical production tools). For applying the pull principle 
between other phases, the signaled problem is less relevant because analysts and 
designers have the same background, and because developers and 
implementers, as well as implementers and evaluators, exchange concrete 
products.  

 
Lack of Common Design Languages 

 
The lack of standardized design languages, familiar to both designers and 

producers, is a fundamental problem in the transition between design and 
production. Such design languages should be able to allow for functional 
modeling by capturing and describing the domain and pedagogical models at a 
level of detail ensuring that different producers interpret them unequivocally 
(Waters & Gibbons, 2004). Design languages require notation systems to convey 
their message by means of symbolic, graphical, textual or other conventions. An 
example of a graphical modeling language, not bound to the field of 
instructional software development, is the Unified Modeling Language (UML; 
Booch, 1994). The notation system of UML (i.e., diagrams) enables both 
designers and producers to describe and understand a design. Recent attempts 
to introduce design languages in the field of instructional software development 
are IMS Learning Design (IMS LD; Koper & Tattersall, 2005) and the Educational 
Environment Modeling Language (E2ML; Botturi, in press). Both languages are 
promising but not yet able to provide a complete solution for the transition 
bottleneck. IMS LD is limited to the configuration of a pedagogical model in an 
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IMS LD compatible e-learning system. E2ML is limited to describing 
instructional design issues such as learning goals, roles, actions, and resources, 
instead of (relating this to) instructional software issues such as its interface 
design, interaction design, and information flow.  

As long as there are no complete design languages available in the field 
of instructional software development, iteration as proposed by agile methods 
(e.g., see http://www.agilealliance.com) might possibly provide a solution to 
overcome the transition bottleneck. Iteration implies that designers and 
producers model and produce the instructional software incrementally and in 
direct contact with each other, rather than relying on the once-only transfer of 
formalized information (i.e. functional modeling) between the design and 
production phases. Iteration is popular in the fields of software engineering 
(Fowler, 2004) and instructional development (e.g., Reigeluth & Nelson, 1997; 
Tennyson, 1995). However, three problems limit the value of iteration: (a) Lack 
of expertise of designers and producers, (b) outsourcing of production, and (c) 
lower efficiency.  

The first limitation of iteration is that one of the characteristics of 
instructional software development is the participation of domain specialists 
such as subject matter experts and instructors, with relatively less instructional 
design and software production expertise (Hoogveld, Paas, Jochems, & van 
Merriënboer, 2003; Spector & Muraida, 1997). Iteration, however, requires 
considerable expertise in order to determine exactly when and how iteration 
should take place (Verstegen, 2003). This problem may be solved by Verstegen’s 
methodology for the development of a needs statement. In this method, directed 
at establishing a thorough needs assessment before starting the actual 
development process, a series of workshops is organized with stakeholders such 
as clients, teachers, learners, and instructional designers. Under guidance of an 
experienced discussion leader, they proceed iteratively through all ISD phases in 
a structured and standardized manner, and record their assumptions and 
(provisional) decisions with regard to design, production, implementation, and 
evaluation issues. The standardized method and structured discussion 
overcome the problem of lack of expertise. Also, if producers are involved in the 
workshops, the resulting needs-assessment documents may provide 
development information that is understood and accepted by both designers 
and producers, thereby avoiding the need to rely solely on formal transfers of 
design documents.  

However, the workshop methodology will often be impossible due to the 
second limitation of iteration, namely outsourcing of production. In large 
organizations and in professional development projects, there is often a strict 
juridical and organizational separation between design and production due to 
outsourcing of production activities to external companies. Note that 
production-related input in Verstegen’s (2003) method can be accomplished by 
involving other producers, to promote at least understanding of the 
development information by the ultimate producers.  
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The third limitation of iteration is that it may reduce efficiency because it 
costs extra time, and there is no guarantee that this will be regained in a later 
phase of the development process. For example, Verstegen’s (2003) method 
explicitly emphasizes iteration within the needs-assessment phase to prevent 
iteration between later development phases. 
Summarizing, development methods based on lean production promise to 
satisfy the new criteria for instructional software development, except domain, 
pedagogic, and—in particular--functional modeling, due to the lack of common 
design languages and the limitations of iteration. A possible solution should 
focus on supporting designers to provide producers with exactly the functional 
modeling information they need.   

 
Three Building-Block Solutions 

 
Currently, production-related information is typically embedded in three 

types of building blocks for the production process: (a) design documents as 
input, (b) programming structures as throughput, and (c) learning materials as 
output (see Figure 2.2). 

 
 
 

 
 

Figure 2.2. The three artifacts in the development process that embed 
production-related information.  

 
In order to better interrelate the design phase into the production phase, 

it is proposed that designers’ attention be focused on these three building 
blocks, thereby preventing the need to rely solely on design documents and/or 
iteration. Three building-block solutions are proposed to compensate for the 
limited production expertise of the typical designer: First, the Developing 
Design Documents (3D) model to support designers to improve design 
documents; second, instructional software templates to support designers to 
create programming structures, and third, an integrative approach to support 
designers to reuse learning objects. According to the first solution, designers 
work in their traditional role but use functional modeling to interrelate their 
design more explicitly to production. According to the second and third 
solutions, designers operate in a producer’s role, using programming structures 
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and learning objects to interrelate their designs more explicitly to production. 
The next sections discuss the three solutions.  
 
 
 
The 3D-model  

In functional modeling, design documents such as training blueprints 
and storyboards serve as input for creating technical specifications by 
producers. Design documents may be difficult to interpret for three reasons: (a) 
different instructional and technical structures are often not meaningfully 
organized; (b) different levels of detail are mixed up, and (c) different 
expressions are used in a non-standardized manner. With regard to meaningful 
organization, Gibbons’ model of Design Layers (Gibbons, 2003) may be used for 
stratification of the instructional software design on seven, interrelated layers: 
Content, strategy, control, message, representation, media logic, and data 
management. Each layer is typified by the designer’s selection of design 
languages pertaining to the solution of different instructional design sub 
problems. Together, the functional designs at each layer make up the total 
design. Stratification helps to determine the relations between the functionally 
different instructional and technical structures, while at the same time staying 
cognizant of the need for integration of those structures within the complete 
design.  

With regard to mixing up different levels of detail, the three perspectives 
of Fowler (2004) may be used for the elaboration of the instructional software 
design: (a) A conceptual perspective, with more or less superficial and 
descriptive information; (b) a specification perspective, with more or less 
comprehensive and detailed information, and (c) an implementation 
perspective, with more or less technical and meticulous information. Elaboration 
helps to determine the required level of detail, depending on the capabilities of 
the designer and the needs of the producer. 
With regard to the use of non-standardized expressions, designers may reach 
formalization of their design by making their informal and formal design 
languages explicit. They should strive for (combinations of) formal languages, 
but depending on their capabilities and the needs of the producer, they can also 
select (combinations of) informal languages. Formalization helps to determine 
the required level of standardization. 

The 3D-model uses stratification, elaboration and formalization as its 
three dimensions. Designers, with or without producers, may first analyze their 
design situation in order to determine the optimal configuration of the 3D-
model (e.g., What kind of designers and producers are involved? What kind of 
training is the design made for? Which support tools are available?), and then 
use this configuration to stratify, elaborate, and formalize their design 
documents. Figure 2.3 presents the 3D-model in its full configuration, in which 
all dimensions are completely utilized. The 3D-model provides producers with 
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insight in the underlying structure and content of the functional model, even 
when the design languages used are deficient. 

 
 
 
 

 
 
 
Figure 2.3. The Developing Design Documents (3D) model. 
 
Instructional Software Templates  

E-learning systems and authoring tools often provide instructional 
software templates, which producers can use to easily create or adapt 
programming structures that make up the instructional software. This 
“programmer-less-authoring” (Hedberg & Sims, 2001) is based on automation of 
routine tasks and intuitive interfaces such as “wizards.” They provide support 
on three levels. First, on the authoring level, the templates offer prefabricated 
“moulds” of programming structures to implement the lessons, practice items, 
test questions, examples, cases, feedback, learner support, and so forth into the 
instructional software. Second, on the technical level, the templates 
automatically produce programming structures that are compliant with current 
e-learning technologies, learning technology standards, and different operating 
systems. Third, on the pedagogical level, the templates provide prefabricated 
structures, for example, drill-and-practice, concept learning, mastery learning, 
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and case-based learning. On the one hand, producers use templates to speed up 
their authoring and technical activities and to receive pedagogical support for 
creating programming structures without support from instructional designers. 
On the other hand, those designers may use templates to speed up their 
pedagogical activities and receive authoring and technical support.  

Instructional software templates explicitly interrelate design and 
production. First, designers can choose not to rely on the producers at all and 
select and instantiate appropriate templates without the involvement of 
producers. This way, they are able to create and assemble the programming 
structures they want, thereby making their own instructional software. Second, 
designers can provide producers with design information by means of 
implementing their design principles. These templates will then force producers 
to apply particular pedagogical principles in the instructional software. Third, 
designers might provide producers with design information by means of 
example products they have created with templates. Optionally, these examples 
can be presented to the producers together with the design documents. 
 
Learning Objects  

To increase the efficiency of design and production, there is currently 
much emphasis on the reuse of learning materials. If learning materials are 
divided into small, modular chunks, often called “learning objects,” developers 
will be able to combine and recombine those objects to create new learning 
materials. Van Merriënboer and Boot (2004) identify six problems with the 
current reuse of learning objects. The first three problems relate to the nature of 
learning objects: (1) The metadata problem refers to the fact that it is difficult and 
extremely labor-intensive to specify metadata for large sets of learning objects; 
(2) the arrangement problem refers to the fact that combining and sequencing 
learning objects into larger arrangements is not always easy and self-evident, 
and (3) the exchange problem refers to the fact that it may be difficult from a 
psychological viewpoint (e.g., due to the “not-invented-here” syndrome) or 
organizational viewpoint (e.g., due to security issues or intellectual property 
rights) to exchange learning objects between developers and between e-learning 
systems. The remaining three problems arise because current approaches of 
reuse are not consistent with the holistic pedagogical view: (4) The context 
problem refers to the fact that effective learning objects cannot be created in 
isolation without an implicit or explicit instructional setting, target group, and 
other contextual descriptors; (5) the pedagogical function problem refers to the fact 
that it is difficult to express pedagogical intentions for a learning object by 
means of technical properties such as metadata, and (6) the correspondence 
problem refers to the fact that a developer working from a holistic viewpoint will 
typically not search for one particular learning object but rather for a set of 
meaningfully interrelated learning objects that is aimed at the construction of 
one rich cognitive representation.  

Van Merriënboer and Boot (2004) propose an integrative approach, 
stressing four solutions to improve the reuse of learning objects. The first 
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solution is to reedit instead of reuse learning objects. This increases the chance 
that the developer will find a useful learning object because it becomes less 
important to find exactly what is needed. The second solution is to use 
templates instead of instantiations as learning objects. Templates allow for the 
easy modification of learning objects (e.g., a change of an American grading 
system to a European grading system), making them useful for a broader range 
of situations. The third solution is to automate the creation and reuse of learning 
objects. The use of automatic analysis of multimedia content and the semantic 
indexing of this content in metadata fields makes reuse more cost-effective and 
also yields more objective metadata than indexing by hand. The final solution is 
to use intermediate products in addition to final products as learning objects. 
Intermediate products, such as task analysis results and lesson plans, contain 
rich information that describes the final products for which they were made. 
This rich information is more suitable than metadata to provide input for 
searching suitable learning objects. 

The integrative approach to the reuse of learning objects explicitly 
supports designers to interrelate design to production. First, designers can 
choose not to rely on producers at all and independently select and reuse 
appropriate learning objects to assemble the instructional software product they 
want. Second, designers can provide producers with design documents 
illustrated with example sets of learning objects they have assembled.  

 
Conclusions and Discussion 

 
New criteria for instructional software development are set by recent 

pedagogical, technological and organizational innovations: Adaptivity, 
generativity, scalability, and last but not least, modeling. From theoretical and 
empirical analyses, which clearly corroborate each other, it appears that existing 
instructional software development methods based on a push-principle do not 
satisfy all criteria. Lean production, based upon the pull-principle, is suggested 
as a new development approach to enable the required mass-customization of 
instructional software. However, lean production also suffers from the 
fundamental problem of a lack of design languages to transfer information from 
the design phase to the production phase. In order to overcome this problem, 
designers may use production building blocks that prevent sole reliance on 
design languages and/or iteration. We proposed three building block solutions 
to support designers in functional modeling: The 3D-model to improve design 
documents, instructional software templates to create programming structures, 
and the integrative approach for reusing learning objects. 

The suggested building-block methods are predominantly based on 
practical experiences and theoretical as well as empirical analyses. Further 
research might go in three directions. First, it should validate the actual value of 
the building-block solutions, separately and in combination, on the success of 
the transition between design and production. In particular, it is interesting to 
study the application of the three solutions by domain specialists such as subject 
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matter experts and teachers, because although they are inexperienced in 
instructional design and software production, they are often the persons 
involved in actual instructional software development projects. Second, as our 
empirical analysis shows, designers are likely to be rather skeptical towards new 
solutions. Changing the instructional software development process as 
drastically as lean production approaches suggest, and also introducing the 
proposed building-block solutions that require other design skills than before, 
will probably meet resistance from designers. So, further research and validation 
should also be aimed at the development of innovation models that help to 
promote acceptance of new solutions by designers. Third, further research may 
pertain to the roles of designers and producers. The pull principle suggests that 
designers should be fully responsible for solving the transition bottleneck, as 
producers are the “demanding party.” This does not imply that designers 
should provide any solution that producers demand. Further research should be 
aimed at clarification of new roles for producers and designers.  
 This study has some clear practical implications for the use of the three 
building-block solutions, either alone or in combination. First, they allow 
designers to improve their design documents through the analysis of 
instructional software templates and learning objects used by a production 
team. This yields useful product information and informs designers about the 
capabilities and preferences of the producers. Second, they allow designers to 
improve their instructional software templates through the analysis of multiple 
sets of learning objects and design documents. This yields useful design 
information to serve as input for creating new templates. Third, they allow 
designers to improve their reuse of learning objects, as the integrative approach 
incorporates both using design documents (called “intermediate products”) and 
using instructional software templates. This way the three proposed solutions 
may offer a first step toward the implementation of the holistic pedagogical 
view, with a focus on authentic learning tasks, in innovative instructional 
software. 
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Chapter 3  
 

Stratification, Elaboration, and Formalization of Design 
Documents:  

Effects on the Production of Instructional Materials2 
 
 
 

Abstract 
 

Designers and producers of instructional materials lack a common design 
language. As a result, producers have difficulties translating design documents 
into technical specifications. The Developing Design Documents (3D) model is 
introduced to improve the stratification, elaboration, and formalization of 
design documents. It is hypothesized that producers working with improved 
documents (n = 8) show a more efficient translation process and more 
satisfaction with the design documents than producers working with traditional 
documents (n = 8). As expected, in the improved documents group, a higher 
agreement was found between the design documents and the technical 
specifications, which also required less time and less perceived cognitive load 
for their production. There were no differences on satisfaction with the design 
documents. The study shows that designers, working with the 3D-model, are 
able to improve design documents, resulting in a better translation process and 
integration of design and production.  
   

                                                 
2 Boot, E., Nelson, J., van Merriënboer, J. J. G., & Gibbons, A. S. (submitted). 
Stratification, Elaboration, and Formalization of Design Documents: Effects on the 
Production of Instructional Materials 
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Developing instructional software is becoming increasingly complex. An 
important reason is the increasing interest in competency-based learning, which 
is characterized by learning integrated sets of knowledge elements, skills, and 
attitudes to recognize and solve problems in a variety of real-life situations. 
Training programs for competency-based learning are often problem, project, or 
case based and typically include authentic, realistic learning tasks as the driving 
force for learning (cf. Merrill, 2002). Instructional software for such training 
programs often has the character of blended learning or integrated e-learning 
(Jochems, van Merriënboer, & Koper, 2004), emphasizing flexible and adaptive 
learning paths. Developing such complex instructional software predominantly 
takes place in large projects, conducted by multidisciplinary teams, and based 
upon modular, object-oriented approaches towards specification and 
production.  

The basic development model is the Instructional Systems Development 
(ISD) model, an instantiation of the generic Analysis, Design, Development, 
Implementation, and Evaluation model (ADDIE; Dick & Carey, 1996). Every 
phase in the ISD model identifies specific types of activities and outcomes, for 
which different specialists (e.g., designers, producers, visual artists and so forth) 
are responsible. The outcomes of a preceding phase are mostly transferred to the 
next phase by means of design documents. In the design phase, for instance, 
instructional designers create a design based upon information from the 
preceding analysis phase, consisting of a learning hierarchy, target group 
analysis results, a context description, and so forth. In the case of competency-
based learning, the design is likely to be based on models such as the four-
component instructional design model (4C/ID model; van Merriënboer, 1997) 
and described in a particular design document, in this phase often called a 
training blueprint (van Merriënboer, Clark, & de Croock, 2002). In addition, 
designers can provide guidelines with respect to the implementation of the 
training blueprint in the instructional software, for instance by means of 
storyboards (e.g., Driscoll, 1998). In the subsequent development phase, 
producers such as systems integrators, multimedia specialists and 
programmers, interpret, elaborate and transform the training blueprints and 
storyboards, in order to translate them into technical specifications.  

It appears that the transition of information between the design phase 
and the development phase is a serious bottleneck (Boot & van Merriënboer, 
submitted). The intentions of an instructional design, described in the training 
blueprint and storyboards, are often not sufficiently represented in the technical 
specifications created by the producers. Time-consuming reviews and frequent 
discussions between instructional designers and software producers are often 
required to reach correct technical specifications, which are fully in line with the 
blueprint and storyboard. This sub-optimal translation process is deteriorated 
by the fact that many software experts are not necessarily experienced in 
specifying and creating instructional software programs. In absence of those 
reviews and discussions, the production process often results in an 
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unsatisfactory outcome, that is, flawed instructional software that requires 
correction afterwards (“design by debugging”).  

Recent software engineering methods attempt to overcome the 
translation problem by means of agile development methods. Agile methods 
emphasize iteration in the development process (see 
http://www.agilealliance.com). For instance, eXtreme Programming (XP) 
prescribes (a) revisiting preceding phases if information is insufficient, and (b) 
rapid prototyping of small but representative intermediate products for testing 
during development (Verstegen, 2003). However, such approaches are often not 
feasible due to the juridical and financial restrictions of outsourcing the 
production phase—increasingly applied in large (instructional) software 
projects—which separates the design and production phases in space and time. 
Such outsourcing to external parties, particularly if these parties are in foreign 
countries (“offshore outsourcing”), also limits information exchange due to 
language problems and cultural differences.  

As a result, the development process relies heavily on the communicative 
quality of design documents such as training blueprints. An important question 
is therefore how such documents can be improved by instructional designers, to 
increase the probability of an optimal transfer of information from designer to 
producer. In the remaining parts of this Introduction, three fundamental 
variables of creating design documents are presented: Organization, detail, and 
standardization. Subsequently, the 3D-model for organizing design documents, 
based upon the three variables, is introduced. Then, an empirical study is 
presented comparing the effects of conventional design documents and 
improved design documents on the efficiency of the translation process and 
producers’ satisfaction. The results of this study and, finally, their implications 
for future research and the practical field of instructional design are discussed. 

Design documents 
In the field of instructional software development, designers and 

producers lack a common, explicit notation system (Gibbons, Nelson, & 
Richards, 2000; Waters & Gibbons, 2004). A notation system is an embedded 
element of a design language and captures abstract ideas to create transferable 
designs (Gibbons & Brewer, 2005). Part of the reason why designers and 
producers use different languages and notation systems, even though they are 
discussing the same instructional software, is simply that they are interested in 
different aspects of the product and thus need to describe different features and 
functionalities (Nelson, 2003). The designer is mainly concerned with the 
content and the instructional strategies realized by the product, while the 
producer is mainly interested in its architecture and necessary data structures. 
Therefore, designers typically work with training blueprints and storyboards. A 
training blueprint consists of intermediate instructional design products, such as 
learning hierarchies, task classes, learning tasks, structures for scaffolding, 
cognitive feedback messages, and so forth. A storyboard consists of sketches of 
the interface lay-out and information for media selection and navigation. 
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Producers, in contrast, typically work with technical specifications consisting of 
highly detailed structural and procedural descriptions of the instructional 
software, such as program architectures, interaction patterns, navigation 
models, data types, information flows, reusable learning objects with metadata, 
and so on. For both designers and producers, the different sets of terms refer to 
different aspects of the same final product. But when training blueprints and 
storyboards are translated into technical specifications, the communication of 
ideas and the quality of the final product suffers if there is a mismatch of 
languages and notation systems (Nelson, 2003). 

Three basic variables directly affect the quality of the translation from 
instructional design documents (blueprints and storyboards) to technical 
specifications, namely, the (1) organization, (2) level of detail, and (3) 
standardization of the design information. With regard to the organization of 
design information, the descriptions of different instructional and technical 
structures are often not meaningfully interrelated in conventional design 
documents. Adapting such documents to reflect changes in the design can be 
very difficult and laborious for the designers. Also, if producers face changes 
after the design phase, it will be very difficult for them to determine the effects 
of such changes for the technical specifications and the final product. For 
instance, the training of a problem-solving task can change because a new 
device so strongly supports the original problem-solving task that it becomes a 
routine task. This implies considerable implications for instruction (e.g., more 
emphasis on repetition of similar practice items combined with just-in-time 
information) as well as technical issues (e.g., different information to be 
displayed, different interactions, different feedback mechanisms, and so on).  

The second variable is the level of detail of the design information. The 
level of detail in conventional design documents varies depending on the 
capabilities of the designer. For example, more capable designers will typically 
add more detail to instructional issues but not to technical issues. However, the 
level of detail should also depend on the needs of the receiver of the 
information, that is, the producer. For instance, to communicate between 
designers the application of delayed cognitive feedback following a particular 
learning task, a rather conceptual description will suffice. The designers will 
readily understand each other. But for a producer, much more detailed 
descriptions of timing, content, and presentation of feedback are needed to be 
able to specify and implement it as intended by the designer. 

The third variable is the standardization of design information. In 
conventional design documents, designers express an instructional design 
mostly by textual expressions, supplemented with tables, lists, flowcharts, and 
graphics – all in a non-standardized manner. For producers, this leads to (a) 
semantic problems, as they may not fully understand the intentions of the 
designer, (b) interpretation problems, as they are left with too many degrees of 
freedom in creating the technical specifications, and (c) compatibility problems, 
as they cannot directly and (semi) automatically translate a design description 
into technical specifications.  
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We assume that the three basic variables (a) organization, (b) level of 
detail, and (c) standardization of design documents provide a starting point to 
improve the quality of the communication between designers and producers. 
Eventually, this will improve the quality of instructional software products.  

The 3D-model 
The 3D-model is established to support improving design documents. It 

consists of three dimensions, namely (a) stratification, (b) elaboration, and (c) 
formalization, based upon the variables discussed in the previous section. The 
three D’s in the name reflect the three dimensions and are also an acronym for 
Developing Design Documents. Independent designers, or teams with designers 
and producers, may use the 3D-model to (a) analyze their design situation (e.g., 
what kind of designers and producers are involved? For what kind of training is 
the design made? Which support tools are available?) to determine the most 
optimal configuration of the 3D-model, and subsequently (b) use this 
configuration to stratify, elaborate, and formalize their design documents. 
Figure 3.1 presents the 3D-model in its full configuration, in which all 
dimensions are completely utilized.  

 
 

 

 
 
 
Figure 3.1. The 3D-model for Developing Design Documents in its full configuration. 
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First, in order to improve the organization of design documents, 
designers may stratify their designs in terms of a layered design architecture. 
For example, according to Gibbons’ model of Design Layers (Gibbons, 2003), 
each complete instructional design is organized on seven, interrelated layers: 
Content, strategy, control, message, representation, media logic, and data 
management. Each layer is typified by the designer’s selection of design 
languages pertaining to the solution of different instructional design sub 
problems. Together, the functional designs at the different layers, expressed in 
one or more design languages, make up the total design. The design of each 
layer may require different design activities, support tools, and specialists (see 
Table 3.1). For both designers and producers, stratification helps to identify the 
relations between the functionally-different instructional and technical 
structures, while at the same time staying cognizant of the need for integration 
within the complete design. Designers should therefore decide to which extend 
they are able to complete the stratification dimension, given their specific design 
situation. 
 
Table 3.1 
Objectives and Examples of the Seven Design Layers (Adapted from Gibbons, 2003) 
  

Layer Objective Examples of 
activities 

Examples of 
outcomes 

Content Define the content 
and structure of the 
domain (“what 
should be learned”) 

Task analysis, 
Content analysis, 
Concept mapping, 
Model analysis 
 

Task hierarchies, 
Mental model 
descriptions 

Strategy Define the 
instructional design 
(“how should be 
learned”) 

Identification of 
whole-task practice 
and part-task 
practice, Definition 
of and sequencing 
of learning tasks, 
Definition of social 
relationships during 
instruction, 
Definition and 
sequence of time-
event structures, 
Definition of roles, 
goals, and initiative-
sharing during 
instruction 
 

Task classes, Case 
descriptions, 
Feedback 
mechanisms 

Control Define the Identification of Content controls, 
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command language 
given the learner for 
communication of 
actions and 
responses to the 
instructional source 
(“how can the user 
interact”) 
 

user actions, 
Definition of control 
space, Flow 
planning  

Strategy controls, 
Administrative 
controls 

Message Define the message 
design (“what 
should be sensed”) 
 

Definitions of 
message structure, 
Composition of 
elements and rules 

Message standards 
design for content 

Representation Define the 
representation 
design (“how 
should it be shown) 

Media selection, 
Selection of 
production tools 
and methods  

Layout standards, 
Media channel 
assignment, Media 
synchronization 
methods  
 

Media-Logic Define the software 
architecture (“how 
should the program 
be structured”) 

Definition of logic 
structure, 
Algorithms 
Creation, Learning 
objects definition  

Modularity plan, 
Packaging method, 
Software platform 
selection, 
Maintenance plan 
 

Data 
Management 

Define the data 
management (“how 
should information, 
captured during 
instruction, be 
organized, analyzed, 
stored, and 
reported”) 

Defining 
administration 
processes, Data base 
selection, Definition 
of data items, 
capture, filtering, 
storage, analysis, 
interpretation, 
compilation, and 
sharing 

Security plan, 
Billing methods, 
Metadata 
assignment 

 
Second, in order to add sufficient detail to each layer, designers may elaborate 
their designs according to three different perspectives (Fowler, 2003). First, in a 
conceptual perspective, designers can describe the design more or less superficial 
and descriptive, reflecting the general direction of the design. Second, in a 
specification perspective, designers can describe the design more or less 
comprehensive and detailed, reflecting all design decisions. Third, in an 
implementation perspective, designers can describe the design more or less 
technical and meticulous. For both designers and producers, elaboration helps 
to determine the required minimum level of detail, depending on the 
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capabilities of the designer and the needs of the producer. Designers should 
therefore decide for each design layer to which extend they are able to progress 
along the elaboration dimension, given their design situation. 

Third, in order to add sufficient standardization to the descriptions of 
each layer-perspective combination, designers may formalize their design 
descriptions by making their informal or formal design languages explicit. 
Formalization helps to add rigor to a design to promote unequivocal 
understanding of both designers and producers. Designers should strive for 
(combinations of) formal languages, but depending on the capabilities of the 
designer and the needs of the producer, they can also select (combinations of) 
informal languages. Such a language can be specific for a particular layer, for 
instance, informal languages such as event-and-control flow diagrams for the 
control layer, and wire frames of layouts for the representation layer. Or it can 
be specific for a particular perspective, for instance, an informal language such 
as plain text for the conceptual perspective; the Unified Modeling Language 
(UML; Fowler, 2003) for the specification perspective, and the Extended Markup 
Language (see www.w3.org/XML) for the implementation perspective. 
Designers should therefore decide for each design layer and each perspective 
which (in)formal design languages are suitable, given their design situation.  

The application of the 3D-model will result in a specific configuration for 
each different design situation. This is expected to result in a more efficient 
translation process and a higher producers’ satisfaction with the design 
documents than with conventional design documents. The current study is 
conducted to verify this claim. It is hypothesized that compared to conventional 
design documents the improved documents lead to a better understanding by 
the producers and require less time and perceived cognitive load to reach this 
understanding.  

 
Method 

 

Participants  
Sixteen students from Utah State University’s Computer Science 

department participated in this study, acting as producers of instructional 
software. They were randomly assigned to either the conventional documents 
group (n = 8) or the improved documents group (n = 8). All participants 
received a compensation of $ 20. 

Materials 
Design documents. The conventional and improved design documents 

were on an identical topic, learning to drive a car, and had an identical function, 
providing input for the technical specification process for an advanced car-
driving educational simulation (see van Emmerik, 2004). With respect to 
ecological validity, reviews of expert instructional designers and producers, not 
related to the study and blinded for condition, indicated that the design 
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documents were representative for documents used in professional training 
organizations. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3.2. Configurations of the 3D-model for the conventional and improved design 
documents. 
 
 

Figure 3.2 describes the difference between the conventional and 
improved design documents in terms of configurations of the 3D-model. In the 
conventional design document, the value on the “formalization” dimension is 
always informal, thus no formal representations are used. The value on the 
“elaboration” dimension is implementation for the content and strategy layers; 
specification for the control, message, and representation layers; and conceptual 
for the media logic and data management layers. This configuration reflects the 
traditional approach towards design documents. The content and strategy layers 
are described as a training blueprint specified in the four-component 
instructional design model (van Merriënboer, 1997; van Merriënboer, Clark, & 
de Croock, 2002), containing typical instructional design information such as a 
task-hierarchy, a list of learning objectives, descriptions of learning tasks, and an 
overview of the whole training program. The control, representation, media 
logic, and data management layers are described with storyboards, containing 
typical instructional software information on user-interfaces, navigation, 
interaction, and program-flow. The information was described by text, tables, 
flowcharts, and drawings according to best practices and guidelines from the 
literature (e.g., Driscoll, 1998; Kruse & Keil, 2000).  

In the improved design document, the values on the “formalization” 
dimension are both formal and informal, thus both kinds of representations are 
used. For the informal representations, the values on the “elaboration” 
dimension are conceptual, specification, and the values on the content and strategy 
layers are implementation. For the formal representations, the values on the 

        Conventional configuration      Improved configuration 
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“elaboration” dimension are specification and conceptual for the layers content up 
to data management. This configuration reflects the use of the 3D-model to 
stimulate and support designers to stratify, elaborate, and formalize design 
documents more than they usually do. As in the conventional design document, 
the informal representations were described by a training blueprint according to 
the four-component instructional design model and storyboards. The formal 
representations were described by UML diagrams.  

Measurements 
 Background questionnaire. The background questionnaire was used to 
collect information about the participants’ (a) experience with car driving, 
related to the topic of the design documents (ownership of drivers license, years 
of driving experience); (b) level of education; (c) number of familiar object-
oriented programming languages, and (d) familiarity with Object-Oriented 
Programming (OOP), Object Oriented Modeling (OOM), and UML.  

Specification questionnaire. The ability to translate the design document 
into technical specifications, defined as the results of the translation process, was 
measured by the specification questionnaire. It consisted of 25 open questions, 
each question on one printed page with sufficient space to note down the 
answer. There was no time limit for answering the questions. Each question 
addressed a particular aspect of translating the design document into technical 
specifications. For instance, the participants had to distill from the design 
document how many databases should be used in the instructional software; 
what the consequences would be from changing text-based messages into audio-
based messages (the so-called “ripple effect”); how a particular program flow 
should be implemented; what it meant if just-in-time information would be 
applied in a particular learning task; where the producer would need a subject 
matter expert to provide additional domain information; which instructional 
design components should be implemented as reusable learning objects, and so 
forth. Based on a checklist with correct answers, two reviewers rated all items as 
correct or incorrect (the Intra Correlation Coefficient, ICC, is .94, which is good, 
Fleiss, 1981).  

Cognitive load questionnaire. This questionnaire measured the perceived 
cognitive load for each question in the specification questionnaire, defined as 
part of the costs of the translation process. It used the standard 9-point rating 
scale developed by Paas (1992; see also Paas, Tuovinen, Tabbers, & van Gerven, 
2003). The rating scale was included at the bottom of each page of the 
specification questionnaire, and ranged from 1 = “very, very low perceived 
load” to 9 = “very, very high perceived load”. The ICC of the questionnaire is 
.89, which is good. 
 Satisfaction questionnaire. This questionnaire measured the participants’ 
satisfaction with the design documents. It contained six statements that had to 
be rated on a 9-point scale (ranging from 1 = “very, very low” to 9 = “very, very 
high”). The statements concerned (a) the effort that needs to be invested in the 
technical specification process, (b) the capability to create technical 
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specifications, (c) the perceived completeness, (d) the level of detail, (d) the 
understandability, and (e) the quality of the design document.   

Procedure 
First, the participants were asked to fill out the background 

questionnaire. Subsequently, they were asked to study either the conventional 
or the improved design document for exactly 50 minutes. During this period, 
they were allowed to make notes for later use. Then, they had to fill out the 
specification questionnaire. The 25 pages of the questionnaire were filled out 
one by one, allowing the experimenter to note down the time on task for each 
question (in units of half minutes). In addition to perceived cognitive load, time 
was defined as another part of the costs of the translation process. After finishing 
each question, the participants filled out the cognitive-load questionnaire at the 
bottom of the page and gave it to the experimenter. Immediately after 
answering the final question the participants filled out the satisfaction 
questionnaire.   
Data Analysis 

T-tests for independent samples are used to test for differences between 
the conventional and improved document groups. The relative efficiency of both 
groups is calculated using the 3D-efficiency approach of Tuovinen and Paas 
(2004). In this approach, efficiency is defined as the difference between 
standardized results (in this study the quality of technical specifications (QTS) as 
a result of the translation from design documents) and standardized scores for 
perceived cognitive load (PCL) and time on task (TT), reflecting the costs. In a 
three dimensional Cartesian space, efficiency is the perpendicular distance 
between a point in that space and a plane that represents an efficiency of zero, 
and determined by the equation: 

 

3
TTPCLQTSE −−

=  

 
Results 

 
In the conventional documents group, participants’ education was 

computer science on the Bachelors level (3 out of 8), Masters level (4 out of 8), or 
PhD level (1 out of 8). All participants had a driver license, and their mean car 
driving experience was 7.88 years (SD = 6.01). In the improved documents 
group, participants’ education was computer science on the Bachelors level (6 
out of 8) or Masters level (2 out of 8); 6 of the 8 participants had a driver license, 
and their mean car driving experience was  6.75 years (SD = 5.25). As can be 
seen in Table 3.2, participants have experience in at least two object-oriented 
programming languages and rated their experience with OOP, OOM, and UML 
above average. There were no significant differences between groups.  
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Table 3.2 
 Means and Standard Deviations of Proficiency with Programming Languages and 
Ratings on Experience with Object-oriented Software Development  
 

Conventional 
design documents 

group 
(n = 8) 

Improved design 
documents group 

(n = 8) 

 
 

M SD M SD 
1. # of familiar OOP languages 2.37 0.92 1.87 0.99 
2. Object-Oriented Programming 

a 
7.13 0.99 6.63 1.99 

3. Object-Oriented Modeling 6.75 0.88 6.37 1.41 
4. Unified Modeling Language 5.75 2.52 5.25 2.31 

a  Questions 2-4 are rated on a 9-point scale (1 = “very, very low”; 9 = “very, 
very high”).   

 
Table 3.3 presents the main results on the quality of the technical 

specifications (i.e., agreement with the design document), time on task, 
perceived cognitive load, and relative efficiency of the translation process. The 
quality of the technical specifications is higher in the improved documents 
group (M = 17.18 on a scale with a maximum of 25, SD = 1.94) than in the 
conventional documents group (M = 12.25, SD = 2.35; t = 4.58, p < .001). The 
mean time on task per question is lower in the improved documents group (M = 
2.75 minutes, SD = .71) than in the conventional documents group (M = 3.46 
minutes, SD = 0.89; t = 1.77, p < .05). The perceived cognitive load does not differ 
between groups (t = 0.88, p > .39); the improved documents group scored a 
mean of 4.06 on a 9-point scale (SD = 1.10) and the conventional documents 
group scored a mean of 4.43 (SD = .42). As expected, the efficiency of the 
translation process is significantly higher in the improved documents group (M 
= .28, SD = .37) than in the conventional documents group (M = -.28, SD = .38; t 
= 3.03, p < .01). 
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Table 3.3 
Means and Standard Deviations for Measures of the Transition Process  
 

Conventional 
design documents 

group 
(n = 8) 

Improved design 
documents group 

(n = 8) 

 
 

M SD M SD 
1. Quality of production (0 – 25) 12.25 2.35 17.18 1.94 
2. Mean time per question (mins.)  3.46 0.89 2.75 0.71 
3. Mean perceived cognitive load 

per question a 
4.43 0.42 4.06 1.10 

4. Efficiency of specification 
process 

-.28 .38 .28 .37 

a  Item 3 is rated on a 9-point scale (1 = “very, very low”; 9 = “very, very high”).   
 
Table 3.4 presents the results on participants’ satisfaction with the design 

documents. In general, the participants were reasonably satisfied. There are no 
significant differences between the groups.  

 
Table 3.4 
Means and Standard Deviations for Satisfaction with Design Documents  
 

Conventional 
design documents 

group 
(n = 8) 

Improved design 
documents group 

(n = 8) 

 
 

M SD M SD 
1. What is your invested effort? a 5.25 1.04 5.87 1.45 
2. How is your ability to create 

technical specifications based 
upon the design documents?  

5.87 1.25 5.25 1.83 

3. How is the level of 
completeness of the design 
documents? 

4.87 1.81 6.00 0.75 

4. How is the level of detail of the 
design documents? 

5.25 1.48 6.37 1.59 

5. How is your understanding of 
the design documents? 

6.13 1.25 6.50 0.93 

6. How is the quality of design 
documents? 

5.63 1.99 5.87 1.23 

a Items are rated on a 9-point scale (1 = “very, very low”; 9 = “very, very high”).   
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Discussion 
 

This study investigated means to improve the efficiency of the translation 
process between the design phase and the production phase. The results show 
that the application of a structured, three-dimensional approach by designers, 
helps producers to specify technical specifications that are more in agreement 
with instructional design documents (i.e., training blueprint and storyboard). By 
improving these documents, less of the designers’ intentions are “lost in 
translation,” preventing the specification and production of sub-optimal 
products. Developing design documents while supported by the 3D-model 
results in a higher efficiency of the translation process, reflecting better results in 
combination with less time and perceived cognitive load.  
 This study assumed that primarily instructional designers are in a 
position to enhance the efficiency of the translation process through the 
improvement of instructional design documents, because producers cannot 
correctly judge the quality of those documents. The results of this study are in 
line with this assumption, because no relation between producers’ satisfaction 
and the nature of the design documents was found. The lack of differences in 
satisfaction with conventional and improved design documents might be caused 
by the fact that the producers in this study were not professional instructional 
software developers but students. However, the participants indicated to be 
experienced with several programming languages and techniques. Most 
instructional software development projects will use producers with equal or 
even less experience than the participants in our study.  

Developing design documents according to the 3D-model suggest three 
lines for future research. The first line pertains to variations on the current 
study. For instance, the effects of different configurations of the 3D-model 
(compare Figure 3.2) on the efficiency of the translation process may be studied, 
as the optimal configuration is likely to be dependent on the specific design 
situation. As another example, the creation of the design documents may be 
varied by changing the characteristics of the instructional designers in terms of 
experience, educational sector (e.g., formal schooling, military, government, 
industry), subject matter domain (social, technical), and so forth.  

The second line pertains to the role support tools can play for the 
configuration of the 3D-model. For instance, new tools such as ADAPT-IT (De 
Croock, Paas, Schlanbusch, & van Merriënboer, 2002, also see 
www.enovateas.com) support the easy creation of design documents in a 
structured manner. With respect to the dimensions of the 3D-model, ADAPT-IT 
helps designers to create design documents that are both formal and informal, 
are elaborated at the conceptual and specification level, and describe the content 
and strategy layers. Future research may either investigate the contribution of 
support tools to the creation of design documents, or use the 3D-model to 
develop new tools that take all three dimensions into account. 

The third research line pertains to the role standardized instructional 
design languages may play for the instantiation of the 3D-model. For instance, 
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new languages such as IMS Learning Design (IMS-LD; Koper & Tattersall, 2005) 
and E2ML (Botturi, in press) offer opportunities to specify particular 
(combinations of) cells in the 3D-model. This is particularly relevant for formal 
representations at the elaboration levels ‘specification’ and ‘implementation.’ 
Further research should indicate to which extend these new languages may 
contribute to the quality of the design documents and the efficiency of the 
translation process. 

An important practical implication of this study concerns the schooling of 
instructional designers. The results of this study imply that producers are not in 
a good position to improve design documents, because they have difficulties in 
judging the quality of these documents. In addition, they cannot always ask the 
designer for clarification (e.g., in the case of –offshore—outsourcing). This puts 
the responsibility for improving design documents predominantly on designers. 
Besides being knowledgeable and skilled in traditional instructional design 
activities such as domain and task analysis, strategy selection, and media 
selection (see Richey, Fields, & Foxon, 2001), our results indicate that 
instructional designers need to become proficient in at least three new activities. 
First, they should be able to stratify instructional design documents to describe 
aspects associated with design as well as production. Second, they should be 
able to decide for each layer how much detail is required for unequivocal 
understanding of the design by producers. Finally, they should be able to 
represent their designs in formal design languages such as UML, IMS LD, or 
E2ML. Support tools may help them to perform their new activities. Due to 
limitations in budget and time, formal education will not always be feasible. 
Communities of practice might offer an alternative option, because they provide 
designers and producers with a platform to discuss each others information and 
training needs.  
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Chapter 4 
 

Novice and Experienced Instructional Software Developers:  
Effects on Materials Created with Instructional Software 

Templates3 
 

 
 

Abstract 
 

The development of instructional software is a complex process, posing high 
demands to the technical and didactical expertise of developers. Domain 
specialists rather than professional developers are often responsible for it, but 
authoring tools with pre-structured templates claim to compensate for this 
limited experience. This study compares instructional software products made 
by developers with low production experience (n = 6) and high production 
experience (n = 8), working with a template-based authoring tool. It is 
hypothesized that those with high production experience will be more 
productive and create software with a higher didactical quality than those with 
low production experience, whereas no differences with regard to technical and 
authoring quality are expected. The results show that the didactical quality was 
unsatisfactory and did not differ between groups. Nevertheless the templates 
compensated for differences in experience because the technical and authoring 
quality was equal for both groups, indicating that templates enable domain 
specialists to participate successfully in the production process.  

                                                 
3 This chapter will be published as: Boot, E., & van Merriënboer, J. J. G. (in press). 
Novice and experienced instructional software developers: Effects on materials created 
with instructional software templates. Educational Technology, Research and 
Development. 
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The development of instructional software is a costly and time-
consuming process (Tennyson & Barron, 1995). This development bottleneck, 
concerning the instructional design and software production, is becoming more 
and more serious because current trends in e-learning, such as just-in-time and 
just-enough learning (Rosenberg, 2000), increase the need for large amounts and 
many different kinds of instructional software, to be created for very specific 
needs, in short periods of time. The technical automation of development is only 
beneficial when it concerns a large volume of instructional software for the same 
topic (Spector & Muraida, 1997), such as software for teaching (foreign) 
languages or information technology skills. But as most knowledge domains are 
more specific, instructional software needs to be developed custom-made. This 
is typically done by domain specialists, because they already possess the 
necessary domain knowledge and have easy access to relevant—multimedia—
resources (Spector & Muraida, 1997), and professional instructional designers 
and software producers are not easily available or too expensive to hire. Such 
domain specialists are proficient in one or more task domains. In organizations 
such as the military, typically senior domain specialists are also tasked with 
teaching about their domain, and designing traditional instructional materials 
such as readers, syllabi, course plans, workbooks and so forth.  

The didactical quality of instructional software (defined as the extent to 
which desired learning outcomes are attained in an efficient manner) is of 
utmost importance because technical quality (defined as the extent to which the 
software takes care of the input, information processing, and output as 
intended) alone is necessary but not sufficient to stimulate the desired learning 
processes. Two approaches can be used to assess the didactical quality. First, an 
empirical approach which can determine if learners who use the software 
indeed reach the learning objectives specified beforehand. Secondly, an 
analytical approach that can determine to which degree particular instructional 
principles are embedded in the software. For example, Merrill (2002) describes 
five ‘first principles of learning’ (2002): The extension to which these principles 
are implemented determines the didactical quality of the software. The 
principles refer to (1) the use of real-life problems as the driving force for 
learning; (2) the proper activation of relevant prior knowledge; (3) the 
demonstration of useful problem-solving approaches and procedures; (4) the 
practical application of those approaches and procedures by the learner, and (5) 
the integration of what has been learned into real-world activities.   

However, principles and guidelines from instructional design theories are 
often not very concrete and difficult to apply unequivocally in developing 
instructional software. As Goodyear (1997) states: “There are many gaps 
between what the prescriptive literature on instructional design would have us 
believe and the vicissitudes of design and production practice” (p. 83). For 
example, it is mainly the way that the five principles mentioned above are 
applied rather than their mere presence that determines the didactical quality of 
software. Consequently, more powerful ways to support domain specialists 
with their development of instructional software are needed. Our main research 
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question is if so-called instructional software templates can adequately support 
domain specialists who develop (i.e., design and produce) instructional 
software. In this Introduction, first, different approaches to support domain 
specialists are presented, second, the use of templates in modern development 
tools is described, and third, the hypothesized effects of such templates are 
discussed. Then, we present an empirical study in which the quality of 
instructional software developed by novice and experienced domain specialists 
is compared.  
 
Supporting Domain Specialists 

How can the instructional software development process by domain 
specialists be made more efficient (i.e., faster, cheaper, easier) and more effective 
(i.e., improved didactical quality of the final product)? One way is to provide 
formal training to improve both design and production skills for creating 
instructional software. However, such training is often not possible due to a lack 
of budget, time, or suitable training programs. Another way is to provide so-
called 'authoring tools' (Locatis & Al-Nuaim, 1999), which intend to make the 
development process from paper-based instructional blueprint to concrete 
instructional software faster and easier, while still creating effective and 
appealing instruction (Merrill, 1997). For instance, such tools hide complex 
programming code by providing intuitive interfaces and pre-structured 
program components. Familiar tools are Macromedia's Authorware and 
Asymetrix' Toolbook, but current Learning Content Management Systems 
(LCMSs) also begin to provide build-in authoring facilities (Chapman, 2003). 
Vendors often claim that their tools allow for the easy and rapid creation of 
instructional software with a high didactical quality – even when developers 
have little or no experience. Thus, authoring tools seem to provide a good 
solution for supporting domain specialists who need to develop instructional 
software but have no or little experience with that.   

An inventory study for the Royal Netherlands Army analyzed the 
process of instructional software development by novice developers such as 
domain specialists who used different authoring tools (Boot & van Rooij, 1999). 
The domain specialists were mostly former instructors with considerable 
experience in teaching and developing traditional instructional materials, but 
with limited multimedia and instructional software development experience. 
The study showed that the development of instructional software was much 
harder for the domain specialists than expected, mainly because of (1) authoring 
problems, (2) technical problems, and (3) didactical problems.  
First, it became clear that despite the use of authoring tools the production 
process still required considerable programming knowledge, which the domain 
specialists seldom possessed (see also Merrill, 1997). Offering a collection of pre-
structured pieces of programming code and ready-made user interfaces was not 
enough. The authoring process still required insight in how to structure a 
program, how to deal with data variables, how to implement a navigation 
structure, how to apply an effective interaction design, and so forth. As a 
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consequence, the resulting products showed a lack of standardization in the 
uniformity of program structures and user-interfaces. In addition, most projects 
did not meet their deadlines and the quality of the final products greatly varied.  

Second, an interesting finding was that the domain specialists seldom 
reused existing multimedia resources in order to make the production process 
more cost-efficient. Reuse was impeded by the lack of technical knowledge of 
file formats, sizes, resolutions, and interfacing, required to (re-)combine 
multimedia resources and programming structures. This problem is further 
complicated by the fact that Internet technology, operating systems, and 
authoring tools are constantly being changed and updated, and are also 
becoming increasingly more advanced and complex. The domain specialists also 
lacked adequate tools to support them in reusing resources efficiently.  

Finally, it was found that even domain specialists with high instructional 
design experience, had great difficulties to apply didactical models that made an 
optimal use of the new possibilities offered by multimedia systems and 
instructional software. Possibly, traditional didactical models differ too much 
from new models for ‘digital learning and instruction’ to allow them to make the 
necessary transition (Simons, 2002; van Merriënboer, 2003). More specifically, it 
is difficult for domain specialists to implement multimedia instruction for at 
least three reasons. First, to embed didactical models in instructional software, 
the design must be quite detailed. For example, feedback on learner actions has 
to be anticipated beforehand because the developer cannot intervene in the 
learning process ‘on-the-fly’ as a teacher can do in a classroom. Second, domain 
specialists may not be aware of the didactical models that are (implicitly) 
supported by authoring systems. For example, in a ‘drill and practice’ or 
‘learning by doing’ setting, simulated environments can offer authentic 
opportunities for an extensive practice of skills. Or, in a ‘mastery learning’ 
setting, decisions with regard to mastery and subsequent measures can be based 
on a process of continuously, non-intrusive tracking and tracing of learning 
results. Third, domain specialists must be extremely careful with implementing 
combinations of different visual and auditory representations. For example, 
narration may work well for explaining a system-paced streaming animation 
but be less effective than a visual explanation if the learner is able to set the pace 
of the animation (for more examples, see Mayer, 2001; Sweller, van Merriënboer, 
& Paas, 1998). 

  
Template-based Development Tools 

Commercial vendors currently provide so-called 'zero-programming' 
tools that are claimed to solve the authoring, technical, and didactical problems 
in both instructional design and software production. These tools are 
characterized by the use of instructional software templates. The concept of such 
templates can be traced back to earlier developments in the field of software 
engineering. As soon as programmers discovered that it was helpful to 
automate certain routine and repetitive task aspects they created template-like 
structures that contained parts of a program, which only had to be instantiated 
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with new data and adapted towards new uses. Subsequently, the software 
methodology of Object Oriented Programming (OOP) focused on improving 
programming by the decomposition of software into independent, reusable 
units that functioned like LEGO bricks (Ackermann, 1996; Booch, 1994). Another 
important feature of OOP is its use of design patterns (Gamma, Helm, Johnson, 
& Vlissides, 1995). Based on the assumption that in developing software one 
encounters many recurrent problem situations that require comparable 
solutions, these patterns provide standard solutions to common software 
development problems. Working in the tradition of this building-block 
approach, instructional software templates should potentially be able to provide 
support on the authoring, technical, and didactical level.  

On the authoring level, instructional software templates offer pre-
structured ‘moulds’ of instructional software. By analogy with OOP, the 
templates include different didactical objects. Such objects can be higher-level 
objects, including empty lesson structures, default navigation methods, and 
generic graphical user-interfaces, as well as lower-level objects, including 
structures to create practice items, test questions, examples, cases, feedback, and 
learner support. The screens that present the developer an easy-to-use interface 
to templates (i.e., wizards) guide the proper structuring and programming of 
instructional software.  

On the technical level, instructional software templates automatically 
produce instructional software that is compliant with current technologies and 
operating systems. The vendor only needs to regularly update the templates in 
order to ensure compliance with the latest technical possibilities. Wizards can 
guide the proper embedding of multimedia objects into templates.  

On the didactical level, instructional software templates provide 
didactical design patterns, either originating from instructional theory or from 
best practices. Default structures may, for instance, present drill-and-practice, 
concept learning, mastery learning, and case-based learning, thereby explicitly 
gearing design with production. Wizards can guide the proper application of 
these structures.  
 
The Effects of Instructional Software Templates 

The use of instructional software templates is not new in the field of 
instructional technology (e.g., see de Jong, Limbach, Gelleveij, Kuyper, Pieters, 
& van Joolingen, 1999; Cline & Merrill, 1995; Merrill & ID2 Research Group, 
1998; Tennyson et al., 1995; van Merriënboer & Martens, 2002). But what is new 
is the appearance of a great number of commercial template-based tools and 
their widespread application in large development projects. As argued above, 
these tools may have the potential to overcome some or all of the problems 
associated with the development of instructional software, but until now very 
little is known about their actual benefits in real-life design projects.  

In the template-based authoring tools, there is typically a strong 
emphasis on authoring and technical support (e.g., see WBTIC, 2004). Didactical 
support is largely neglected, and if it is mentioned at all, it is based on a highly 
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traditional information-transmission view on instruction resulting in linear and 
quite passive learning experiences. One reason for not supporting didactical 
models or only supporting overly simplified didactical models may be that it is 
much harder to give didactical support than to give authoring and technical 
support. Consequently, developers may experience limited didactical support 
and are biased or even encouraged to apply traditional didactical models whilst 
designing and producing instructional software. Thus, whereas in general tools 
cannot be blamed, the main impact of instructional software templates may be 
that they support the production of mediocre instructional software with a low 
didactical quality in a more efficient manner.  

The present study examines if and how instructional software templates 
support domain specialists with low and high experience in producing 
instructional software. The domain specialists in these novice and expert groups 
are asked to perform the development task of producing an instructional 
software product by means of a typical set of templates. First, we hypothesize 
that, despite the support from the templates for the developers in the 
inexperienced group, the developers in the experienced group will produce more 
instructional software because they profit from their previous hands-on 
experiences with computers, development tools, and authoring systems. Second, 
we hypothesize that developers in both groups will produce final products with 
an equal authoring and technical quality. The templates are expected to support 
the experienced group while they conduct their regular authoring (e.g., entering 
the input, information processing and output facilities in the software) and 
technical (e.g., creation and embedding of multimedia files) development 
activities, and also to successfully scaffold the inexperienced group so that they 
can perform those activities up to the same level. Note that authoring and 
technical activities strongly interact, and are therefore combined. Third, we 
hypothesize that the developers in the experienced group will produce final 
products with a higher didactical quality, because they are more efficient in 
performing the authoring and technical task aspects and thus have more time to 
pay attention to (a) the instructional design, and (b) how to implement the 
design into the production process and product. Furthermore, it is expected that 
both groups feel they receive pre-structuring support from the instructional 
software templates, and this results in a faster development process and in final 
products with a sufficient didactical quality.  

 
Method 

 
Participants 

Fourteen educational developers of the Royal Netherlands Army 
participated in the study on a voluntary basis. Their mean age was 47 years (SD 
= 4.20). All participants were experts in a particular military knowledge domain. 
They were developers with different experience in creating traditional 
instructional materials and/or instructional software. They expressed their 
teaching experience on a 5-point Likert scale as 2.92 (SD = 1.04; 1 = ‘not at all’ 
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and 5 = ‘very much’). The participants had little or no experience in using 
instructional software as a learner, or for instructional purposes as a teacher. 
They were highly motivated to participate in the study because this was one of 
the few opportunities during their career to learn about new, innovative ways of 
developing instructional software. 

They were divided in a novice group (n = 6) and an experienced group (n 
= 8) based upon their experience with producing instructional software. This 
experience was measured by adding (a) number of years of experience in 
producing instructional software x (days per week developing instructional 
software / 5), (b) number of products developed, (c) number of years of 
experience with the authoring tool Authorware, and (d) number of years of 
experience with programming. This practical measurement yields a possible 
score between 0 and 46. Participants were regarded novice if they scored lower 
than 4, and experienced if they scored higher than 4. Experience was 0.42 for the 
novice group (SD = 0.80) and 15.90 for the experienced group (SD = 9.65), Mann-
Whitney’s U(N = 14) = 0, p = .002. The number of years of programming 
experience was checked too. The novice group had 0.58 years of programming 
experience (SD = 1.20) and the experienced group had 6.00 years of 
programming experience (SD = 3.07), U(N = 14) = 1.50, p = .004.  
Materials 

CBT Generator. The set of instructional software templates used in this 
study is part of an authoring tool called the CBT Generator (version 1.0). This 
support tool was specifically created for the Royal Netherlands Army to support 
military domain specialists in developing instructional software. It is based 
upon instructional software templates created by means of the Knowledge 
Objects in Macromedia Authorware© (version 5.2). The CBT Generator offers 
support with respect to authoring aspects, technical aspects, and didactical 
aspects – corresponding as closely as possible with the development procedures, 
best practices, and terminology used within the training sector of the Royal 
Netherlands Army.  

First, authoring support is offered for structuring and programming the 
instructional software according to best practices in authoring tools. Wizards 
were offered to configure pre-structured pieces of ‘empty’ instructional software 
(i.e., templates), a standard graphical user-interface was provided, and 
possibilities for tracking and tracing of the learning process were given.  

Second, technical support was offered with regard to embedding 
multimedia resources according to particular technical formats and presentation 
strategies. Wizards were offered to enter and configure—different combinations 
of—audio, text, and video in the templates.  

Third, didactical support was embedded in the templates, to implement 
the instructional design according to guidelines used in the Royal Netherlands 
Army (e.g., Gagné’s Nine Events, 1979; the guidelines presented by Leshin, 
Pollock, & Reigeluth, 1992). For example, guidelines pertained to the use of (a) 
teasers to gain attention; (b) different types of learning activities (12 types are 
available in the CBT Generator) to promote an active learning process; (c) 
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different sequencing models; (d) adaptive branching based upon a learner’s 
progress; (e) different levels of learner control; (f) different kinds of feedback; (g) 
extra learner support through glossaries and help-functions, and (h) formative 
and summative tests for assessment of learning. The didactical elements 
mentioned above are available in four different categories in order to compose 
the actual learning tasks. The first category contains information elements to 
present the learner information (1 available type), the second category contains 
instructional elements to present the learner explanations (12 available types), 
the third category contains question elements to ask the learner to solve a 
problem or a case (12 available types), and the fourth category contains learner-
evaluation elements to assess the learning process in a formative or summative 
fashion (8 available types). Note that the authoring, technical, and didactical 
aspects are implemented in a rather prescriptive manner in order to provide 
adequate pre-structuring support for developers to implement interactive and 
varied, flexible instruction. Wizards were offered to select and configure the 
instructional design implementations.  
  Tasks. All participants received the same paper-based assignment. First, 
they were given the task of developing (i.e., design and produce) an 
instructional software package for a training program in ‘military first aid’, 
using the CBT Generator. This topic was familiar to the participants because it is 
basic knowledge for all military personnel. Thus, possible initial differences in 
domain knowledge between experimental groups were prevented. Second, the 
assignment specified the time-constraints, the topic of the course, and the 
working procedure (i.e., time schedule, questionnaires that had to be filled out, 
etc.). Third, the participants were also told the criteria, in terms of quantity and 
authoring, technical and didactical quality, which will be used for the reviews 
on product quality. Fourth, for the instructional design, the target group 
characteristics and the learning objectives were provided. Fifth, for the software 
production, a list was provided with all available multimedia resources 
(pictures, texts, audio files, etc.) that could possibly be useful for developing the 
course. The participants were explicitly encouraged to reuse multimedia 
resources that typically are available in their normal work situation, such as 
fragments of manuals, pieces of information from the Internet, promotional 
materials from the Royal Netherlands Army, available CD-ROM materials, and 
so forth. Next to the assignment, a fully worked-out example was provided of a 
representative instructional software package about the topic ‘introduction of 
the Euro’, created by developers who were experts in using the CBT Generator. 
This worked-out example showed all possible development features of the 
available instructional software templates.  

Development environment. The participants worked in separate rooms, 
equipped with a stand-alone multimedia computer with Microsoft Windows© 
and the CBT Generator. The multimedia resources were provided on a separate 
CD-ROM.  Multimedia editing programs were pre-installed on the computer to 
enable the preview of multimedia resources. With these tools it was also 
possible to convert the format or the resolution of the resources. However, as the 
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purpose of the study was not to test if the participants were able to edit the 
multimedia materials, most resources could be used in the CBT Generator 
without modification.  
Measurements 

Background questionnaire. The background questionnaire was used to 
collect information on (1) the participants’ experience with programming 
instructional as well as non-instructional software (both in years of experience, 
daily experience, number of programmed applications, and usage of authoring 
tools); (2) their age; (3) their job profile (e.g., developer of traditional educational 
materials or instructional software); (4) their prior education (years and level of 
general education, particular Army courses they participated in), and (5) their 
experience with instructional software and educational development projects (in 
years and number of projects). The two experimental groups differed with 
regard to—instructional—programming experience, but were expected to be 
similar with regard to the other background variables.  

Product reviews. Three reviews on the instructional software products took 
place, pertaining to (1) the quantity of materials produced, (2) the quality of the 
authoring and technical aspects of the materials, and (3) the quality of the 
didactical aspects of the materials.  

First, the quantity was determined by the experimenter, as time on 
development task and length of the final product as the number of pages, and as 
the average number of edited didactical elements (informational, instructional, 
question, and learner-evaluation) on each page. Pages and didactical elements 
that were created but not filled out, or otherwise not used, were left out from the 
counting process.   

Second, the quality of the authoring and technical aspects of the materials 
were combined and measured in two ways. In the first measurement, the proper 
functioning of the product was determined by the experimenters by running the 
software and examining its behavior. The behavior was rated as either 
insufficient (problems with running the software) or sufficient (no problems). 
Extra care was taken to ensure that reported problems were caused by the 
instructional software developed by the participant and not by possible faults in 
the CBT Generator. Sufficient working of the product was required to proceed to 
the second measurement. In this second measurement, the quality of the design 
structure of the products was determined by the experimenters by measuring 
the number of different types of the instructional, question, and learner-
evaluation elements that are used. Also, it was determined whether a fixed 
instructional sequence (low learner control) or an open sequence (high learner 
control) was applied, and if a teaser was used to introduce the course in an 
attractive manner.  

Third, the didactical quality of the products was measured in two ways. 
First, participants were asked to give a self-score for the didactical quality of their 
product on a 10-point scale (1 = ‘very bad‘; 10 = ‘excellent’). In the Netherlands, 
this is the normal scale for grading learning outcomes and thus very familiar to 
the participants. Second, using the analytical approach towards determining 
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didactical quality, three expert raters independently scored all products on their 
didactical quality. The expert raters were experienced instructional design 
researchers from TNO Human Factors and not directly involved in this study. 
They received a short training on the technical possibilities and limitations of the 
CBT Generator and the embedded didactical model before the expert review, so 
they would not have unrealistic expectations. For instance, they should not 
consider alternative user-interface designs whilst the CBT Generator only 
provides one default interface. The expert raters scored the products in two 
phases. In the first phase they used a structured checklist reflecting different 
aspects of the embedded didactical model, such as the implementation of 
guidelines from the Nine Events of Gagné described above. This structured 
checklist gave the expert raters a good insight in the didactical quality. The Intra 
Correlation Coefficient (ICC; Fleiss, 1981) for the checklist scores is .72, p = .004, 
which is good. To directly compare the expert’s scores to the participants’ self-
scores, the expert raters scored the didactical quality of the product in a second 
phase with one total score, on the same 10-point scale utilized by the participants 
to score the didactical quality. The ICC for the total scores is .63, p = .02. The 
correlation between the checklist scores and the total scores was high 
(Spearman’s rho = .90, p = .000).  

Didactical perspective questionnaire. This questionnaire inquired for the 
didactical perspectives of the participants with regard to learning, instruction, 
and technology. The design of the questionnaire is based on a classification 
made by Andriessen and Veerman (2000), who identified a traditional and a 
progressive design perspective. Participants with a traditional perspective favor 
'direct instruction' principles, brought forward by models such as Gagne’s Nine 
Events and Merrill’s Component Display Theory (see Reigeluth, 1983). 
Participants with a progressive perspective favor ‘learner-centered’ principles, 
brought forward by models such as problem-based learning and goal-based 
scenarios.  
The questionnaire consisted of seven items. The first five items gave a firm 
statement on learning, instruction or technology and had to be scored on a 5-
point Likert scale (1 = ‘disagree’; 5 = ‘agree’). Disagreement referred to a 
traditional perspective and agreement referred to a progressive perspective. The 
remaining two items were ranking questions. They had each four statements on 
learning, instruction or technology, which had to be ranked by the participant in 
their order of importance. If traditional statements were ranked as most 
important, this indicated a traditional perspective. If progressive statements 
were ranked as most important, this indicated a progressive perspective. Based 
on both the scoring and the ranking of the items, each participant was classified 
as having a traditional, a progressive, or—if no explicit preference for a 
traditional or progressive perspective could be found—a neutral perspective. 
The internal consistency of the seven items, expressed as Cronbach's Alpha, was 
.68. 

Development style questionnaire. This questionnaire inquired for the 
development style of the participants. The design of the questionnaire is based 
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on a classification of Van Boxtel (2000), who defines three typical development 
styles: Meaning-directed (‘first thinking then acting’), practical-directed 
(‘varying thinking and acting’), and application-directed (‘first acting then 
thinking’). The questionnaire consisted of three items. Each item gave a short 
description reflecting either a meaning-directed, practical-directed, or 
application-directed development style. The participants had to score each item 
on a 5-point Likert scale (1 = ‘not fitting me’; 5 = ‘completely fitting me’) and 
were then classified on the basis of their average score on the three items. The 
internal consistency of the three items, expressed as Cronbach's Alpha, was .69. 

Evaluation questionnaire. The evaluation questionnaire consisted of 9 
statements about the development process, the use of instructional software 
templates, and the characteristics of the resulting products. Participants 
expressed their opinion for each statement by scoring them on a 5-point Likert 
scale (1 = ‘totally agree; 5 = ‘totally disagree’).    
 
Procedure 

To prevent initial differences in knowledge of instructional design and 
ability to work with the CBT Generator, the participants first took part in an 
eight-day course. The first four-day part focused on Instructional Systems 
Development (ISD) and creating and interpreting training blueprints. Thus, all 
participants learned the same structured development approach and the same 
terminology, preventing the use of different methods and confusion about the 
assignment in the current study. In the second four-day part of the course, the 
participants learned to work with the CBT Generator and all of its features, by 
means of developing a concrete product based on a detailed training blueprint. 
In this part of the course additional attention was given to interactivity, adaptive 
learning paths, and ‘extra’ functions (e.g., glossary, on-line help, teaser). 
Therefore, familiarity with the tool was guaranteed for all participants.  

Immediately after the course, the participants filled out the background 
questionnaire, the didactical perspective questionnaire, and the development 
style questionnaire. Then, the development task was given. This task was to be 
completed in two days (2 x 8 hrs.). The participants worked independently on 
the task. The experimenter received a list of strict instructions for conducting the 
experimental procedure and dealing with questions from the participants. Only 
in the case of technical problems or if a participant got stuck for a long time, did 
the experimenter offer support. Assistance was provided according to the 
instructions and strictly limited to technical problems with the tools or the 
computer, or to conceptual problems with understanding the assignment or the 
questionnaires. To calculate the effective time spent on the development task, 
participants were required to register exact start and end times in a time log. The 
experimenter checked if this was accurately performed. After the development 
task was finished, the participants filled out the evaluation questionnaire and 
the experimenter made all products anonymous for the blind expert reviews.  
 

Results 
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Given the small number of participants, Mann-Whitney tests are used to 

check for differences between the novice group and the experienced group. With 
regard to the background variables, no differences between both groups were 
found with regard to age, job profile, prior education, or experience with 
educational development projects.  
Quantity and Quality of Products 

Table 4.1 provides the means and standard deviations of both groups for 
the quantity of work done, the authoring and technical quality of the developed 
products, and their didactical quality.  
 
Table 4.1  
Means and Standard Deviations from the Product Reviews for the Novice and 
Experienced Groups 

 Novice group  
(n = 6) 

Experienced group 
(n = 8) 

 M SD M SD 
Quantity 

Time on development task (# hours)  8.75  1.86 8.00 1.41 
Length of product (# pages)  15.16 9.15 24.75 8.17 
# Information elements* 9.50 5.13 18.13 7.22 
# Instruction elements 8.00 4.10 13.00 5.04 
# Question elements* 1.33 1.75 5.13 3.40 
# Learner-evaluation elements 2.17 3.49 1.38 2.07 

Authoring and technical quality 
# Instruction elements types (0-12) 2.50 1.05 2.38 .52 
# Question elements types (0-12)** 0.83 .98 3.13 1.13 
# Learner-evaluation elements types 
(0-8) 

1.33 2.81 0.75 1.17 

Open sequence applied (0-1) .41 .17 .37 .08 
Teaser applied (0-1) .33 .52 .75 .46 

Didactical quality 
Participants self-score (1-10) 6.80 .84 5.50 2.43 
Expert raters’ checklist score (1-10) 2.36 .99 2.89 .43 
Expert raters’ total score (1-10) 3.33 1.34 4.5 .99 
*p < .05 
**p < .01 
 
With regard to quantity, there is no significant difference between the mean 
number of effective hours that participants in the novice group (M = 8.75) and 
the experienced group (M = 8.00) spent on the development task, U(N = 14) = 
19.50, p = .56. The amount of produced instructional software in number of 
pages also does not significantly differ between the novice group (M = 15.16) 
and the experienced group (M = 24.75), U(N = 14) = 12.00, p = .21. There is, 
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however, a tendency for the experienced group to produce somewhat more 
software, as indicated by a positive correlation between programming 
experience and number of produced pages (Kendal’s tau = .52, p = .02). 

The average number of information elements used differed significantly 
between both groups. The novice group used less information elements (M = 
9.50) than the experienced group (M = 18.13), U(N = 14) = 7.50, p = .029. The 
same applies for question elements, the novice group used less of these elements 
(M = 1.33) than the experienced group (M = 5.13), U(N = 14) = 6.50, p = .002. The 
average number of instructional elements and learner-evaluation elements did 
not differ significantly between both groups. 

With regard to the authoring and technical quality, all products 
functioned properly and were rated as of ‘sufficient’ quality. The only 
significant difference between the novice group and the experienced group was 
found for the number of different types of question elements: The experienced 
group used more different types of these elements (M = 3.13) than the novice 
group (M = .83), U(N = 14) = 3.00, p = .005. No significant differences were found 
for the use of different types of instructional- and learner-evaluation elements, 
nor for applied open sequences or teasers.  

With regard to the didactical quality, both the participants and three expert 
raters gave an overall assessment on a 10-point rating scale. Surprisingly, there 
is no significant correlation between the participants’ self-score and the expert 
raters’ total score, Kendal’s tau = .14, p = .56. As a second measurement, the 
expert raters gave a score based on a structured checklist. Again, there is no 
significant correlation between the participants’ self-score and the expert raters’ 
checklist score, tau = .38, p = .12. The self-scores of the novice group (M = 6.80) 
are not significantly different from the self-scores of the experienced group (M = 
5.50), U(N = 14) = 9.50, p = .29. The expert’s total-scores and checklist scores are 
also not significantly different between the novice group (in order, M = 3.33 and 
M = 2.36) and the experienced group (in order, M = 4.50 and U(N = 14) = 11.50, p 
= .11 for the total scores; and M = 2.89 and U(N = 14) = 14.50, p = .23 for the 
checklist scores). Whereas there are no significant differences between the 
groups, it is noteworthy that novice participants rate the didactical quality of 
their own products somewhat higher than experienced participants but that the 
opposite pattern is observed for expert ratings: Experts rate the didactical 
quality somewhat higher for the experienced group than for the novice group.  
 
Didactical Perspective and Development Style 

Table 4.2 presents the distribution of didactical perspectives (traditional, 
neutral, and progressive) and development styles (meaning-directed, practical-
directed, and application-directed) over the participants in the novice group and 
the experienced group.  
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Table 4.2 
Number of Participants in the Novice Group and the Experienced Group with 
Particular Didactical Perspectives and Development Styles 

 Novice Group 
(n = 6) 

Experienced Group 
 (n = 8) 

Didactical Perspectivea 
Traditional 3 1 
Neutral 2 5 
Progressive 0 2 

Development Style 
Meaning-directed 2 1 
Practical-directed 4 7 
Application-directed 0 0 
a The data from 1 participant in the Novice Group are missing 

 
The distribution of didactical perspectives does not significantly differ 

between the novice group and the experienced group (χ2(2, N = 14) = .73, p = 
.69). A Kruskal-Wallis test shows that there is no significant effect of didactical 
perspective on participants’ self-scores or expert raters’ total scores of the 
didactical quality of the product, the time spent on the development task, and 
the length of the product. 

The distribution of development styles also does not significantly differ 
between the novice group and the experienced group (χ2(2, N = 14) = .88, p = 
.35). A Kruskal-Wallis test shows that there is no significant effect of 
development style on participants’ self-scores or expert raters’ total scores of the 
didactical quality of the product, the time spent on the development task, and 
the length of the product. 
 
Opinions on Templates 

Table 4.3 presents the participants’ opinions on the development process 
and the use of the instructional software templates, which they expressed in the 
evaluation questionnaire. Mann-Whitney tests show no significant differences 
between the novice group and the experienced group for any of the test items. It 
appears that the variability within the groups is considerable.  
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Table 4.3  
Results of the Evaluation Questionnaire Indicating Participants’ Opinions on the Use of 
Templates 

Novice group 
 (n = 6) 

Experienced 
group (n = 8) 

 
 

M  SD M  SD 
1. Due to the structure of the templates, I create 

instructional software of higher didactical 
quality 

3.33 1.03 3.38 1.68 

2. By using the templates, the overall quality of 
my products decreases 

3.33 1.03 3.13 1.36 

3. Due to the templates, I am able to produce 
instructional software faster 

1.67 .82 3.00 1.77 

4. The templates provide me structure 2.83 .75 2.13 1.46 
5. The templates provide me more structure 

than I normally experience 
3.67 1.03 3.13 1.88 

6. The templates force me too much in a 
straight-jacket 

3.33 1.03 2.13 1.36 

7. The number of available types of didactical 
elements is insufficient  

2.00 .89 2.75 .71 

8. The ‘worked-out example’ explains the 
possibilities of the templates well 

1.83 .41 2.00 .93 

9. I have used the ‘worked-out example’ during 
the development process when something 
was unclear 

4.33 1.03 4.63 .74 

Note: All statements could be scored from 1 = ‘totally agree’, to 5 = ‘totally 
disagree’ 

 
 

Discussion 
 

This study examined the effects of instructional software templates on the 
development process, the quality of produced instructional software, and the 
perceived level of support. First, the experienced group was expected to 
produce more instructional software than the novice group. Indeed, a tendency 
in this direction was found and compared to the novice group the experienced 
group filled their pages with more information and question elements. The 
relatively small difference between the groups was possibly caused by the small 
amount of time devoted to the development task.   

Second, it was expected that both groups would produce final products 
with a comparable authoring and technical quality. Both groups were, indeed, 
able to produce working final products and, apart from the use of more question 
elements by the experienced group, no other differences were found on 
authoring and technical quality. It seems that the instructional software 
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templates may effectively compensate for differences in experience with the 
development of instructional software.  

Third, it was expected that the experienced group would produce final 
products with a higher didactical quality than the novice group, but that the 
didactical quality of the products from both groups would at least be sufficient. 
Expert ratings and self-ratings of didactical quality showed, however, no clear 
differences between the groups. Nevertheless, some measures for authoring and 
technical quality suggest that the experienced group put somewhat more 
emphasis on active learning tasks because they used more question elements in 
their tasks, and varied these learning tasks more often by using different types 
of question elements. Furthermore, the experts rated the didactical quality a 
little lower for the novice group than for the experienced group, but participants 
in the novice group rated the didactical quality of their own final products a 
little higher than participants in the experienced group. This may possibly be 
explained by the fact that participants in the novice group performed a new task 
with a new tool and were, therefore, more likely to be impressed by their final 
products than the experienced group. 

The results are mixed for the overall didactical quality for both groups 
together. The participants rated the didactical quality of their final products 
rather positive and their ratings were higher than the expert ratings. The 
experts, in contrast, were not very positive about the didactical quality: 
Specifically their checklist scores indicated an insufficient didactical quality. It is 
not totally impossible that the participants have a better judgment of the 
didactical quality than the instructional experts (who shared a background in 
instructional design research), because they were more familiar with the subject 
matter domain and the target groups. However, we are inclined to give a higher 
weight to the expert ratings because they carefully compared the final products 
with well-established instructional design principles that are documented in the 
literature and grounded in educational practices of the Royal Netherlands 
Army. A possible explanation for the low expert ratings is that most final 
products had a fixed linear structure, required little active engagement from the 
learners, used few additional functions, and applied no adaptive branching. The 
amount of variation in the kinds of learning activities (i.e., different didactical 
elements) was also rather low. This is despite the fact that before the 
experimental task, the developers were told that the criteria for the review on 
product quality would emphasize active learning.  

With regard to the perceived level of support, it was expected that both 
groups would feel they received sufficient pre-structuring support from the 
templates, resulting in a faster development process and better products. When 
participants were asked if they could reach a higher didactical quality with the 
given templates, on the one hand, they reacted rather negative. On the other 
hand, they claimed the templates did not decrease quality either and were rather 
positive when asked if they could produce the same products in less time thanks 
to the templates. 
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With respect to experienced pre-structuring support, participants 
indicated they felt that their development process was only moderately 
structured by the templates. They did not experience this given structure as 
restrictive. If they felt any limiting effect, it was mainly related to technical 
changes they could not make, for instance adapting a particular type of 
didactical element to their wishes. Despite the large amount of already available 
didactical elements in the templates (33 different elements in total), participants 
indicated that they would have preferred an even greater choice of didactical 
elements.  

It may be argued that the instructional software templates biased the 
participants towards the implementation of linear and rather passive didactical 
models. However, several measures were taken to prevent this. First, the set of 
available templates actually offered many opportunities to implement varied 
and highly interactive models. Second, the intensive eight-day course that the 
participants attended just before the development task covered these 
opportunities thoroughly and explicitly. And third, during their work on the 
development task participants were able to consult a fully worked-out example 
that illustrated these opportunities as well. The participants acknowledged this, 
although they also indicated that they hardly studied the worked-out example. 
Taken together the three measures did clearly not yield the desired results. This 
leads to the general conclusion that the instructional software templates allowed 
too much freedom for the developers and lacked the necessary amount of 
didactical support. The developers were allowed to express an undesirable bias 
towards passive, linear instruction based on an information-transmission view, 
and were allowed to focus on the authoring and technical aspects of their final 
products at the cost of their didactical qualities. The main beneficial effect of the 
templates seems to be related to the efficiency instead of the effectiveness of the 
development process (i.e., mediocre final products with fewer costs rather than 
superior products with less or equal costs). This is a serious problem because, as 
argued earlier, didactical quality is the most important characteristic of 
instructional software.  

Future studies should focus on the question of how instructional software 
templates can help developers create instructional software with a higher 
didactical quality without restricting their creative freedom. This is particularly 
important for the development of rich, interactive and flexible learning 
environments in which meaningful learning tasks are used as the driving force 
for learning. Lowyck (2001) describes two approaches to support the 
development of such environments. First, the didactically structured approach 
directs and supports the developer (a) in applying and filling the information, 
communication, and interaction components, (b) in determining their didactical 
functionality, and (c) in creating, configuring, and structuring them accordingly. 
Instructional software templates will be, thus, fixed in this approach and cannot 
be changed by the developer. The didactical quality of the final products is 
mostly determined by the quality of the templates. Second, the open approach 
only offers a structure to fill in the information, communication, and interaction 
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components. Instructional software templates may be adapted by the developer, 
and the didactical quality of the final products is mostly determined by the level 
of expertise of the developer. The decision to either apply a didactically 
structured or an open approach will then depend on the instructional paradigm, 
the characteristics of developers, the available tools and infrastructure, and so 
forth.  

In conclusion, instructional software templates may positively affect the 
efficiency of the development process and compensate for the developers’ lack 
of experience with the development of instructional software. This building 
block solution can be highly beneficial for the development of instructional 
software because more and more people with low instructional design and, 
particularly, software production skills will become involved. These novice 
developers often have much (tacit) knowledge of the workplace, subject matter 
domains, and target groups, as well as good access to a wide range of 
multimedia materials that can be used to develop instructional software with a 
high level of authenticity and attractiveness. Even if these developers produce 
software by means of instructional software templates that do not necessarily 
enforce the highest didactical quality, the resulting products can be very useful 
for demonstration and communication of ideas (cf., rapid prototyping, Tripp & 
Bichelmeyer, 1990). Furthermore, the creation of instructional software 
templates could be made an integral part of the development process, because it 
forces designers to reflect on their work and to make their didactical 
perspectives on learning and instruction explicit. In turn, “best practices” of 
(experienced) developers with regard tot authoring, technical, and didactical 
issues can be captured in a design-patterns language. As described above, design 
patterns are standard solutions to common problems, each capturing the essence 
of a particular practice. Although each of these patterns can be simple, from a set 
of design patterns that work together to generate complex behavior and 
complex artifacts, a design pattern language can arise (see for example 
http://www.pedagogicalpatterns.org). Such a language can feed the creation of 
new templates that connect better to the needs, abilities, and limitations of 
developers.  
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Chapter 5  
 

Solutions for Developing Instructional Software by Creating and 
Reusing Learning Objects4 

 
 
 

Abstract 
 

Two studies test the potential of template, automation, and intermediate 
product solutions to overcome problems that hamper the efficient development 
of instructional software by reuse of learning objects. In the first study, the 
templates and automation solutions were applied by developers (N = 8) who 
created and reused large as well as smaller multimedia learning objects—in a 
familiar and an unfamiliar domain. Developers judged both solutions positively, 
and rated working with didactical meaningful learning objects higher than 
working with multimedia objects. However, no differences between the familiar 
and unfamiliar domain were found and the developers made several remarks 
on the limitations of reuse. In the second study, the automation solution in 
combination with a set of (a) regular templates, (b) extended templates, and (c) 
intermediate products were applied by developers (N = 15) who created and 
reused learning objects. As expected, the automation solution in combination 
with the intermediate products yielded the highest quality learning objects, 
followed by the extended templates and, finally, the regular templates. The two 
studies show that there is no single solution for all problems of reuse: The 
problems will only be solved if a well-chosen combination of solutions is 
applied.  

                                                 
4 Boot, E., & van Merriënboer, J.J.G. (submitted). Solutions for Developing Instructional 
Software by Creating and Reusing Learning Objects 
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Reuse of learning objects (LOs)—digital units of information with an 
instructional purpose—is believed to promote the efficient development of 
instructional software. Two kinds of LOs can be identified in this modular 
approach. First, didactically meaningful LOs are relatively large units of 
learning material (e.g., Computer-Based Training modules or web pages) that 
contain interaction possibilities such as questions and tests that can be tracked 
by e-learning systems. Second, multimedia LOs are smaller components such as 
text documents, pictures, and interactive animations that contain interaction 
possibilities that are not tracked by e-learning systems. Both kinds of LOs are 
created, centrally stored, retrievable, and applicable for multiple purposes (i.e., 
“once made - used many”). Learning-technology standards provide the common 
frameworks to technically enable this type of reuse.  

The need for reuse is currently increasing, as modern task-directed and 
competency-based teaching models promote the development of powerful 
electronic learning environments. Such environments are multimedia-rich, 
requiring many multimedia LOs. Also, they often include adaptive learning 
trajectories, requiring multiple sets of didactically meaningful LOs to tailor the 
instruction towards the needs of individual learners. To save development costs, 
novice developers with low production experience, such as subject matter 
experts, teachers, and instructional designers, are often involved in the process 
of reusing LOs. However, the many complex didactical and technical issues 
potentially exclude such inexperienced developers from a smooth reuse process. 
Mostly, they are only involved in the development of instructional software for 
a short period of their career, which makes it difficult to gain the necessary 
experience. An important question is how to assist these developers by means of 
new support solutions. In this article, first, five problems of reuse are presented 
as well as three possible solutions to overcome these problems. Subsequently, 
two studies are described that empirically test the effectiveness of different 
combinations of those solutions. The article ends with a general discussion, 
presenting the conclusions as well as the theoretical and practical implications of 
the presented studies. 

 
Problems of Reuse 

 
Van Merriënboer and Boot (2005) identify five problems of reuse: The 

metadata problem, the arrangement problem, the exchange problem, the context 
problem, and the pedagogical function problem. 
 
The Metadata Problem 

 This problem refers to the fact that it is difficult and extremely labor 
intensive to specify metadata for large sets of LOs. Metadata is information to 
“label” LOs in order to enable an efficient search for them in databases. 
Examples of metadata are the title, the producer, the possible application, the 
content, the size, and so forth. There is a lively discussion on the number of 
necessary metadata fields. If a developer of an object fills out too few fields, 
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other developers, searching for objects, will probably be overwhelmed with a 
large amount of possibly relevant LOs. However, using more fields heavily 
increases the workload associated with the specification of LOs. And while it 
may help other developers to find exactly what they want, it reduces the chance 
that they find anything at all because the chance that an object has the features a, 
b, and c is smaller than the chance that it has only the features a and b. 
Furthermore, there is also discussion on the nature of the metadata. For instance, 
well-defined metadata fields make it difficult or even impossible for an 
individual developer to express his intentions unambiguously, while loosely 
defined fields yield communication problems between developers and, 
eventually, between e-learning systems. 
 
The Arrangement Problem 

This problem refers to the fact that combining and sequencing LOs into 
larger arrangements is not always easy and self-evident. This can be illustrated 
by the LEGO© metaphor. Basic LEGO© bricks are only appropriate to build 
simple structures. For building more complex structures, one requires the 
equivalent of more advanced LEGO© bricks, as found in Technical LEGO© (e.g., 
axles, gearwheels, receptors, programmable bricks etc.). In contrast to basic 
LEGO© bricks, Technical LEGO© elements differ in their external structures (i.e., 
the way they can be attached to each other) and thus cannot be combined with 
every other element. Also, they differ in their internal structures (i.e., the 
function of the element, like an axle or gearwheel) so that they can only be 
combined into certain arrangements to form bigger elements. This metaphor 
illustrates that differences between LOs can prevent valid arrangements. For 
instance, if two LOs differ in their external structures because they yield 
incommensurable assessment information (e.g., one is using American A-B-C 
grading, the other the European 10-point scale), they cannot easily be combined 
into one valid arrangement. As an example for difference in internal structure, 
two LOs (e.g., an annotated picture and a piece of text) may together yield an 
invalid arrangement because in one LO another word is used to refer to the 
same thing as in the other LO (e.g., the word “screen” is used in the annotated 
figure and the word “monitor” is used in the piece of text), which will make the 
arrangement highly confusing for the learner. With regard to the arrangement 
problem, it may even be argued that only large instructional arrangements like 
complete lessons or courses can be reused effectively (Wiley, 2000).  
 
The Exchange Problem 

This problem refers to the fact that it may be difficult to exchange LOs 
between developers and e-learning systems. From a psychological viewpoint, 
the readiness to share LOs is not self-evident, as this implies access to personal 
notions and ideas by others. This raises a psychological threshold for developers 
to let others reuse their materials. But the other side of the coin is that 
developers do not easily accept objects that were not developed by them, 
something known as the “not-invented-here” syndrome. Second, organizational 



Chapter 5  

 78

factors like security policies (e.g., for military information) and infrastructure 
(e.g., firewalls that prevent using plug-ins or java applets) may prohibit an 
effective exchange of LOs. Third, current regulations concerning Intellectual 
Property Rights (IPRs) often limit the sharing of LOs.  
 
The Context Problem 

This problem refers to the fact that effective LOs cannot be created in 
isolation without an implicit or explicit instructional setting, target group, or 
other contextual descriptors. This may seriously hinder reuse. Suppose, for 
example, that a LO is created consisting of a picture of a piece of machinery, one 
part of the machine that is highlighted by color-coding, and an explanatory text 
for this highlighted part. This LO can be effectively used for a presentation, but 
not for a test because the explanatory text may not be used as feedback (i.e., 
another pedagogical purpose); it can be effectively used for individual e-
learning but not for teacher-led instruction because the explanatory text may be 
redundant with the explanation of the teacher and deteriorate learners’ 
performance (i.e., another instructional setting causing the so-called 
“redundancy effect”; see van Merriënboer & Sweller, 2005), and it can be 
effectively used for most learners but not for the color-blind because of the 
color-coding (i.e., another target group). In sum, this implies that every LO has 
its own context-specificity, which makes it hard to apply it in a context other 
than that for which it was originally created.  
 
The Pedagogical Function Problem 

This problem refers to the fact that it is difficult to express the 
pedagogical intentions of a LO by means of technical properties such as 
metadata, leading to sub-optimal reuse. Properties like size or format can be 
sufficiently described in metadata, but the pedagogical function is extremely 
hard to specify. First, this is caused by the fact that LOs can often fulfill different 
functions. For instance, according to Merrill’s Component Display Theory (1983) 
a photograph of an eagle can be used (1) as an example or instance of the 
concept “bird”; (2) as a test item where learners must classify the bird as an 
eagle; (3) as an alternate representation of a textual description of an eagle, and 
so on. Furthermore, the pedagogical function of one LO may require other 
complimentary LOs, which may or may not be available to the developer. For 
instance, the pedagogical function of the photograph of the eagle may be that of 
an example, but this requires the joint availability of another LO with the 
pedagogical function of a generality (i.e., a definition of the concept ”bird”).  
 

Solutions for Reuse 
 

Van Merriënboer and Boot (2005) proposed three solutions to overcome 
the problems of reuse: Templates instead of instantiations, technically automate 
what can be automated, and intermediate instead of final products.  
 



    Learning objects   

 79

Templates Instead of Instantiations 
Developers often make ample use of implicit or explicit templates: Pre-

structured “moulds” of instructional software. These can be used (a) to organize 
lessons (e.g., presenting content–providing practice with feedback—discussing 
results, etc.); (b) to reach particular types of instructional objectives (e.g., to 
support learning a procedure, state the general steps of procedure—provide 
several demonstrations—require learners to perform the procedure, and so on in 
accordance with Component Display Theory; see Merrill, 1983), and (c) to 
design computer screens of the lessons. A focus on templates rather than 
instantiations may increase the effectiveness of reuse. A similar orientation on 
templates can be found in Object Oriented Programming (OOP), which offers a 
solution for dealing with highly complex development processes by 
decomposing the software into independent units that can be easily reused 
because of the level of abstraction provided (Booch, 1994). 

Templates diminish the arrangement problem because they offer better 
opportunities than instantiations to make valid combinations of LOs. For 
instance, two instantiations of which one uses the American A-B-C grading 
system and the other uses the European 10-point grading system are difficult to 
combine in one arrangement. If two templates were used rather than two 
instantiations, offering the opportunity to specify the required grading system 
(e.g., by selecting it from a list of possible options), there would be no 
arrangement problem because one could simply specify the same grading 
system for each LO. Furthermore, the exchange problem and, in particular, the 
“not-invented-here” syndrome are at least partly solved because developers are 
expected to specify the instantiations according to their own preferences. Such 
specification will help to develop a sense of ownership. Templates partly solve 
the context problem because the context-sensitive information needs not be in 
the templates but only in the instantiation of this template. Templates offer the 
developer the opportunity to specify the context-sensitive information. For 
instance, if a developer is using a template for reaching an instructional 
objective of the type “using a procedure” (i.e., give general steps of the 
procedure, give several demonstrations, ask learner for applications), the 
developer may specify a demonstration that is explained in English for one 
context or target group, and a demonstration that is explained in another 
language for another context or target group. Summarizing, a focus on 
templates instead of instantiations may help to solve the arrangement, exchange, 
and context problem. However, an important implication is that templates 
should contain as little contextual information as possible so that the developer 
can precisely specify this context-specific information.  
 
Technically Automate What Can be Automated 

Advancements in information technology may also offer facilities that 
support reuse of instructional materials. Automation is especially beneficial for 
processing large amounts of information. The best example pertains to the 
problem of metadata creation and exchange. Current research (Boot & Veerman, 
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2003) aims at the development of algorithms for the automatic analysis of 
multimedia content and the semantic indexing of this content in metadata fields. 
Such automation may not only be more cost-effective but also yield more 
objective metadata than indexing by hand. Even if complete automation is not 
feasible, the specification of metadata and the search for LOs on the basis of 
metadata can be strongly supported with automated tools. For instance, 
objective features of LOs, such as format, size, and language can automatically 
be generated and added to the metadata specification of that LO. The same 
applies for objective features of the developer, such as his name, organization 
and IPRs, and for information from formal vocabularies, such as classifications 
(e.g., a scalpel is an instance of the category of medical instruments) and 
particular keywords (e.g., Healthcare, Surgery). Finally, search and retrieval 
features of e-learning systems can provide intuitive user interfaces that make it 
easier to use these types of metadata.  
 
Intermediate instead of Final Products 

While LOs are generally defined as “digital units of information with an 
instructional purpose”, they are typically limited to the final products that can 
be directly presented to learners. Of course, there are many other informational 
units with an instructional purpose, such as (a) the results of a contextual 
analysis, target group analysis, or task analysis; (b) descriptions of performance 
and instructional objectives for a particular lesson or course; (c) blueprints 
including learning activities providing the basis for the development of 
instructional materials, and so forth. These intermediate products contain rich 
information that describes the final products for which they were made, but 
they are suitable for reuse as well. 

Intermediate products may help solve the arrangement problem because 
they provide insight into valid arrangements and so guide the selection and 
sequencing of final products. For example, if the results of a task analysis (i.e., 
intermediate product) provide an ordered sequence of decision steps, this 
facilitates the search and arrangement of demonstrations (i.e., final products) for 
each step. And if a list of instructional objectives (i.e., intermediate product) is 
available for a new educational program, this facilitates the search and 
arrangement of courses (i.e., final products) that constitute the program. 
Intermediate products may also help to solve the context problem because they 
provide rich information about the final products, which facilitates the finding 
of LOs that fit a new context. Actually, the intermediate products can fulfill the 
same role as the metadata specified for final products, but they are expected to 
be more effective because they provide more content-related information. For 
instance, if a developer is searching for a picture of a particular type of milling 
machine, the result of a task analysis on milling (i.e., intermediate product) will 
be very helpful for finding the most effective picture (i.e., final product) because 
it indicates the controls and displays that need to be operated by the learners 
and, therefore, should be visible in the picture. Typically, this type of 
information (i.e., which displays and controls are visible on the machine) is not 
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part of the picture’s metadata. Furthermore, intermediate products may also 
help to solve the pedagogical function problem because they provide rich 
information that helps the developer to determine which pedagogical functions 
can or cannot be fulfilled by a final product. For instance, in our example it is 
possible that the results from the task analysis allow the developer to determine 
that all controls and displays—necessary to operate the milling machine—are 
visible on the picture. The developer may then decide to use this picture not as 
an illustration but as a test, in which the learner must describe the steps and 
simultaneously point out the necessary controls and displays for operating the 
machine.  

An important condition for the intermediate product solution is that 
developers carefully document these intermediate products in a digital form, 
preferably in databases that interrelate intermediate and final products. 
Computer-based instructional design tools may help to do so (for an example of 
such a tool based on the 4C/ID-model, see de Croock, Paas, Schlanbusch, & van 
Merriënboer, 2002, and www.enovateas.com). 

 
Testing Possible Solutions for Problems with Reuse 

 
The three presented solutions (templates, automation, intermediate 

products) and, especially, combinations of the three are believed to support 
developers to solve the five presented problems of reuse. However, there is no 
empirical evidence yet that they will actually provide support. Therefore, two 
studies are conducted to test if different combinations of these solutions, as 
embedded in computer-based tools for creating and reusing LOs, really support 
developers. These studies are set up in an authentic setting to investigate how 
implementations of the proposed solutions are perceived by the developers 
(Study 1) and how they affect the quality of created LOs (Study 2).  

The first study focuses on a combination of the template and automation 
solutions. Inexperienced developers create and reuse didactically meaningful 
LOs and multimedia LOs in a familiar and an unfamiliar subject matter domain. 
In general, it is expected that developers will positively perceive the support 
provided by the combined templates and automation solution and the quality of 
their created LOs. A first hypothesis is that developers more positively perceive 
the support when they are working with didactically meaningful LOs than 
when they are working with multimedia LOs. This is true because metadata 
become increasingly important when you search semantically rich elements, 
which must be assessed on their potential pedagogical application and their 
possible combinations with other LOs. A second hypothesis is that developers 
more positively perceive the provided support when they are working in an 
unfamiliar domain compared to a familiar domain, because an unfamiliar 
domain forces them to rely more on metadata. 

The second study focuses on the effectiveness of combinations of the 
template, automation, and intermediate product solutions. In a familiar domain, 
inexperienced developers create and reuse LOs that take the form of cases, that 
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is, learning tasks that describe an authentic problem situation and ask learners 
for possible solutions (Schank, Berman, & MacPherson, 1999). Three conditions 
are distinguished and compared with regard to the quality of created cases. The 
condition that combines the “regular” template and automation solutions serves 
as a baseline and is comparable to the combined solution applied in Study 1. 
First, it is hypothesized that a combined solution with extended templates and 
automation results in a higher quality of created cases than the baseline 
condition because the extended templates contain job aids that provide 
meaningful information on how to use the templates. Second, it is hypothesized 
that an integrated solution with regular templates, automation, as well as 
intermediate products also results in higher quality of created cases than the 
baseline condition because the intermediate products provide meaningful 
information on how to use the LOs.  
 

Study 1: Perceptions of the Automation and Template Solutions 
Method 

Participants  
Eight developers of—paper-based and computer-based—educational 

materials from the Royal Netherlands Army (RNA) participated in this study. 
They had a background in a military domain (engineering, medical support, 
artillery, or air defense) and worked at one of the Educational Development 
Centers of the RNA. The participants worked in four teams of two persons each, 
who were both employed at the same Educational Development Center.  
 
Materials 

Development tools. The Integrated Development Environment (IDE) used 
by the participants consisted of (a) the Sharable Content Object (SCO) Generator, 
and (b) a  Repository. The SCO Generator provided the template solution for 
this study, by offering pre-structured support on (a) didactical, (b) authoring, 
and (c) technical aspects of developing LOs. With respect to the didactical 
aspects, the templates provided a number of default instructional design 
structures that are familiar to the participants, such as Gagné’s Nine Events 
(1965), presentation-practice-feedback sequences, and simple-to-complex 
orderings of learning tasks (see, e.g., Leshin, Pollock, & Reigeluth, 1992). With 
respect to the authoring aspects, the templates provided a number of empty 
software structures that could easily be instantiated with multimedia materials 
to become LOs. Aspects such as timing of feedback, tracking and tracing of 
learning results, interaction design, and navigation structures could easily be 
(re)configured. With respect to the technical aspects, the templates provided a 
number of structures for “packaging” LOs, that is, storing them according to the 
specifications of ADL-SCORM (2004). A distinction is made between SCOs and 
Assets. The first are didactically meaningful objects provided with metadata, 
which can be executed by a learning management system (e.g., modules, 
lessons, learning tasks). The second are multimedia objects provided with 
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metadata, which are used to build an SCO and cannot be executed themselves 
(e.g., graphics, text documents, video and audio clips).    

The Repository is a database that supports the storage and retrieval of 
LOs. It provides the automation solution for this study and is based upon the 
Teletop learning management system (Strijker, 2004). The process of storing LOs 
is largely automated because the participant (1) can upload a new LO to the 
database by operating a simple user interface, and (2) needs to specify only a 
selected, limited set of metadata fields suggested by the system. Metadata that 
can be automatically generated are specified by the system, which analyzes the 
objective features of the LO (e.g., size, language) and the user-profile (e.g., name 
and organization of the author). 
 
Table 5.1 
An Overview of the Used Metadata Fields with Typical Examples Specified 
Category Metadata 

Field 
Examples of specified metadata 

General Title “Theory on Medical Instruments” 
 Description “Lesson on the theory of Medical Instruments” 
 Keywords “Medical Instruments”, “Scalpels”, “Pliers” 

 
Technical File format “Word document” 

 
Classification Purpose  “Medical Discipline” 
 Description “NL”, “Army”, “Logistics”, “Healthcare”, “Medical 

Services”, “Operational Healthcare”, “Medical 
Treatment” 

 Keyword “Medical Instruments” 
 

Table 5.1 provides an overview of the used metadata fields, based on the 
specifications of ADL-SCORM. The process of retrieving LOs is partly automated 
through advanced search methods. A search on metadata fields yields an 
overview of all applicable LOs. A search on icons yields a “thumbnail” overview 
of all graphical files. A search on operators offers an overview of LOs that 
contain particular keywords and/or are created in a particular time frame.  

Tasks. The development tasks were performed in two sessions of three 
days each. In both Session 1 and Session 2, five assignments were conducted by 
all four teams:  

1. Storing Assets that were pre-installed on participants' computers, into the 
Repository. This assignment took 4 hours and was used to test the 
automation solution.  

2. Retrieving Assets that were stored by one of the other teams as part of 
Assignment 1, from the Repository. This assignment also took 4 hours 
and was used to test the automation solution.  

3. Developing learning content with the SCO generator, based upon a small 
training blueprint, describing the learning objectives and the training 
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context. The learning content was created from the SCOs built by the 
Assets retrieved as part of Assignment 2. Sometimes, multiple SCOs had 
to be reconfigured to make valid arrangements. This assignment took 8 
hours and was used to test the template solution.  

4. Storing SCOs that were created as part of Assignment 3, into the 
Repository. This assignment took 4 hours and was used to test the 
automation solution.  

5. Retrieving SCOs that were stored by one of the other teams as part of 
Assignment 4, from the Repository. This assignment took 4 hours and 
was used to test the automation solution. 

 Session 1 and 2 differed from each other with regard to the familiarity of 
the participants with the subject matter domain. Session 1 dealt with medical 
instruments and field orientation, topics that were unfamiliar to the participants. 
Session 2 dealt with ammunition awareness, medical materials, tank 
recognition, and aircraft recognition—topics the members of each team were 
specialized in. This allowed for testing the hypothesis that the template and 
automation solutions are rated more useful for unfamiliar domains than for 
familiar domains, because in the unfamiliar domain the participants are forced 
to rely more on metadata.  

Experimental rooms. The four teams worked independently of each other, 
in rooms equipped with one computer for each participant. Each computer had 
the SCO Generator installed and broadband LAN access to the Repository 
which was installed on a central server. The Assets for the first assignment of 
each session were available in a map presented on the desktop of each 
computer. The Repository was filled with more than 1000 Assets in a variety of 
file formats in order to represent a realistic working situation.  
 
Measurements 

Background questionnaire. This questionnaire collected information on 
participants’ (a) experience with developing educational materials including the 
production of instructional software, (b) previous coursework, and (c) 
experience with reusing multimedia components and parts of lessons. 
Participants were asked with an open question about their current experiences 
with regard to reuse.  

Monitoring. In a log file, the Repository automatically recorded the 
number of stored and retrieved LOs and the related time in minutes. 

Evaluation questionnaire. The questionnaire consisted of two parts. The 
first part contained 10 questions pertaining to particular aspects of the SCO 
Generator and the template solution. For questions 1-5, the participants used a 
5-point Likert scale; for question 6, they used a “yes-no” scale, and for questions 
7-10, they used a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 10 = 
“excellent”) (see Table 5.2). The second part contained 8 questions pertaining to 
the automation solution. The participants rated particular aspects on a 10-point 
scale for both SCOs and Assets, to enable the comparison between didactically 
oriented LOs and multimedia LOs (see bottom part of Table 5.3). This allowed 
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for testing the hypothesis that the automation solution is rated as more useful 
for SCOs than for Assets. Participants were asked to write down any remarks 
they had with regard to the assignments, the process of reusing LOs, and the 
development process in general.   

Product reviews. The experimenter rated the technical functioning of all 
products as sufficient or insufficient.   

Procedure 
All participants took part in a one-day training session. The purpose and 

procedure of the study were explained and the SCO Generator and Repository 
were demonstrated. The purpose of LOs and the use of metadata fields were 
discussed, without discussion about which values should be used to fill out the 
fields. A worked-out example of a course created with the SCO Generator was 
shown. A paper-based job-aid with instructions for how to use the Repository 
was made available. The participants filled out the background questionnaire 
before Session 1. In both sessions, the four teams could not consult with each 
other, forcing participants to rely on available metadata specified by other 
teams, rather than personal communication. An experimenter was always 
present to answer questions, but this assistance was limited to technical 
problems and difficulties with understanding the assignments. The participants 
filled out the evaluation questionnaire after each session to enable a comparison 
between an unfamiliar domain (Session 1) and a familiar domain (Session 2). 
Finally, the experimenter reviewed all products. 

 
Results 

 
Participants mean development experience (design and production 

activities) was 4.75 years (SD = 3.01); they completed an average of 3.87 
instructional software products (SD = 3.52), and they took an average of 2.62 
courses on the development of educational materials (SD = 1.41). They rated 
their experience with template-based development tools as “below average” (M 
= 1.75, SD = 0.71 on a 5-point Likert scale on which 1 = not experienced and 5 = 
very experienced) and their experience with the CBT generator, a predecessor of 
the SCO Generator, as “average” (M = 2.50, SD = 1.07). The Repository was 
completely new to them. Seven participants had experience with reusing 
Assets—four participants reused assets from only one course and three 
participants reused assets from multiple courses. Four participants had 
experience with reusing SCOs—two participants reused SCOs from only one 
course and two participants reused SCOs from multiple courses.  
 From the participant’s current experience of reuse, four central issues 
appeared. First, all participants think that there is much reusable learning 
content available in their organization. Second, they often find it difficult to find 
relevant learning content. Third, they find it difficult and laborious to adapt 
learning content from other resources for their own use. Fourth, they also find it 
difficult and laborious to create metadata files and specify relevant metadata.  
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Template Solution 
The participants developed roughly the same number of SCOs in the 

unfamiliar domain (Session 1, M = 12.38, SD = 5.55) and the familiar domain 
(Session 2; M = 13.50, SD = 7.87). Table 5.2 presents an overview of the means 
and standard deviations of participants’ ratings of specific aspects of the SCO 
Generator and the template solution.  
 
Table 5.2  
Study 1: Participant Ratings for the SCO Generator and Template Solution  

Unfamiliar 
domain 

(Session 1) 

Familiar 
Domain 

(Session 2) 

 

M SD M SD 
1. Quality of user interface of SCO 

generator a  
3.50 .93 3.63 .74 

2. Quality of structure of SCO generator 2.37 1.51 2.25 1.38 
3. Quality of information presentation by 

SCO generator 
1.75 1.04 3.50 1.41 

4. Quality of didactical templates in SCO 
generator 

3.13 1.55 3.13 .64 

5. Possibility to apply own ideas  1.88 .99 2.37 1.18 
6. Desire to have influence on reuse of 

others by own materials b 
.75 .46 .43 .53 

7. Satisfaction with end result (i.e., the 
created reusable LOs) 

5.87 1.88 5.13 2.58 

8. Expectation of availability of reusable 
material in RNA  

6.50 1.77 6.17 1.72 

9. Usability of SCO Generator for 
developing reusable LOs  

5.75 1.38 5.88 1.46 

10. Suitability of complete template solution 
for developing reusable LOs  

5.75 1.67 5.75 1.48 

a  Questions 1-5 are rated on a 5-point scale (1 = “very bad”; 5 = “very good”). 
b Rated as “no” (0) or” yes” (1). 
c Questions 7-10 are rated on a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 
10 = “excellent”). 
 

Participants rated the quality of information presentation by the SCO 
Generator (question 3) lower when working with unfamiliar content (M = 1.75, 
SD = 1.04) than when working with familiar content (M = 3.50, SD = 1.41; 
Wilcoxon Signed Rank test: W = 0.00, p < .05. No other significant differences 
between the unfamiliar and familiar domain were found.  

The quality of the interface (question 1) and the didactical templates 
(question 4) were rated above satisfactory, and the participants expected a high 
availability of reusable materials in the RNA (question 8). The rating on the 
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desire to have influence on the reuse of self-developed materials by others was 
between “yes” and “no” (question 6). Participants rated their satisfaction with 
the end result (question 7), their perceived usability of the SCO Generator 
(question 9), and the suitability of the complete template solution (question 10) 
as almost satisfactory. Finally, the quality of the structure (question 2) and the 
possibility to apply their own ideas (question 5) were rated below satisfactory. 

The product review indicated that all teams created working LOs with 
the SCO Generator. There were some minor technical problems with three of the 
products due to bugs in the SCO Generator. 
 
Automation Solution 

All participants were able to store and retrieve LOs. Table 5.3 presents an 
overview of the means and standard deviations of the times for storing and 
retrieving LOs, the number of retrieved LOs, and the participants’ ratings on 
eight aspects of the Repository and the automation solution.
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As indicated in the top of Table 5.3, participants spent between 2.75 and 
7.43 minutes for storing a new LO, between 1.50 and 4.00 minutes for retrieving 
a LO, and retrieved a minimum of 14 and a maximum of 28 LOs. The following 
significant differences are found by Wilcoxon Signed Rank tests. When working 
with familiar content, participants retrieved more Assets (M = 28.00, SD = 8.83) 
than SCOs (M = 14.13, SD = 7.06; W = 0.00, p < .05).  Also, over both sessions, 
participants retrieved more Assets (M = 27.58, SD = 8.89) than SCOs (M = 17.18, 
SD = 9.15; W = 3.00, p < .05).  Over both sessions, participants needed less time 
to retrieve SCOs (M = 2.00, SD = .53) than Assets (M = 3.37, SD = 1.48; W = 4.00, 
p < .05).  

On eight occasions, SCOs were rated higher than Assets on one particular 
aspect. The relevance of the metadata set (Question 1) was rated 7.25 for SCOs 
and 6.37 for Assets (W = 6.00, p < 0.5) in Session 1. Unequivocalness of the 
metadata set (Question 2) was rated 6.62 for SCOs and 5.63 for Assets in Session 
2 (W = 0.00, p < .05). The usability of the specified metadata for others (Question 
4) was rated 7.28 for SCOs and 6.13 for Assets (W = 2.00, p < 0.5) in Session 1, 
and rated 7.00 for SCOs and 6.28 for Assets (W = 0.00, p < 0.5) over both 
sessions. The usability of the Repository for retrieving LOs (Question 6) was 
rated 6.86 for SCOs and 6.13 for Assets (W = 0.00, p < 0.5) over both sessions. The 
complete automation solution for storing LOs (Question 7) was rated 7.25 for 
SCOs and 4.87 for Assets (W = 0.00, p < 0.5) in Session 1, and rated 6.94 for SCOs 
and 5.56 for Assets (W = 0.00, p < .05) over both sessions. Finally, the complete 
automation solution for retrieving LOs (Question 8) was rated 6.75 for SCOs and 
5.75 for Assets (W = 0.00, p < 0.5) in Session 1.  

With regard to familiarity of domain, the unfamiliar domain was not 
rated significantly higher than the familiar domain on any aspect.   

With regard to absolute ratings for the Repository and automation 
solution, the relevance of the metadata set (question 1), the usefulness of the 
metadata set (question 3), the usability of metadata for others (question 4), the 
usability of the Repository for storing LOs (question 5), the usability of the 
Repository for retrieving LOs (question 6), and the complete automation 
solution for retrieving LOs (question 8) were rated above satisfactory. The 
unequivocalness of the metadata set (question 2) and the complete automation 
solution for storing LOs (question 7) were rated almost satisfactory for Assets 
but above satisfactory for SCOs.  
 
Remarks from Participants 

The participants experienced the rapid increase of key words in the 
Repository as problematic. The initial number of 103 keywords increased to 207 
keywords after both sessions, through incorporating new keywords entered by 
the participants. This threatened the efficiency of searching by keywords (i.e., 
the overview of found LOs became too large to review in a reasonable time) as 
well as entering keywords in the metadata (i.e., the list of suggested keywords 
became too large).  
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Furthermore, although none of the participants had objections against the 
reuse of self-developed materials by others, they emphasized that it may be 
important to consult the original creator of LOs for domain validity reasons (Is 
the content still up-to-date?, Is the content representative of the real working 
situation?), instructional validity reasons (Is the sequence and navigation of 
learning experiences didactically sound?, Is the assessment method still 
correct?), and security reasons (Are new developers or learners allowed to 
interact with the LOs?) Thus, even if it is no problem to develop learning 
materials by means of adapting the structure or content of existing LOs from 
other subject matter domains or development teams, the participants find it still 
important to be able to consult the original creator. 

 
Discussion 

 
The IDE, based upon the integrative approach, was able to support 

inexperienced developers with reusing LOs. The first hypothesis stated that 
when working with SCOs, developers would rate the automation solution 
higher than when working with Assets. Clear support for this hypothesis was 
found. Working with SCOs was rated higher than working with Assets on eight 
aspects. In agreement with this finding, developers need less time to retrieve an 
SCO they wanted than to retrieve an Asset they wanted, irrespective of the fact 
that it was easier to review and assess the latter. The finding that they retrieved 
a smaller number of SCOs than Assets (at least for the familiar content) does not 
alter this fact because an SCO is usually made up of multiple Assets.   

The second hypothesis stated that participants, when working in an 
unfamiliar domain, would rate the templates and automation solutions higher 
than when working in a familiar domain. No support for this hypothesis was 
found. First, the quality of the information presented by the SCO generator was 
rated higher in the familiar domain than in the unfamiliar domain.  Second, the 
complete automation solution for storing LOs in the Repository was rated 
higher for Assets in the familiar domain than in the unfamiliar domain. A 
possible explanation is that developers were more acquainted with the IDE 
when working with the familiar content, which was always dealt with in the 
second session. Being more comfortable with the development environment 
may have led to higher ratings. Obviously, future research should use more 
participants and counterbalance the familiarity of the domain over experimental 
sessions. 

Developers indicated in the background questionnaire that they see good 
possibilities for reuse in their working situations. The implemented templates 
and automation solutions seem to be able to realize these possibilities because 
most aspects of those solutions were rated as more than satisfactory. Two 
remarks relate to the rapidly increasing number of keywords as a bottleneck for 
specifying metadata, and the desirability to be able to contact the original 
creator of LOs. In practice, these two problems may become a serious bottleneck 
for reuse.  
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Study 2: Quality of LOs Produced with the Combined Solutions 
 

The second study uses not only the template and automation solutions, 
but also the intermediate product solution. Furthermore, the quality of created 
LOs is studied in addition to the perceptions of the developers.  

 
Method 

Participants  
Fifteen instructors of the Royal Netherlands Air Force (RNLAF) 

participated in this study. Their average age was 41.53 years (SD = 7.75). They 
were all subject matter experts and instructors in a particular technical military 
domain, and responsible for delivering instruction and designing instructional 
materials for their own lessons. Three participants were dedicated developers of 
paper-based or computer-based educational materials.   
Materials 

Development tools. The IDE was largely identical to the one used in Study 
1, but extended with case-based templates, extended templates, and design 
documents. Case-based templates helped to construct cases consisting of four 
elements: (1) a problem presentation to introduce the learning task; (2) related 
information offering background knowledge for the learning task; (3) a 
problem-solving space in which the task was performed, and (4) reflection 
offering an assessment of the problem-solving process and resulting products. 
Extended templates only differed from case-based templates in that they 
included job-aids, small documents linked to a particular template providing 
information about how to use this template to better implement the instructional 
design. Concrete guidelines and structured flow diagrams systematically 
explained how to design the four case elements according to guidelines from 
Schank et al. (1999) and Jonassen (1999). Design documents were intermediate 
products, providing instructional design information and keywords for a 
particular LO. They took the form of small training blueprints and could be used 
for reviewing, creating, and reusing LOs.  

Three conditions were distinguished. The first condition implemented the 
Automation and Regular Template solutions (A+RT). It combined the 
automation solution as used in Study 1 with the regular template solution. The 
second condition implemented the Automation and Extended Template 
solutions (A+ET). The third condition implemented the Automation, Regular 
Template, and Intermediate Product solutions (A+RT+IP). A comparison of 
condition 1 and condition 2 allowed for testing the hypothesis that Extended 
templates are superior to Regular templates, and a comparison of condition 1 
and condition 3 allowed for testing the hypothesis that Intermediate products 
provide meaningful information on how to use the templates and so increases 
the quality of the created LOs. 

Tasks. The development tasks were performed in one session during two 
days. Table 5.4 provides a description of the five assignments that were 
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conducted by the participants. The introductory assignment was primarily 
intended to make the participants familiar with the tools. The subsequent three 
assignments, representing the A+RT, A+ET, and A+RT+IP condition, consisted 
of two parts each. These three assignments were offered in three different 
orders, according to a Latin Square. They described the purpose of the case to be 
developed, the learning goals for the prospective learners, characteristics of 
those learners, the quality criteria the case had to satisfy, and hints to operate the 
IDE. The concluding assignment asked the participants to upload their final LOs 
in the Repository. 
 
Table 5.4  
Study 2: Overview of Assignments  
Assignment Time Content of Assignment 
Introductory 30 min Creating the basic course structure to fit in the case 

LOs and a general introduction  
A+RT a 
 

90 min Creating an exercise case with case-based templates 
and automation support 

 90 min Creating a real case with case-based templates and 
automation support 

A+ET b 
 

90 min Creating an exercise case with extended templates 
and automation support 

 90 min Creating a real case with extended templates and 
automation support 

A+RT+IP c 
 

90 min Creating an exercise case with design documents 
and automation support 

 90 min Creating an real case with design documents and 
automation support 

Conclusion 30 min Uploading the course with the 6 case-based LOs to 
the Repository and specify relevant metadata  

aAutomation and Regular Templates. 
bAutomation and Extended Templates. 
cAutomation, Regular Templates, and Intermediate Products. 
 

Participants developed cases in the subject matter domain of Safety 
Wiring: Securing mechanical airplane parts such as bolts or switches by means 
of wires or glue according to a strict procedure. Most RNLAF technicians and 
instructors are familiar with this domain. Each case developed by the 
participants had to contain all four case elements described above.  

Experimental room. The participants worked independently of each other 
in a room equipped with one computer for each participant with the same 
configuration as used in Study 1. The Repository was filled with 130 Assets, half 
of which were sufficient to complete the assignments in this study, and half of 
which were irrelevant but used to mimic the normal working situation. 
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Measurements  

Background questionnaire. The questionnaire collects information on 
participants’ (a) years of teaching experience and experience with developing 
educational materials including the production of instructional software; (b) 
experiences and expectations with case-based teaching (5-point Likert scale), 
and (c) knowledge of the Safety Wiring domain (ranging from no experience to 
expert). 

Evaluation questionnaire. The questionnaire contained five questions 
pertaining to the experienced support and satisfaction with the final products 
(see Table 5.5).  
Product reviews. The experimenter scored quantitative aspects of created cases 
by counting the number of pages of each case and, on each page, the number of 
different question types, video clips, and hyperlinks (see Table 5.6). Second, the 
created cases were reviewed on qualitative aspects. Three expert raters who 
were not involved in this study, two from the RNLAF and one from the 
Netherlands Organization for Applied Scientific Research TNO, independently 
scored all created cases on the quality of the four case elements and on their 
overall quality. Before the review, they participated in a short training on the 
technical possibilities and limitations of the IDE and the embedded didactical 
model. The cases were scored anonymously, in another randomized order for 
each expert rater. A checklist of 21 items was used (see Table 5.7) with 5-point 
Likert scales (1 = “very bad”, 5 = “very good”). The Intra Correlation Coefficient 
is .94, which is good (Fleiss, 1981).  

Final questionnaire. This questionnaire contained three questions 
pertaining to the participants’ overall satisfaction with the SCO generator, the 
Repository, and the created cases (see Table 5.8). 

Procedure 
All participants took part in a one-day training session, in which the 

central concepts of this study were explained. Before the experimental session, 
the participants filled out the background questionnaire. A within-subject 
design was used, with a Latin Square to control for the order of the three 
conditions. Thus, five participants proceeded through conditions 1, 2 and 3; five 
participants proceeded through conditions 2, 3 and 1, and five participants 
proceeded through conditions 3, 1 and 2. An experimenter was always present 
to answer questions, but this assistance was limited to technical problems and 
difficulties with understanding the assignments. After each assignment specific 
for one of the three conditions, the participants filled out the evaluation 
questionnaire.  

 
Results 

 
Participants mean experience within the RNLAF was 19.87 years (SD = 

8.76). With respect to teaching experience, one participant had no experience, 
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five had 0-2, three had 2-4, one had 4-6, and five had more than 6 years 
experience. With respect to computer experience, three participants had 2-4, five 
had 4-6, and seven had more than 6 years experience. None of the participants 
had experience with the specific tools used in this study. The mean score on the 
question: “Have you applied case-based learning in your teaching?” was 3.47 
(SD = 1.30) on a 5-point scale, indicating more than average experience. With 
respect to the question: “Are you motivated to develop case-based learning 
materials yourself?” the mean score was 2.47 (SD = 1.13), indicating less than 
average motivation. The mean score on the question: “Do you feel that you need 
support in developing such material?” was 2.33 (SD = 1.30), indicating low need. 
With respect to knowledge of Safety Wiring, four participants rated themselves 
as experts, five as advanced, two as basic and four as having no experience.   

The following sections discuss the experienced support and satisfaction, 
the quantitative aspects, and the qualitative aspects of the created cases.  No 
relation was found between the order in which the conditions were presented to 
the participants and the results discussed in those sections. The last section 
discusses the final ratings by the participants.  

Experienced support and satisfaction. Table 5.5 presents the means and 
standard deviations for the participant ratings on support and final products. 
No significant differences were found between the conditions A+RT and A+ET, 
or between A+RT and A+RT+IP. Furthermore, the experienced difference of 
support in the conditions A+RT and A+ET (question 2), and in the conditions 
A+RT and A+RT+IP (question 3) did not significantly differ from the neutral 
score of 3.  
 
Table 5.5 
Study 2: Participant Ratings on Support and Final Products 

Condition 

A+RT A+ET A+RT+IP 

 
 

M SD M SD M SD 

1. Did you have enough time to 
complete the assignment? a  

.53 .52 .47 .52 .47 .52 

2. Did you experience more support 
from the A+ET than the A+RT 
condition? b  

- - 3.20 .86 - - 

3. Did you experience more support 
from the A+RT+IP than the A+RT 
condition? b  

- - - - 3.13 .92 

4. Are you satisfied with the working 
of the SCO generator? c 

5.13 1.64 5.47 1.68 5.53 1.51 
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5. Are you satisfied with the case you 
have created? b  

3.00 1.00 3.33 1.11 3.53 .92 

a  Rated as “no” (0) or “yes” (1). 
b  Rated on a 5-point scale (1 = “totally agree”; 5 = “totally disagree”). 
c Rated on a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 10 = “excellent”). 
 

Quantitative aspects. Table 5.6 presents the means and standard deviations 
of the quantitative aspects of the created cases. A McNemar test showed 
significant difference in the amount of use of video clips between the A+RT 
condition (no clips) and the A+ET condition (M = .74, SD = .46; N = 15, p < .01). 
Also, there is a significant difference in the use of video clips between the A+RT 
condition (no clips) and the A+RT+IP condition (M = .66, SD = .48; N = 15, p < 
.01). No other significant differences between conditions were found.  
 
Table 5.6 
Study 2: Quantitative Aspects of Created Cases 

Condition 

A+RT A+ET A+RT+IP 

 
 

M SD M SD M SD 

1. Average number of pages per case 7.60 3.58 8.93 4.03 8.13 3.80 

2. Average number of question types 
per page 

1.87 .92 1.80 1.37 1.60 1.29 

3. Presence of video clips on each 
pagea 

.00 .00 .74 .46 .66 .48 

4. Presence of hyperlinks on each 
pagea 

.60 .51 .47 .52 .54 .52 

a Rated as “no” (0) or “yes” (1). 
 

Qualitative aspects. Table 5.7 presents the means and standard deviations 
of the qualitative aspects of the created cases. In general, the three experts scored 
the created cases rather low on all 21 aspects.   
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Table 5.7 
Study 2: Expert Review on Quality of Cases 

Support Conditions 

A+RT A+ET A+RT+IP 

 

M SD M SD M SD 

1. Realistic problem definition in 
problem presentation part a 

2.77 .95 2.46 1.13 2.68 1.01 

2. Clear expectations offered in 
problem presentation part 

2.12 .96 1.97 .82 2.25 .83 

3. Clear central problem present in 
problem presentation part 

2.22 .87 1.74 .69 2.17 .86 

4. Extra features present in problem 
presentation part 

2.06 .76 1.76 .74 2.20 .66 

5. Amount of learning in problem 
presentation part 

1.75 .88 1.80 .78 1.82 .86 

6. Added value of multimedia in 
problem presentation part 

1.88 .53 2.05 .63 2.08 .55 

7. Availability of additional info part 2.48 .63 1.94 .68 2.68 .77 

8. Relevance of links to background 
information in additional info part 

2.79 .68 2.21 .87 2.36 .61 

9. Clear link descriptions in 
additional info part 

2.58 .97 2.63 1.07 2.13 .85 

10. Correct match between problem 
presentation part and problem 
solving part 

1.73 .56 1.73 .59 1.97 .66 

11. Correct match between question 
types and learning objectives in 
problem solving part 

1.78 .66 1.64 .63 2.16 .66 

12. Clear feedback in questions within 
problem solving part 

1.61 .65 1.81 .71 1.86 .43 

13. Clear expectations what to do in 
problem solving part 

1.74 .57 1.58 .55 1.82 .51 

14. Amount of learning in problem 
solving part 

1.56 .54 1.64 .80 1.62 .62 

15. Added value of multimedia in 
problem solving part 

1.35 .53 1.78 .75 1.51 .56 
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16. Added value multimedia in 
reflection part 

1.80 .56 1.63 .57 1.90 .50 

17. Amount of learning objectives 
covered in whole case 

1.76 .71 1.80 .67 1.97 .64 

18. Appropriateness of multimedia in 
whole case 

1.82 .67 2.02 .80 2.04 .71 

19. Variation of presentation elements 
in whole case 

1.76 .55 2.22 .77 2.17 .69 

20. Amount of learning in whole case 2.02 .76 .1.98 .77 2.24 .58 

21. Attractiveness of whole case 1.62 .67 1.84 .74 1.75 .72 

a Expert rating an all items is expressed on a 5-point Likert scale (1 = “very bad”; 
5 = “very good”). 
 

The following significant differences are found by Wilcoxon Signed Rank 
tests. With respect to “clear central problem” (item 3), A+RT+IP was rated 
higher than A+ET (W = 21.00, p < .05). With respect to “extra features” (item 4), 
A+RT+IP was rated higher than A+ET (W = 18.00, p < .05). With respect to 
“availability of additional info” (item 7), A+RT+IP was rated higher than A+ET 
(W = 18.00, p < .05). With respect to “added value of multimedia” (item 15), 
A+ET was rated higher than A+RT (W = 14.00, p < .05). With respect to 
“variation of presentation elements” (item 19), A+ET was rated higher than 
A+RT (W = 8.50, p < .05), and A+RT+IP was rated higher than A+RT (W = 23.50, 
p < .05). With respect to “amount of learning” (item 20), A+RT+IP was rated 
higher than A+RT (W = 14.50, p < .05).  The other expert ratings showed no 
significant differences. Thus, A+RT+IP was superior to A+ET on three aspects, 
and superior to A+RT on two aspects; A+ET was superior to A+RT on two 
aspects. 
 Overall ratings of tools and created cases. Table 5.8 presents the ratings of the 
participants on the process and products. It appears that both the SCO 
Generator and the Repository were rated satisfactory. The majority of the 
participants were satisfied with the quality of the resulting cases.  
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Table 5.8 
Study 2: Participants Overall Ratings on Support Tools and Resulting Cases 
 
Statements: 

 

 M SD 

1. I am satisfied with the SCO Generator a 5.77 .94 

2. I am satisfied with the Repository a 5.93 1.91 

3. I am satisfied with the quality of the resulting cases b .73 .46 

a  Rated on a 10-point scale (1 = “very bad”, 6 = “satisfactory”, 10 = “excellent”). 
b  Rated as “no” (0) or “yes” (1). 
 

 
Discussion 

 
The combination of extended templates and the automation solution 

(A+ET condition) resulted for two aspects of the final products in a better 
quality than the combination of regular templates and the automation solution 
(A+RT condition), namely the added value of multimedia in the problem 
solving part and the amount of variation in presentation elements. The 
combination of the intermediate products with the automation and regular 
template solutions (A+RT+IP condition) resulted for three aspects in a better 
quality than the combination of only the automation and extended template 
solution (A+ET condition), namely the presence of clear central problems, extra 
features, and multimedia with added value in the problem solving part. In 
addition, it resulted for two aspects in a better quality than the combination of 
only the automation and regular template solution (A+RT condition), namely 
the variation of presentation elements and the amount of learning for the whole 
case. However, the overall quality of the products was noticeably low, as none 
of the experts scored an aspect of a product higher than neutral. This can 
possibly be explained by insufficient time: About half of the participants 
indicated they felt the assignment was not completed in time. Also, whilst 
considering the limitations of the study, the participants themselves were not so 
negative on the final products, as they rated the satisfaction with created cases 
(higher than) neutral for each condition and above satisfactory in their overall 
rating. 
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General Discussion 
 

Two studies investigated different combinations of support solutions for 
solving problems in creating and reusing LOs. The results show that these 
combinations contribute to overcoming at least some of these problems.  

First, the template solution seems to overcome the exchange problem in 
particular, because it allows changing the instantiations of the templates 
according to personal preferences. This may lower the “not-invented-here” 
syndrome. However, developers yet emphasized the importance of consulting 
the original creator of LOs for validity and security reasons.  

Second, the automation solution seems to overcome the problem of 
specifying metadata and finding LOs based upon metadata. This is not 
influenced by familiarity of the domain, but the automation of metadata 
supports working with SCOs more than working with Assets, because 
developers then have to rely more on metadata for quickly reviewing the 
reusability of the found LOs. For Assets, reliance on metadata is less of a 
problem, as they are more susceptible to quick review, for instance by thumbnail 
overviews for pictures and preview modes for audio, video, and animation. 
Further research should indicate if the automation solution could also diminish 
the context problem through automatic translation. Translations from speech to 
written text (i.e., speech recognition) and from written text to speech (i.e., speech 
synthesis) may increase reuse between target groups. In addition, translations 
between different languages may increase reuse between regions.  

Third, the intermediate product solution seems to overcome the 
arrangement problem, because it provides more insight in valid arrangements of 
LOs; the context problem, because it assists in finding LOs that fit in particular 
contexts; and—in particular—the pedagogical function problem, because it 
helps in determining the appropriate pedagogical function of a LO. Determining 
the pedagogical function is especially important in competency-based 
approaches such as applied in Study 2, and indicates that a fundamentally 
different view on LOs may be necessary to accommodate approaches that use 
cases, projects, and rich problems as the driving force for learning.     

The practical implications of the reported studies are straightforward. 
The studies show that there is not one direction to solve all reuse problems; each 
proposed direction solves more than one problem, but all problems will only be 
solved if several directions are taken simultaneously. For practical applications a 
multi-path solution is proposed, taking several directions to facilitate desired 
reuse. Thus, it is best to use the template, automation, and intermediate product 
solutions next to each other.  

The combined solutions proved to support inexperienced developers. 
Further research should indicate if this also applies to experienced developers. 
The automation solution for the routine aspects of reuse is likely to be 
appreciated, because it allows experienced developers to concentrate on the 
problem-solving aspects of reuse. Furthermore, the intermediate product 
solution is also likely to be accepted. Experts tend to spend more time than 
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novices on exploring and interpreting design problems (e.g., Kirschner, Carr, & 
van Merriënboer, 2002), a phase in which design documents play an important 
role. Third, with regard to the template solution, experts could experience 
undesirable constraints to their creativity. A fourth solution for reuse, as 
proposed by van Merriënboer et al. (2005), is called “reedit and reuse instead of 
reuse only” and focuses on changing found learning objects in order to meet 
new requirements before reusing them. Especially for experts, this could be a 
successful alternative for the template solution. The reedit solution solves at 
least the same problems as the template solution, is more flexible than the 
template solution, and experts will be well able to change learning objects 
without pre-structured template support. 
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Chapter 6 
 

General discussion 
 

 
Abstract 

 
The main aim of this dissertation was to investigate the difficulties instructional 
designers experience in ensuring an unequivocal interpretation of their designs 
by software producers. It was shown that three building-block solutions, namely 
(a) the Developing Design Documents (3D) model; (b) instructional software 
templates, and (c) an integrative method for reuse, indeed supported 
instructional designers in overcoming the transition bottleneck between the 
design phase and the production phase. Starting from this main conclusion, the 
theoretical and practical implications, the limitations of the reported studies, 
and suggestions for future research are discussed. The chapter concludes with a 
scenario illustrating the practical use of the three building-block solutions.  
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The main aim of this dissertation was to investigate if the development of 
instructional software could be improved to meet the new criteria set by 
educational, technical, and organizational innovations. These criteria are (a) 
adaptivity, (b) generativity, (c) scalability, and (d) modeling of instructional 
software. Theoretical and empirical analyses, described in Chapter 2, show that 
the application of current development approaches does not satisfy these four 
criteria. A new model, namely “lean production”, is introduced as an alternative 
approach to the development of instructional software. This model promises to 
satisfy the criteria of adaptivity, generativity, and scalability – but not the 
criterion of modeling, which is a prerequisite to reaching the other criteria 
because these all depend on an adequate modeling process. Modeling is done 
according to three dimensions: Domain modeling of tasks and systems, 
pedagogical modeling of the instructional design, and functional modeling to 
enable the transfer of domain models and pedagogical models from the design 
phase to the production phase. The transition bottleneck between design and 
production makes functional modeling particularly problematic. This bottleneck 
is caused by the lack of common design languages that are shared by 
instructional designers and software producers.  

In this dissertation, three building-block solutions were proposed to 
overcome the transition bottleneck: (a) The Developing Design Documents (3D) 
model to support instructional designers in improving their design documents, 
(b) instructional software templates to support instructional designers in creating 
programming structures, and (c) an integrative approach for reuse to support 
instructional designers in reusing learning objects.  

The three studies described in this dissertation investigated the effects of 
the three building-block solutions. In this Chapter, first, the results of these three 
studies are reviewed and the main conclusions are described. Second, the 
practical implications of this research are described in terms of the use of the 
building-block solutions to improve the development of instructional software. 
Third, the limitations of the research are discussed with respect to the 
experimental design of the studies. Fourth, suggestions for future research are 
presented, concerning further improvement and validation of the building-block 
methods. This chapter concludes with a scenario describing the practical use of 
the proposed solutions.   

 
Review of Results 

 
 Chapter 2 explained the proposed building-block solutions, namely, the 
3D-model, instructional software templates, and the integrative approach to 
reuse. These solutions should better interrelate design and production activities 
by supporting instructional designers’ use of building blocks that contain 
production-related information, during the instructional development process. 
This prevents the need to rely solely on formal transfers of design documents for 
functional modeling. Instructional designers keep their traditional role in the 
first building-block solution. Supported by the 3D-model, they are able to 
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provide software producers with more production-related information in their 
design documents. Instructional designers have a new role in the second and 
third building-block solutions, because they take over the role of software 
producers and create final products themselves, without involvement of 
producers. This is made possible by the support from instructional software 
templates and the integrative approach to reuse. The following paragraphs 
describe the studies in which the building-block solutions were tested.  

In Chapter 3, the 3D-model was introduced as an aid to stratify, 
elaborate, and formalize design documents. The study tested whether software 
producers, who have to make technical specifications, will interpret design 
documents based on the 3D-model more accurately than traditional design 
documents (based upon training blueprints and storyboards as commonly used 
in development projects). The results showed that the improved design 
documents indeed promote a higher level of understanding among producers, 
which is required to translate the functional model into technical specifications, 
than conventional design documents. Also, working with the improved design 
documents required less time and the software producers perceived less 
cognitive load. However, there were no differences in producers’ satisfaction 
with the two kinds of design documents. The 3D-model showed a significant 
increase in efficiency of creating technical specifications. Thus, the 3D-model 
enables instructional designers to transfer their designs to software producers in 
a more accurate fashion. The study also indicated that instructional designers 
are in the best position to enhance the efficiency of the translation process 
through the improvement of instructional design documents. Because there is 
no relation between producers’ satisfaction and the different kinds of design 
documents, it appears that producers cannot correctly judge the quality of those 
documents and are thus not in a good position to improve the transition process. 
 In Chapter 4, instructional software templates were introduced to 
support instructional designers in creating final products themselves. It was 
tested if developers with low production experience (comparable to typical 
instructional designers) and high production experience (comparable to 
software producers) were able to use the instructional software templates. 
Moreover, it was studied if the low-experience developers were able to produce 
software with the same technical, authoring, and didactical quality as the high-
experience developers. No differences with regard to technical and authoring 
quality were expected, because the instructional software templates were 
expected to level up the differences between developers. The results showed 
that the developers with low production experience indeed created the same 
amount of instructional software, with the same didactical, technical, and 
authoring quality, as high experience developers. Their didactical perspective 
and development style did not affect the results. For both groups the didactical 
quality was unsatisfactory, and both groups had mixed feelings with respect to 
the question if working with templates was satisfactory. The study indicated 
that the templates level up the differences between developers with low and 
high production experience. This implies that instructional designers are able to 
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produce the same technical and authoring quality as software producers. It also 
showed that didactical quality is not self-evident; working with the templates 
requires a solid background in instructional design to guarantee acceptable 
didactical quality. This is often not the case with subject matter experts and 
instructors who act as instructional designers, as in our study.  
 In Chapter 5, an integrative approach was introduced to support 
instructional designers in independently creating final products. Two 
experiments were described, in which developers with low production 
experience retrieved and combined learning objects to assemble an instructional 
software product – based upon a given instructional design. The first 
experiment compared developers reusing large, didactically meaningful 
learning objects versus small, multimedia learning objects, from both familiar 
and unfamiliar domains. The developers were supported by the template and 
automation solutions of the integrative approach. The results showed that the 
developers judged both solutions positively, and rated working with 
didactically meaningful objects higher than working with multimedia objects. 
No differences between the familiar and the unfamiliar domain were found. The 
second experiment compared developers reusing learning objects supported by 
the automation solution in combination with either a set of (a) regular templates, 
(b) extended templates, or (c) intermediate products. The results indicated that 
the automation solution in combination with intermediate products yielded 
highest-quality learning objects, followed by the extended templates and, 
finally, the regular templates condition. Again, in all conditions, the didactical 
quality was unsatisfactory. In both experiments, developers had mixed feelings 
with respect to the feasibility of reusing learning objects. The study showed that 
the integrative approach enabled developers with low production experience to 
perform production tasks related to assembling the instructional software. Also, 
it appears that to guarantee acceptable didactical quality, working with learning 
objects requires the same solid instructional design background as working with 
instructional software templates. 
 The results of the three studies indicate that – one or more of the – the 
building-block solutions help to overcome the transition bottleneck, thereby 
satisfying the criterion of modeling and promoting the implementation of lean 
production in developing instructional software.  
 

Practical Implications 
 

Four practical implications of the research presented in this dissertation 
concern (a) criteria for applying the building-block solutions, (b) adaptivity of 
building-block solutions, (c) design languages required for lean production, and 
(d) alternative applications of lean production.  

 
Criteria for Applying Building-block Solutions  

The building-block solutions have a tool-based orientation, and support 
instructional designers in either (a) providing software producers with better 
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information (the 3D-model), or (b) performing production tasks themselves (the 
templates and integrative approach). On the one hand, the support from the 3D-
model does not imply that instructional design expertise can be completely 
substituted, because the studies showed that a solid background in instructional 
design is still required to ensure acceptable didactical quality as an outcome of 
the transition process. This implies a need for better selection or training of 
developers, and the application of sound instructional design models and 
guidelines in the modeling process. On the other hand, the support from the 
templates and the integrative approach does not imply that production expertise 
can be completely substituted, because the studies showed that for complex 
development issues—consultation with—professional software producers is still 
required. This implies a need to involve professional software producers in 
complex development situations.  

When the developers produced final products with the building-block 
solutions, they had mixed feelings with regard to the instructional software 
templates and the feasibility of reusing learning objects. This indicates that 
successful application of these building blocks for software production activities 
is not self-evident. An alternative solution might be the use of independent 
consultants who act as neutral intermediates. These (external) consultants, with 
instructional design as well as software production experience, may assist 
instructional designers in their functional modeling process, and assist 
producers in formulating relevant questions for designers.  
 
Adaptivity of Building-block Solutions  

In order to promote successful application of building-block solutions, a 
possible enhancement might be adaptivity of the solutions to meet the specific 
needs of particular users. Currently, user profiles for learners as well as 
developers of instructional software are being standardized (see 
http://www.imsglobal.org). These profiles contain the users’ needs, 
preferences, and activity histories, and they may steer adaptation by 
configuration of the building-block solutions in at least three ways. First, the 3D-
model can be pre-structured in a particular configuration to fit the needs of a 
particular instructional designer based upon his or her profile. Second, based 
upon the same instructional designers’ profile, the instructional software 
templates can be configured to provide tailored pedagogical, authoring, and 
technical support. Third, e-learning tools may use the instructional designers’ 
profile to provide one or more of the four solutions of the integrated approach 
for reuse by means of, for example, search tools, repositories, metadata 
generators, translation tools, learning object template editors, and so forth.  
 
Design Languages Required for Lean Production 

The implementation of lean production emphasizes the use of design 
languages, with explicit notation systems to enable functional modeling. This is 
not only helpful for instructional designers and software producers, but also for 
other stakeholders (e.g., project managers, clients, lawyers, learners) who must 
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review and judge the functional model information. Other development fields, 
such as building construction and electrical engineering, have already realized 
this in the past and use common notation systems such as architectural 
blueprints and circuit schemes that satisfy standard conventions. These 
blueprints and schemes can be read by the client, the engineer/architect (i.e., the 
designer), the contractor, and the builder. They exemplify the universality of 
design languages to serve the needs of several stakeholders, and stress the 
usefulness of notation systems for the specification of (legal) documents 
resulting from complex design enterprises.  

In the field of instructional software development, however, instructional 
designers and software producers have just started to draft these design 
languages (e.g., see Koper & Tattersall, 2005). Their actual use is still limited. 
Important objections of instructional designers against the use of design 
languages are: (a) The required proficiency in technical aspects; (b) the extra 
time and effort they have to invest in learning and, in particular, applying these 
languages, and (c) the low yield compared to the required efforts. It can be 
expected that the first two objections will quickly become obsolete. With an 
increase of standardization of design languages for instructional software 
development, more support will become available to increase their efficient use. 
For example, support mechanisms such as automation and templates, 
embedded in modeling environments and tools, will lower both the required 
technical proficiency and the required time and efforts of usage. The third 
objection is more difficult to refute. As long as instructional designers work 
according to the push principle associated with craft and mass production 
models, they will leave it up to the software producers to interpret their 
functional models. It is not until production models such as lean production are 
implemented, that the need for using standardized design languages becomes 
apparent. The chicken-or-the-egg paradox is that organizations will not 
implement lean production on a broad scale until they are able to unequivocally 
transfer and communicate their designs, but the standardized design languages 
required for doing this will not be drafted and standardized until organizations 
implement lean production on a broad scale. As long as this situation remains 
unchanged, the building-block solutions of instructional software templates and 
the integrative approach towards reuse stay relevant.  
 
Alternative Applications of Lean Production  

At first sight, lean production seems to be particularly relevant for large 
organizations and complex development projects, in which design and 
production teams need to cooperate. However, smaller development settings 
can also benefit from lean production, because they experience the same 
increasing complexity of instructional design (e.g., new models of learning) and 
learning technologies. As a result, the participants who operate in 
multidisciplinary design and production teams in the development process 
require many different and specialized skills, each with their own design 
languages, methods, and tools. This dissertation was directed at transfer of 
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information between design and production teams. However, the same building 
blocks may be used for the transfer within design and production teams.  

Furthermore, software for more traditional instructional purposes can 
also experience the criteria of adaptivity, generativity, and scalability–only 
maybe to a lesser extend as can be seen in the next three examples. Adaptivity is 
required if, for example, Bloom’s Mastery Learning (1971) is applied. 
Furthermore, generativity is at the core of the modular Knowledge Objects used 
in Merrill’s Component Design Theory (CDT2; Merrill, 2000). Finally, scalability, 
directed particularly at traditional instructional settings, is one of the prime 
objectives of the current e-learning standardization efforts (see Van Merriënboer 
& Boot, 2005).  

 
Limitations of the Research 

 
The limitations of the research presented in this dissertation concern: (a) 

The experimental materials used in the 3D-model study; (b) using “real” 
designers as participants in the templates and integrative-approach studies, and 
(c) shortcomings of expert reviews.  

 
Experimental Materials Used in the 3D-model Study 

In the 3D-model study (Chapter 3), a questionnaire was used to 
determine software producers’ understanding of two kinds of design documents 
and their ability to translate the documents into technical specifications. The 
questionnaire, consisting of 25 questions and validated by other software 
producers, was created by the experimenters. It might be argued that reviewing 
the actually created technical specifications, or even the software produced on 
the basis of these technical specifications, is a more valid measurement. 
However, this would be very difficult to arrange. Besides practical issues such as 
requiring much more time from the participants, there is the fundamental issue 
that the process of creating the technical specifications and subsequently the 
final products should be exactly the same for both groups – apart from the 
experimental manipulation of either presenting the 3D-model or not.  
 
Real Designers as Participants 

In order to obtain a high ecological validity, representative participants 
(i.e., real developers) were used in the templates and integrative-approach 
studies (Chapters 4 and 5). The studies took place in realistic though controlled 
settings with professional development tools such as authoring systems, search 
tools, repositories, and actual learning materials. Although the high ecological 
validity makes it relatively easy to generalize our findings to real-life settings, it 
also limited the number of participants and their available development time.  

The use of real developers as participants is a possible explanation for the 
unsatisfactory didactical quality of the final products. The developers were 
mostly domain specialists, that is, subject matter experts and instructors with 
little production experience. This is not uncommon for instructional designers in 



General discussion  

 110

large organizations, who often have limited design experience but are 
nonetheless responsible for the instructional design projects in their 
organization. For example, hardly any of the developers had formal education 
on a higher vocational or academic level in instructional design, learning 
technologies, or a related field. Most of their instructional design education 
consisted of in-house training programs, supplemented with practical 
experience in their own design projects and short courses from vendors in 
operating design and authoring tools. Therefore, it might be argued that the 
developers not only had little production experience but also little design 
experience and should thus be considered as novice instructional designers. 
Perez, Fleming-Johnson, and Emery (1995) report that novice instructional 
designers often have no systematic plan of action because they lack strategic 
knowledge. Therefore, they often apply an overly simplified information-
transmission model in their design. This finding is confirmed by the review of 
the final products from the studies reported in Chapters 4 and 5: The expert 
reviewers noticed a highly linear approach towards instruction in these 
products, which was one of the main reasons they scored the didactical quality 
as unsatisfactory. Further studies on the building-block solutions should use 
more proficient instructional designers to ensure an acceptable didactical quality 
of the final products.   

For the practical field of instructional design, the finding that most 
participating developers should be considered novice instructional designers 
implies that they should receive extra support in their design tasks, and in 
working with the building-block solutions. This support should at least 
emphasize the acquisition of strategic knowledge necessary to translate 
instructional design theory and learning technology into practice (Perez et al., 
1995). This can be done by providing explicit instructional design guidelines, if 
feasible embedded in support tools. However, as Van Berlo (2005) remarks, 
providing the guidelines in a “top-down” fashion will not be sufficient. 
Instructional designers or domain specialists should at least be able to 
supplement those guidelines with lessons learned, best practices, and worked 
examples to make them applicable in their own working environment.   
 
Expert Reviews 

All studies used expert reviews to measure the quality of the results of 
the experimental tasks. In the 3D-model study (Chapter 3), the instructional 
design results were tested by software producers. This provided a good 
indicator of the ability to overcome the transition bottleneck between design and 
production, as the software producers had to judge and interpret the results as 
input for production activities just as they would normally do. In the studies in 
Chapters 4 and 5, the quality of the products resulting from the production 
activities was determined by expert instructional designers. This provided an 
even more valid indicator, as the experts did not judge the intermediate 
products (i.e., technical specifications such as in Chapter 3) but the final 
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products (i.e., instructional software the instructional designers made with 
templates or learning objects).  

However, any expert review remains a subjective estimate, despite the 
experts’ proficiency in judging quality and high inter-observer reliability scores. 
Subjective ratings cannot replace objective measurements of product quality. For 
instance, measurements should also pertain to the effectiveness of final products 
( i.e., the instructional software) used to train a large number of learners. Besides 
practical issues such as including learners in the experiments and strictly 
controlling the learning and testing process to allow for comparisons, there is a 
more fundamental problem. The emphasis on authentic, rich learning tasks in 
the new holistic pedagogical view is intended to combine the “world of 
knowledge” with the “world of work” (Van Merriënboer & Kirschner, 2001). 
Learning results should be directed at dealing with the complexity of whole-task 
performance and solving (new) problems in the professional situation. 
Therefore, any assessment of learning results, in order to determine the quality 
of the final products, should not only be directed at measuring the direct 
learning results, but also at measuring the transfer of what has been learned to 
new problems. And measuring transfer of learning in a valid and reliable 
manner is extremely difficult.  

 
Future Research 

 
The complex partnership between instructional designers and software 

producers, central in this dissertation, reflects the problematic relation between 
instructional design theory and learning technology in general (Van 
Merriënboer & Boot, 2005). In the field of learning technologies, on the one 
hand, the focus has mostly been on technical, organizational, and economical 
issues. For instance, proposals for the use of e-learning systems and learning 
objects largely neglected pedagogical issues, claiming the importance of 
“pedagogically neutral” standards (Friesen, 2004). However, an undesirable 
effect is that learning technologies sustain traditional pedagogical models, but 
not the more recent pedagogical models that rest on a holistic approach and aim 
at authentic learning tasks. In the field of instructional design theory, on the 
other hand, the focus has mostly been on pedagogical issues. The questions how 
particular pedagogical models can be technically realized, flexibly applied in 
different contexts, and developed in a cost-effective way have not been taken 
seriously enough. Therefore, too many educators and instructional designers 
view developments in the field of learning technologies as not directly relevant 
to their own work. They simply assume that their new pedagogical models will 
be sustained by new learning technologies and standards, but they seem to be 
unaware of the fact that those learning technologies may—in the worst case—
block educational innovations rather than facilitate them. 

Successful educational innovations require a complete synthesis of 
instructional design theories and learning technologies. Pedagogical, technical, 
organizational, and economic factors cannot be isolated from each other but 
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should always be studied in combination (e.g., see Jochems, van Merriënboer, & 
Koper, 2003). The importance of such an integrated approach should not be 
underestimated because there are vital interests for many different stakeholders, 
and the investments are huge in terms of money, time, and manpower. The 
studies in this dissertation were an example of interrelating instructional design 
aspects with instructional software aspects, for which three building-block 
solutions were proposed and tested. Besides more validation and testing of 
these solutions, future research should also have a broader focus. For example, 
additional building-block solutions might be proposed, perhaps suitable for 
developers with either low or high experience in design. Furthermore, the 
studies in this dissertation predominantly focused on pedagogical and learning-
technology issues. Future research should include organizational issues as well, 
such as the economical impact of particular methods. Finally, the usage of the 
building-block solutions in development processes that are completely based on 
a lean production model should be investigated. We expect that the value of the 
building-block solutions will become even more apparent in these lean 
production settings.  

 
An Illustrative Scenario: The Improved Situation 

 
 “Willem’s update of the policy document on developing instructional software 
just got approval from his superiors. The update concerns some new solutions for the 
problems that resulted from carrying out the guidelines of the first version of his policy 
document. It appeared that the transition of design information from the companies’ 
instructional designers to the external software producers was quite problematic. Willem 
has introduced three new solutions to overcome those problems. First, he suggests using 
the so-called 3D-model. This model supports his instructional designers establish design 
documents that will be unequivocally understood  by software producers, even when 
those producers are in foreign countries due to outsourcing. Second, Willem suggests 
using a new authoring tool. This tool contains instructional software templates that pre-
structure the didactical, authoring, and technical aspects of the production process. This 
should allow his instructional designers to independently create instructional software 
as either final products, without involvement of producers at all, or as prototypical 
examples for the producers. Third, he suggests using an integrative solution for the 
reuse of learning objects. This approach provides the solutions of (a) reediting learning 
objects, (b) filling out learning-object templates, (c) relying on automated processes, and 
(d) reusing intermediate products. Where relevant, the integrative approach is 
implemented in a repository system, which stores learning objects, supports the 
specification of metadata, and includes advanced search tools.  This should allow his 
instructional designers to independently assemble instructional software from learning 
objects, either as final products or as examples for the software producers. The three 
solutions Willem has introduced share a focus on using production building blocks by 
instructional designers, in order to bridge the gap between design and production. It is 
Willem’s conviction that these solutions will enable his company to realize a more 
professional and efficient development process.  
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Jon studies the three new solutions in the revised policy document, as they have 
to be used by him and his team of instructional designers in an upcoming, large 
development project. This project concerns the development of a training program for 
operating a radar system. The design team starts with creating a representation of the 
domain by modeling the operator tasks, radar systems, and operational environment. At 
the same time, they create a representation of the instructional design by modeling 
authentic learning tasks and learner support, based upon the Four Components 
Instructional Design model. Jon decides this is a good point to start using the first 
solution Willem has suggested, namely the 3D-model. The instructional designers create 
a functional model of the instructional design and instructional software issues, 
distributed over the different design layers along the stratification dimension. Jon 
decides that the final product will combine two learning environments. First, a 
simulation-based environment for learning to operate the radar, and second, a case-based 
learning environment for learning when to apply the radar system and how to interpret 
the radar results. When expanding the two designs along the elaboration dimension of 
the 3D-model, the instructional designers find out that the case-based learning 
environment requires a low fidelity, and that the instructional software issues are quite 
straightforward. In contrast, the simulation environment requires a high fidelity, and 
the instructional software issues are highly complex and technical. Therefore, Jon decides 
that the case-based learning environment will be produced by his own group, but that 
the production of the simulation environment will be outsourced. As a result, the design 
team elaborates and formalizes the functional model for the simulation environment as 
much as possible to make sure the external software producers will understand it. The 
case-based learning environment needs less elaboration and formalization at this stage of 
the development process, because it will be further produced by themselves. After 
finishing the design phase, the instructional designers start with producing the case-
based learning environment, whilst Jon submits the functional model for the simulation-
based environment to his project leader for outsourcing.  

The instructional designers start to produce the case-based learning environment 
with the company’s new authoring tool, which includes instructional software 
templates. These templates provide dedicated support for implementing case-based 
learning, and are able to help them to overcome their lack of authoring and technical 
skills. Second, the instructional designers study the integrative solution for reuse. They 
learn to operate a large repository with support mechanisms for (re)using learning 
objects, such as learning object template editors, automated metadata generators, search 
tools, and so forth.  

Then the production phase begins. The instructional designers find some relevant 
learning objects in Internet repositories from a large Radar Systems user group. 
Although the found objects pertain to slightly different versions of the radar system, the 
instructional designers are able to make the learning objects suitable for their situation 
with some reediting. Fortunately, some of the found learning objects are created on the 
basis of templates, which makes reediting even easier. And some objects are accompanied 
by intermediate products such as design documents that explain their structure and 
purpose, which also makes them easy to use. One of the design documents even describes 
a complete lesson plan for maintaining the radar system. Although copyrights probably 
apply, and maintaining the radar is different from operating it, this document could 
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have been used earlier by the instructional designers to provide some insight in how to 
model the domain. Jon therefore makes a mental note to start searching for learning 
objects earlier in their next project.  

The found learning objects provide most of the necessary resources for the case-
based learning environment, such as interactive electronic technical manuals (IETMs), 
video-clips of experts operating the radar, and even a complete lesson with theory on how 
radar works. Because most of the larger learning objects, which include complete lessons 
and learning tasks, were not created according to the model of case-based learning and 
were difficult to reedit, the designers decide to create the cases for the case-based learning 
environment themselves. They create all cases by means of the instructional software 
templates and subsequently store them as learning objects, accompanied by pieces of the 
design documents based upon the 3D-model to function as intermediate products. Each 
“case learning object” starts with presenting the problem, and a number of resources 
that contain relevant information for solving the problem, to the student. Then, a 
problem-solving space is provided with a low-fidelity presentation of the radar and its 
context, to solve the problem. Finally, a reflection part assesses the student’s problem 
solving process and results.  

Michael has now produced several instructional software packages for Willem’s 
and Jon’s company. He receives the design documents for the new project from his 
project leader, containing the functional model for a simulation environment for 
operating a radar system. The project leader instructs him to keep the time for technical 
specification as limited as possible. Michael’s company nowadays experiences fierce 
competition from cheaper, off-shore companies, so they try to cut costs in order to remain 
an attractive partner for producing instructional software. To his pleasant surprise, 
Michael immediately notices that the new documents have a clear organization, in which 
design and software issues are meaningfully interconnected. Where possible, the 
instructional designers have even included instructional software specifications as much 
as they are able to. Some do not make immediate sense to an experienced software 
producer such as Michael, but this is easily overcome because he can trace the 
specifications back to their conceptual background. What helps even more is that most of 
the information is described in detailed UML diagrams. They provide him with detailed 
information that can easily be completed or improved, even though some diagrams are 
not perfect yet. Last but not least, Michael notices that Jon has enclosed a CD-ROM 
with some learning objects his instructional designers found, providing examples of 
simulation environments similar to the radar simulation environment as they envision 
it. Michael quickly has a concrete idea about the intended final product, and starts with 
creating technical specifications that precisely express the intended simulation 
environment.”   
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Summary 
 

Current educational, technological, and organizational innovations are 
rapidly changing the way instructional software is developed. Modern 
instructional software is applied to enable the integration of working and 
learning, in terms of time- and place independent learning, and is preferably 
adapted and personalized to individual learners. This sets new criteria for 
developing instructional software. A first criterion is adaptivity, which is the 
ability to adjust the software to the needs and the progress of the individual 
learner. A second criterion is generativity, which is the ability to assemble the 
software from some combination of parts and sources precisely at the moment 
of delivery. And a third criterion is scalability, which is the ability to increase the 
production capacity for more and larger target groups without a corresponding 
increase in costs. Satisfying these three criteria mostly results in a highly 
complex design process for the instructional software. The fourth criterion is 
therefore modeling, which is the ability to deal with the designs’ complexity by 
representing the task domain and the instructional design in an accurate 
functional model. This functional model will be transferred to producers by 
means of design documents. The producers have to interpret the functional 
model, translate it into technical specifications, and finally create the 
instructional software.  

Chapter 2 describes theoretical and empirical analyses that show that 
traditional development methods do not satisfy the four new criteria. Modern 
development approaches such as lean production, directed at producing a broad 
variation of products that are flexibly tailored to individual users (i.e., “mass-
customization”), are better able to satisfy the criteria of adaptivity, generativity, 
and scalability. However, satisfying the fourth criterion of modeling is more 
difficult. The lack of standardized design languages that are familiar to both 
instructional designers and software producers prevent instructional designers 
from expressing their design in a functional model that is unequivocally 
interpreted by producers. As a result, the transition of the functional model 
between the design and production phases will often lead to distortion and loss 
of valuable information. 

In this dissertation, three building-block solutions are proposed and 
studied, which should overcome the design-production transition bottleneck. 
The solutions have in common that they support instructional designers in using 
building blocks that contain production-related information: (a) Design 
documents; (b) programming structures, and (c) learning materials. The main 
research question of this dissertation is if the transition bottleneck can be 
overcome by means of three proposed building-block solutions (a) A 3D-model 
for making design documents; (b) instructional software templates offering 
programming structures, and (c) an integrative approach for the reuse of 
learning materials. The three solutions focus on instructional designers and not 
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on software producers or other stakeholders, because the instructional designers 
are pre-eminently responsible for the didactical quality of the final products 
(defined as the extent to which desired learning outcomes are attained in an 
efficient manner). This didactical quality is of utmost importance because 
technical quality (defined as the extent to which the software takes care of the 
input, information processing, and output as intended) alone is a necessary but 
not sufficient condition to stimulate the desired learning processes.   

The first solution is the use of the Developing Design Documents (3D) 
model to support instructional designers in their traditional role of creating 
design documents containing the functional model. The 3D-model is a decision 
model based upon three dimensions, supporting instructional designers in 
creating design documents that are more or less stratified, elaborated, and 
formalized. This should ensure that producers are confronted with one-to-one 
relations between instructional design aspects and software aspects, the right 
level of detail of the descriptions, and unambiguous notation systems.   

The second solution is the use of instructional software templates to support 
instructional designers in a new role, namely producing instructional software 
based upon their own design documents. Instructional software templates are 
pre-structured software “moulds” that are easy to use, and allow instructional 
designers to create the programming structures (i.e. the software code) that 
make up the instructional software – without any involvement of producers. By 
completely designing and producing the software, the instructional designers 
avoid the need to transfer design documents, containing a functional model, to 
producers. Or, by only producing the software prototypically, they can transfer 
both their design documents as well as the example-prototypes to the producers, 
preventing the need to solely rely on design documents and improving the 
efficiency of the transition process.  

The third solution is the use of an integrative approach, also to support 
instructional designers in their new role of producer. The integrative approach is 
a method to support the reuse process of learning materials, consisting of the 
sub-solutions (a) templates, (b) re-editing, (c) automation, and (d) intermediate 
products. These solutions allow instructional designers to combine reusable 
learning objects (i.e., small, modular chunks of learning materials) into 
instructional software, without the involvement of producers. Similar to 
instructional software templates, the integrative approach allows instructional 
designers to design and produce the instructional software independently, either 
completely or prototypical as examples. 

To verify if the three proposed building-block solutions actually support 
instructional designers in overcoming the transition bottleneck, three empirical 
studies were conducted to respectively test the 3D-model (Chapter 3), the 
instructional templates (Chapter 4), and the integrative approach (Chapter 5).  

Chapter 3 reports the study testing the 3D-model (Study 1). The study is 
designed to find out if producers have a better understanding of the intended 
instructional software design from design documents based on the 3D-model, 
than from traditional design documents that consist of training blueprints and 
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storyboards. The results show that the design documents based upon the 3D-
model indeed significantly promotes a better understanding, and require 
significantly less time and less cognitive load than the traditional design 
documents. There are no differences in satisfaction with the 3D and traditional 
design documents. The study indicates that the instructional designers 
supported by the 3D-model are able to provide producers with better design 
documents. The 3D-model does not solve the lack of common design languages. 
On the contrary, such languages are exactly required for optimal usage of the 
3D-model. However, if these languages are not available, it yet provides 
producers with better insight in the design and the intentions of the 
instructional designer. 

Chapter 4 reports the study testing the instructional software templates 
(Study 2). The study is designed to find out if developers with high production 
experience (which is typical for real producers) who are working with the 
templates, are more productive and develop software with a higher didactical, 
technical, and authoring quality than developers with low production 
experience (which is typical for instructional designers) who work with the 
identical templates. The results show that the developers with low production 
experience produce the same amount of instructional software, with the same 
didactical, technical, and authoring quality, as those with high production 
experience. Didactical perspective and development style does not influence 
these results. For both groups, the didactical quality of the resulting products is 
unsatisfactory. The study indicates that the support from the instructional 
software templates can level the differences between developers with low and 
high production experience. This implies that instructional designers are able to 
produce software with the same technical and authoring quality as producers, 
and can therefore choose to produce their own designs to avoid the transition 
bottleneck. A limiting factor, however, is the fact that an acceptable didactical 
quality of these products is not self-evident. Working with the instructional 
software templates requires a solid background in instructional design to 
guarantee sufficient didactical quality. Although the developers participating in 
this study were comparable with instructional designers with regard to their 
low production experience, they also had less instructional design experience as 
expected. It seems that, in order to level differences in production experience 
with regard to technical, authoring and didactical quality of instructional 
software, instructional designers with a more solid background in instructional 
design are required.    

Chapter 5 reports the study testing the integrative approach (Study 3). 
The study is designed to find out if developers with low production experience, 
supported by particular configurations of the integrative approach, are able to 
reuse learning objects to make up instructional software. Two experiments are 
described. In the first experiment, developers are supported with the template 
and automation solutions of the integrative approach. They reuse both small 
learning objects (e.g., pictures or texts) and large learning objects (e.g., lessons or 
modules)—from both familiar and unfamiliar task domains, to create 
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instructional software. It is tested if developers with low production experience 
are indeed able to reuse learning objects, and if the type of learning object or the 
familiarity of the domain makes a difference. The results show that the 
developers judge both solutions positively, and rate working with larger 
learning objects higher than working with smaller learning objects. No 
differences between the familiar and the unfamiliar domain are found.  

In the second experiment of Study 3, developers are supported by the 
automation solution in combination with a set of (a) regular templates, (b) 
extended templates, or (c) intermediate products. It is tested what the most 
effective configuration of these three combined solutions is. The results of an 
expert review show that the automation solution in combination with 
intermediate products yields the highest-quality learning objects, followed by 
the extended templates and, finally, the regular templates condition. Similar to 
Study 2, the didactical quality is unsatisfactory in all conditions. The two 
experiments indicate that the integrative approach enables developers with low 
production experience, such as most instructional designers, to perform 
production tasks related to assembling the instructional software by learning 
objects. Therefore, they are able to choose to produce their own designs to avoid 
the transition bottleneck. However, it appears that to guarantee a sufficient 
didactical quality, working with learning objects requires the same solid 
instructional design background as working with instructional software 
templates.  

Chapter 6 is the final chapter of this dissertation and presents a general 
discussion of the results of all studies. The combined results of the three studies 
indicate that instructional designers, supported by—one or more of—the three 
building-block solutions, are able either to transfer a better understandable 
functional modeling to producers, or to implement the functional model by 
producing the instructional software products without involvement of 
producers. The results also indicate that an acceptable didactical quality of 
developed software products, however, is not self-evident. In the practical field, 
instructional design is mostly the responsibility of domain specialists such as 
subject matter experts and instructors. Therefore, these novice designers must 
receive additional support directed at increasing the didactical quality of the 
products they develop. Which—combination —of the three solutions is best to 
be used depends on factors such as the time instructional designers have 
available, their capabilities, and available support tools (e.g., templates, learning 
material repositories).  

Summarizing, the criterion of modeling can be satisfied because the 
application of the three building-block solutions overcomes the transition 
bottleneck. This enables the implementation of modern development 
approaches such as lean production. These approaches will promote the 
development of instructional software that meets the demands of current 
educational, technological, and organizational innovations.  
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Dutch summary / Nederlandse 
samenvatting 

 
Huidige onderwijskundige, technologische en organisatorische eisen aan 

innovaties veranderen in hoog tempo de wijze waarop educatieve software 
wordt ontwikkeld. Moderne educatieve software wordt toegepast om de 
integratie van werken en leren te bevorderen, om leren tijd- en 
plaatsonafhankelijk te maken, en om leren waar mogelijk aan te passen en af te 
stemmen op individuele lerenden. Hierdoor ontstaan nieuwe criteria voor het 
ontwikkelen van educatieve software. Een eerste criterium is adaptiviteit, wat de 
mogelijkheid betreft om de software aan te passen aan de behoeften en de 
voortgang van de individuele lerende. Een tweede criterium is generativiteit, wat 
de mogelijkheid betreft om de software samen te stellen uit een combinatie van 
onderdelen en bronnen, precies op het moment dat de software gebruikt wordt. 
En een derde criterium is schaalbaarheid, wat de mogelijkheid betreft om de 
productiecapaciteit te verhogen voor meerdere of grotere doelgroepen zonder 
dat de kosten evenredig stijgen. Het voldoen aan deze drie criteria resulteert in 
een zeer complex ontwerpproces voor de educatieve software. Het vierde 
criteria is dan ook modelleren, wat de mogelijkheid betreft om goed met deze 
ontwerpcomplexiteit om te gaan door de vakinhoud en het onderwijskundige 
ontwerp in een accuraat functioneel model te representeren. Dit functionele 
model wordt overgedragen aan producenten door middel van 
ontwerpdocumenten. De producenten gebruiken deze documenten om het 
functionele model te interpreteren, de interpretatie te vertalen naar technische 
specificaties, en op basis van deze specificaties de educatieve software te 
programmeren. 

Hoofdstuk 2 beschrijft theoretische en empirische analyses die aantonen 
dat traditionele ontwikkelmethoden niet voldoen aan de vier nieuwe criteria. 
Moderne ontwikkelmethoden zoals lean production, gericht op het produceren 
van een grote variatie van producten die flexibel zijn toegesneden op 
individuele gebruikers (zogenaamde ‘mass customization’), zijn beter in staat 
om te voldoen aan de criteria adaptiviteit, generativiteit en schaalbaarheid. Het 
voldoen aan het vierde criterium, modelleren, is echter moeilijker. Het 
ontbreken van gestandaardiseerde onderwijstechnologische ontwerptalen, die 
beheerst worden door zowel onderwijskundig ontwerpers als 
softwareproducenten, maakt het onmogelijk dat onderwijskundig ontwerpers 
hun ontwerp op zo’n manier kunnen uitdrukken in een functioneel model dat 
een eenduidige interpretatie door softwareproducenten gewaarborgd is. Een 
gevolg is dat de transitie van het functionele model van de ontwerpfase naar de 
productiefase vaak leidt tot vervorming en verlies van waardevolle informatie.  

In dit proefschrift worden drie bouwsteenoplossingen voorgesteld en 
onderzocht, die het ontwerp-productie transitieprobleem kunnen oplossen. De 
oplossingen hebben gemeen dat zij onderwijskundig ontwerpers ondersteunen 
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in het gebruik van bouwstenen die productiegerelateerde informatie bevatten: 
(a) ontwerpdocumenten; (b) programmastructuren, en (c) leermaterialen. De 
belangrijkste onderzoeksvraag van dit proefschrift is of het transitieprobleem 
opgelost kan worden door middel van de volgende drie bouwsteenoplossingen: 
(a) Een 3D-model voor het maken van ontwerpdocumenten; (b) educatieve 
software-templates die programmastructuren aanbieden, en (c) een integratieve 
benadering voor het hergebruik van leermaterialen. De drie oplossingen richten 
zich op onderwijskundig ontwerpers en niet op softwareproducenten of andere 
betrokkenen, omdat vooral de ontwerpers verantwoordelijk zijn voor de 
didactische kwaliteit van de uiteindelijke producten (d.w.z., de mate waarin de 
gewenste leeruitkomsten behaald worden op een doelmatige wijze). Deze 
didactische kwaliteit is nog belangrijker dan de technische kwaliteit (d.w.z., de 
mate waarin de software omgaat met de invoer, verwerking en uitvoer van 
informatie zoals gepland), omdat de technische kwaliteit weliswaar 
noodzakelijk maar nog niet voldoende is om de gewenste leerprocessen bij 
studenten te bewerkstelligen. 

De eerste oplossing is het gebruik van het 3D-model, dat niet alleen staat 
voor drie dimensies maar ook voor Developing Design Documents 
(Ontwikkelen van Ontwerp Documenten). Het model ondersteunt 
onderwijskundig ontwerpers in hun traditionele rol van het specificeren van 
ontwerpdocumenten waar een functioneel model deel van uitmaakt. Het 3D-
model is een beslismodel dat ontwerpers ondersteunt in het maken van 
ontwerpdocumenten die meer of minder gelaagd, uitgebreid en formeel zijn. Dit 
moet garanderen dat producenten worden geconfronteerd met één-op-één 
relaties tussen onderwijskundige ontwerpaspecten en softwareaspecten, met 
beschrijvingen op het juiste niveau van detaillering, en gebruik makend van 
eenduidige notatiesystemen.  

De tweede oplossing is het gebruik van educatieve software-templates 
die onderwijskundig ontwerpers ondersteunen in een nieuwe rol: Het 
produceren van educatieve software op basis van eigen ontwerpdocumenten. 
Educatieve software-templates zijn voorgestructureerde ‘mallen’ die 
gemakkelijk te gebruiken zijn en onderwijskundig ontwerpers in staat stellen 
om zelf de programmastructuren (d.w.z, de softwarecode) voor educatieve 
software te maken, zonder inzet van producenten. Door de hele software te 
ontwerpen en te produceren hoeven de onderwijskundig ontwerpers hun 
ontwerpdocumenten, inclusief het functionele model, niet meer over te dragen 
naar producers. Of ze kunnen prototypes van de educatieve software maken en 
dan zowel hun ontwerpdocumenten als hun prototypische voorbeelden 
overdragen aan producers. Hiermee wordt voorkomen dat ontwerpers geheel 
moeten vertrouwen op het gebruik van ontwerpdocumenten en kunnen ze de 
doelmatigheid van het transitieproces verhogen door het in eigen hand te 
houden.  

De derde oplossing is het gebruik van een integratieve benadering die 
onderwijskundig ontwerpers expliciet ondersteund in hun nieuwe rol van 
producer. De integratieve benadering is een manier om het hergebruik van 
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leermaterialen te vergemakkelijken middels de deeloplossingen (a) templates, 
(b) herbewerken, (c) automatiseren, en (d) halffabrikaten. Deze oplossingen 
stellen onderwijskundig ontwerpers in staat om zelf, zonder inmenging van 
producers, herbruikbare leerobjecten (kleine, modulaire eenheden van 
leermaterialen) te combineren tot educatieve software. Net zoals de educatieve 
software-templates stelt de integratieve methode onderwijskundig ontwerpers 
in staat om zelfstandig de software te ontwerpen en te produceren, hetzij geheel 
of in de vorm van prototypische voorbeelden. 

Om na te gaan of de drie voorgestelde bouwsteenoplossingen 
daadwerkelijk ondersteuning bieden aan onderwijskundig ontwerpers, zijn drie 
studies uitgevoerd om respectievelijk het 3D-model (Hoofdstuk 3), de 
onderwijskundige software-templates (Hoofdstuk 4), en de integratieve 
benadering (Hoofdstuk 5) te testen.  

Hoofdstuk 3 beschrijft een studie naar het 3D-model (Studie 1). Deze 
studie onderzoekt of producenten de bedoelingen van een onderwijskundig 
ontwerp beter begrijpen uit ontwerpdocumenten gebaseerd op het 3D-model 
dan uit traditionele ontwerpdocumenten gebaseerd op opleidingsblauwdrukken 
en “storyboards”. De resultaten tonen aan dat de ontwerpdocumenten 
gebaseerd op het 3D-model inderdaad leiden tot een significant beter begrip en 
ook significant minder tijd en minder cognitieve belasting vergen dan 
traditionele ontwerpdocumenten. De tevredenheid over de 3D en de traditionele 
ontwerpdocumenten verschilt niet. Deze studie geeft aan dat onderwijskundig 
ontwerpers die ondersteund worden door het 3D-model producenten inderdaad 
van betere ontwerpdocumenten kunnen voorzien. Het 3D-model lost het 
probleem van het gebrek aan gemeenschappelijke ontwerptalen echter niet op. 
Integendeel, zulke talen zijn juist noodzakelijk voor een optimaal functioneren 
van het 3D-model. Maar ook als deze talen niet beschikbaar zijn geeft het 3D-
model producers nog steeds een beter inzicht in het ontwerp en de bedoelingen 
van de onderwijskundig ontwerper.  

Hoofdstuk 4 beschrijft een studie naar educatieve software-templates 
(Studie 2). Ontwikkelaars met veel en weinig productie-ervaring werken met 
dezelfde templates. Er wordt onderzocht of ontwikkelaars met veel productie-
ervaring (vergelijkbaar met echte producers) productiever zijn en software 
ontwerpen met een hogere didactische, technische en programmeerkwaliteit 
dan ontwikkelaars met weinig productie-ervaring (vergelijkbaar met 
onderwijskundig ontwerpers). De resultaten tonen aan dat ontwikkelaars met 
weinig productie-ervaring dezelfde hoeveelheid software, met dezelfde 
didactische, technische en programmeerkwaliteit produceren als ontwikkelaars 
met veel productie-ervaring. Deze resultaten worden niet beïnvloed door de 
didactische houding of de ontwikkelstijl van de ontwikkelaars. Voor beide 
groepen geldt dat de didactische kwaliteit van de resulterende producten 
onbevredigend is. Deze studie geeft aan dat ondersteuning met educatieve 
software-templates de verschillen tussen ontwikkelaars met weinig en veel 
productie-ervaring kan opheffen. Dit houdt in dat onderwijskundig ontwerpers 
in staat zijn om software met dezelfde technische- en programmeerkwaliteit te 
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maken als producenten, en derhalve kunnen kiezen om zelf hun ontwerpen te 
produceren en zo het transitieprobleem te vermijden. Een beperkende factor is 
echter dat een acceptabele didactische kwaliteit van deze producten beslist niet 
vanzelfsprekend is. Werken met educatieve software-templates vereist een 
solide achtergrond in onderwijskundig ontwerpen om voldoende didactische 
kwaliteit te garanderen. Wat hun geringe productie-ervaring betreft waren de 
ontwikkelaars in onze studie vergelijkbaar met onderwijskundig ontwerpers, 
maar zij bezaten ook minder onderwijskundige ontwerpervaring dan verwacht. 
Het lijkt er op dat onderwijskundig ontwerpers met een meer solide 
achtergrond in ontwerpen noodzakelijk zijn om de verschillen in productie-
ervaring niet alleen op te heffen voor de technische kwaliteit en de 
programmeerkwaliteit maar ook voor de didactische kwaliteit van de educatieve 
software.  

Hoofdstuk 5 beschrijft een studie naar het gebruik van de integratieve 
benadering (Studie 3). Onderzocht wordt of ontwikkelaars met weinig 
productie-ervaring, die ondersteund worden door een specifieke configuratie 
van de integratieve methode, in staat zijn om leerobjecten te hergebruiken bij het 
produceren van educatieve software. Er worden twee experimenten beschreven. 
In het eerste experiment worden ontwikkelaars ondersteund door de template-
oplossing en de automatiseringsoplossing van de integratieve benadering. Zij 
hergebruiken zowel kleine leerobjecten (bijv. plaatjes of teksten) als grote, 
didactische leerobjecten (bijv. lessen of modules) om educatieve software te 
maken–in  zowel bekende als onbekende vakgebieden. Getest wordt of 
ontwikkelaars met weinig productie-ervaring daadwerkelijk in staat zijn om 
leerobjecten te hergebruiken en of het type leerobject of de bekendheid met het 
vakgebied hierbij een rol speelt. De ontwikkelaars beoordelen beide oplossingen 
positief en waarderen het werken met kleine leerobjecten hoger dan het werken 
met grote, didactische leerobjecten. Er worden geen verschillen gevonden tussen 
het werken met leerobjecten uit een bekend vakgebied en het werken met 
objecten uit een onbekend vakgebied.  

In het tweede onderzoek van Studie 3 worden ontwikkelaars 
ondersteund door de automatiseringsoplossing in combinatie met een set (a) 
normale templates, (b) uitgebreide templates, of (c) halffabrikaten. Getest wordt 
wat de meest effectieve configuratie van de drie gecombineerde oplossingen is. 
Volgens expertbeoordelingen resulteert de automatiseringsoplossing in 
combinatie met de halffabrikaten in software met de hoogste kwaliteit, gevolgd 
door de combinatie met uitgebreide templates en, tot slot, de combinatie met de 
normale templates. Evenals in Studie 2 is de didactische kwaliteit van de 
ontwikkelde software laag. De twee experimenten tonen aan dat de integratieve 
benadering ontwikkelaars met weinig productie-ervaring, zoals de meeste 
onderwijskundig ontwerpers, effectief kan ondersteunen bij het uitvoeren van 
productietaken die gerelateerd zijn aan het samenstellen van educatieve 
software uit leerobjecten. Dit stelt ontwerpers in staat om zelf hun ontwerpen te 
produceren en zo het transitieprobleem te vermijden. Net als bij het werken met 
educatieve software-templates is echter ook bij het werken met leerobjecten een 
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solide onderwijskundige ontwerpachtergrond vereist om voldoende didactische 
kwaliteit van de educatieve software te garanderen.   

Hoofdstuk 6 sluit het proefschrift af en bevat een algemene discussie van 
de resultaten van alle studies. De gecombineerde resultaten van de drie studies 
laten zien dat onderwijskundig ontwerpers die ondersteund worden door—een 
of meer van—de drie bouwsteenoplossingen, in staat zijn om een beter te 
begrijpen functioneel model over te dragen naar producers, dan wel om op basis 
van hun eigen functionele model educatieve software te produceren zonder 
steun van producenten. De resultaten tonen ook aan dat een acceptabele 
didactische kwaliteit van de ontwikkelde software niet vanzelfsprekend is. In de 
praktijk zijn het veelal domeinexperts, zoals vakspecialisten of docenten, die 
verantwoordelijk zijn voor het onderwijskundige ontwerp. Omdat de meeste 
domeinexperts weinig ervaring hebben met ontwerpen is het van belang dat zij 
extra ondersteuning krijgen, die primair gericht is op het verhogen van de 
didactische kwaliteit van ontwikkelde producten. Welke—combinatie—van de 
drie bouwsteenoplossingen het best gehanteerd kan worden hangt af van 
factoren zoals de tijd die onderwijskundig ontwerpers beschikbaar hebben, hun 
competenties en de beschikbaarheid van hulpmiddelen (bijv. templates of 
educatieve databases).   

Samenvattend kan gesteld worden dat de drie bouwsteenoplossingen 
bijdragen aan het oplossen van het transitieprobleem, zodat beter aan het 
criterium van modellering voldaan kan worden. Dit maakt het mogelijk om 
moderne ontwikkelmethoden zoals lean production in te voeren bij de 
ontwikkeling van educatieve software. Zulke methoden worden noodzakelijk 
geacht voor de ontwikkeling van educatieve software die voldoet aan de 
huidige onderwijskundige, technologische en organisatorische eisen bij 
innovaties in het onderwijs. 
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