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Chapter 1 - Introduction

Since the emergence of the personal computer and the Internet, new
technological developments seem to accelerate with an ever increasing speed.
Nowadays, youngsters are seen as Captain Caveman if they are not equipped
with their own mobile phone, Personal Digital Assistent with wireless internet
connection, and flash-memory MP3 player. These gadgets are exemplary for the
ongoing technological developments that ask for continuous adaptation and,
indeed, lifelong learning from citizens in modern society. This poses new
demands to the field of education in at least two ways. First, it is becoming
more important than ever to educate students in such a way that they can deal
with rapid changes in their professional and daily-life environment. The
transfer of learning to ever changing situations is now far more important than
the direct learning outcomes. Second, education must be available to students
whenever they need it. The educational research field shows two main
tendencies to cope with these new demands: (a) an increasing use of real-life
tasks as the driving force for learning, and (b) an increasing flexibility of
educational programs as indicated by terms such as “just-in-time-learning” and
“education-on-demand”.

The first tendency shows that meaningful learning tasks, which are based
on real-life tasks, are increasingly used as the “backbone” of educational
programs. In the design and development of learning tasks several aspects
should be taken into account, which ensure that the tasks are at a suitable level
of difficulty for the learners and provide an appropriate amount of support and
guidance. Furthermore, the tasks should be authentic, engage and motivate the
learners, and make meaningful use of technology. This development is evident
in educational approaches such as problem-based learning (PBL), task-oriented
learning, and competence-based learning. The basic idea is that the use of real-
life tasks helps learners to integrate knowledge, skills, and attitudes into rich
cognitive structures, which better allow for transfer of learning as well as new
learning in future situations.

The second tendency shows the need to make educational programs
more flexible. Life-long learning requires flexible curricula and instructional
materials that can be adapted to the needs of the individual learners. People
need both a content and a form in education that is directly relevant to their
current needs (“education-on-demand”). And they need to be given the
possibility to have education at the exact time and place they need it (“just-in-
time learning”). Instead of providing the same curriculum to a whole group of
students, every student might thus receive a uniquely personalized curriculum.

This dissertation brings both tendencies together. On the one hand, it
takes a view on educational programs where a sequence of meaningful learning
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tasks serves as the backbone of the whole curriculum. On the other hand, this
sequence of learning tasks is conceived as a dynamic entity where each next
learning task can be selected in such a way that it best suits the needs of an
individual learner.

Research Questions
Flexible learning on the basis of meaningful learning tasks requires some form
of dynamic task selection. An intelligent agent (e.g., teacher, training program,
trainee) makes decisions about the most optimal learning-task sequence during
the training or teaching process. In order to make appropriate decisions,
information on the student’s progress is used such as indications of the level of
performance (e.g., speed, accuracy, errors) and the costs related to reaching this
performance (e.g., necessary time-on-task, invested mental effort). The main
research question of this dissertation is how dynamic task selection can be used
to optimize training programs, the learning process, and transfer test
performance. More specific research questions focus on the different types of
information that are required to effectively use dynamic task selection and on
the role of the trainees themselves in this task selection process. For example, do
performance measures contain sufficient information for dynamic task selection
or are other measures, such as invested mental effort, also important to take
into account? And to what extent are trainees able to fulfill an active role in the
process of task selection?

Overview of the Dissertation
In order to answer the research questions, the theoretical framework of the
dissertation is given in Chapter 2. Chapters 3 through 5 present four empirical
studies on the use and effects of personalized methods in training programs for
complex cognitive skills in the aviation domain (i.e., controlling air traffic and
programming flight management systems). A closer look is taken at the transfer
effects of the mental efficiency method (Paas & van Merriénboer, 1993, 1994a,
1994b), which bases task selection on mental efficiency as a combination of
learner’s performance and invested mental effort. High mental efficiency is
associated with high performance combined with low mental effort, and low
efficiency is associated with low performance combined with high mental
effort. The mental efficiency method is compared with other personalized
training methods (e.g., based only on performance or invested mental effort)
and with a non-personalized training method.

Chapter 2 presents a theoretical comparison of approaches to learning
task selection that have been used throughout the last three decades in training
programs for complex cognitive skills. In general, a development from static
part-task selection to dynamic whole-task selection of learning tasks can be
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noticed. More specifically, four approaches are identified: (a) a static part-task
approach, (b) a static whole-task approach, (c) a dynamic part-task approach,
and (d) a dynamic whole-task approach. These four approaches are compared
in terms of their flexibility and adaptability to the needs of the individual
trainee during training. Furthermore, they are compared with regard to the
nature of the complex cognitive skills for which they may or may not be useful
training methods.

In Chapter 3, the differential effects of four task selection methods on
training efficiency (e.g., training time and number of tasks needed to reach the
exit performance level) and transfer test performance are investigated in a
computer-based training program for Air Traffic Control (ATC). A non-
dynamic condition, in which the learning tasks are presented to the participants
in a fixed, predetermined sequence, is compared to three dynamic conditions.
The dynamic conditions select learning tasks on the basis of performance,
mental effort, or mental efficiency (i.e., a combination of performance and
mental effort). The participants are first given an introduction to the ATC field
and have to complete a practice task before they start with the actual training
program. All participants start with a task of the lowest complexity level and
then continue with learning tasks that are selected according to the condition
they work in. After the training is completed, they are presented with ten
transfer tasks.

Chapter 4 investigates the effects of two personalized training methods
on training efficiency and transfer test performance in a computer-based ATC
training program. In one personalized condition, task selection is based on a
combination of performance and invested mental effort (i.e., mental efficiency);
in the other personalized condition, the learner is free to select the complexity
level of the next learning task (i.e., learner control). Furthermore, participants in
both personalized conditions are matched to “yoked” participants in two
control conditions. That is, each individualized training sequence of a
participant in the mental efficiency condition or the learner control condition is
also presented to a participant in the corresponding yoked control condition.
Note that the yoked participant is presented with the training sequence of
someone else; hence no personalization occurs in the yoked conditions. After an
introduction to the ATC field, all participants are given a pre-training before
they start with the actual training program. After completion of the training all
participants are presented with a two-fold transfer test consisting of a reaction
time test and ten transfer test tasks.

Chapter 5 presents two closely related empirical studies. The first study
examines the effects of three task selection methods on training efficiency and
test performance in a computer-based training program for programming a
Flight Management System (FMS). A non-dynamic condition, in which the
learning tasks are presented to the participants in a fixed, predetermined
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sequence, is compared to two dynamic conditions. In the dynamic conditions,
the learning tasks are either selected by the participants themselves (i.e., learner
control) or by a task selection algorithm in the computer-based training
program that uses the participant’s self-ratings for performance and mental
effort. The participants in the learner control condition have total freedom in
selecting the learning task they want to practice next. All participants are
presented with five test tasks after completion of the training. Since the data
from this study suggest that some participants systematically overrate their
performance, the role of self-ratings is further investigated in a second study.
The non-dynamic fixed condition is again compared to a mental efficiency
condition in which students assess their own performance and mental effort. As
in the first study, five test tasks are given after the participants have completed
the training.

Chapter 6, the final chapter of the dissertation, presents a general
discussion of the theoretical framework and the empirical studies. A review of
the main results is given, followed by a discussion of the limitations of the
conducted experiments. Furthermore, the theoretical and practical implications
of the studies are discussed and suggestions for future research are given. The
dissertation concludes with some final remarks on the value of dynamic task
selection in education.
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Chapter 2 — A Comparison of Approaches to Learning Task
Selection in the Training of Complex Cognitive Skills !

Abstract

This paper presents a comparison of learning task selection approaches that have
been used throughout the last three decades in the training of complex cognitive
skills. In general, a development from static part-task selection to dynamic whole-
task selection can be noticed. The four approaches of static part-task approaches,
static whole-task approaches, dynamic part-task approaches, and dynamic whole-
task approaches are identified and compared in terms of their flexibility and
adaptability to the needs of the individual trainee during training. The comparison
shows that dynamic whole-task approaches are the most flexible and adaptive. For
each approach it is discussed to what complex cognitive skills they might be useful
training methods.

Introduction
Employees are faced with increasingly demanding working environments in
modern society. Especially in technical domains such as aircraft control and
chemical industry, in which mistakes can lead to dangerous situations and high
costs. However, the available training time in which the complex job skills have
to be mastered, is limited. The question of how employees can be efficiently
trained is considered important. This paper presents a comparison of learning
task selection approaches in the training of complex cognitive skills that have
been used throughout the last three decades. An important focus of this article
is to determine how these approaches can be used to personalize training in
order to achieve transferable skills.

A first distinction is made between static and dynamic approaches in the
selection of learning tasks. Although both approaches take prior knowledge
into account in the development of the training program, the sequence of
learning tasks can be determined by the training program or by the trainer
either prior to the start of the training, i.e., static approaches, or can be adjusted
during the training, i.e., dynamic approaches. Furthermore, both approaches
are subdivided into part- and whole-task approaches. This second distinction
reflects the development of training programs from static part-task based to
dynamic whole-task based. First, the static part-task and whole-task approaches
are discussed that are characterized by a preset order and complexity of
learning tasks prior to the training. Then, dynamic part-task and whole-task

I This chapter is currently in press as: Salden, R. |. C. M., Paas, F., & van Merriénboer, |. ]. G. (in press). A
comparison of approaches to learning task selection in the training of complex cognitive skills. Computers in
Human Behavior.
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approaches are discussed that are characterized by the possibility to adjust the
order and complexity of learning tasks during training.

The four approaches are compared in terms of their flexibility and
adaptability to the needs of the individual trainee during training, using the
following factors: clear determination of learning tasks, no integrative
constraints, ability to adjust during training, personalized instruction,
possibility to use cognitive load for determining task selection and coping with
high task organization.

For a task selection approach to be useful it should be able to determine a
set of clear-cut learning tasks. Furthermore, it should be able to integrate parts
of a whole-task with ease and deal with parts that are related to each other
(high task organization). In order to achieve personalized training, the focus
should be on the individual student instead of on a group of students. The
ability to adjust during training enables one to alter the complexity and order of
learning tasks when a student encounters a problem. While usually
performance measures are used to determine task selection, the concept of
cognitive load is getting more and more acknowledgement as an important
factor to take into account as well (e.g., Brusilovsky, 1992; Kashihara,
Hirashima, & Toyoda, 1995). Finally, the results from the comparison of the
four learning task selection approaches will be used to discuss for what
complex cognitive skills they might be useful training methods.

Static Part-Task Selection Approaches
Part-task approaches were originally proposed because it was considered
impossible to start training with learning tasks that represent the full
complexity of the authentic task. A learner’s cognitive system might be
overloaded, which can negatively affect learning, performance and motivation
(Sweller, van Merriénboer, & Paas, 1998). Furthermore, Wightman and Lintern
(1985) have proposed that part-task training can have higher learning efficiency
and lower training costs than whole-task training, especially, when task
complexity is high and task organization is low. Task complexity refers to the
load that each separate component of the task imposes on the learner’s
cognitive system, while task organization refers to the processing demands of
the interacting components of the task (Fabiani, Buckley, Gratton, Coles,
Donchin, & Logie, 1989).

Besides a preset order and complexity of learning tasks, which is
determined prior to the training, static part-task approaches are characterized
by the fact that all learning tasks include some of the skills that a learner should
acquire and be able to apply after the completion of the training. Learners start
with part-tasks and practice increasingly larger parts until they have mastered
the whole-task.
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Part-tasks can consist of segments, fractions, simplifications or
prerequisites of the whole-task. If a task contains subtasks that can be clearly
separated, then the whole-task can be segmented into series of these subtasks
(Wightman & Lintern, 1985). For example, when learning to drive a car, skills
such as steering, accelerating, and shifting gear are three possible subtasks.
Fractionation breaks elements of the whole-task that are normally performed
concurrently into components. For example, trainees in driving are typically
required to learn how to steer a car before they can continue to use the pedals
and the shifting gear. Simplification implies the reduction of difficulty of one or
more elements of the task. For example, one will first practice steering a car on a
spacious parking lot, before advancing to a more complex, less spacious
environment. Prerequisites are parts that need to be acquired before other parts
of the task can be mastered. Examples are steering a car, using the pedals, or
using the shifting gear. In partitioning a whole-task, the focus is on defining a
large number of small tasks in order to yield a so-called fine-grained
decomposition of the task. For example, car engineers divide the whole-task of
checking an engine into specific parts of the engine. By systematically checking
each specific part of the engine they can exclude possible causes of the failing of
the engine.

Several approaches may be used to determine the order of the different
parts in part-task training. In backward chaining the last component of a task is
practiced first and earlier components are introduced later in the training. In
forward chaining the order for adding task components is from first to last
(Proctor & Dutta, 1995). When considering driving a car, one could practice the
shifting gear as part of a backward chaining part-task, and end with practicing
how to start the car. In forward chaining one would practice part-tasks in the
exact opposite order. Several approaches determine the reintegration of the
parts into the whole-task. In repetitive part training each component is
practiced separately and then additional parts are added sequentially. In pure
part training each component is practiced in isolation before the parts are
combined. Progressive part training is a combination of repetitive part and pure
part training as each part is practiced in isolation before being added one at a
time to the task (Proctor & Dutta, 1995). Finally, snowballing resembles forward
chaining in that it starts with offering parts and more parts are added with each
next step (Landa, 1983). Figure 1 depicts these sequencing approaches.

Another part-task training approach that determines the order of the
parts is the hierarchical approach, which was developed by Gagné (1968). It is
based on the observation that a skill is made up of prerequisites or enabling
skills that must be learned before the larger, more complex skills, of which they
are a part, can be learned. Gagné distinguishes several increasingly detailed and
difficult skills whose hierarchical arrangement helps to figure out what
prerequisites a given skill might have. To make sure the learner is not
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confronted with learning tasks of skills that are already mastered; the training
needs to be started at the level of “entering knowledge” of the learner. A
hierarchical sequence is one that never teaches a skill before its prerequisites
(Reigeluth, 1999).

Repetitive part:

Forward chaining/ 1 1| 2 1(2]3
Snowballing

Repetitive part:

Backward chaining 3 213 Lrz)s
Pure-part 1 2 3 1(2]3
Progressive part 1 2 1 2 3 1 2 3

Figure 1. Adapted from Proctor and Dutta (1995): sequencing of a task divided in three serial
part-tasks.

Although the discussed approaches have several differences with regard
to the preferred application in specific training contexts, they all claim that one
should adapt the training to the trainee’s prior knowledge and take the growing
amount of acquired knowledge of the trainees into account. And like the
hierarchical approach states, some skills should be learned before a trainee can
start to learn a more complex skill.

However, for complex cognitive tasks, determining the part-tasks is not
easily done as many parts are related to each other. Training on parts of a
whole-task does impose integrative constraints since a trainee is eventually
presented with a whole-task version of all the previous part-tasks. Since the
task order and complexity of the part-tasks are preset prior to the training, there
is no possibility to make adjustments during training. Furthermore, the training
methods focus on a group of students instead of presenting personalized
instruction. Though cognitive load (e.g., Sweller, 1989) could be used to
determine the order of learning tasks, this could only be done prior to training.
Lastly, part-task methods are unable to cope with task organization when parts
interact highly with each other (see Table 1).
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Static Whole-Task Selection Approaches
Static whole-task selection approaches started to develop when the limitations
of the part-task approaches became apparent. Besides a preset order and
complexity of learning tasks prior to the training, static whole-task approaches
are characterized by the fact that every learning task includes all the skills that a
learner should have acquired and be able to apply after the training.

Table 1 Overview of strengths and limitations of task selection approaches.

Static Dynamic
part-task whole-task part-task whole-task

Clear determination of learning - + - +

tasks

No integrative constraints - + - +
Ability to adjust during training - - + +
Personalized instruction - - + +
Possibility to use cognitive load

for determining task selection + + + +
Coping high task organization - + - +

Reigeluth and Stein’s elaboration theory (1983) determines the order and
complexity of learning tasks prior to training by means of identifying task
expertise. An approach for building task expertise that offers guidance for
analyzing, selecting, and sequencing the learning tasks, is the Simplifying
Conditions Method (SCM). It claims that, given that any complex task has some
conditions under which it is easier to perform than under others, one should
start with the simplest version of the task that is still fairly representative of the
task as a whole. For example, when learning to drive a car, one will first
practice driving on roads not crowded with traffic, before advancing to a more
complex, more crowded environment. The SCM gradually progresses to more
complex versions of the task until the desired complexity level is reached,
making sure that the learner is aware of the relationships between the different
task versions. These different versions of learning tasks constitute a task class
when they have an equal complexity. Differences in complexity only exist
between task classes (van Merriénboer, 1997) and each task class contains
learning tasks that are complete, real-world performances of a whole-task
(Reigeluth, 1999).

A relatively new approach, which resembles some aspects of the
elaboration theory to a high extent, is the familiarity approach (Scheiter, Gerjets,
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& Tack, 2001). This approach uses the prior knowledge (familiarity) of the
trainees and the difficulty of the tasks to base the training sequence on. The first
lessons or parts of a training contain high familiarity aspects and are of low
difficulty. As a learner progresses through the lessons or training, familiarity
decreases and difficulty increases. For example, when novice learners start
learning physics, they are first presented with the basic elements and rules.
Only after having acquired these, they will proceed to more complex
relationships of the properties of physics. In short, the familiarity approach
states that the amount of presented unfamiliar information and complexity of
the learning tasks is adjusted to the learner’s current knowledge state prior to
the training.

A mental model progressions approach states that one should start with
learning tasks that require a mental model that contains the ideas that are most
simple, representative, fundamental, and concrete (van Merriénboer, 1997). For
example, when learning to drive a car one should first learn to perform the
basic actions (e.g., steering, shifting gear, and using the pedals) in a spacious
environment. The model has to generate tasks that learners can work on by
means of taking the prior knowledge of the learner during the first learning
tasks into consideration. Progressions can occur in the development of a
particular model as well as by changes in model order and degree of
elaboration. While a subsequent model adds complexity or detail to an aspect of
the former models and becomes an elaboration of them, learners proceed to
more complex tasks accordingly to model development. Furthermore, a
subsequent model can provide alternative strategies on solving problems in the
domain. This process continues until the desired exit behavior is attained,
which is specified in a certain level of elaboration and a set of mental models
that offer different strategies and perspectives. The general idea is that each
subsequent model should allow the learner to solve a new task class (van
Merriénboer, 1997). For example, this approach has been used to explain the
design and troubleshooting of electrical circuits where learners progress from
learning tasks that present a basic idea of a circuit to tasks that present the laws
of electricity (White & Frederiksen, 1989).

The emphasis manipulation approach (Gopher, Weil, & Siegel, 1989) was
invented to avoid the difficulty of dividing a task into parts and states that
learners should be exposed to the whole-task in its full complexity throughout
the training period. However, different sets of skills are emphasized during
different training phases. The learners are enabled to focus on specific aspects
without loosing sight of the whole-task. By emphasizing and de-emphasizing
aspects of the whole-task, learners learn to monitor priorities and to direct
attention to the changes of emphasis. It is proposed to emphasize skills that are
difficult and demanding for the learners and that are sufficiently different from
each other. This is expected to lead to changes in performance for the whole-
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task when being applied. For example, novice tennis players might focus on
their backhand during a training game. When the backhand is mastered, it can
be de-emphasized and the service could be emphasized.

All approaches rightfully claim that the training should be adjusted to the
prior knowledge of the trainee first. The complexity of the tasks is gradually
increased in relation to the growing amount of acquired knowledge of the
trainees. However, the emphasis manipulation approach exposes learners to
tasks in its full complexity throughout training. This approach does not start the
training with the simplest whole-task but rather with a whole-task in which
particular aspects of the task are emphasized.

Since the approaches focus on whole-tasks, they can determine the
learning tasks quite well and they also experience no integrative constraints.
The static nature of the whole-task approaches shows similar limitations as the
static part-task approaches. While the order and complexity of learning tasks
are set prior to the training, the whole-task approaches lack the ability to make
adjustments during training. Furthermore, due to their focus on a group of
students, differences between trainees are not taken into account. Also,
cognitive load could be used to determine the order and complexity, though
only prior to training. Finally, these approaches can cope with high task
organization since they present tasks in its entirety during training (see Table 1).

Dynamic Part-Task Selection Approaches
As the role of the computer increased significantly, training programs started to
become computer-based. The training programs still used a part-task approach
but instead of being static, they became dynamic. This means that it became
possible to make adjustments in the order and complexity of the learning tasks
during the training phase. The parts and sequencing strategies that these
dynamic approaches use are similar to those used by the static part-task
approaches.

The first dynamic task selection approach, in a very raw version, was
branching (e.g., Coulson, Estavan, Melaragno, & Silberman, 1961; Gilman,
1969). This part-task approach attempts to diagnose to what extent the learner
has acquired the skills presented in the training. Snowballing (see static part-
task approaches section) is used to reintegrate parts to the whole-task. These
parts can be any of the different formats of part-tasks that were discussed in the
section on static part-task selection approaches.

Occasionally, when a certain amount of skills has been trained, additional
part-tasks are presented to test the learners’ performance. If they perform
correctly, they branch to the next skill; if they perform incorrectly, they are
branched to additional skills training, depending on the mistake they made
(Clark, 1997). The amount of branching may vary considerably from occasional
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branch points to branching after every learner’s response. The direction of
branching can either be forward, sideways, or backward. Forward means that
the learner skips skills, backward means that the learner repeats skills, and
sideways means that the learner is exposed to extra skills training (Allesi &
Trollip, 1991).

A part-task program that takes the dynamic aspect one step further than
the typical branching is Basic Instructional Program (BIP). BIP is a program for
teaching introductory programming (Bar, Beard, & Atkinson, 1976) which
attempts to individualize the sequence of instruction through the appropriate
selection of part-tasks from a database of learning tasks. These part-tasks
involve a varying set of skills that the learners have to acquire. The task
selection is based on information contained in a network that relates learning
tasks in the training program to issues in the knowledge domain. The training
program distinguishes three conceptual layers: techniques, skills, and tasks.
These three layers are used to offer learners learning tasks that can include
varying skills and techniques (Bar et al., 1976).

BIP uses a student model, which is being updated during training after
the completion of each learning task. Selection of the learning tasks is
determined on the basis of the student model. New learning tasks are selected if
the current task is mastered and does not contain skills that lie beyond the
learner’s reach (Bar et al., 1976). New skills are added to each new learning task
if a learner has mastered a certain set of skills sufficiently. In other words,
snowballing is used to reintegrate parts into the whole-task.

In line with the static part-task selection approaches, both branching and
BIP rightfully claim that training should be adapted to the trainee’s prior
knowledge and the growing amount of acquired knowledge of the trainees.
Furthermore, some skills should be acquired before a trainee can start learning
a task with more complex skills.

Since these approaches focus on part-task training, they have several
similar disadvantages as the static part-task approaches. Determining the
learning tasks is not easy, especially when task organization is high. However,
the advantage of their dynamic nature not only allows them to make
adjustments in task order and task complexity during training, it also enables
them to actually use cognitive load for task selection during training.
Furthermore, following this dynamic nature, a shift in focus occurred from
group-based training to personalized instruction (see Table 1).

Dynamic Whole-Task Selection Approaches
The introduction of computer-based training also enabled the use of dynamic
whole-task approaches in training complex cognitive skills. While presenting
learners with whole-tasks during the training it is also possible to adapt more
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efficiently to the needs of the individual trainee. Adjustments can be made in
the order and complexity of the learning tasks. The program can respond to the
learner’s problems during the training, with decisions being made that are
typically based on the performance of the trainee.

Like the part-task program BIP (Bar et al., 1976), many Intelligent
Tutoring Systems (ITS) use a student model in order to keep track of the
trainee’s history of the tasks and the corresponding performance. A student
model builds a knowledge base of the trainee, and updates that knowledge base
as the trainee progresses through the learning tasks. The progress of the trainee
is checked on the basis of comparing the trainee’s performance to the learning
objectives that were specified prior to training. After this comparison, the
selection rules indicate the next learning task to present to the learner.

However, many ITS focus on elaborating the operationalization of
student modeling while not being clear on the selection rules that are used.
These approaches include psychometric approaches (for a discussion, see
Everson, 1995), agents (e.g., Capuano, Mersella, & Salerno, 2000; Giroux,
Leman, & Marcenac, 1995), and fuzzy logic (e.g., Virvou, Maras, & Tsiriga,
2000). Though an important student models’ function is to give specific
feedback to the learners about their performance, only a few training
approaches exist that explicitly describe the task selection rules being used.

One of these training approaches is the Completion Assignment
Constructor (CASCO). CASCO is an ITS that dynamically selects learning tasks
in a training of introductory programming (van Merriénboer, Luursema,
Kingma, Houweling, & De Vries, 1996). The task selection rules that CASCO
uses are straightforward. The most important rule states that a good learning
task is suitable to present new learning elements and to practice known
learning elements. CASCO can therefore be classified as a Progressive Mental
Model (PMM). The other rules state that a good task is not too difficult, has not
been presented to the learner before, and is suitable to remediate learning
elements the learner makes mistakes with. While learners are working on the
learning tasks, learner diagnosis takes place in order to update the student
model. Fuzzy logic is being used to operationalize the student modeling. Fuzzy
sets are used to keep track of the learner’s progress and expertise in order to
optimize the selection of the next learning task (van Merriénboer, Krammer, &
Maaswinkel, 1994).

Another approach that explicitly describes the task selection rules that
are being used is the mental efficiency approach (Paas & van Merriénboer,
1993). While most ITS-programs only use prior knowledge and performance
data to determine task selection, the mental efficiency also uses the associated
cognitive load (e.g., Kalyuga, Chandler, & Sweller, 1998; Paas & van
Merriénboer, 1993). The concept of cognitive load has been acknowledged as an
important factor in the training of complex cognitive skills (e.g., Sweller, 1989;
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Sweller, et al., 1998). Using the associated cognitive load on a learning task
makes sense as learners can achieve a certain performance with varying
amounts of cognitive load. It enables one to differentiate between a learner who
needed to work laboriously to attain a certain performance level and a learner
who attained the same performance level with low mental effort. Whereas the
first should certainly not yet be confronted with more complex learning tasks,
the latter should be ready to deal with more complex learning tasks.

The task selection rules used in the mental efficiency approach are fairly
straightforward. While both performance and cognitive load are measured on a
5-point scoring scale, it is the difference between these two variables that
determines the increase or decrease in complexity of the next learning task. One
should have a database of learning tasks that are divided over a number of
complexity levels. A student who attains a performance score of 4 while his
cognitive load is 3, will be presented with a learning task that is one complexity
level higher than the previous task. A first indication of the beneficial effects of
the mental efficiency approach was found in a study by Camp, Paas, Rikers and
van Merriénboer (2001), who used the efficiency method in an Air Traffic
Control training.

The focus on whole-tasks of these dynamic approaches resembles several
advantages of the static whole-task approaches. First, the dynamic whole-task
approaches also state that training should be adjusted to the prior knowledge of
the trainee, and that the complexity of the tasks should be increased in relation
to the growing amount of acquired knowledge of the trainees. Furthermore, the
learning tasks are easily determined and no integrative constraints occur,
hereby coping well with high task organization. The dynamic nature of these
whole-task approaches also has the advantages of the dynamic part-task
approaches. Besides making adjustments in task order and task complexity, one
can base these also on cognitive load measures during the training (see Table 1).

Discussion
The comparison has shown that part-task approaches were proposed because it
was considered impossible to start training with highly complex learning tasks.
This would overload a learner’s cognitive system and lead to negative effects on
learning, performance and motivation (Sweller et al., 1998). However,
determining useful parts from a whole-task proved to be quite difficult (Gopher
et al., 1989). Furthermore, part-task approaches cannot easily account for the
integrative aspects of complex tasks, which can be very inefficient when time or
integrative constraints are high (van Merriénboer, Kirschner, & Kester, 2003).
Finally, static part-task approaches are not able to make adjustments during
training. Overall, static and dynamic part-task approaches do not cope well
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with high task organization and do not have the same ability to use cognitive
load to determine task selection as whole-task approaches.

Whole-task approaches can more easily cope with a high task
organization because they take the coordination and integration of the parts of
the whole-task into account from the beginning of the training. The static
whole-task approaches can be considered too inflexible, as they do not allow
intervention during training when a learner encounters a problem. Rather, they
focus on adapting training to the prior knowledge and growing amount of
acquired knowledge of a target group before the training starts. In order to have
an optimal learning process the trainer or the training program should be able
to make adjustments on those specific moments during training when a learner
is faced with a learning task that is too complex to solve at that moment.

Although the dynamic whole-task approaches have extended their
capacity to adjust to the needs of the individual and can deal with a high task
organization, it is believed that they still miss an important aspect of the
learning process, namely the associated cognitive load. Although cognitive load
was sometimes measured in dynamic whole-task approaches (e.g., Brusilovsky,
1992; Kashihara et al., 1995), it was never used as a determinant for task
selection. While recent studies (Camp et al., 2001; Chapter 3: Salden, Paas,
Broers, & van Merriénboer, 2004) have investigated the beneficial effects of
cognitive load, more research is needed to fully explore its possibilities.

Though each of the four approaches has its limitations, they can still be
useful for the training of certain cognitive skills. The static part-task approaches
can be used well for training less complex skills with a low task organization.
The execution of routines in aircraft maintenance can be trained using a static
part-task approach. For example, the order in which the certain particles of an
engine are checked is constantly the same. Furthermore, one can isolate the
engine particles rather well for inspection.

Dynamic part-task approaches can be used for a training of complex
skills that learners cannot start to practice in a whole-task format. For example,
when learning to drive a car, part-tasks like steering or shifting gear are
practiced first before a student can continue to a more integrated whole-task
practice of driving the car. Dynamic part-task approaches can also be
incorporated into dynamic whole-task methods. For example, when learning to
drive a car, one might perform the part-task of shifting gear not adequately. The
trainer might decide to focus on this part-task before the student can continue
with practicing the whole-task of driving the car.

Static whole-task approaches can be used for a training in which the tasks
are performed in a specific order. For example, when a physician is diagnosing
a patient, he or she will follow a certain standard procedure. After initial
interviews with the patient, the physician determines what physical
examinations have to be performed. Then, the physician studies the results and
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is able to minimize the possible diagnoses that might apply to the patient’s case.
After further interviewing of the patient a final diagnosis is made and the
treatment is determined.

The dynamic whole-task approaches can be used for a wide range of
training programs to learn complex skills because of their highly flexible and
adaptive nature. For example, the Air Traffic Control (ATC) domain is
exemplary for complex cognitive skills in which task organization is high and
the cognitive system of the learner is highly imposed. Instructions can be
personalized for each individual student, and if a student should encounters a
problem, one can respond flexible and adapt the material and instructions to
the student’s performance and cognitive load measures during the training.

In conclusion, to attain efficient instructional methods, it is important to
adapt instruction to the individual learner. The approaches that were
developed over the last three decades have gradually increased the
personalization of the training material. Despite the fact that the discussed
approaches have their limitations, they can still be useful to train cognitive,
complex skills. Also, the combination of some approaches can yield larger
benefits in developing an efficient training.
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Chapter 3 — Mental Effort and Performance as Determinants for
the Dynamic Selection of Learning Tasks in Air Traffic Control
Training !

Abstract

The differential effects of four task selection methods on training efficiency and
transfer in a computer-based training for Air Traffic Control were investigated. A
non-dynamic condition, in which the learning tasks were presented to the
participants in a fixed predetermined sequence, was compared to three dynamic
conditions, in which learning tasks were selected on the basis of performance,
mental effort, and a combination of both (i.e., mental efficiency). Using the 3-factor
mental efficiency formula of Tuovinen and Paas (2004), the hypothesis that dynamic
task selection leads to more efficient training than non-dynamic task selection was
confirmed. However, the hypothesis that dynamic task selection based on mental
efficiency leads to more efficient training than dynamic task selection based on
performance or mental effort alone was not supported. The results are discussed in
light of the theoretical framework and suggestions are given for future research.

Introduction
Within the aviation domain there is a serious shortage of well-trained air traffic
controllers, mainly due to the yearly increasing crowdedness of the airspace
(Galster, Duley, Masalonis, & Parasuraman, 2001). Relieving the workload of air
traffic controllers by using Free Flight (FF) and increasing the efficiency of Air
Traffic Control (ATC) training are the two main perspectives that have been put
forward as possible solutions to this problem. FF aims at minimizing ATC
restrictions by allowing user-preferred routing and free maneuvering (RTCA,
1995). With an advanced level of FF, the role of the air traffic controllers would
become less demanding as their primary activity would be to monitor the FF
actions (Galster et al., 2001). However, human monitoring of automated
systems can be poor, especially if the operator has little active control over the
automated process and is engaged in other tasks (Parasuraman, Molly, & Singh,
1993). Furthermore, high levels of automation might cause a loss of traffic
awareness in the air traffic controller, which leads to an increase of required
time for recovery from a failure.

The second perspective of improving the efficiency of the training of air
traffic controllers seems more promising and is considered in this study. One of
the main characteristics of complex domains such as ATC is that each task often
contains new elements compared to the previous tasks. In other words, each
new task can be considered as a transfer task in which the previously acquired

1 This chapter is published as: Salden, R. J. C. M., Paas, F., Broers, N. ]., & van Merriénboer, |. ]. G. (2004).
Mental effort and performance as determinants for the dynamic selection of learning tasks in Air Traffic
Control training. Instructional Science, 32, 153-172.
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knowledge needs to be applied differently. One should note that besides new
elements, each learning task contains the basic skills that have to be acquired
(e.g., giving headings and altitude commands). Though the variability and
complexity of the learning tasks increase during training, each task builds upon
this basis.

An efficient training offers trainees a powerful learning environment in
which they can acquire skills quickly and adequately, and learn how to apply
these skills flexibly in new situations and tasks. The non-dynamic instructional
methods that are currently being used in ATC training programs do not work
efficiently as a large amount of students does not complete the training
(EATMP Human Resources Team, 2001). The current article compares three
dynamic training task selection methods with regard to their effects on training
efficiency.

During the last three decades, training methods and programs have
evolved in three important ways (for an overview see Chapter 2: Salden, Paas, &
van Merriénboer, in press): from static to dynamic, from part-task based to
whole-task based, and from group-based to personalized. Especially, the use of
personalized selection of learning tasks is believed to be strongly related to
increased training efficiency (Chapter 2: Salden et al., in press). Although many
Intelligent Tutoring Systems (ITS) have extended their capacity to adapt the
selection of learning tasks to the individual learner’s needs by incorporating
student models that keep track of a student’s performance history, we claim
that they are lacking an important aspect of the learning process, namely,
cognitive load. Although, the concept of cognitive load is sometimes measured
(e.g., Kashihara, Hirashima, & Toyoda, 1995) it has never been used in ITSs as a
determinant for task selection. There is no doubt that cognitive load is a crucial
factor in the training of complex cognitive skills (e.g., Sweller, 1989; Sweller,
1999; Sweller, van Merriénboer, & Paas, 1998), but usually, only performance
measures such as speed and accuracy are used to select learning tasks.

From the viewpoint of cognitive load theory (Paas, Renkl, & Sweller,
2003), dynamic task selection can be superior to fixed task selection as it
provides the possibility to adjust the training to the cognitive state of the
learner, thereby controlling the load that is imposed on a learner’s cognitive
system. Although individual measures of performance and mental effort can be
used as indicators of the cognitive demands a certain task places on the learner,
the combination of both measures is considered a superior estimate of the
cognitive demands in the dynamic selection of training tasks. It is quite feasible
for two people to attain the same performance levels, while one of them
experiences a very high cognitive load and needs to work laboriously through a
very effortful process, whereas the other person experiences a low cognitive
load and reaches the same performance level with a minimum of effort.
However, most people would agree that the next learning task should be less
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difficult for the first person than for the second person. Our claim is that task
selection, and consequently training efficiency can be improved by taking the
combination of performance and cognitive load measures into account. To
obtain a good indication of the cognitive load that is imposed on a person’s
cognitive system, mental effort measurements are used.

A combined measure of performance and mental effort has been
proposed as a measure of mental efficiency by Paas and van Merriénboer (1993;
see also Paas, Tuovinen, Tabbers, & Van Gerven, 2003). These authors present a
calculational approach for combining measures of mental workload and task
performance that allows one to obtain information on the relative efficiency of
instructional conditions. It is proposed that learners’ behavior in a certain
learning condition is more efficient if (1) their performance is higher than might
be expected on the basis of their invested mental effort, and/or (2) their invested
mental effort is lower than might be expected on the basis of their performance.
Thus, a high performance combined with a low mental effort is most efficient
and a low performance combined with high mental effort is least efficient.
Recently, Tuovinen and Paas (2004) have proposed a new version of the
efficiency formula, in which training efficiency is calculated on the basis of
three dimensions. The current study adopts this 3D efficiency formula and uses
training effort and training time to express the costs associated with training,
and test performance to express its benefits.

A first confirmation for the claim that the use of mental efficiency makes
the individual training more efficient and leads to better transfer results was
found in a study conducted by Camp, Paas, Rikers, and van Merriénboer (2001).
They compared four methods of task selection in the ATC domain. In the first
method, tasks were presented in a fixed, predetermined sequence from simple
to complex. In the other three methods, the tasks were presented dynamically,
based on either performance, mental effort, or the combination of both, which is
mental efficiency. Results showed that dynamic task selection leads to more
efficient training than non-dynamic task selection. Furthermore, dynamic task
selection based on mental efficiency did not lead to more efficient training and
better transfer than dynamic task selection based on performance or mental
effort alone.

The current experiment is a partial replication of Camp et al.’s study
(2001). The same three learner variables are used for dynamic task selection.
These variables, mental effort, performance and mental efficiency, are used to
dynamically determine task complexity in training in the ATC domain. As in
the study of Camp et al. cognitive load is measured using a five-point subjective
rating scale on which the participants have to indicate their invested mental
effort for each task. Performance is measured as the accuracy with which
participants guide aircraft to a certain goal location in dynamic ATC-situations.
The mental effort and performance scores are combined with the mean total
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training time of the conditions to determine the efficiency of the instructional
conditions.

Two main differences in the procedure of this study and the Camp et al.
(2001) study can be distinguished. First, the present study applies slightly
different measurement scales and another selection algorithm. While the scales
used by Camp et al. were rather rough because they applied exactly the same
performance and mental effort scales for all tasks within the same complexity
level, the scales in the current study are sensitive to the differences between the
separate learning tasks within the same complexity level. With regard to the
selection algorithm that is used for selecting a new learning task of a certain
complexity level, the maximum jump size between complexity levels was
decreased from four in the Camp et al. study to two in the present study,
forcing a smoother increase or decrease in task complexity.

Secondly, a different method of determining the efficiency of the training
conditions is used. Three methods can be identified for this goal. The first
method investigates which instruction leads to the highest training performance
combined with the lowest mental effort during training (Camp et al., 2001). The
second method identifies which instruction leads to the highest test
performance combined with the lowest mental effort during training (Kalyuga,
Chandler, & Sweller, 1999). And the third method investigates which
instruction leads to the highest test performance combined with the lowest
mental effort during the test (Paas & Van Merriénboer, 1993, 1994).

Whereas the Camp et al. (2001) study used the first efficiency method, the
current study uses the 3D version including test performance, mental effort on
training and training time, to determine the efficiency of the training conditions.
The reason why we use test performance instead of training performance is that
we define training efficiency as not only leading to an optimal learning
environment but also to increased ability to flexibly apply skills in new
situations (e.g., on the transfer test).

Another important difference between the Camp et al. study (2001) and
the current study concerns the amount of transfer tasks. In the current study,
the amount of transfer tasks is increased which leads to a larger variation in
complexity in these tasks. Overall, the transfer tasks do not only cover
variations of the training tasks, but may also be structurally different from the
training tasks.

The present study investigates the effects on training efficiency of (1)
dynamic task selection vs. non-dynamic task selection with a fixed task
sequence, and (2) the use of different learner variables for dynamic task
selection, that is, performance, mental effort, and mental efficiency. It is
hypothesized that dynamic task selection leads to more efficient training and
better transfer performance than non-dynamic task selection (i.e., fixed task
sequence). The second hypothesis states that dynamic task selection based on
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mental efficiency leads to more efficient training and higher transfer than
selection based on performance or mental effort alone. These two hypotheses
are used to execute planned comparisons.

Method

Participants
Ninety-one higher education students (M = 20.5 years, SD = 2.29), which were
novices in the domain of ATC, participated in this study. The students were
randomly assigned to the fixed and experimental conditions in such a way that
the performance condition contained 22 participants and the fixed, mental
effort, and mental efficiency conditions contained 23 participants each. Men (1 =
63) and women (1 = 28) were equally distributed across conditions. Since the
fixed condition was used as the baseline for defining the scores of the other
experimental conditions, the data of this condition were collected first. All
participants were in good health and had normal or corrected-to-normal vision.
They received € 20 (approximately $ 26) for their participation.

Materials

The ATC-trainer
The ATC-simulator was adapted from training software programmed in
Multimedia Toolbook 4.0 and was integrated into the Delphi-interface.
Furthermore, a PowerPoint presentation contained an introduction to the ATC
domain.

The training software was run on an IBM-compatible PC (Pentium III,
450 MHz) using an IBM 17-inch SVGA monitor (107-MB). In the training, the
participants were confronted with simulated dynamic ATC-situations on a
radar screen, in which a number of possible conflicts had been built in. In each
training task, participants were required to guide moving aircraft to a specific
goal position at a specific altitude. While doing this, they had to ensure that all
aircraft stayed within controlled airspace and that they kept a minimum vertical
and horizontal separation from the other aircraft. Participants were able to
change the altitude and the flight direction of all the aircraft in the simulation
by typing the desired values into a command table. Their performance was
scored on four variables: (a) the time during which any aircraft was flying
outside the controlled airspace (time outside airway); (b) the time during which
two or more aircraft were flying too close to each other (no separation); (c) the
given number of commands, and (d) the number of aircraft that successfully
reached their target (gate hits). The interface provided continuously updated
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information on these four variables to the participants. An example of a
learning task in the ATC training program is depicted in Figure 1.

A _D2_18.rhr

I Nl el
o

Figure 1. Example of an Air Traffic Control task as used in the training program.

Task complexity

Since the participants of this study are novices in the ATC domain, the overall
complexity of the learning tasks was adjusted accordingly prior to training, to
enable the participants to perform the tasks. Also, the learning tasks were
divided in ten complexity levels which specified the complexity of the tasks
based on the number of possible conflicts that was embedded in the task. Four
different kinds of conflict were used in this task. The first possible source of
conflict (c1) was that a plane’s initial flight level differed from its exit flight
level. A conflict arose if the flight level of the plane was not changed. The
second source of conflict (c2) was that two planes were approaching each other
at the same flight level. Again, a conflict arose if the flight level or heading of
one of the planes was not changed. The third source of conflict (c3) referred to a
situation in which an airplane would have left the airspace (which is forbidden)
if no commands were given to change its heading. The fourth possible source of
conflict (c4) was somewhat more complex. It referred to the possibility of a
conflict due to a command that would normally, in isolation, be beneficial for
problem solving but indirectly leads to another conflict. For example, an aircraft
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could be given the command to climb to its exit flight level, but this climb could
cause a conflict with another aircraft approaching from a different direction.

The different forms of conflict in a task were added to determine the
overall complexity of the task. Task complexity was calculated with the
following formula: Complexity = c1 + c2 + 3 + 2 (c4). C4 was given double
weight, because this type of conflict was more important as it requires the
trainee to oversee the whole situation and predict the consequences of his
actions. All sources of conflict were scored ordinally for each learning task in all
ten complexity levels. For example, a training task of complexity level 5 could
contain three conflicts of c2 and one conflict of c4.

Task selection software

In addition to the ATC trainer, the training software used in the experiment also
included a program for task selection, the intelligent part of the software. The
software controlling the task selection was programmed in Delphi 5.0.

When a student finished a learning task, the mental effort and
performance measures were used in the task selection algorithm to calculate
mental effort, performance and mental efficiency. The factor ‘Method of Task
Selection” was used as the independent variable. This factor has four levels: task
selection based on (a) a fixed, simple-to-complex sequence of task presentation,
(b) mental effort invested in the previous task, (c) performance on the previous
task and (d) mental efficiency of the previous task. Depending on the condition
the participant was in, the complexity of the next learning task was determined
using measures of mental effort, performance, or mental efficiency. Then, a
suitable learning task was selected from a database of 77 tasks of complexity
levels varying from 1 (e.g., 1 command has to be given to 1 aircraft) to 10 (e.g., 9
commands have to be given to 6 aircraft). This task was then presented to the
learner in the training interface. For the participants in the fixed condition this
process repeated itself until 20 training tasks, two randomly chosen tasks of
every subsequent complexity level, were completed. In the dynamic conditions,
three possible outcomes lead to the completion of the training. The first
outcome lets participants proceed to the transfer tasks after being presented
with 20 training tasks. The second outcome states that a participant has
completed the training when s/he has achieved a score that meets the preset
performance criteria on two training tasks of the highest complexity. In the last
possible outcome, participants complete the training when they have executed
all five available training tasks of the highest complexity level. Note that in
these last two cases a participant can complete the training while having been
presented with less than 20 training tasks.
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Selection algorithm
Task selection occurred differently in the four experimental conditions. In the
fixed condition, there was no dynamic task selection. Participants in this
condition received a total of 20 training tasks, which included two randomly
chosen tasks of every complexity level (1, 1, 2, 2, 3, 3, etc.). The scores on the
performance variables of the fixed condition were used as a baseline for the
scores of the other experimental conditions. As a result, the scores of the
participants in the other conditions on these variables were always relative to
the scores of the participants in the fixed condition. These data were used to
formulate scoring tables from which a mean performance score can be derived.
For all learning tasks in the complexity levels, scales were developed for
all performance variables. A file for each complexity level was composed that
included all the performance scoring tables for each task that belonged to that
specific complexity level. An example of the performance scoring tables for a
specific task is depicted in Table 1. The scoring table of a task of complexity
level 4 is shown. To obtain the maximum score (100%) for each performance
variable of this task, a participant should give four commands and attain four
gate hits while no time outside airway occurs and sufficient separation is
maintained.

Table 1 Example of a scoring table for the performance variables.

Score

0% 25% 50% 75% 100%
N commands >12 12 9.33 6.67 4
Out of airway >96 96 64 32 0
No separation >34 34 22.67 11.33 0
Gate hits 0 1 2 3 4

Table 2 Mean performance scores.

Mean performance score

1 < 31.25%
2 > 3125%
3 > 4375%
4 > 56.25%
5 > 6875%

Table 3 Selection table indicating jump size in complexity between training tasks.

Mental effort Performance

1 2 3 4 5
1 0 +1 +2 +2 +2
2 -1 0 +1 +2 +2
3 -2 -1 0 +1 +2
4 -2 -2 -1 0 +1
5 -2 -2 2 -1 0
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After the relative scores have been appointed for each performance
variable, these are added and divided by the number of performance variables.
Then, the mean score is divided into five categories (see Table 2); corresponding
to an equal division of the performance scores of the fixed condition (i.e., using
the 20™, 40, 60 and 80t percentiles as thresholds). Note that although the
number of performance variables usually is four, in several learning tasks of
complexity levels 1 and 2 only one aircraft has to be directed to its landing spot.
In these tasks the variable ‘no separation” does not play a role and therefore this
variable is not taken into account to construct the mean performance score.

Dependent on the experimental condition the participant is in, the
progression through the training is either based solely on the mental effort
score, only on the mean performance score, or on the combination of both
scores. The rules specifying the jump sizes can be found in the selection table,
which is shown in Table 3. The mean performance scores (1-5) in this table
correspond with the scores in Table 2.

In the mental effort condition, task complexity depended on the mental
effort learners indicated after finishing a task. The students had to indicate their
invested mental effort on a five-point subjective rating scale, with values 1 (very
low), 2 (low), 3 (not low, not high), 4 (high), and 5 (very high; see Paas, 1992).
The indicated mental effort scores were used directly as the mental effort score
of the selection table. For example, if a participant indicated a mental effort of 4
on a task of complexity level 6, then this score is filled in the selection table. As
performance is not taken into account in this condition, the performance score is
preset on 3 in the selection table. When looking up a mental effort score of 4, it
can be determined that the next learning task should be of one complexity level
lower than the previous task. In general, a high mental effort leads to easier
tasks while low mental effort leads to more difficult tasks.

In the performance condition, both safety and expedition were
considered in determining the performance of the specific learning task. The
variables that were used to determine performance are time outside airway,
time without separation, the number of commands given, and the number of
aircraft that successfully reached their target. After the completion of a task, the
data of the participants were categorized into the relative scores of the scoring
tables of the four performance variables. The mean score was divided into five
categories which are the mean performance scores that can be found in the
selection table (Table 3). As mental effort is not taken into account in this
condition, the mental effort score is preset on 3 in the selection table. When
looking up a mean performance score of 5, the next learning task should be of
two complexity levels higher than the last presented task. Overall, a high
performance leads to more difficult tasks while low performance leads to easier
tasks.
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Figure 2. Representation of the effect of mental efficiency on the selection of the complexity of the
next learning task.

Filling in both performance and mental effort scores in the selection table
determined mental efficiency. When the efficiency score is larger than zero, task
complexity is increased. If the efficiency score is smaller than zero, task
complexity is decreased (see Figure 2). The reason for this is straightforward. If
mental efficiency is larger than zero, the mental effort score is lower than the
performance score, indicating that the task was relatively easy. The learner
performed relatively well, but invested less mental effort in the learning task
than could be expected from his or her performance score. If mental efficiency is
smaller than zero, the mental effort score is higher than the performance score,
indicating that the task was relatively hard. The learner invested relatively
much mental effort in the task, but did not perform accordingly. Task
complexity was adjusted on the basis of this argumentation. The exact relation
between mental efficiency and change in task complexity can be seen in the
selection table, Table 3. For instance, if a participant had a mental effort score of
4 and a mean performance score of 5, then task complexity was increased with
one level (+1).

Transfer test
After the training, the participants were required to solve ten transfer tasks.
Half of these tasks were structurally similar to the training tasks, but the aircraft
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had different values. The other half of the tasks was structurally different from
the training tasks in several ways. First, new aircraft frequently appeared in the
interface. Second, some of the aircraft had a different speed than other aircraft
while all aircraft had the same speed in the training tasks. Finally, the number
of aircraft that had to be directed to their appropriate landing spot was larger
than in any of the training tasks.

Procedure
The participants received a condition-specific training program on ATC. They
were unaware of the conditions of the experiment, and therefore did not know
how their training tasks were selected. First, all participants were given an
introduction to the field of ATC within the training software. In this
introduction, the knowledge that was required for the training was presented
and the participants were shown how to give commands to the aircraft and
were familiarized with the way the aircraft react to the commands (delay etc.).
Participants were able to return to this introduction at any time during the
training, and were explicitly advised to do so if they had any doubts about their
understanding of the learning tasks. After the introduction, the participants had
to complete a practice task in which they had to practice giving commands
(direction and altitude) to one aircraft. After the completion of this practice task,
the participants proceeded with the actual ATC-training. All participants could
continue with a next learning task when they had completed the previous task,
meaning that differences in training time could occur in all conditions.
Depending on the amount of possible conflict in the task, task complexity
varied between 1 and 10, with 10 being the most difficult type of task. All
participants started with a task of complexity level 1. After their first task,
depending on the experimental condition they were in, the next learning task
was selected on the basis of their performance, experienced mental effort, or a
combination of both measures. The duration of the whole experiment varied
from 1.5 to 2 hours, in which the training tasks were solved, followed by 10
transfer tasks.

Results
First, the results of five dependent variables will be given of the four
experimental conditions in order to gain insight in the task selection process.
These variables are: number of learning tasks that was completed before
reaching the highest complexity level, highest complexity level that was
reached during training, size of the jumps between complexity levels, total
number of training tasks, and training time. Then, the results for performance
and mental effort during training are provided. Finally, the results on the
dependent variables performance and mental effort on the transfer test are
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given, as well as the results of the training efficiency. Analyses of variance
(ANOVAs) and planned comparisons were used to analyze the data.

Training Phase

Training effects

The four conditions of the independent variable Method of task selection were
compared on five dependent variables to assess the differences in the training
phase. The values on the first four variables in the fixed condition were not
included in the analysis of variance because they were preset on constant
numbers. In other words, there was no variation between the participants in the
fixed condition. On the variable training time however, variation was possible
because all participants could continue with a next task as soon as s/he had
completed the previous task. Means and standard deviations are provided in
Table 4.

With regard to the number of learning tasks that was completed before
reaching the highest complexity level, an ANOVA revealed a significant effect
for the factor Method of Task Selection, F(2, 44) =14.1, MSE =10.8, p <.0001.
Planned comparisons showed that the mental efficiency condition (M =7.8, SD
= 3.4) practiced less learning tasks before reaching the highest complexity level
(#(44) =-3.12, p < .01) than the mean number of learning tasks of the
performance condition and the mental effort condition (M =11.1, SD = 2.45;
with M =7.1, SD = 3.5 for the performance condition and M =15.0, SD =1.4 for
the mental effort condition).

With regard to the highest complexity level that was reached during the
training, a significant effect was found for Method of Task Selection, F(2, 65) =
20.5, MSE =3.31, p <.0001. Planned comparisons showed that the mental
efficiency condition (M = 9.5, SD =1.4) reached a higher complexity level (#(65) =
2.72, p < .01) than the mean highest reached complexity level of the performance
condition and the mental effort condition (M = 8.3, SD = 1.85; with M =9.8, SD =
1.1 for the performance condition and M = 6.7, SD = 2.6 for the mental effort
condition).

The absolute jump size in complexity level depended on the learners’
mental effort, performance, or mental efficiency on the previous task. Jumps in
complexity level in the dynamic conditions could be both negative and positive,
leading to easier or more difficult tasks, respectively. In the analysis, the focus
was on differences in absolute jump size. Using ANOVA, a main effect of
Method of Task Selection was found, F(2, 65) = 28.6, MSE = .01, p < .0001.
Planned comparisons showed that the mental efficiency condition (M = .64, SD
=.11) made larger jumps (#(65) = 3.43, p <.01) than the mean jump size score of
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the performance condition and the mental effort condition (M = .54, SD = .09;
with M = .65, SD = .08 for the performance condition and M = .42, SD =.10
for the mental effort condition).

An ANOVA of the total number of learning tasks revealed a main effect
of Method of Task Selection, F(2, 65) =55.8, MSE =9.78, p <.0001. Planned
comparisons showed that the mental efficiency condition (M = 14.5, SD = 3.8)
did not practice less tasks (#(65) =-.65, p = .52) than the mean number of tasks of
the performance condition and mental effort condition (M =15.0, SD = 2.15;
with M =10.1, SD = 3.9 for the performance condition and M =19.9, SD = 4 for
the mental effort condition).

With regard to training time, an ANOVA revealed a significant effect for
the factor Method of Task Selection, F(3, 87) =42.6, MSE =225376.6, p < .0001.
Planned comparisons showed that the fixed condition (M =3154.1, SD = 161.0)
needed more time to complete the training (£(87) =7.92, p <.0001) than the mean
training time of the performance condition, the mental effort condition, and the
mental efficiency condition (M =2246.9, SD = 532.5; with M =1623.1, SD = 642.8
for the performance condition, M =2763.6, SD = 390.0 for the mental effort
condition, and M =2354.0, SD = 564.7 for the mental efficiency condition). No
difference was found between the mental efficiency condition (#(87) =1.32, p =
.190) and the mean training time of the performance and mental effort
conditions (M =2193.4, SD = 516.4).

Performance and mental effort. Main effects of Method of Task Selection
were found on the variables used to determine mental efficiency; F(3, 87) = 3.1,
MSE =129.1, p < .05 for performance, and F(3, 87) = 8.3, MSE = .17, p < .0001 for
mental effort. Planned comparisons revealed no difference (£(87) = .11, p = .92) in
performance between the fixed condition (M =76.2, SD =13.1) and the mean
performance score of the performance condition, the mental effort condition,
and the mental efficiency condition (M =75.9, SD =10.67; with M =75.5, SD =
11.0 for the performance condition, M = 81.1, SD = 11.4 for the mental effort
condition, and M =71.0, SD = 9.6 for the mental efficiency condition). However,
planned comparisons did show that the mental efficiency attained a lower
training performance (#(87) =-2.51, p <.05) than the mean performance of the
performance and mental effort conditions (M = 78.3, SD = 11.2).

Furthermore, planned comparisons showed that the fixed condition (M =
3.2, SD = .5) invested more mental effort during training than the mean score of
the performance condition, the mental effort condition, and the mental
efficiency condition (M = 2.8, SD = .38; with M = 3.0, SD = .4 for the performance
condition, M= 2.6, SD = .3 for the mental effort condition, and M =2.9, SD= 4
for the mental efficiency condition). No difference was found between the
efficiency condition and the mean score of the performance and mental effort
condition (M = 2.8, SD = .37).



Datawyse

Chapter 3 43

Transfer Test Phase

Performance and Mental Effort
When analyzing the data on the transfer test, no differences were found
between the different methods of task selection. There were no significant
differences in performance or mental effort between the four experimental
groups on the ten transfer tasks (all Fs <1).
Training efficiency

The training efficiency was determined using the following formula:

P - ME - TT

E=
\3

In this formula, E = mental efficiency, ME = mental effort during training,
P = test performance, and TT = total training time. Using an ANOVA, a
significant effect was found for Method of Task Selection, F(3, 87) =7.3, MSE =
1.21, p <.0001. Planned comparisons showed that the fixed condition (M =-.88,
SD =1.23) was less efficient (#(87) = -4.46, p <.0001) than the mean efficiency
score of the performance condition, mental effort condition, and mental
efficiency condition (M = .3, SD =1.02; with M = .56, SD =1.30 for the
performance condition, M = .25, SD = .56 for the mental effort condition, and M
=.09, SD = 1.16 for the mental efficiency condition). No difference (#(87) =-1.11,
p = .27) was found between the mental efficiency and the mean efficiency score
of the performance and mental effort conditions (M = .41, SD = .93). The means
and standard deviations are provided in Table 4.

Discussion
The main hypothesis of this study that dynamic task selection leads to more
efficient training than a fixed task sequence was confirmed. The results show
that the training efficiency of the conditions in which learning tasks were
dynamically selected was significantly higher than the efficiency of the fixed
condition. The specific hypothesis, that dynamic task selection based on mental
efficiency would lead to more efficient training and better transfer than
selection based on performance or mental effort alone, was not confirmed.

The significant efficiency effect shows that dynamic task selection leads
to more efficient training than a fixed, predetermined training sequence which
does not adjust to the individual student. Although the fixed condition did
attain the same performance score as the three dynamic conditions, its costs in
terms of time and mental effort to achieve this performance level were
substantially higher. In line with the prediction based on cognitive load theory,
adjusting the training tasks to the learners’ cognitive state in the dynamic
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conditions was more efficient than without this adjustment in the fixed
condition. Although no support was found for the hypothesis that the mental
efficiency condition would lead to more efficient training than the other two
dynamic conditions, the mental efficiency condition appeared to be somewhat
more effective during training than the mental effort and performance
conditions. The participants in the mental efficiency condition needed less
learning tasks to reach the highest complexity level, reached a higher overall
complexity level, and made larger jumps than the students in the mental effort
and performance conditions. However, while no differences were found in
terms of training time and amount of invested mental effort, the mental
efficiency condition did attain a lower performance score than the mental effort
and performance conditions. An explanation for this could be that since they
made larger jumps and reached the highest complexity level faster, they
practiced more complex learning tasks than the other dynamic conditions.
Although the participants in the mental efficiency condition practiced more
complex tasks, they did not invest more mental effort than the participants in
the other dynamic conditions. Overall, the task selection method of the mental
efficiency condition was not more efficient than the task selection methods of
the two other dynamic conditions.

Besides the difference between the fixed condition and the dynamic
conditions in training efficiency, no differences were found between the
dynamic conditions in performance and invested mental effort on the transfer
tasks. Several possible explanations can be given for this. First, the transfer tasks
could have been too difficult for all participants to solve. If this is true, a floor
effect should be present indicating low performance scores and high invested
mental effort. A closer look at the overall performance of all conditions (69%)
and the amount of invested mental effort (3.4), showed that floor effects can be
excluded. However, since the performance means and standard deviations of
all the conditions are in the same range, a ceiling effect might have occurred.
Though the performance means are relatively high, it seems that participants
were unable to attain the highest possible score of 100%.

Another possibility, which is tentative but interesting as well, was
presented by Camp et al. (2001). Complex cognitive skills consist of a number of
sub-skills, which can be either recurrent or non-recurrent (van Merriénboer,
1997). Recurrent skills are rule-based skills that are learned through the process
of rule automation, which involves a vast amount of practice on the same task
(e.g., Anderson, 1987). Non-recurrent skills are knowledge-based skills that are
learned through the process of schema construction, which is stimulated by
receiving a varied sequence of tasks (e.g., Singley & Anderson, 1989). These two
different skills can both improve transfer of training. According to some
authors (e.g., van Merriénboer, 1997), transfer can occur because the learning
tasks and the transfer tasks share identical elements: familiar aspects of a task
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are performed rule-based, because of the availability of domain-specific rules.
But, at the same time, unfamiliar aspects of a task are performed with the help
of cognitive schemata. The new task is reorganized in such a way that it can be
understood in terms of these cognitive schemata.

Camp et al. (2001) proposed that the performance condition in their
study, which resulted in much practice on tasks with the same complexity,
might have fostered rule automation. On the other hand, the mental effort and
mental efficiency conditions, in which practice was more variable regarding the
complexity, might have fostered the construction of cognitive schemata. In the
current study, the task selection algorithm of the mental effort condition led to
low-variable practice and, probably, stimulated rule automation. In contrast,
the performance and mental efficiency conditions resulted in more variable
practice and can be expected to have stimulated the process of schema
construction. Despite these different effects between the study of Camp et al.
and this study, it is important to note that a task selection algorithm can be
constructed in such way that it can influence different cognitive processes. It
would be interesting to further investigate this notion and use performance
tests that are sensitive to the different cognitive learning processes of rule
automation and schema construction.

The proposed extended efficiency formula revealed a difference between
the fixed condition and the experimental conditions. The inclusion of training
time in the formula is a refinement which enables the formula to take other
differences into account besides the performance and mental effort differences.
One could also use time-on-task as the third dimension of the efficiency
formula in case the tasks are flexible in time to complete. However, the
variation in maximum time in which a task had to be completed was small in
the current study. Therefore, we chose to use total training time instead of time-
on-task as the third dimension of the 3D efficiency formula. For future research,
it could be interesting to use time-on-task as the third dimension of the 3D
efficiency formula as well as using time on task as another determinant for task
selection during training.

Furthermore, it is important to develop a transfer test that is highly
sensitive to the differential effects of the experimental conditions. A reaction
time test could be a useful technique because learners have to decide as fast and
as accurately as possible whether a specific ATC situation includes a conflict.
For example, by presenting trainees a screen dump of an ATC situation for a
few seconds, one could test the amount of automation and elaboration of
knowledge. After presenting such a situation shortly, a multiple choice question
can be given from which the trainee should choose the correct order of aircraft
to which commands have to be given in order to ensure that all aircraft land
safely. For example, when 3 aircraft (A, B, C) are presented in the screen dump,
the trainee should pick the right order in giving commands to the aircraft (e.g.,
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B, C, A). To test more extensive elaboration of knowledge, one could also
provide a multiple choice question which not only consists of the order of
commands but also the exact commands. For example, when a screen dump has
2 aircraft (A, B), the right solution could be (B: 240 altitude, 90 right turn, A: 220
altitude, 315 left turn).

In conclusion, the results regarding the first hypothesis of this study
supported the idea that adapting training to the individual needs of the student
makes training more efficient. No evidence was found to support the second
hypothesis, which stated that task selection based on mental efficiency would
lead to more efficient training and higher transfer than selection based on either
performance or mental effort alone. However, the mental efficiency condition
did show several training benefits over the other dynamic conditions. The use
of the extended 3D efficiency formula was proven to be successful in
differentiating between the fixed condition and the dynamic conditions. This
result is encouraging for further experimentation and refinement of the formula
with regard to increasing the differentiation capability between the dynamic
conditions. Furthermore, more research is needed to develop a transfer test that
is sensitive enough to measure the possible effects due to the different training
effects of the experimental methods.

The results of this study, combined with the results of Camp et al. (2001),
indicate that for training with ITS, using dynamic task selection can be
worthwhile for the reduction of both training time and costs. This can be
particularly interesting for domains in which training time and costs are of
great importance, like aviation and industry. The potential of mental effort and
mental efficiency as variables to be used in dynamic task selection needs further
study.
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Chapter 4 — Personalized Task Selection in Air Traffic Control:
Effects on Training Efficiency and Transfer !

Abstract

The differential effects of four task selection methods on training efficiency and
transfer in a computer-based training for Air Traffic Control were investigated. Two
personalized conditions were compared with two corresponding yoked control
conditions. The hypothesis that personalized dynamic task selection leads to more
efficient training than non-dynamic task selection was partially confirmed.
However, the hypothesis that dynamic task selection based on personalized
efficiency leads to more efficient training than dynamic task selection based on
learner control (i.e., personalized preference) was not supported. The results are
discussed and suggestions are given for future research.

Introduction

Developments in Training Methods for Complex Cognitive Skills
Within the aviation domain there is a serious shortage of well-trained Air
Traffic Controllers, mainly due to the yearly increasing crowdedness of the
airspace (Galster, Duley, Masalonis, & Parasuraman, 2001). One possible
solution to this problem is increasing the efficiency of Air Traffic Control (ATC)
training. Efficient training offers trainees an optimal learning environment in
which they can acquire skills quickly and adequately while they also learn how
to apply these skills flexibly to new situations (i.e., transfer).

A theoretical comparison of training methods for complex cognitive skills
(Chapter 2: Salden, Paas, & van Merriénboer, in press) showed that these
methods have evolved in three important ways during the last three decades.
The first change marks a shift in focus from non-dynamic to dynamic methods.
Although both methods take prior knowledge into account in the development
of the training, non-dynamic approaches can only determine the sequence of
learning tasks prior to the start of the training. Yet dynamic approaches also
have the possibility to make adjustments in the task sequence during training.
The second change reflects the development of training methods from being
part-task based to whole-task based. Part-task methods might be useful for a
complex task (e.g., learning to drive a car) where the trainee is not able to
practice the task in its entirety at the start of the training. However, whole-task
methods are more appropriate when parts of a task are strongly interrelated,
which makes it very difficult to define and train meaningful parts without

1 This chapter is based on: Salden, R. ]. C. M., Paas, F., & van Merriénboer, |. ]. G. (2004). Personalized task
selection in Air Traffic Control: Effects on training efficiency and transfer. Manuscript submitted for
publication.



Datawyse

50 Personalized Task Selection in Air Traffic Control

compromising sophisticated understanding. The third change shows a shift
from group-based to personalized methods. Whereas group-based training can
be very useful in terms of allocated time and resources, the intricate nature of
complex cognitive skills imposes different demands on each individual student.

The use of a personalized and dynamic whole-task method is believed to
be strongly related to increased training efficiency (Chapter 3: Salden, Paas,
Broers, & van Merriénboer, 2004). The group-based non-dynamic training
methods, currently being used in ATC training programs, present students with
a preset order and complexity of learning tasks, and do not have the adaptive
(‘dynamic’) ability to make adjustments in complexity and task order during
training. Reports on current ATC training methods (e.g., EATMP Human
Resources Team, 2001) show that these non-dynamic methods exhibit a high
dropout rate of ATC students.

System-Controlled Task Selection vs. Learner-Controlled Task Selection
As the role of the computer increased significantly, training programs became
more and more computer-based, enabling trainers to make adjustments in the
order and complexity of the learning tasks during the training phase. Many
Intelligent Tutoring Systems (ITS) use a student model in order to keep track of
the individual trainee’s history of the tasks and the corresponding performance.
A student model builds a knowledge base of the trainee, and updates that
knowledge base as the trainee progresses through the learning tasks. The
progress of the trainee is checked on the basis of comparing the trainee’s
performance to the learning objectives that were specified prior to training.
After this comparison, the system-controlled selection rules indicate the
appropriate next learning task to present to the learner.

Besides such system-controlled task selection, learner-controlled selection
may offer another form of personalized dynamic task selection because it gives
the students control over what learning tasks they want to practice next. While
a clear definition of learner control is missing (Reeves, 1993), most studies in the
field of computer-based training operationalize it in two ways: Either learners
are given the option to request additional instructional material or they are
given the option to bypass instructional material (Crooks & Klein, 1996). The
basic theoretical claim for potential positive effects of learner control (i.e.,
personalized preference) is that trainees are able to select the appropriate tasks
to practice while avoiding a possible overload of their cognitive system, thereby
increasing the effectiveness and efficiency of learning (e.g., Borsook &
Higginbotham-Wheat, 1991). However, several studies show that low-ability
learners experience problems with the control they are given (e.g., Bell &
Kozlowski, 2002; Niemic, Sikorski, & Walberg, 1996; Steinberg, 1977, 1989;
Williams, 1993). A possible explanation is that the given level of control is often
not compatible with the learners’ abilities.
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According to Bell and Kozlowski (2002), it is critical to design
instructional material that provides learners with a level of control they are able
to handle. Furthermore, the ‘expertise reversal effect’ (Kalyuga, Ayres,
Chandler, & Sweller, 2003; Kalyuga, Chandler, & Sweller, 1998, 2001) indicates
that the trainees’ increasing expertise level is probably the most important
determinant for deciding on the appropriate level of freedom that is given to
them. For example, van Merriénboer, Schuurman, de Croock, and Paas (2002)
found that learners who are given the possibility to choose the task format in
the domain of computer programming are well able to select their own learning
tasks.

Measures for System-Controlled Task Selection
Research in the context of cognitive load theory (for an overview see Paas,
Renkl, & Sweller, 2003) has shown that cognitive load is a crucial factor in the
training of complex cognitive skills. Although cognitive load is sometimes
measured (e.g., Kashira, Hirashima, & Toyoda, 1995), usually only performance
measures such as speed and accuracy are used as determinants for personalized
task selection, for instance in Intelligent Tutoring Systems. In order to obtain a
good indication of the cognitive load that is imposed on a person’s cognitive
system, mental effort measurements such as subjective rating scales are used.
While individual measures of performance and mental effort can be used as
indicators of the cognitive demands a certain task places on the learner, the
combination of both measures is considered a superior estimate of these
demands in the dynamic selection of learning tasks (Paas & van Merriénboer,
1993).

When trainees achieve the same performance scores, mental effort ratings
might be able to reveal differences that would remain otherwise unnoticed. For
example, it is quite feasible for two people to attain the same performance
levels. However, while one of them experiences a very high cognitive load and
needs to work laboriously through a very effortful process, the other person
may experience a low cognitive load and may reach the same performance level
with a minimum of effort. Most people would agree that the next learning task
should be less difficult for the first person than for the second person. Since the
combination of performance and mental effort measures provides a clear
picture of the state of the student’s cognitive system at a certain moment in
training, we claim that personalized task selection, and consequently training
efficiency can be improved by taking these measures into account. When using
both measures for personalized dynamic task selection, the selected learning
tasks are believed to be better adjusted to the student’s cognitive schemata and
cognitive capacity, hence leading to high training efficiency.

A first indication for the claim that the use of a combined measure of
performance and mental effort scores (i.e., personalized efficiency) leads to
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more efficient personalized training was found in two recent studies of Camp,
Paas, Rikers, and van Merriénboer (2001), and Salden et al. (Chapter 3: 2004).
Both studies compared four methods of task selection in the ATC domain. The
first method presented tasks in a fixed, predetermined sequence from simple to
complex. The other three methods presented the tasks dynamically, based on
either performance or mental effort, or the combination of both (i.e., mental
efficiency). Results showed that personalized dynamic task selection leads to
more efficient training than group-based non-dynamic task selection. Although
personalized dynamic task selection based on mental efficiency did not lead to
more efficient training and better transfer than personalized dynamic task
selection based on performance or mental effort alone, it revealed show several
training benefits.

The combined measure of performance and mental effort scores, as used
in the aforementioned studies (Camp et al., 2001; Chapter 3: Salden et al., 2004),
has been proposed as a measure of mental efficiency by Paas and van
Merriénboer (1993; see also Paas, Tuovinen, Tabbers, & Van Gerven, 2003).
These authors present a calculational approach for combining measures of
mental workload and task performance that allows one to obtain information
on the relative efficiency of instructional conditions. Based on Ahern and
Beatty’s (1979) efficiency view on learning, it is proposed that learners’ behavior
in a certain learning condition is more efficient if (1) their performance is higher
than might be expected on the basis of their invested mental effort, and/or (2)
their invested mental effort is lower than might be expected on the basis of their
performance. Thus, high performance combined with low mental effort is more
efficient than low performance combined with high mental effort.

Hypotheses

In this study it is hypothesized that personalized dynamic task selection leads
to more efficient training and better transfer performance than non-dynamic
task selection. Since both dynamic conditions personalize the task selection
either by utilizing mental efficiency or by allowing learners to determine their
own training sequence, these conditions are expected to lead to superior
training efficiency.

The second hypothesis states that dynamic task selection based on
personalized efficiency leads to more efficient training and better transfer than
selection based on personalized preference. While the efficiency condition
adjusts to the needs of the individual learners, learners in the personalized
preference condition have to select training tasks by themselves. The literature
on learner control suggests that especially low prior knowledge students, like
the ones used in the current study may be overwhelmed by the freedom given
to them (e.g., Bell & Kozlowski, 2002; Niemic, Sikorski, & Walberg, 1996).
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Method

Participants
Sixty higher education students (M = 20.3 years, SD = 2.35), who were novices in
the domain of Air Traffic Control (ATC), participated in this study. The
students were randomly assigned to the four experimental conditions in such a
way that each condition contained 15 participants, and that men (n = 48) and
women (1 = 12) were equally distributed across conditions. All participants
were in good health and had normal or corrected-to-normal vision. They
received € 20 (approximately $ 26) for their participation.

Materials and Procedure
The experimental materials consisted of a learning phase in which learners
were presented with an introduction to the domain followed by a training using
an ATC software program where they had to work on learning tasks at
different levels of complexity. The selection of the learning tasks depended on
the experimental condition that learners had been assigned to. After the
training, learners were presented with transfer tasks to register their learning
outcomes.

Learner control is defined as being the ability of the learner to choose the
complexity level of the learning task s/he wants to practice. In the terms of
Crooks and Klein (1996), learners are given the option to bypass instructional
material. To avoid confusion due to the two control conditions, learner control
will be called personalized preference in the remainder of this article.

Introduction

At the beginning of the experiment, the participants were given a Microsoft ®
PowerPoint ® presentation containing an introduction to the ATC domain. In
this presentation, the knowledge that was required for the training was
presented and the participants were shown how to give commands to the
aircraft. Participants were able to return to this introduction at any time during
the training, and were explicitly advised to do so if they had any doubts about
their understanding of the learning tasks. After the presentation, the
participants were given a pre-training in which they were presented a total of
four learning tasks: two tasks from each of complexity levels 1 and 2. In this
pre-training they could practice basic skills such as giving commands in
direction or in altitude to one or two aircraft, hereby getting familiarized with
the way aircraft react to the commands. After the completion of this pre-
training, the participants proceeded with the actual ATC-training.
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The ATC-Trainer

The ATC-simulator was an adapted version of training software programmed
in Multimedia Toolbook 4.0 and was integrated in a Delphi-interface. The
training software was run on an IBM-compatible PC (Pentium III, 450 MHz)
using an IBM 17-inch SVGA monitor. In the training, the participants were
confronted with simulated dynamic ATC-situations on a radar screen, in which
a number of possible conflicts had been built in. Participants were required to
guide moving aircraft to a specific goal position at a specific altitude. While
performing this task, they had to ensure that all aircraft stayed within the
controlled airspace and that a minimum vertical and horizontal separation from
the other aircraft was maintained. Participants were able to change the altitude
and the flight direction of all the aircraft in the simulation by typing the desired
values into a command table. Their performance was scored on four variables:
(a) the time during which any aircraft was flying outside the controlled airspace
(time outside airway); (b) the time during which two or more aircraft were
flying too close to each other (no separation); (c) the given number of
commands, and (d) the number of aircraft that successfully reached their target
(gate hits). The interface provided continuously updated information on these
four variables to the participants. The interface is depicted in Figure 1.

A _D2_18.rhr

Figure 1. Example of an Air Traffic Control task as used in the training program.
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Learning Task Complexity

Prior to training, 77 learning tasks were divided into ten complexity levels
varying from 1 to 10. These levels specified the complexity of the tasks based on
the number and importance of possible conflicts that was embedded in the task.
Four different kinds of conflict could arise during a learning task, either
singularly or comprised. The first possible source of conflict (c1) was that a
plane’s initial flight level differed from its exit flight level. A conflict arose if the
flight level of the plane was not changed. The second source of conflict (c2) was
that two planes were approaching each other at the same flight level. Again, a
conflict arose if the flight level or heading of one of the planes was not changed.
The third source of conflict (c3) referred to a situation in which an airplane
would have left the airspace (which is forbidden) if no commands were given to
change its heading. The fourth possible source of conflict (c4) was somewhat
more complex. It referred to the possibility of a conflict due to a command that
would normally, in isolation, be beneficial for problem solving but indirectly
led to another conflict. For example, an aircraft could be given the command to
climb to its exit flight level, but this climb could cause a conflict with another
aircraft approaching from a different direction.

The different forms of conflict in a task were added to determine the
overall complexity of the task. In consultation with professional Air Traffic
Controllers from the Eurocontrol Institute of Air Navigation Services, the task
complexity was determined with the following formula: Complexity =c1 + c2 +
c3 + 2 (c4). The parameter c4 was given double weight, because this type of
conflict was more complex as it required the trainee to oversee the whole
situation and predict the consequences of his actions. All sources of conflict
were scored ordinally for each learning task in all the complexity levels. For
example, a learning task of complexity level 5 could contain three conflicts of c2
and one conflict of c4. Depending on the amount of possible conflicts in the
tasks, task complexity varied between 1 and 10, with 10 being the most difficult
type of task. Since all participants were presented with learning tasks of
complexity levels 1 and 2 in the pre-training, they started the training with a
learning task of a complexity level higher than 2.

Overall, three possible outcomes could lead to the completion of the
training. The first outcome let participants proceed to the transfer tasks after
being presented with 20 learning tasks. This amount of tasks ensured sufficient
variation over the ten complexity levels. The second outcome stated that a
participant had completed the training when s/he had achieved a score that met
the preset performance and mental effort criteria on two learning tasks of the
highest complexity. In the last possible outcome, participants completed the
training when they have executed all five available learning tasks of the highest
complexity level. Note that in these last two cases a participant could complete
the training while having been presented with less than 20 learning tasks.
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Design and Dependent Variables

Design

Learners were trained accordingly to the factor ‘Method of Task Selection” in
one of four conditions: (1) personalized efficiency condition, (2) yoked
efficiency condition, (3) personalized preference condition, and (4) yoked
preference condition.

(1) Personalized efficiency condition. The selection of learning tasks in the
personalized efficiency condition was based on the combination of performance
and mental effort measures. The task selection table (Table 1) shows that both
performance and mental effort were scored on a 5-point scale and the difference
between these two factors marks the complexity level for the next learning task.

More specifically, performance was measured on four variables: number
of commands, number of gate hits, time outside airway, and time without
separation. Mental effort was measured using a 5-point subjective rating scale
(1 =very low; 5 = very high) which participants had to fill in after each
completed task. These subjective ratings of mental effort were directly used in
Table 1 for determining the complexity level of the next learning task.

Since the participant population was similar to a previous experiment
(Chapter 3: Salden et al., 2004), the scores on the performance variables of this
previous experiment’s fixed condition were used as a baseline for the scores of
the personalized efficiency condition in the current study. In that fixed
condition, participants received a total of 20 learning tasks, which included two
randomly chosen tasks of every complexity level (1, 1, 2, 2, 3, 3, etc.). The data
from the fixed condition of Salden et al.’s (Chapter 3: 2004) experiment were
used to formulate scoring tables from which a mean performance score could
be derived.

Also, scoring scales were developed for all performance variables. For
each complexity level a file was composed that included all the performance
scoring tables for each task that belonged to that specific complexity level. An
example of the performance scoring tables for a specific task of complexity level
4 is depicted in Table 2. To obtain the maximum score (100%) for each
performance variable of this task, a participant should give four commands and
attain four gate hits while no time outside airway occurs and sufficient
separation is maintained.
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Table 1 Selection table indicating jump size in complexity between training tasks.

Mental effort Performance

1 2 3 4 5
1 0 +1 +2 +3 +4
2 -1 0 +1 +2 +3
3 -2 -1 0 +1 +2
4 -3 -2 -1 0 +1
5 -4 -3 -2 -1 0

Table 2 Example of a scoring table for the performance variables.

Score

0% 25% 50% 75% 100%
N commands >12 12 9.33 6.67 4
Out of airway >96 96 64 32 0
No separation >34 34 22.67 11.33 0
Gate hits 0 1 2 3 4

Table 3 Mean performance scores.

Mean performance score

1 < 31.25%
2 > 3125%
3 > 4375%
4 > 5625%
5 > 68.75%

After the relative scores had been appointed for each performance
variable, these were added and divided by the number of performance
variables. Then, the mean score was divided into five categories (see Table 3);
corresponding to an equal division of the performance scores of the fixed
condition, using the 20th, 40th, 60th, and 80th percentiles as thresholds. Note
that although the number of performance variables is usually four, in several
learning tasks of complexity levels 1 and 2 only one aircraft has to be directed to
its landing spot. In these tasks the variable ‘no separation” does not play a role
and therefore this variable is not taken into account to construct the mean
performance score.

Filling in both performance and mental effort scores in the selection table
(Table 1) determined mental efficiency. When the efficiency score is larger than
zero, task complexity is increased. If the efficiency score is smaller than zero,
task complexity is decreased (see Figure 2). The reason for this is
straightforward. If mental efficiency is larger than zero, the mental effort score
(X axis) is lower than the performance score (Y axis), indicating that the task
was relatively easy. The learner performed relatively well and had invested less
mental effort in the learning task than could be expected from his or her
performance score. If mental efficiency is smaller than zero, the mental effort
score is higher than the performance score, indicating that the task was
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relatively hard. In this situation, the learner invested relatively much mental
effort in the task, but did not perform accordingly. Task complexity was
adjusted on the basis of this argumentation. The exact relation between mental
efficiency and change in task complexity can be seen in Table 1. The mean
performance scores in this table correspond to the scores in Table 3. For
instance, if a participant indicated a mental effort score of 2 and a mean
performance score of 5, then task complexity was increased with three levels
(+3). It can be derived from Table 1 that the participants in this condition had a
maximum jump size of 4 (e.g., performance = 5 and mental effort = 1; or
performance = 1 and mental effort is 5).

Performance

High
J 1.0

efficiency

increase problem +
difficulty
05
+ \
al effort

A0 g -0.5 05 — 1.0

decrease problem

\ difficulty
Low
A0 efficiency

Figure 2. Representation of the effect of mental efficiency on the selection of the complexity of the
next learning task.

(2) Yoked efficiency condition. The participants in the yoked efficiency
condition were presented with a fixed training sequence. The individual
training sequences of the participants in the personalized efficiency condition
were divided over the participants in the corresponding yoked condition. Each
training sequence was allocated only once to one participant in the yoked
efficiency condition.

(3) Personalized preference condition. After completing the pre-training a
window popped up in which the participants in the personalized preference
condition could choose the complexity level of a learning task that they wanted
to practice. Based on their selection of a certain complexity level, the program
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would randomly choose a learning task in this complexity level. All participants
were unfamiliar with the task attributes of the ten complexity levels. Since the
pre-training consisted of 2 tasks each from complexity levels 1 and 2, the
participants in this condition could choose a learning task of complexity levels 3
to 10. The participants had a maximum jump size of 8 because they could pick a
learning task of the highest complexity level (10) right after finishing the pre-
training.

(4) Yoked preference condition. The same principle of the yoked efficiency
condition applies for the yoked preference condition. Participants in the yoked
preference condition were presented with a fixed training sequence. The
individual training sequences of the participants in the personalized preference
condition were divided over the participants in the corresponding yoked
condition. Each training sequence was allocated only once to one participant in
the yoked preference condition.

Dependent Variables

Training phase. First, the results of five dependent variables of the four
experimental conditions will be given in order to gain insight in the task
selection process. These variables are: number of learning tasks that was
completed before reaching the highest complexity level, total number of
learning tasks, training time, mean complexity level that was reached during
training, and size of the jumps between complexity levels. Then, the results for
performance and mental effort during training are provided.

Transfer test phase. After completion of the training, the participants were
required to solve a twofold transfer test. First, their speed-accuracy on conflict
identification was tested using a reaction time (RT) test in which screen dumps
of ATC-situations were presented for 10 seconds. For the RT test, results will be
given on two dependent variables: mean RT on conflict identification and the
number of correct conflict identifications.

Second, they were required to solve ten transfer tasks that were
structurally different from the learning tasks in several ways. Frequently, new
aircraft appeared in the interface. Also, some of the aircraft had a different
speed than other aircraft while all aircraft had the same speed in the learning
tasks. Furthermore, the number of aircraft that had to be directed to their
appropriate landing spot was larger than in any of the learning tasks. The
results for performance and mental effort on these transfer tasks will be
provided.

The efficiency measures of the four experimental conditions will be given
using a new version of the efficiency formula as recently proposed by Tuovinen
and Paas (2004) and Salden et al. (Chapter 3: 2004), in which training efficiency is
calculated on the basis of three dimensions. The current study also adopts this
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3D efficiency formula, using two test performance measures (reaction time test
and transfer tasks) and one test effort measure, to determine training efficiency
of the task selection methods. The training efficiency was determined using the
following formula ! (Tuovinen & Paas, 2004):
RT + P - ME
E=

V3
In this formula, E = mental efficiency, ME = mental effort during test, RT =
reaction time performance, and P = test performance. Analyses of variance
(ANOVAs) and planned comparisons are used to analyze the data of the
training and transfer test phases.

Results
Training Phase

Training Effects

No effects for the independent variable Method of Task Selection were found
on the variables number of completed tasks before reaching the highest
complexity level, total number of learning tasks, and training time (all Fs <1).
Means and standard deviations are provided in Table 4.

With regard to the mean complexity level that was reached during the
training, a significant effect was found for Method of Task Selection, F(3, 56) =
3.04, MSE =2.07, p < .05, 2 = .14. With regard to the first hypothesis, no
difference was found between the personalized conditions and the yoked
conditions (¢ < 1). With regard to the second hypothesis, planned comparisons
showed that the personalized efficiency condition reached a higher mean
complexity level (£(56) =2.19, p <.05) than the personalized preference
condition.

The absolute jump size in complexity level depended on the learners’
mental effort, performance, or mental efficiency on the previous task. Jumps in
complexity level could be both negative and positive, leading to easier or more
difficult tasks, respectively. In the analysis, the focus was on differences in
absolute jump size. Using ANOVA, a main effect of Method of Task Selection
was found, F(3, 56) =5.27, MSE = 0.03, p < .01, 2 = .22. With regard to the first
hypothesis, no difference was found between the personalized conditions and

Tip (x1, y1, 1) is a point in a 3-dimensional Cartesian space then the shortest distance, d, between
it and the plane x +y —z=01s givenby d = (z1-x1-y1)/V3

The exact computations and argumentation for the 3-factor efficiency are presented by Tuovinen
and Paas (2004).
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the yoked conditions (t <1). However, planned comparisons did support the
second hypothesis because the personalized efficiency condition made larger
jumps in complexity levels (t(56) = 2.69, p < .05) than the personalized
preference condition.

Performance and mental effort. No effects of Method of Task Selection were
found on the training variable mental effort (F < 1). A strong trend was found
for the training variable performance (F(3, 56) = 2.74, MSE = 144.01, p = .05, n? =
.13). With regard to the first hypothesis, the mean performance score of the
personalized efficiency and personalized preference conditions (M =78.03, SD =
9.86) was higher (#(56) = 2.25, p < .05) than the mean performance score of their
corresponding yoked conditions (M = 71.05, SD = 13.50). Subsequent planned
comparisons showed that this effect is only caused by the difference between
the personalized efficiency condition and its corresponding yoked condition
(t(56) = 2.84, p < .01). Furthermore, planned comparisons supported the second
hypothesis, indicating that the personalized efficiency condition attained a
higher performance score (£(56) = 2.44, p < .05) than the personalized preference
condition. Means and standard deviations are provided in Table 4.

Transfer Test Phase

Reaction time test

No effect for the independent variable Method of Task Selection was found on
the variable mean RT on conflict identification (F < 1). Means and standard
deviations are provided in Table 5.

With regard to the number of correct conflict identifications, an ANOVA
revealed a significant effect for the factor Method of Task Selection, F(3, 56) =
8.18, MSE = 28.18, p <.0001, 1% = .31. Planned comparisons confirmed the first
hypothesis, indicating that the mean number of correct conflict identifications
(M =29.60, SD = 5.58) of the personalized efficiency condition and personalized
preference condition was higher (#(56) = 2.04, p < .05) than the mean number of
conflict identifications (M = 26.80, SD = 5.00) of the yoked efficiency condition
and the yoked preference condition. Furthermore, planned comparisons
revealed the opposite effect of what was expected in the second hypothesis,
namely that the personalized preference condition attained more conflict
identifications (#(56) = -3.58, p < .01) than the personalized efficiency condition.

Transfer tasks

When analyzing the data on the transfer tasks, no differences were found
between the different methods of task selection. There were no significant
differences in mental effort or performance between the four experimental
groups on the transfer tasks (all Fs <1).
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Training efficiency

Using an ANOVA, a significant effect was found for Method of Task Selection,
F(3, 56) = 4.45, MSE = 0.89, p < .01, n?=.19. With regard to the first hypothesis,
no difference was found between the personalized conditions and the yoked
conditions (¢ < 1). In contrast with the second hypothesis, planned comparisons
showed that the personalized efficiency condition was less efficient (£(56) = -
3.00, p <.01) than the personalized preference condition. The means and
standard deviations are provided in Table 5.

Discussion
The main hypothesis of this study that personalized dynamic task selection
leads to more efficient training and better transfer performance than non-
dynamic task selection was partially confirmed. While a strong trend showed
that the mean training performance score of both personalized conditions was
higher than the mean performance score of their corresponding yoked
conditions, further analyses revealed that this was only caused by the difference
between the personalized efficiency condition and its corresponding yoked
condition. With regard to test performance, the mean number of correct RT
conflict identifications of both personalized conditions was higher than the
mean number of conflict identifications of their yoked conditions.

No support was found for the second hypothesis that task selection based
on personalized efficiency would lead to more efficient training and higher
transfer than selection based on personalized preference. Even though students
in this condition reached a higher mean complexity level during training, made
larger jumps during training, and a strong trend indicated a higher training
performance, no beneficial effects were found during the test phase. Moreover,
the RT test performance score of the personalized efficiency condition was
lower than the performance score of the personalized preference condition.
Also, the 3D efficiency formula showed that in terms of both test performances
and test effort, the personalized efficiency condition was less efficient than the
personalized preference condition. Overall, it can be concluded that the
personalized efficiency condition did lead to superior effects during the training
phase yet not during the test phase.

The small amount of differences between the personalized conditions
and their associated yoked conditions might be attributed to the pre-training.
While its purpose was to familiarize the participants with the program, the pre-
training might have done more than that. It is plausible that due to this pre-
training, the students were also enabled to enter the actual training with a
similar amount of prior knowledge and acquired skills. It is likely that the pre-
training has dimmed the possible range of effects that might have been found if
the participants had entered the actual training directly after the introduction.
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Another explanation for the small differences between the personalized
conditions might be found in the different effects of these two conditions. While
the personalized efficiency condition led to more training benefits than the
other three conditions, the personalized preference condition led to higher
transfer performance and training efficiency. Since both personalized methods
did not lead to similar results, the claim that both dynamic conditions would
lead to more efficient training and better transfer performance than the non-
dynamic conditions, was not fully supported.

Furthermore, it might also be that the personalized conditions lead to
individual training sequences that were useful for most participants in the
yoked conditions. Despite the fact that the sequences were not personalized for
these participants, the progress the participants made to which they were
linked was good enough to follow through. Even though a participant in a
yoked condition might have chosen a learning task of a different complexity
level at a certain point in training, usually, s/he could cope with the
predetermined task order and rise in complexity levels. It is likely that our
participants were homogeneous in their prior knowledge, which means that
they might have chosen more or less the same training sequence. With more
variation in learners’ expertise levels, larger differences in the training
sequences would have been expected.

When taking a closer look at the effects of the personalized efficiency
condition, it seems that in this condition, the participants achieved the highest
mean complexity level and made the largest jumps between complexity levels.
Furthermore, a strong trend can be observed which shows that the efficiency
condition attained the highest performance score on the training while
investing an equal amount of mental effort as the other conditions. However,
despite these training benefits, no effects occurred on the two transfer tests and
the efficiency formula.

A possible explanation for the small beneficial effects of the personalized
efficiency condition can be found in the fact that task selection was only based
on complexity level, but not on the type of conflict the participants had trouble
with. In one complexity level, different types of conflict can occur and it could
be that a participant who made a single mistake concerning one type of conflict
would be presented with a more complex learning task. However, s/he would
not have the chance to practice coping with this type of conflict again on the
same complexity level but only in the context of more complex learning tasks. If
task selection is specified on the level of types of conflicts then the participants
will receive more practice on the type of conflict resolution they had trouble
with. Such further refinement of the task selection process in future research
might lead to more beneficial effects for the personalized efficiency method.

Also, it would be interesting to administer a delayed transfer test some
time (e.g., two weeks) after the training was given. If either personalized
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method would lead to deeper processing and better storage of the learning
material, delayed testing might be able to reveal this. If the personalized
preference method would lead to more elaborated schemata, then the
participants trained with this method should exhibit higher performance than
the participants trained with the efficiency method. Besides administering
transfer tasks to see whether the delayed testing reveals any effects, it would
also be interesting to examine whether the initial effect of the RT test can still be
detected.

In contrast to various studies on learner control (e.g., Bell & Kozlowski,
2002; Niemic, Sikorski, & Walberg, 1996; Steinberg, 1977, 1989; Williams, 1993),
the present study shows that students are capable of using the given control
when the training situation is well constructed and avoids overloading their
cognitive system. The finding that novices are able to deal with a certain degree
of freedom, makes it particularly interesting to investigate to what extent more
expert participants are able to use learner control. Using students that already
have acquired a certain level of expertise, one could experiment by increasing
the degrees of freedom. With a higher expertise level, it can be expected that the
student would benefit most from a large amount of given freedom.

The use of the extended 3D efficiency formula of Tuovinen and Paas
(2004) proved to be successful. It can be used flexibly as it enables one to take
more important variables into account that might differ from experiment to
experiment. In the current study, transfer performance scores were collected
and used in the 3D formula. This led to a realistic efficiency score that
represents a complete view on the transfer phase which would not have been
possible when using the original 2D version of the formula of Paas and van
Merriénboer (1993). Even though no effects were found on the transfer tasks in
terms of performance or invested mental effort, the effect on the RT test
appeared strong enough to create significant efficiency effects.

In conclusion, the results regarding the first hypothesis of this study
partially supported the idea that adapting training to the individual needs of
the student can make training more efficient. No evidence was found to support
the second hypothesis, which stated that task selection based on personalized
efficiency can lead to more efficient training and higher transfer than selection
based on personalized preference. While the personalized efficiency condition
showed several training benefits, it did not prove to lead to higher transfer
performance nor was this condition more efficient. In contrast, the personalized
preference condition showed only minor training benefits, yet it did lead to
higher transfer performance and was shown to be an efficient training method.

The current combined research on the efficiency method so far, has
shown that future research on the efficiency method is needed to fully grasp its
benefits and shortcomings. While in previous studies this method was at least
as good as other dynamic methods, it has been shown that it could not compete
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with the personalized preference condition in terms of transfer performance
and training efficiency. In contrast to various studies on learner control, the
current study has shown that students are capable of handling given control of
training, as long as their cognitive systems are not overloaded. This has
implications for future research in which students of varying levels of expertise
can be given learner control to varying degrees of freedom.
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Chapter 5 — Dynamic Task Selection in Flight Management System
Training !

Abstract

The effects of three task selection methods on test performance and training
efficiency were investigated in a computer-based Flight Management System (FMS)
training. A fixed condition was compared to a learner control condition, and a
condition using the participants’ self-rated performance and mental effort for task
selection. Although the experimental conditions revealed more positive training
effects, no differences were found for training efficiency and test performance. A
follow-up study did not confirm the alternative hypothesis that these results were
caused by the higher amount of tasks in the fixed condition. Additional analyses
suggested that the quality of self-rating needs to be considered in future research.

Introduction

In the aviation domain continuous efforts are directed at increasing cockpit
automation. An automated cockpit has a significant effect on the pilot’s tasks
and demands additional competencies from the cockpit crew. The Flight
Management System (FMS) is one of the core systems in an automated cockpit,
which can control an entire flight from take off to landing. Considering the
importance of the FMS it is remarkable that automation was introduced
relatively late in training programs and that until recently, realistic computer-
based FMS simulations were rarely available. Computer-based training may
prepare and enhance the pilot’s automation related skills and make time spent
on expensive part-task trainers and full flight simulators more effective.
Whereas, it may allow experienced pilots to practice on new FMS systems in a
free-play fashion, novice pilots can be given more support, for instance, by
adapting the complexity of learning tasks to their experience level. It can be
expected that such personalized training can make FMS training more efficient.

This study examines several training methods that were designed
according to the 4C/ID-model (van Merriénboer, 1997; van Merriénboer, Clark,
& de Croock, 2002). This model offers a training design that presents students
with a predetermined order and complexity of learning tasks in such a way that
their cognitive capacity is optimally used. Further efficiency may be reached by
providing a personalized and adaptive training trajectory, in which learning
tasks are selected during training based upon the performance and needs of the
individual learner. Especially for training complex cognitive skills, the use of
such a ‘dynamic” ability to optimize task order and complexity for the
individual trainee is believed to be strongly related to increased training

1 This chapter is based on: Salden, R. |. C. M., Paas, F., van der Pal, |., & van Merriénboer, ]. J. G. (2004).
Dynamic task selection in a Flight Management System training. Manuscript submitted for publication.
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efficiency (Chapter 3: Salden, Paas, Broers, & van Merriénboer, 2004; Chapter 2:
Salden, Paas, & van Merriénboer, in press).

Research in the context of cognitive load theory (for an overview see
Paas, Renkl, & Sweller, 2003, 2004) has shown that cognitive load is a crucial
factor in the training of complex cognitive skills. The combination of cognitive
load and performance measures is considered a superior estimate of a learner’s
cognitive demands that can be used in the dynamic selection of learning tasks.
For example, when two trainees achieve the same performance scores,
measures of cognitive load might be able to reveal differences in training
efficiency otherwise unnoticed. While one of them might have experienced a
very high cognitive load and needed to work laboriously through a very
effortful process, the other person might have experienced a low cognitive load
and reached the same performance level with a minimum of effort. In a
personalized task selection method this information could be used to present a
less difficult next task to the first person than to the second person. Because the
combination of performance and cognitive load measures provides a clear
picture of the state of the student’s cognitive system at a certain moment in
training, dynamically selected learning tasks fit well to the cognitive schemata a
student has acquired. The individual capacity of a student is taken into account,
leading to high training efficiency. To obtain a good indication of the cognitive
load that is imposed on a person’s cognitive system, mental effort
measurements may be used (Paas & van Merriénboer, 1993).

Paas and van Merriénboer (1993; see also Paas, Tuovinen, Tabbers, & van
Gerven, 2003) have developed a calculational approach for combining measures
of mental effort and task performance that allows one to obtain information on
the relative efficiency of instructional conditions. Based on Ahern and Beatty’s
(1979) efficiency view on learning, it is proposed that learners’ behavior in a
certain training condition is more efficient if (1) their performance is higher than
might be expected on the basis of their invested mental effort, and/or (2) their
invested mental effort is lower than might be expected on the basis of their
performance. Thus, training conditions in which high performance is attained
with a low mental effort investment are considered as ‘high efficient’. ‘Low
efficient’ conditions are characterized by a combination of low performance and
high mental effort.

A first indication that the use of a combined performance and mental
effort score can make personalized training more efficient was found in two
studies of Camp, Paas, Rikers, and van Merriénboer (2001), and Salden et al.
(Chapter 3: 2004). Both studies compared four methods of task selection in the
Air Traffic Control (ATC) domain. In the first method, tasks were presented in a
fixed, predetermined simple-to-complex sequence designed according to the
4C/ID-model. In the other three methods, the tasks were presented
dynamically, based on either performance, mental effort, or the combination of
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both (i.e., mental efficiency). Results showed that dynamic task selection leads
to more efficient training than non-dynamic task selection. However, dynamic
task selection based on mental efficiency did not lead to more efficient training
and better test performance than dynamic task selection based on performance
or mental effort alone.

Besides automated task selection, learner control may offer another form
of dynamic task selection because it gives the students control over what
learning tasks they want to practice next. The theoretical claim for learner
control is that trainees are capable of selecting appropriate tasks to practice and
can avoid a possible overload of their cognitive system, thereby increasing the
effectiveness and efficiency of learning (e.g., Borsook & Higginbotham-Wheat,
1991; Niemic, Sikorski, & Walberg, 1996; Steinberg, 1977, 1989; Williams, 1993).
However, according to Bell and Kozlowski (2002) positive effects of learner
control on learning can only be expected if instructional materials are designed
in such a way that they provide learners with a level of control they are able to
handle. Support for this claim was found in recent studies (van Merriénboer,
Schuurman, de Croock, & Paas, 2002; Chapter 4: Salden, Paas, & van
Merriénboer, 2004), which showed that learners who are given an appropriate
level of control over task selection are well able to select their own learning
tasks.

In the current study, participants with some pilot background but no
FMS knowledge are divided into three conditions of FMS training. The fixed
condition is a control condition in which learning tasks are presented in a
predetermined order based on increasing complexity of learning tasks. This
condition will be compared with two personalized experimental conditions, in
which learners either have to select the learning task themselves, i.e. the learner
control condition, or in which the learning tasks are selected by the training
program using a combination of the learners’ self-rated performance and
mental effort, i.e. the mental efficiency condition.

In agreement with Camp et al. (2001) and Salden et al. (Chapters 3 and 4:
2004), it is hypothesized that personalized task selection leads to more efficient
training and better test performance than non-dynamic task selection. The
differences between both dynamic conditions, which personalize the task
selection either by using the mental efficiency or by allowing the learners to
determine their own training sequence, are explored.
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Experiment 1
Method

Participants

Thirty-one students of a higher education school for aviation (3 women and 28
men, M =20.1 years, SD = 2.69), who were novices with regard to the FMS,
participated in this study. The students were randomly assigned to three
experimental conditions: A fixed condition (1 = 10), a learner control condition
(n=10), and a mental efficiency condition (1 = 11). All participants were in good
health and had normal or corrected-to-normal vision. They volunteered to
participate in this study.

Materials

FMS simulation. The training software was based on a realistic computer
simulation of a Boeing 747 FMS developed by the National Aerospace
Laboratory NLR. The training software ran on an IBM-compatible PC (Pentium
III, 533 MHz) using an IBM 17-inch SVGA monitor. Figure 1 depicts the
interface of the FMS program.

Figure 1. Interface of the FMS training program.
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Learning tasks. In the training, the participants were confronted with
learning tasks, which presented flight information of a certain route from
airport A to airport B that learners had to program into the FMS simulation. A
simulated flight had to be executed after entering all information. At certain
points during the task, changes in the flight route were required and made it
necessary for the trainees to adjust the original flight route. Possible changes
consisted of an alteration in arrival data (e.g., a new Standard Terminal Arrival
Route), a new runway, or a diversion to another airport.

Prior to training, thirty-two learning tasks were categorized into eight
levels (four tasks per level) that specified the complexity of the tasks based on
three complexity factors: The amount of data to be programmed into the FMS
program, the number of changes in flight route, and the amount of time
pressure. Values on these factors were added to determine the overall
complexity of a learning task.

Performance
increase problem +
difficulty
05

al effort
A0 g 05 05 —_ 10

decrease problem

\ difficulty

-1.0

Figure 2. Representation of the effect of mental efficiency on the selection of the complexity of the
next learning task.

Task selection. The selection of tasks differed between the three
experimental conditions. In the fixed condition, participants received a total of
16 learning tasks with two randomly chosen tasks of each of the eight
complexity levels (1, 1, 2, 2, 3, 3, etc.). These 16 learning tasks were presented in
a predetermined order from low to high complexity. In the learner control
condition, participants received an overview of all learning tasks with an
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indication of their complexity and could choose which task to practice next.
Thus, these learners had maximum freedom to determine their own training
sequence.

In the mental efficiency condition, task selection was based on
participants’ self-ratings of performance and mental effort on a 5-point rating
scale. These subjective performance and mental effort scores were used to
determine mental efficiency (Paas & van Merriénboer, 1993; Paas et al., 2003). If
the subjective performance score (see Y axis of Figure 2) was higher than the
mental effort score (X axis) this was interpreted as a high mental efficiency; the
learner performed relatively well and invested less mental effort than could be
expected on the basis of his or her subjective performance. If the subjective
performance score was lower than the mental effort score this was interpreted
as a low mental efficiency; the learner performed relatively low and invested
more mental effort than could be expected on the basis of his or her subjective
performance. As indicated in Table 1, the complexity of the next learning task
was determined on the basis of this argumentation. The subjective performance
and mental effort scores in this Table correspond with the self-ratings of the
individual student. For instance, if a participant had a mental effort score of 2
and a subjective performance score of 5, task complexity was increased with
three levels (+3). Note that participants in the mental efficiency condition had a
maximum possible step size of 4 complexity levels, while participants in the
learner control condition had a maximum possible step size of 7 complexity
levels (i.e., directly from the lowest to the highest complexity level or vice
versa).

Table 1 Selection table indicating jump size in complexity between learning tasks.

Mental effort Performance

1 2 3 4 5
1 0 +1 +2 +3 +4
2 -1 0 +1 +2 +3
3 -2 -1 0 +1 +2
4 -3 -2 -1 0 +1
5 -4 -3 -2 -1 0

Three possible outcomes could lead to the completion of the training.
First, participants finished practice after working on 16 learning tasks. This
number of tasks ensures sufficient variation over the eight complexity levels.
Second, participants finished practice after their self-ratings equaled the preset
performance (= 3) and mental effort (< 3) criteria for two successive learning
tasks at the highest complexity level. Third, participants finished practice after
they performed all four available learning tasks at the highest complexity level.
Note that in the two latter cases a participant could complete the training after
working on less than 16 learning tasks.
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Test tasks. After the training, the participants had to perform a test that
consisted of five test tasks, which were different from the learning tasks in two
ways: (1) the amount of data that had to be programmed into the FMS
simulation was increased, and (2) the number of changes in the flight route was
higher.

Objective scoring of performance. To be able to compare the training and test
performance between the experimental conditions, the objective performance of
all participants was scored after completion of the experiment. For each flight,
scores on a 5-point scale were given on four performance variables: (a) the
given number of commands; (b) the number of correct commands; (c) the time
on task, and (d) the time needed to process a change in flight route data. For all
variables, a score of 1 indicated a very low performance and a score of 5
indicated a very high performance. The mean score of these four variables was
used to compare performance between the experimental conditions.

Procedure

All participants were given a paper-based 10-pages introduction to the training
and the use of the FMS simulation, which presented all information required for
the training, including examples of how to enter commands into the FMS.
Participants were free to consult this introduction during the entire training
session. After they had read the introduction, the training started and a learning
task at the first complexity level was presented. The subsequent tasks depended
on the experimental condition. In the fixed condition, participants received
another task at complexity level 1, then two tasks at level 2, and so forth; in the
learner control condition, the participants could choose whatever task they
preferred next; and in the mental efficiency condition, the next task was based
on their subjective performance and mental effort self-ratings (see Table 1 for
the applied step size). All participants could continue with the next learning
task as soon as they had completed the previous task, meaning that differences
in training time could occur in all conditions. The participants performed the
five test tasks immediately after they completed the learning tasks. The whole
experiment took about three hours.

Results and Discussion
First, the results on the training phase are reported. The mean number of
learning tasks, step sizes, and total training time are given for each condition to
provide insight in the task selection process. Furthermore, the results for
training performance and mental effort are given. Second, the results for
performance, mental effort, and training efficiency are provided for the test
phase. One-sample and independent t-tests, ANOVAs, ANCOVAs and planned
comparisons were used to analyze the data. Means and standard deviations are
presented in Table 2.
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Training Phase

Training effects. Because the number of learning tasks was preset at 16 in
the fixed condition, one-sample t-tests were used to compare this number of
tasks to those of the learner control and mental efficiency conditions. Both the
learner control condition (M = 6.50, SD =1.35; #(19) =-4.3, p < .001) and the
mental efficiency condition (M =7.27, SD =1.19; #(20) = -4.6, p < .001) needed
substantially less than the 16 learning tasks in the fixed condition to complete
the training. The comparison between the learner control and mental efficiency
condition showed no difference in number of learning tasks (f = 1.4).

Table 2 Overview of the results of Experiment 1.

Method of Task Selection

Fixed Learner control Mental efficiency
Dependent variables M SD M SD M SD
Training phase
N of learning tasks 16 - 6.50 1.35 7.27 1.19
Step size 7/15 - 95 .07 93 .09
Training time 149.60 22.77 78.69 1.64 117.35 25.61
Mental effort 2.24 .52 2.13 .56 2.38 41
Performance 3.27 .28 2.64 .38 2.70 .18
Test phase
Mental effort 241 .93 1.61 .53 2.22 49
Performance 2.89 .38 3.16 22 3.21 .20
Training efficiency ~ -1.09 1.17 .62 .67 43 .61

The absolute step size in complexity level was also preset for the fixed
condition, at one level in complexity per two tasks. In total the participants
made 15 steps between 16 tasks, with 7 steps to a higher complexity level (M =
.47 (7/15)). For the learner control and mental efficiency condition, steps
between complexity levels could be negative or positive, corresponding to
easier or more difficult tasks, respectively. One-sample t-tests on the absolute
step size showed that participants in both the learner control condition (M = .95,
SD =.07; t(19) = 4.1, p < .01) and the mental efficiency condition (M = .93, SD =
.09; t(20) = 4.3, p <.001) made larger absolute steps between complexity levels
than participants in the fixed condition. The step sizes between the learner
control and mental efficiency condition did not differ (f <1).

A significant effect was found for total training time, F(2, 28) = 28.37, MSE
= 44440, p <.001, n? = .67. Planned comparisons showed that the participants in
the fixed condition (M =149.60, SD = 22.77) needed more time to complete the

4 Estimated marginal means are presented with number of learning tasks and total training time as
covariates.
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training (#(28) = 6.37, p < .001) than the participants in the learner control and
mental efficiency conditions (M = 98.02, SD = 18.63). Furthermore, the
participants in the learner control condition needed less training time than
those in the mental efficiency condition (#(28) = -4.20, p <.001).

Performance and mental effort. A significant effect was found for training
performance (F(2, 28) = 15.00, MSE = .08, p < .001, n? = .52). The performance
score of the fixed condition (M = 3.27, SD = .28) was higher (#(28) =5.47, p <.001)
than the mean performance score of the learner control and mental efficiency
conditions (M =2.67, SD = .28). The comparison between the learner control and
mental efficiency condition showed no difference in performance (f <1). No
significant effects were found on the mental effort during training (F <1).

Test Phase

During the training, participants in the fixed condition worked on many more
tasks, made smaller steps between complexity levels, and needed more training
time than participants in the learner control and mental efficiency conditions.
Especially the number of tasks and the total training time could easily explain
possible differences between conditions on the test tasks. Therefore, number of
learning tasks and total training time are included as covariates in the
subsequent analyses.

Performance and mental effort. Using an ANCOV A with number of
learning tasks and total training time as covariates, no effects were found on
performance and mental effort (Fs <1).

Training efficiency. The training efficiency was determined using the
following formula (Paas et al., 2003; Paas & van Merriénboer, 1993):

P - ME

E=

V2

In this formula, E = mental efficiency, P = test performance, and ME =
mental effort during training.

Using an ANCOVA with number of learning tasks and total training time
as covariates, no effect was found for Method of Task Selection, (F <1). The
estimated marginal means and standard deviations are provided in Table 2.

In conclusion, participants in the learner control and mental efficiency
conditions worked on less learning tasks, made larger steps between
complexity levels and needed less time to complete the training than the
participants in the fixed condition. Performance during training was higher for
the fixed condition, which can easily be explained by the prolonged training
time. No differences were found on test performance, mental effort during the
test phase, and training efficiency.

To control for the high number of learning tasks in the fixed condition
(16) a second experiment was conducted, comparing a mental efficiency
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condition to a fixed condition with only 8 learning tasks. It was expected that
this would limit the difference between conditions during the training phase,
and possibly show the expected positive effect of dynamic task selection on test
performance.

Experiment 2
Method

Participants

Twenty students of the same higher education school for aviation as in the first
experiment (6 women and 14 men, M = 23.8 years, SD = 4.12), who were novices
with regard to the FMS, participated in this study. The students were randomly
assigned to the two experimental conditions: A fixed condition (1 =10) and a
mental efficiency condition (n = 10). All participants were in good health and
had normal or corrected-to-normal vision. They received € 15 (approximately

$ 20) for their participation.

Materials and Procedure
The materials were the same as in Experiment 1. The only difference is that the
number of learning tasks in the fixed condition was downsized from 16 to 8,
resulting in only one task per complexity level. The procedure was identical to
the procedure in Experiment 1 and participants received the same test tasks.

Results and Discussion
First, the results on the training phase are reported. The mean number of
learning tasks, step sizes, and total training time are given for each condition to
provide insight in the task selection process. Furthermore, the results for
training performance and mental effort are given. Second, the results for
performance, mental effort, and training efficiency are provided for the test
phase. One sample t-tests, ANOVAs, and ANCOVAs were used to analyze the
data. Means and standard deviations are presented in Table 3.

Training Phase

Training effects. Because the number of learning tasks was preset at 8 in
the fixed condition, one-sample t-tests were used to compare the number of
tasks with the mental efficiency condition. The t-test showed that the mental
efficiency condition (M = 6.28, SD =1.48; t(19) = -2.9, p < .01) needed less than
the 8 learning tasks in the fixed condition to complete the training.

The absolute step size in complexity level was also preset for the fixed
condition, at one step in complexity per task. In total the participants made 7
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steps between 8 tasks (M = .88 (7/8)). For the mental efficiency condition, steps
between complexity levels could be negative or positive, corresponding to
easier or more difficult tasks, respectively. A one-sample t-test showed that the
participants in the mental efficiency condition (M = .96, SD = .44; t(19) = 3.6, p <
.01) made larger steps between complexity levels than those in the fixed
condition. With regard to total training time, no effect was found for Method of
Task Selection, (F = 1.29).

Table 3 Overview of results Experiment 2.

Method of Task Selection

Fixed Mental efficiency

Dependent variables M SD M SD
Training phase

Total N of learning tasks 8 - 6.20 1.48
Jump size 7/8 - .96 44
Training time 79.97 18.32 70.71 18.17
Mental effort 2.40 46 2.27 46
Performance 3.26 24 3.40 34
Test phase

Mental effort 1.76 .18 2.08 18
Performance 3.45 .15 3.14 15
Training efficiency 46 .30 -.46 .30

Performance and mental effort. No effects of Method of Task Selection were
found on the training variables mental effort (F < 1) and performance (F =1.19).

Test Phase

An ANCOVA with number of learning tasks as a covariate showed no effects
on mental effort (F = 1.05) and performance (F <1). An ANCOVA with number
of learning tasks as a covariate showed no effect (F = 2.67) on training efficiency.
The estimated marginal means and standard deviations are provided in Table 3.

Additional Analyses for Experiment 1 and 2 Combined
Experimenter’s observations of the participants in the mental efficiency
conditions of both experiments suggested that the absence of clear beneficial
effects for this condition might have been caused by the poor quality of self-
ratings of performance (Bjork, 1999; Tousignant & DesMarchais, 2002). In
particular, it seemed that some of the participants overrated their performance
as compared to their objective performance scores.

4 Estimated marginal means are presented with number of learning tasks as a covariate.
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To test this alternative hypothesis, a K-means cluster analysis (F(2, 18) =
71.6, MSE = .03, p <.001) was performed on the differences between objective
and subjective performance scores. Three groups of self-raters were identified:
Good self-raters (1 = 6), average self-raters (n =9), and bad self-raters (n = 6).
The extreme groups (i.e., good and bad self-raters) were compared to the
combined fixed conditions of both studies on the test variables mental effort
and performance.

Kruskal-Wallis tests revealed that the participants in the fixed condition
(M =341, SD = 46) attained a higher test performance than the bad self-raters
(x2=7.21,p<.01; M=2.89, SD = .24). However, no difference was found
between the fixed condition and the good self-raters (x2<1; M =3.27, SD = .22).
In addition, the good self-raters attained a higher test performance (x2=5.04, p <
.05) than the bad self-raters. No effects were found on the test variable mental
effort (F = 1.8). The means of the fixed group and the good self-raters and bad
self-raters in the mental efficiency group are depicted in Figure 3.

2,5

test performanc

1,5 1

fixed condition good self-raters bad self-raters

Figure 3. Histogram of test performance of fixed condition, good and bad self-raters in the mental
efficiency condition.

General Discussion
The main hypothesis of the first experiment that dynamic task selection leads to
more efficient training and better test performance than non-dynamic task
selection was not confirmed. Although the participants in the learner control
and mental efficiency conditions progressed through training more effectively
than the participants in the fixed condition, training performance was highest in
the fixed condition. This effect was explained by the prolonged training time.
Using the number of learning tasks and total training time as covariates, no
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effects were found for test performance, mental effort on the test, and training
efficiency. Participants in the learner control condition resembled the
participants in the mental efficiency condition to a high extent. The only
difference found between these two conditions was that the participants in the
learner control condition required less time to complete the training than the
mental efficiency condition.

The reduction of the number of learning tasks in the second experiment
was expected to show the positive effect of dynamic task selection on test
performance. The participants in the mental efficiency condition still needed
fewer tasks to complete training and made larger jumps than the participants in
the fixed condition. No effects in support of the mental efficiency condition
were found on mental effort, test performance and training efficiency.

From observing the participants in the mental efficiency conditions in
both experiments, it was hypothesized that the absence of clear beneficial
effects for this condition might have been caused by the low quality of the self-
ratings. In other words, some of the participants would overrate their own
performance compared to their actual objective performance. When comparing
the fixed conditions to two subgroups of self-raters, effects were found on test
performance. It was shown that the participants in the fixed condition attained
a higher performance than the bad self-raters but no difference was found
between the participants in the fixed condition and the good self-raters.
Furthermore, the good self-raters attained a higher test performance than the
bad self-raters. Based on these results, it seems plausible that the low quality of
the self-ratings has confounded the results in both experiments. Since most
participants were not very skilled at rating their own performance, the
personalized training sequence they were presented with was not optimal. The
overrating of their performance led them to receive more difficult tasks than
they should have been given.

In addition to the confounding effects of the self-ratings, there are some
possible explanations that can be given for the lack of beneficial effects of
personalized task selection. For instance, it can be observed that the
performance scores for all conditions were relatively high. Although additional
analyses revealed no ceiling or floor effects, an alternative explanation is that
the range of complexity used in this study was too limited. This suggestion is
further strengthened by the relatively low levels of invested mental effort in all
conditions.

The basic operations on the FMS are very recurrent since one always has
to give certain commands in order to be able to execute a flight. The complexity
in use can be increased when one has to deal with the FMS in a more authentic
cockpit situation. The interaction of the FMS with many displays and control
panels is important to achieve situational awareness for the trainee pilot. While
the aim of our training was to familiarize the participants with the FMS, the
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scope of the training may have been too limited. In accordance with the
previous line of reasoning a larger range of complexity in the materials might
have resulted in larger differences in performance and mental effort on both
training and test phases.

Another explanation could be found in the use of the 4C/ID-model. Like
in previous experiments (Camp et al., 2001; Chapter 3: Salden et al., 2004) this
model was used to create the fixed conditions. The design guidelines in this
model recommend a steady increase in complexity during training. While
participants in the personalized conditions often complete training faster, only
few beneficial effects were found on test performance and training efficiency.
Whereas previous studies on Air Traffic Control (ATC) training were able to
identify at least some beneficial effects, the combination of the 4C/ID-model and
the recurrent nature of the FMS skills might deem personalized training
methods unnecessary.

In conclusion, the results only moderately supported the idea that
adapting training to the individual needs of the student makes training more
efficient. While the mental efficiency condition proved to be an effective
training method, it did not prove to be efficient as well. In contrast, the fixed
condition proved not to be the most effective yet did prove to be a fairly
efficient training method. The current combined research on the efficiency
method so far, has shown that future research on the efficiency method is
needed to fully grasp its benefits and shortcomings.
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Chapter 6 — General Discussion

The main aim of this dissertation was to investigate the use of personalized
instruction in the training of complex cognitive skills. Based on a comparison of
learning task selection methods in Chapter 2, it was shown that cognitive load
(for an overview see Paas, Renkl, & Sweller, 2003, 2004) is a crucial factor in the
training of complex cognitive skills. The combination of cognitive load and
performance measures is considered a superior estimate of a learner’s cognitive
demands that can be used in the dynamic selection of learning tasks. While two
students might achieve the same performance score they might have
experienced different levels of cognitive load, which should be taken into
account in the task selection process to ensure an optimal learning process for
each individual student.

Consequently, the four studies in this dissertation aimed at investigating
dynamic task selection methods based on several variables such as
performance, cognitive load, and a combination of both (i.e., mental efficiency).
It was hypothesized that dynamic whole-task methods could be enhanced by
using the combination of performance and mental effort scores (i.e., mental
efficiency) in the process of task selection. The four studies in Chapters 3
through 5 examined the mental efficiency method (Paas & van Merriénboer,
1993, 1994a, 1994b) in various instructional settings and in two training fields of
the aviation domain: Air Traffic Control (ATC) and Flight Management Systems
(FMS). While automated systems are used more and more frequently in the
training of such complex cognitive skills, the selection of training tasks is still
not automatically adapted to learner characteristics. The first study to use the
mental efficiency method for dynamic task selection in the aviation domain was
conducted by Camp, Paas, Rikers, van Merriénboer (2001). Although the results
of this study showed an overall beneficial effect of dynamic task selection as
compared to non-dynamic task selection, no beneficial effect for the efficiency
method was found. The studies in this dissertation used the Camp et al. study
as a starting point.

This final chapter briefly reviews the results of these studies, discusses
the limitations of the experiments, and describes the implications of the results
for future research.

Review of results
The comparison of learning task selection methods in Chapter 2 showed an
evolution in training programs in three important ways: (a) from non-dynamic
to dynamic, (b) from part-task based to whole-task based, and (c) from group-
based to personalized. Especially, the use of dynamic and personalized
selection of whole tasks is believed to be strongly related to increased training
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efficiency. Furthermore, research in the context of cognitive load theory (for an
overview see Paas, et al., 2003, 2004) was presented, indicating that cognitive
load is a crucial factor to consider for the training of complex cognitive skills.

The first ATC study (Chapter 3) was a partial replication of Camp et al.
(2001) and compared a non-dynamic condition, in which the learning tasks
were presented to the participants in a fixed predetermined sequence, to three
dynamic conditions, in which learning tasks were selected on the basis of, in
order, performance, mental effort, and mental efficiency. Several changes were
made in the materials. First, with regard to the selection algorithm, the
maximum jump size between complexity levels was decreased from four in the
Camp et al. study to two in the present study, forcing a smoother increase or
decrease in task complexity. Furthermore, while all participants in the Camp et
al. study had to practice 20 learning tasks before being able to continue to the
test tasks, our participants could continue to the test tasks as soon as they had
achieved criterion scores on training tasks of the highest complexity level.
Lastly, the number of test tasks was increased. Again, the results showed a
beneficial effect for dynamic task selection, but no beneficial effect for the
efficiency condition in comparison to the other two dynamic conditions (i.e.,
based on performance or mental effort).

In the second ATC study (Chapter 4), two personalized methods were
contrasted to yoked control conditions. The personalized efficiency and learner
preference (learner control) conditions showed superior results on a reaction
time test, yet no difference was found on the transfer tasks. While the
personalized efficiency condition showed more training benefits in comparison
to the personalized learner preference condition, the latter condition proved to
be more efficient than the personalized efficiency condition.

The last two studies (Chapter 5) focused on another task within the
aviation domain, namely, operating a Flight Management System. The third
study compared a non-personalized training sequence to a learner control
condition in which learners were free to select a new learning task, and a mental
efficiency condition in which participants had to self-rate their mental effort
and performance on the basis of which a new task was selected by the system.
Results showed that while both personalized conditions attained better training
effects, no differences could be found on the performance of the test tasks. The
fourth study investigated whether the higher amount of training time and the
larger number of training tasks in the non-personalized condition confounded
the results. However, despite a reduction of training time by reducing the
amount of training tasks in the non-personalized condition, the efficiency
condition did not exhibit superior performance on the test. Additional cross-
study analyses revealed an important difference between good and bad self-
raters, which might have confounded possible beneficial effects of the efficiency
method.
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The results of the four studies lead to the following conclusions. First of
all, personalized instruction can have beneficial effects for the training of
complex cognitive skills. Although the mental efficiency method did not lead to
superior test results, it showed training benefits in every study. Furthermore,
students are capable to use learner control of learning task selection effectively
as shown in Study 2, where the students who trained with learner control
exhibited superior performance on a reaction time test. Whereas students seem
able to deal with the given control, Studies 3 and 4 indicate that self-ratings
should be used with caution. Because these students were novice learners with
the FMS, it is conceivable that the novelty of the task at hand disabled their
ability to judge their own performance. Of all students in these two studies,
only 33% of the students were able to estimate their performance accurately.

Limitations to research
The findings of this dissertation have several implications for the use of
personalized instruction in general and the mental efficiency method in
particular. While personalized instruction can be beneficial, the research in this
dissertation also points out what might have limited possible effects of the
training methods. The limitations addressed here are the complexity of the
training tasks and the test tasks, the history of training tasks, the role of
motivation, and the number of factors in the efficiency formula.

All studies were conducted in a laboratory setting in which novice
students were presented with a familiarization training for either ATC or FMS.
The level of complexity of the overall material was downsized in order to avoid
overloading the participants. For the ATC tasks studies (Chapters 3 and 4), the
most important aspects and features in ATC were maintained in a whole-task
approach of the training. For the FMS studies (Chapter 5), we focused on the
FMS while excluding most of the other cockpit devices. However, this part-task
approach was sufficient for our purpose to familiarize the participants with the
FMS.

When taking the results of all studies into account, questions arise why
the overall performance during both training and test phases seems higher than
in comparative studies. Although additional analyses revealed no ceiling or
floor effects, it might be that the range of complexity used in our studies was
too limited. While most participants needed some time to adjust to the training
material at first, they learned to use it rather quickly and kept a steady learning
progress. Setbacks during training did not occur very frequently and if they
occurred, they only did so in the minority of participants who attained the
lowest overall performance in their respective experimental condition.

Not only on learning tasks of the highest complexity levels but even on
the most difficult transfer tasks, overall performance remained high.
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Furthermore, in all studies the transfer tasks were unable to differentiate
between the experimental conditions. The only test effect was revealed by the
reaction time test used in the second ATC study (Chapter 4), which showed
beneficial effects for personalized task selection conditions, particularly for the
learner control condition. The same pattern can be observed in the mental effort
scores. The participants indicate moderate levels of invested mental effort in the
ATC studies and even lower levels of invested mental effort in the FMS studies.
These patterns imply that the overall complexity of the materials used might
have been too low and suggest that possibly larger differences in performance
and mental effort could have been found with more complex materials. Overall,
the participants attained a slightly lower test performance than training
performance, but the relatively high test performance scores suggest that they
might have been able to execute even more complex tasks.

A further aspect that might have attributed to the limited effects of the
training methods might be found in the efficiency method. Originally, the
efficiency method was developed to estimate the efficiency of experimental
conditions and not to be used as a determinant for dynamic task selection. To
use it for this purpose, the relation between performance and mental effort (i.e.,
efficiency) is estimated for each learning task based on the performance and
mental effort scores of the last executed task. The optimization of the learning
process might have been limited due to the fact that the efficiency method does
not take the history of previous learning tasks and associated performance and
mental effort scores into account.

Also, since the original efficiency formula takes only performance and
mental effort into account, it is insensitive to other important factors like
motivation. However, an indication of the learner’s motivation might be found
in the relationship between performance and mental effort. While a student
who attains a low performance score but yet invests a high amount of mental
effort is seen as low efficient according to the efficiency formula, the invested
mental effort might also indicate that the student is highly motivated.

When comparing the invested mental effort across all studies, it seems
that most students invest only moderate mental effort during training. While
initially students are certainly challenged in the training to learn the basic ATC
and FMS skills, once they have acquired these skills the challenge becomes less.
As a consequence, motivation might decrease when they feel that they are not
really challenged anymore.

Furthermore, the original efficiency formula presumes that the other
aspects in experimental conditions, like training time, do not differ between the
conditions. Indeed, the two ATC studies (Chapters 3 and 4) seem to suggest
that the formula is not useful when a third factor differs between the
experimental conditions. In the first ATC study (Chapter 3), total training time
proved to be an important factor influencing the efficiency of the experimental



Datawyse

Chapter 6 89

conditions. Similarly, the performance on the reaction time test in the second
study (Chapter 4) showed that the inclusion of a third factor can lead to a more
insightful view on the relation between costs (invested mental effort, number of
training tasks, time on task) and benefits (performance, transfer) of training.

Finally, the number of factors in the efficiency formula used for dynamic
task selection during training can differ from the number of factors used to
determine the efficiency of the experimental conditions after the experiment is
completed. In the first ATC study (Chapter 3), total training time was used to
determine the efficiency of the experimental conditions after completion of the
experiment. However, total training time was not used as a factor for dynamic
task selection during training simply because total training time can only be
scored after a participant has completed the training. Likewise, the second ATC
study (Chapter 4) used performance on the reaction time test as a third factor to
determine the efficiency of the conditions but this third factor could not be used
for dynamic task selection as well.

Implications and further research
Automation should be used carefully in training programs since it is not a goal
in itself but a tool to support the acquisition of skills quickly and efficiently.
Because novice learners are easily overloaded with the complexity of an
extensive work environment of an Air Traffic Controller or a pilot, it might be
good for them to start training with a simplified and less automated training
environment. When novice learners have acquired the basic skills, they can be
presented with more complex training programs, which increasingly resemble
the complete work environment in all its complexity.

In contrast to previous research, the studies in this dissertation have
shown that students seem to be able to use learner control efficiently. Students
who are given control over the learning tasks and their respective complexity
level are able to create an effective training sequence. As long as the level of
given control does not overload the students, they can shape their own training
sequence. Results have shown that the participants in the learner control
conditions usually completed training faster than any other experimental
condition while exhibiting mostly equal and sometimes even superior test
performance. Further exploration of the level of given learner control, and of
how to adapt the amount of control to the growing expertise of the learners
during training, represents a promising line of future research.

The use of self-rating should be handled with much caution as the FMS
studies (Chapter 5) of this dissertation have shown. While students are able to
select an appropriate learning task in terms of complexity, the capacity of
estimating the quality of one’s own performance is lacking in most students (see
also Bjork, 1999; Tousignant & DesMarchais, 2002). Since the students in the
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FMS studies were novice learners, it is conceivable that the novelty of the task
at hand disabled their ability to judge their own performance. While 66% of all
students overestimated their performance, only 33% of the students were able
to estimate their performance accurately. For future research it would be
interesting to investigate to what extent more advanced students are able to use
self-assessment. The “expertise reversal effect’ (for an overview, see Kalyuga,
Ayres, Chandler, & Sweller, 2003) shows that instructional materials should be
adjusted to the level of learner expertise. The elaborated instructional materials
that are helpful at the start of a training program might become redundant
when the student has attained a higher level of expertise. Not only might such
more advanced students be able to deal with higher levels of learner control but
they might also be capable to use self-assessment more accurately than the
novice learners in our studies.

Also, in combination with self-assessment, the use of peer-assessment in
novice students might lead to interesting effects. Research has shown that peer-
assessment positively influences the students” view on learning and assessment,
improves learning satisfaction, and enhances clarity of the learning criteria (e.g.,
Sluijsmans, 2002; Sluijsmans, Moerkerke, Dochy, & van Merriénboer, 2001).
Furthermore, by learning to assess their peers, the students reflect more on their
own performance (e.g., Anderson & Freiberg, 1995; Gentle, 1994; Longhurst &
Norton, 1997; Sobral, 1997) and the awareness of the quality of their own
performance improves (e.g., Anderson & Freiberg, 1995; Gentle, 1994;
Sluijsmans, 2002). More advanced students who have used peer-assessment in
early training phases might also be more capable in rating their own
performance in a later training phase.

All studies in this dissertation based task selection on the performance
and its associated mental effort of the previous task. However, a student might
not pay enough attention or not be very motivated during a specific task, which
will have severe consequences in the task selection as used in this dissertation.
Such fluctuations will be handled more properly with a student model which
not only shows the exact history of performance and mental effort on every
learning task a student has completed, but also enables task selection to be
based on more solid grounds. Incorporating the history of all learning tasks in
the mental efficiency method, and so suppressing the effect of the last task,
seems promising for future research.

Furthermore, exploration of an advanced efficiency formula might also
prove to be successful. As shown in the first two studies, adding a third factor
enabled the formula to take more important aspects into account which leads to
a more complete picture of efficiency. Also, the aspect of motivation is
interesting to investigate in relation to the efficiency formula. The relationship
between performance and mental effort might also be an indication of the
learner’s motivation. For instance, a student who invests a high amount of
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mental effort yet attains a low performance score will be classified as low
efficient by the efficiency formula. However, the high amount of invested
mental effort might also indicate that the student is highly motivated.

Paas, Tuovinen, van Merriénboer, and Darabi (in press) have recently
proposed a task involvement formula that is derived from the original
efficiency formula. Future research should take these comments into account in
order to examine an improved efficiency method.

Final remarks
The current dissertation can be seen as a first attempt to investigate the
possibilities, benefits, and limitations of personalized training methods that are
based on an extensive instructional design model such as the 4C/ID model (van
Merriénboer, 1997; van Merriénboer, Clark, & de Croock, 2002). Like Chapter 2
shows, the development of personalized training methods has been very
diverse and often fragmentary. To use an extensive instructional design model
as the basis for training development and to adapt the actual training to the
needs of the individual learner is something that has started only recently. Also,
the additional use of the concept of cognitive load in the process of dynamic
task selection is not to be found in many studies. The research in this
dissertation uses the 4C/ID-model (van Merriénboer, 1997; van Merriénboer, et
al.,, 2002) as a starting point. This model offers a training design that presents
students with a predetermined order and complexity of learning tasks in such a
way that their cognitive capacity is optimally used. While it originally started
out as a non-dynamic instructional design model it allows further improvement
of the training efficiency by incorporating personalized and adaptive training
trajectories.

Though the studies in this dissertation have not delivered indisputable
support for the claim that personalized training methods are more effective,
they have shown that personalized instruction can have beneficial effects for the
individual learner. While some questions are left unanswered and new ones
have arisen, this dissertation gives various leads and clues on how to proceed
with the investigation of personalized training methods.
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Summary

It is becoming more important than ever to educate students in such a way that
they can deal with rapid changes in their work and daily life. Ongoing
technological developments, especially in domains like aviation and chemical
industry in which mistakes can lead to dangerous situations and high costs, ask
for continuous adaptation and lifelong learning. Because the available training
time is often limited, training should be used as efficiently as possible.
Therefore, education must be available whenever it is needed. To cope with
these new demands, the educational research field shows two main tendencies:
(a) an increasing use of real-life tasks as the driving force for learning, and (b)
an increasing flexibility of educational programs as indicated by terms such as
“just-in-time-learning” and “education-on-demand”.

This dissertation combines both tendencies. A sequence of meaningful
learning tasks is used as the backbone of a training program, and the learning
task sequence is conceived as a dynamic entity where each next task can be
selected in such a way that it best suits the needs of an individual learner. The
most optimal learning task sequence is produced by an algorithm for dynamic
task selection, which chooses a next learning task by using indications of the
student’s progress, such as performance scores and costs which are related to
attaining these scores (e.g., mental effort, training time, number of learning
tasks).

The main research question of this dissertation is how dynamic task
selection can be used to optimize training programs, the learning process, and
transfer performance. More specific research questions focus on the different
types of information that are required to effectively use dynamic task selection
and on the role of the trainees themselves in this task selection process. For
example, do performance measures contain sufficient information for dynamic
task selection or are supplementary measures, such as the amount of mental
effort that a student has to invest, also important to take into account for task
selection? And, is it possible and desirable to let trainees fulfill an active role in
the process of task selection?

In order to be able to address these research questions, Chapter 2
presents a comparison of approaches to learning task selection that have been
used throughout the last three decades in training programs for complex
cognitive skills. This comparison shows an important development from static
part-task selection to dynamic whole-task selection of learning tasks. Four
approaches are identified: (a) a static part-task approach, (b) a static whole-task
approach, (c) a dynamic part-task approach, and (d) a dynamic whole-task
approach. These four approaches are compared in terms of their flexibility and
adaptability to the needs of the individual trainee during training. Furthermore,
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they are compared to investigate for what complex cognitive skills they might
or might not be useful. From this comparison it follows that the static part-task
approaches can be used well for training procedural tasks with a low
organization between part-tasks, like for instance aircraft maintenance. Dynamic
part-task approaches can be used for tasks that are too complex to practice in a
whole-task format. For instance, when learning to drive a car, trainees usually
start with learning to steer the car before learning to drive the car in a more
integrated whole-task fashion. The static whole-task approaches can be used for a
training in which the tasks need to be performed in a specific order, like
learning to diagnose a clinical case. Lastly, the dynamic whole-task approaches can
be used for a wide range of training programs to learn complex skills because of
their highly flexible and adaptive nature, for instance aviation and the military.
If it is possible to find a version of a whole task that is simple enough to start
the training with, then these approaches offer the possibility to give trainees a
good impression of the professional tasks that they can expect. Furthermore, the
incorporation of static approaches in a dynamic approach can yield larger
benefits in developing a more effective and efficient training.

Based on the comparison in Chapter 2, Chapter 3 investigates the
differential effects of four task selection methods on training efficiency (i.e.,
training time) and transfer performance in a computer-based training program
for Air Traffic Control (ATC). A non-dynamic condition, in which the learning
tasks are presented to the participants in a fixed, predetermined sequence, is
compared to three dynamic conditions. The three dynamic conditions select
learning tasks on the basis of the learner’s performance, mental effort, or mental
efficiency (i.e., a combination of performance and mental effort). The results
support the hypothesis that adapting training to the individual needs of the
student makes training more efficient. However, no evidence is found to
support the hypothesis that task selection based on mental efficiency leads to
more efficient training and higher transfer performance than selection based on
either performance or mental effort alone. Despite this result, the mental
efficiency condition shows more benefits for the training process than the other
dynamic conditions.

Chapter 4 investigates the effects of two personalized training methods
on training efficiency and transfer test performance in the same computer-based
ATC training program. In one personalized condition (i.e., mental efficiency),
task selection is based on mental efficiency which combines performance and
invested mental effort; in the other personalized condition (i.e., learner control),
the students are free to select the complexity level of the next learning task.
Furthermore, participants in both personalized conditions are matched to
“yoked” participants in two control conditions. That is, each individualized
training sequence of a participant in the mental efficiency condition or the
learner control condition is also presented to a participant in the corresponding
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yoked control condition. Each yoked participant is presented with the training
sequence of someone else; hence no personalization occurs in the yoked
conditions. In accordance with Study 1 (Chapter 3), the results support the
hypothesis that adapting the learning task complexity by means of learner
control or mental efficiency makes training more efficient for the individual
student. No evidence is found to support the hypothesis that task selection
based on personalized efficiency would lead to more efficient training and
higher transfer performance than task selection by the students themselves (i.e.,
learner control). While the mental efficiency condition is effective in terms of
learning benefits, the high costs (i.e., mental effort) resulting from these learning
benefits cause a low efficiency. In contrast, the learner control condition is not
effective in terms of learning benefits, but proves to be an efficient method due
to low costs in terms of mental effort.

Chapter 5 presents two closely related empirical studies. The first study
examines the effects of three task selection methods on training efficiency and
test performance in a computer-based training program for programming a
Flight Management System (FMS). A non-dynamic condition, in which the
learning tasks are presented to the participants in a fixed, predetermined
sequence, is compared to two dynamic conditions, in which the learning tasks
are either selected by the participants themselves (i.e., learner control) or by a
task selection algorithm. In contrast to the previous studies, in which only self-
ratings of mental effort were used, the algorithm in this study uses both self-
ratings of mental effort and performance. In agreement with Studies 1 and 2,
the results show that the dynamic conditions have beneficial effects on the
number of training tasks and the amount of time needed to complete the
training, but do not yield higher test performance than the non-dynamic
condition. Furthermore, the data suggest that most participants systematically
overestimate their performance. Therefore, the role of self-ratings is further
investigated in a second study in which the non-dynamic fixed condition, with
a smaller amount of learning tasks than in the first study, is again compared to
a mental efficiency condition in which students assess their own performance
and mental effort. An important finding of this final study is that good self-
raters select more appropriate learning tasks and reach higher test performance
than bad self-raters.

The final Chapter of this dissertation, Chapter 6, contains a general
discussion of the theoretical framework and the empirical studies. Based on the
combined results of the studies it is concluded that personalized instruction can
have beneficial effects on the training of complex cognitive skills. Although the
mental efficiency method did not lead to superior test results, it showed
training benefits in every reported study. Furthermore, students are capable to
select their own learning tasks (learner control), as shown in Study 2. The
results of Studies 3 and 4 put this effect into perspective and show that self-
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assessment should be used with caution. Because these students were novice
learners in regard to the Flight Management System (FMS), it is conceivable that
the novelty of the task at hand disabled their ability to judge their own
performance. This has several implications for the use of personalized task
selection and the mental efficiency method. While personalized task selection
can be beneficial for training, the research in this dissertation also points out
what might have limited possible effects of the training methods. The
limitations addressed here are (a) the complexity of the training and test tasks,
(b) the history of training tasks, (c) the role of motivation, and (d) the number of
factors in the efficiency formula. It is concluded that automation of task
selection should be used carefully in training programs since it is not a goal in
itself but a tool to support the acquisition of skills quickly and efficiently.

For future research it is interesting to investigate to what extent more
advanced students are able to use self-assessment. Also, in combination with
self-assessment, the use of peer-assessment by novice students might lead to
interesting effects on the selection of learning tasks. Incorporating a history of
learning tasks in the mental efficiency method, instead of using only the last
learning task as in the current studies, also seems promising for future research.
Finally, the use of an elaborated efficiency formula might prove to be successful
for dynamic task selection in education.
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Samenvatting

Het wordt steeds belangrijker om studenten zo op te leiden dat zij kunnen
omgaan met snelle veranderingen in hun werkomgeving en dagelijkse leven.
Vooral de voortschrijdende technologische ontwikkelingen in domeinen zoals
de luchtvaart en chemische industrie waarin fouten tot gevaarlijke situaties en
hoge kosten kunnen leiden, vragen om voortdurende aanpassingen en het
levenslang leren van mensen. Omdat de beschikbare trainingstijd vaak beperkt
is dient training zo efficiént mogelijk ingezet worden. Daartoe moet onderwijs
altijd beschikbaar zijn op het moment dat het nodig is. Om aan deze nieuwe
eisen tegemoet te kunnen komen zijn er binnen het onderwijsonderzoek en de
onderwijspraktijk twee tendensen waarneembaar: (a) een toename van het
gebruik van levensechte taken als de motor voor betekenisvol leren, en (b) een
toenemende flexibiliteit van onderwijskundige programma’s in termen van
‘just-in-time-learning” en ‘education-on-demand’.

Deze dissertatie combineert beide tendensen. Er wordt gebruik gemaakt
van een opeenvolging van betekenisvolle leertaken als de ruggengraat van een
trainingsprogramma. De opeenvolging van leertaken wordt als een dynamische
entiteit beschouwd door elke volgende leertaak zo te kiezen dat deze het beste
aansluit bij de behoeften van een individuele student. Daarbij wordt de
optimale opeenvolging van leertaken bepaald door een algoritme voor
dynamische taakselectie, dat een beslissing neemt over de volgende leertaak op
basis van indicatoren van de voortgang van de student. Indicatoren zoals
prestatiescores en kosten die gerelateerd zijn aan het behalen van deze scores
(bijvoorbeeld mentale inspanning, trainingstijd, aantal benodigde leertaken
etc.).

De belangrijkste onderzoeksvraag in deze dissertatie richt zich op de
manier waarop dynamische taakselectie gebruikt kan worden om
trainingsprogramma’s, het leerproces, en de transferprestatie te optimaliseren.
Meer specifieke vragen hebben betrekking op de verschillende soorten
informatie die nodig zijn om dynamische taakselectie effectief te kunnen
gebruiken, alsook de rol van de student zelf in dit taakselectieproces. Geven
prestatiemetingen bijvoorbeeld voldoende informatie voor dynamische
taakselectie, of zijn aanvullende metingen, zoals de hoeveelheid mentale
inspanning die de student moet leveren, ook belangrijk om te gebruiken ten
behoeve van taakselectie? En is het mogelijk en wenselijk om studenten zelf een
actieve rol te laten spelen in het taakselectieproces?

Om deze onderzoeksvragen te kunnen beantwoorden presenteert
Hoofdstuk 2 een overzicht van methoden van leertaakselectie, welke gedurende
de laatste drie decennia in trainingsprogramma’s voor complexe cognitieve
vaardigheden gebruikt zijn. Dit overzicht laat een belangrijke ontwikkeling zien
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van een statische opeenvolging van deeltaken naar dynamische selectie van hele
leertaken. Er worden vier methoden geidentificeerd: (a) statische
deeltaakselectie, (b) statische hele-taakselectie, (c) dynamische deeltaakselectie,
en (d) dynamische hele-taakselectie. Deze vier methoden worden vergeleken op
hun flexibiliteit en adaptatievermogen in relatie tot de behoeften van de
individuele student tijdens de training. Verder wordt vergeleken voor welke
complexe cognitieve vaardigheden de verschillende taakselectiemethoden wel
of niet geschikt zijn. Deze vergelijking laat zien dat de statische deeltaakmethoden
vooral geschikt zijn voor het trainen van procedurele vaardigheden met weinig
organisatie tussen deeltaken, zoals “aircraft maintenance’. Dynamische
deeltaakmethoden zijn vooral geschikt voor het trainen van complexe
vaardigheden die de student in het begin van de training nog niet als hele taak
aankan. Denk bijvoorbeeld aan leren autorijden, waarbij de lerende in eerste
instantie alleen het stuur hoeft te bedienen, alvorens met meer geintegreerde
hele-taakoefening verder te gaan. Statische hele-taakmethoden zijn vooral geschikt
voor het trainen van taken waarbij stappen in een bepaalde volgorde
uitgevoerd moeten worden, zoals het stellen van een medische diagnose. De
dynamische hele-taakmethoden, ten slotte, zijn geschikt voor een breed scala aan
trainingsprogramma’s voor het leren van complexe cognitieve vaardigheden
vanwege hun flexibiliteit en adaptatievermogen. Hierbij valt bijvoorbeeld te
denken aan de luchtvaart en het leger. Als het lukt om een versie van de taak te
vinden die eenvoudig genoeg is om de training mee te beginnen bieden deze
selectiemethoden de mogelijkheid om de lerende al snel een goede indruk te
geven van de hele taak. Tevens kan het opnemen van statische methoden in een
dynamische methode tot een meer effectieve en efficiénte training leiden.

Op basis van het overzicht in Hoofdstuk 2 worden in Hoofdstuk 3 de
effecten van vier taakselectiemethoden op trainingsefficiéntie (in termen van
trainingstijd) en transferprestatie onderzocht in een computergestuurd
trainingsprogramma voor het leiden van luchtverkeer (“Air Traffic Control”).
Een niet-dynamische conditie, waarin de leertaken in een van tevoren
vastgestelde opeenvolging aan de proefpersonen worden aangeboden, wordt
vergeleken met drie dynamische condities. In de drie dynamische condities
worden leertaken geselecteerd op basis van prestatie, mentale inspanning, of
mentale efficiéntie (d.w.z., een combinatie van prestatie en mentale
inspanning). De resultaten ondersteunen de hypothese dat het aanpassen van
de training aan de behoeften van de individuele student de training meer
efficiént maakt. Er wordt echter geen ondersteuning gevonden voor de
hypothese dat taakselectie op basis van mentale efficiéntie tot meer efficiénte
training en betere transferprestatie leidt dan taakselectie op basis van alleen
prestatie of alleen mentale inspanning. Desondanks vertoont de mentale
efficiéntie conditie meer positieve effecten op het verloop van de training dan
de andere dynamische condities.
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Hoofdstuk 4 onderzoekt de effecten van twee gepersonaliseerde
trainingsmethoden op trainingsefficiéntie en transferprestatie in, opnieuw, een
computergestuurd trainingsprogramma voor het leiden van luchtverkeer. In
één gepersonaliseerde conditie (“mental efficiency”) worden leertaken
geselecteerd op basis van een mentale efficiéntiemaat die prestatiescores en
mentale inspanningsscores combineert; in de andere gepersonaliseerde conditie
(“learner control”) zijn de studenten vrij in het kiezen van de
moeilijkheidsgraad van de volgende leertaken. Verder zijn de proefpersonen in
beide gepersonaliseerde condities gekoppeld aan “yoked” proefpersonen in
twee controlecondities. Dit betekent dat elke individuele trainingsvolgorde van
een proefpersoon in de “mental efficiency” of de “learner control” conditie ook
wordt aangeboden aan een proefpersoon in de corresponderende “yoked
control” conditie. In de yoked control condities krijgen de proefpersonen dus
een trainingssequentie van iemand anders; en er vindt dus geen personalisatie
plaats. In overeenstemming met Studie 1 (Hoofdstuk 3) geven de resultaten
steun aan de hypothese dat het aanpassen van de moeilijkheid van de leertaken
door middel van “learner control” of “mental efficiency” tot meer efficiénte
training voor de individuele student leidt. Er wordt echter geen bewijs
gevonden voor de hypothese dat taakselectie op basis van mentale efficiéntie
tot meer efficiénte training en betere transferprestatie leidt dan taakselectie door
de student zelf (“learner control”). De “mental efficiency” conditie is effectief in
termen van leeruitkomsten, maar blijkt niet erg efficiént te zijn omdat de kosten
in termen van mentale inspanning hoog zijn. De “learner control” conditie blijkt
niet effectief in termen van leeruitkomsten, maar is wel efficiént omdat de
geinvesteerde mentale inspanning laag is.

Hoofdstuk 5 rapporteert twee gerelateerde empirische studies. De eerste
studie onderzoekt de effecten van drie taakselectiemethoden op
trainingsefficiéntie en testprestatie in een computergestuurd
trainingsprogramma voor het leren programmeren van een
vluchtbeheerssysteem (“Flight Management System”). Een niet-dynamische
conditie, waarin de leertaken in een van tevoren vastgestelde volgorde aan de
proefpersonen worden aangeboden, wordt vergeleken met twee dynamische
condities. In de twee dynamische condities worden, net als in Studie 2
(Hoofdstuk 4), leertaken geselecteerd door de proefpersonen zelf (“learner
control”) o6f door een taakselectiealgoritme in het computergestuurde
programma dat in tegenstelling tot de voorgaande studies niet alleen gebruikt
maakt van “self-ratings” voor mentale inspanning maar ook voor prestatie. In
overeenstemming met Studies 1 en 2 wordt aangetoond dat de dynamische
condities betere effecten bewerkstelligen op het aantal benodigde
trainingstaken en de trainingstijd maar geen hogere testprestatie laten zien dan
de niet-dynamische conditie. Verder suggereren de gegevens dat veel
proefpersonen hun prestatie systematisch overschatten. Daarom wordt de rol
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van “self-ratings” verder onderzocht in een tweede studie waarin de niet-
dynamische conditie, met minder leertaken dan in de eerste studie, wederom
wordt vergeleken met een mentale efficiéntie conditie waarin studenten hun
eigen prestatie en mentale inspanning beoordelen. Een belangrijke bevinding
van deze laatste studie is dat goede “self-raters” meer geschikte leertaken
selecteren en een hogere testprestatie behalen dan slechte “self-raters”.

Het laatste hoofdstuk van deze dissertatie, Hoofdstuk 6, bevat een
algemene discussie van het theoretische kader en de empirische studies. Op
basis van de gecombineerde resultaten van de verschillende studies wordt
geconcludeerd dat gepersonaliseerde taakselectie tot betere training voor
complexe cognitieve vaardigheden kan leiden. Hoewel de mentale
efficiéntiemethode niet tot superieure testresultaten heeft geleid, vertoont deze
methode in elke gerapporteerde studie wel positieve effecten op de training.
Verder zijn studenten goed in staat om zelf leertaken te selecteren (“learner
control”), zoals blijkt uit Studie 2. De resultaten van Studies 3 en 4 relativeren
deze bevinding enigszins en tonen aan dat “self-asssessment” in ieder geval
niet zondermeer gebruikt kan worden. Omdat de studenten beginners waren
met betrekking tot het vluchtbeheerssysteem (“Flight Management System”) is
het denkbaar dat de nieuwigheid van de taak hun vermogen om de eigen
prestatie te beoordelen verstoorde. Dit heeft enkele implicaties voor het gebruik
van gepersonaliseerde taakselectie en de mentale efficiéntiemethode. Hoewel
gepersonaliseerde taakselectie tot meer efficiénte training kan leiden duidt het
onderzoek in deze dissertatie ook aan wat de oorzaken kunnen zijn voor het
ontbreken van positieve effecten van dynamische taakselectiemethoden.
Mogelijke oorzaken betreffen (a) moeilijkheidsgraad van de trainings- en
testtaken, (b) de leertaakgeschiedenis, (c) de rol van motivatie, en (d) het aantal
factoren in de efficiéntieformule. Automatisering van taakselectie dient in
trainingsprogramma’s met mate gebruikt te worden omdat het geen doel op
zichzelf is, maar slechts een gereedschap om het snel en efficiént leren van
vaardigheden te ondersteunen.

Voor toekomstig onderzoek is het interessant om te bestuderen in
hoeverre meer gevorderde studenten in staat zijn om hun eigen prestatie te
beoordelen. Tevens kan “peer-assessment” in combinatie met “self-assessment”
voor beginnende studenten tot interessante bevindingen bij het zelf selecteren
van leertaken leiden. Het meenemen van de geschiedenis van alle uitgevoerde
leertaken in de mentale efficiéntiemethode, in plaats van alleen de direct
voorafgaande leertaak zoals in de huidige studies, lijkt ook veelbelovend voor
toekomstig onderzoek. Ten slotte kan het gebruik van een uitgebreide
efficiéntieformule succesvol blijken voor dynamische taakselectie in het
onderwijs.
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