
Design and Implementation Strategies 
for IMS Learning Design 

(Ontwerp en Implementatiestrategieën voor IMS Learning Design) 

“In the beginning the Universe was created. This has made a lot of people very 
angry and has been widely regarded as a bad move.” 

Douglas Adams 





Design and Implementation Strategies 
for IMS Learning Design 

 
 
 

Proefschrift 
 
 

ter verkrijging van de graad van doctor 
aan de Open Universiteit Nederland 
op gezag van de rector magnificus 

prof. dr. ir. F. Mulder 
ten overstaan van een door het 

College voor promoties ingestelde commissie 
in het openbaar te verdedigen 

 
op vrijdag 7 november 2008 te Heerlen 

om 16.00 uur precies 
 

door 
 

Hubertus Franciscus Vogten 
 

geboren op 16 februari 1967 te Sittard 
 
 

 



Promotor: 
Prof. dr. E.J.R. Koper 
Open Universiteit Nederland 
 
Co-promotor: 
Dr. J.M. van Bruggen 
Open Universiteit Nederland 
 
 
Overige leden van de beoordelingscommissie: 
Prof. dr. J. Blat 
Universitat Pompeu Fabra, Spain 
 
Prof. dr. M.J. Weller 
Open University, United Kingdom 
 
Prof. dr. A. Bijlsma 
Open Universiteit Nederland 
 
Dr. S.J. Bennett 
University of Wollongong, Australia 
 
 
 
 

 
SIKS Dissertation Series No. 2008-27 
The research reported in this thesis has been carried out under the auspices of 
SIKS, the Dutch Research School for Information and Knowledge Systems. 
 
 
 
The research in this thesis has been carried out at the Open Universiteit 
Nederland as part of the OTEC Learning Networks Programme. 
 

Copyright © 2008 by Hubert Vogten, Sittard, the Netherlands 

 
Printed by: Datawyse Maastricht 
Cover design: Jeroen Storm 
 
ISBN 978-90-79447-06-0 
All rights reserved. 



Design and Implementation Strategies 
for IMS Learning Design 

 
 

Hubert Vogten 
 

Synopsis 

The IMS Learning Design (LD) specification, which has been released in 
February 2003, is a generic and flexible language for describing the learning 
practice and underlying learning designs using a formal notation which is 
computer-interpretable. It is based on a pedagogical meta-model (Koper & 
Manderveld, 2004) and supports the use of a wide range of pedagogies. It 
supports adaptation of individual learning routes and orchestrates interactions 
between users in various learning and support roles. A formalized learning 
design can be applied repeatedly in similar situations with different persons and 
contexts. Yet because IMS Learning Design is a fairly complex and elaborate 
specification, it can be difficult to grasp; furthermore, designing and 
implementing a runtime environment for the specification is far from 
straightforward. That IMS Learning Design makes use of other specifications 
and e-learning services adds further to this complexity for both its users and the 
software developers. 
 
For this new specification to succeed, therefore, a reference runtime 
implementation was needed. To this end, this thesis addresses two research 
and development issues. First, it investigates research into and development of 
a reusable reference runtime environment for IMS Learning Design. The 
resulting runtime, called CopperCore, provides a reference both for users of the 
specification and for software developers. The latter can reuse the design 
principles presented in this thesis for their own implementations, or reuse the 
CopperCore product through the interfaces provided. Second, this thesis 
addresses the integration of other specifications and e-learning services during 
runtime. It presents an architecture and implementation (CopperCore Service 
Integration) which provides an extensible lightweight solution to the problem.  
 
Both developments have been tested through real-world use in projects carried 
out by the IMS Learning Design community. The results have generally been 
positive, and have led us to conclude that we successfully addressed both the 
research and development issues. However, the results also indicate that the 
LD tooling lacks maturity, particularly in the authoring area. Through close 
integration of CopperCore with a product called the Personal Competence 
Manager, we demonstrate that a complementary approach to authoring in IMS 
Learning Design solves some of these issues. 
 





Table of Contents 

CHAPTER 1 ........................................................................................................ 9 

INTRODUCTION ................................................................................................... 9 

CHAPTER 2 ...................................................................................................... 19 

IMS LEARNING DESIGN .................................................................................... 19 

CHAPTER 3 ...................................................................................................... 41 

DESIGNING A LEARNING DESIGN ENGINE AS A COLLECTION OF FINITE STATE 

MACHINES ....................................................................................................... 41 

CHAPTER 4 ...................................................................................................... 61 

A REFERENCE IMPLEMENTATION OF A LEARNING DESIGN ENGINE ....................... 61 

CHAPTER 5 ...................................................................................................... 79 

COPPERCORE SERVICE INTEGRATION ............................................................... 79 

CHAPTER 6 ...................................................................................................... 89 

IMPACT OF COPPERCORE AND CCSI................................................................. 89 

CHAPTER 7 .................................................................................................... 105 

USING THE PERSONAL COMPETENCE MANAGER AS A COMPLEMENTARY APPROACH 

TO IMS LEARNING DESIGN AUTHORING ........................................................... 105 

CHAPTER 8 .................................................................................................... 125 

REVIEW OF RESULTS AND FURTHER RESEARCH AND DEVELOPMENT ................. 125 

REFERENCES ................................................................................................ 143 

SUMMARY ...................................................................................................... 155 

SAMENVATTING ............................................................................................ 163 

ACKNOWLEDGEMENT .................................................................................. 173 

CURRICULUM VITAE ..................................................................................... 177 

SIKS DISSERTATIEREEKS ........................................................................... 179 

 
 





Chapter 1   

Introduction 



 10 | Chapter 1 

Introduction 

In 1998 the first steps towards the formal definition of an educational modelling 
language were taken by the Open University of the Netherlands (OUNL). This 
resulted in the definition of an XML (W3C, 2003) language called Educational 
Modelling Language (EML) (Koper & Manderveld, 2004; Hermans, Manderveld, 
& Vogten, 2004; Koper, Hermans, Vogten, & Brouns, 2007). The development 
of EML has been an iterative process of design, implementation, test and 
evaluation over approximately three years. The EML specification (EML 1.0, 
2000; EML 1.1, 2002) has now been evaluated in experimental settings within 
OUNL but also by interested external organizations. A series of Edubox 
(Tattersall, Vogten, & Hermans, 2005b) tools were developed to make these 
pilots possible. 
 
Reinforced by the positive experiences with EML, a slimmer version of EML 1.0 
was nominated for standardization by IMS and approved by the IMS Technical 
Board in February 2003 under the name IMS Learning Design (LD) (Koper & 
Olivier, 2004; IMSLD-IM, 2003; IMSLD-BPG, 2003; IMSLD-XB, 2003; Koper & 
Tattersall, 2005). LD is a generic and flexible formal language, which is 
computer-interpretable, for capturing and describing the learning practice and 
underlying learning designs; it is based on a pedagogical meta-model and 
supports the use of a wide range of pedagogies; it supports adaptation of 
individual learning routes and is capable of orchestrating interactions between 
users in various learning and support roles. Especially these multi-role, multi-
user aspects set LD apart from other specifications such as IMS Simple 
Sequencing (2006) and SCORM (2008). The same formalized learning design 
can be deployed over and over again via a runtime environment using different 
persons.  
 
For LD to succeed, a reference runtime implementation was needed which 
could support educational designers in better understanding the specification. 
The existing Edubox EML toolset was ill-suited for this purpose because its 
design and architecture is very monolithic, and specifically adjusted to OUNL 
circumstances. Although LD and EML are based on the same pedagogical 
meta-model (Koper, 2001; Koper & Van Es, 2004) and are thus conceptually 
comparable, their language implementations are quite different. Edubox would 
require a complete overhaul to cope with these language changes.  
 
A new reference runtime environment therefore had to be designed from 
scratch. In contrast to the Edubox toolset, it should be reusable in different 
environments and circumstances. From this stems the first research and 
development question of this thesis: 
 

i) How can a fully compliant reusable reference runtime environment 
for the IMS Learning Design specification be designed and 
implemented? 



  Introduction | 11 

 
LD relies and builds upon other e-learning specifications. For example, IMS 
Question and Test Interoperability (IMSQTI, 2006) is used for assessment 
functionality, and IMS Content Packaging (CP) (IMSCP-IM, 2003) is used for 
bundling units of learning. Although the LD information model describes how 
these specifications should be incorporated into LD at the lexical and syntactical 
level, little has been written about the implications for the runtime. In addition, 
LD provides for the integration of learning support services such as forum and 
chat services. These are integrated by declaration and should be linked into the 
runtime during the learning design execution. The following XML snippet shows 
the declaration of a forum service in LD. 
 
<service identifier="GB_Confer_SO"> 
  <conference conference-type="asynchronous"> 
    <participant role-ref="GB"/> 
    <participant role-ref="Teacher"/> 
    <participant role-ref="Expert"/> 
    <item identifier="I-GB_Confer_SO" identifierref="RES-ITALY "/> 
  </conference> 
</service> 

 
There are many implementations for these specifications and learning support 
services; often they play integral roles in learning management systems. 
Therefore, using these implementations rather than re-implementing them from 
scratch is a sensible prospect. It should be possible to integrate these existing 
implementations with the LD runtime. This leads to our second research and 
development question: 
 

ii) How, given a reference implementation for the IMS Learning 
Design specification, can implementations for other e-learning 
specifications and learning support services be integrated 
generically at runtime level? 

 
We will address research question (i) by elaborating it. A reference 
implementation being fully LD compliant implies that all the three specification 
levels (see chapter 2 for details) are supported. Any valid LD instance should be 
executable on this reference implementation. The resulting runtime behavior 
should be in complete compliance with the specification. An implementation 
such as LAMS (LAMS, 2008), for example, which was inspired by LD, does not 
meet this criterion because it is not capable of importing any arbitrary LD 
compliant learning design. Furthermore, the implementation should act as a 
reference for practitioners who want to better understand the specification by 
allowing them to run and validate their own learning designs. Those interested 
in developing their own LD runtime environment should be supported by a 
validated design that demonstrates how to implement a runtime environment. 
 
There are several reasons why implementing an LD runtime environment is not 
a trivial task. LD is an elaborate specification merely by its size alone: it consists 
of more than 250 distinct language elements on top of those already defined in 
CP. It is also a domain-specific language (Deursen, Klint, & Visser, 2000), 
which implies that implementers of an LD runtime should have ample 



 12 | Chapter 1 

involvement with the instructional design domain. In addition, it is a declarative 
language that can be interpreted in two ways, both of which apply to LD. In the 
first interpretation, declarative language is used in the sense of ‘what something 
is like, rather than how to create it’. We have already mentioned the example of 
a forum service declaration. This characteristic of LD allows authors, for 
example, to declare quickly which supporting services should be available 
during runtime. However, an apparently simple declaration requires much 
scaffolding by runtime implementers in their applications. In the second 
interpretation, declarative language is synonymous for a non imperative 
programming language such as XSLT (W3C, 1999). The LD condition elements 
may at first seem imperative, but they are in fact also declarative, and resemble 
the production rules of a production system (Brownston, Farrel, Kant, & Martin, 
1985). The runtime must continuously decide which conditions should be 
evaluated at any given moment. Furthermore, it must also detect when to stop 
evaluating these conditions to avoid getting stuck in potentially endless loops. 
Evaluation of the conditions, however, is not triggered by forward or backward 
chaining (as is the case in production systems), but rather by events.  
 
LD is also a persistent language (Atkinson, Bayley, Chilsom, Cockshott, & 
Morrison, 1990), implying that the lifetime of entities, particularly properties, 
supersede their runtime execution lifetime. Thus alterations to properties and 
other entities should be automatically persisted by the LD runtime environment. 
Finally, LD shares the characteristics of workflow languages such as BPEL 
(IBM, BEA Systems, Microsoft, SAP AG, & Siebel Systems, 2006) and XPDL 
(Workflow Management Coalition, 2005), allowing the multi-user modelling of 
learning flow. The runtime environment for LD should be capable of 
orchestrating this workflow. 
 
All these characteristics combined make clear that any runtime implementation, 
regardless of how clever its design may be, will demand considerable time and 
resource investment. Therefore, it is likely that most implementers would prefer 
to reuse an existing LD runtime implementation rather than build their own from 
scratch. The reference runtime implementation should therefore be reusable, 
providing hooks that allow integration into various environments and 
architectures. It should make as few assumptions as possible about the 
environment in which it will be integrated. It should thus also not make 
assumptions about the user interface. A clear separation exists between the 
engine of the LD runtime, dealing with the processing of LD business rules, and 
the representation in a user interface. This thesis focuses on the engine of this 
runtime. Reusability also entails that it is possible to tune and adapt the 
reference runtime environment to specific situations and research. 
 
In chapter 2 a detailed overview of LD is provided as a background for the 
reader. Although the LD specification itself is not the topic of this thesis, ample 
understanding of the specification is helpful in grasping some of the issues 
involved in the design and implementation of a runtime environment. We see 
that the LD specification is available at three levels, referred to as A, B and C. 
These levels are incremental and inclusive, meaning that level B includes level 



  Introduction | 13 

A, and level C includes levels A and B. We posit that an application is only fully 
LD compliant when it implements level C of the specification. 
 
We illustrate that level A is domain specific and declarative. It provides for the 
declaration of users and user groups in the form of roles. Furthermore, learning 
and support activities can be defined with their environments, consisting of 
resources and services. These activities may be grouped into sequences and 
selections. These structures make up the major building blocks of the 
specification. Next we see that it is possible to combine these building blocks 
into a learning flow. This learning flow orchestrates which activities have to be 
performed when and by whom; it also defines dependencies and relationships 
between these activities. 
 
Level B adds a new dimension to the LD specification via the introduction of 
properties and conditions which make it possible to model runtime adaptations 
in the design (Burgos, Tattersall, & Koper, 2007). They resemble structures 
typically found in regular programming languages, but with a twist. We explain 
that, for example, properties have an instantiation scope and are assumed to be 
persistent beyond their execution lifetime. Furthermore, we show that the order 
of interpretation of the LD conditions is not imperative, that is, not determined by 
the order in which they appear in the design. Properties and conditions together 
provide means for personalization and adaptation during runtime. 
 
The final step towards level C of the specification is relatively small: level C only 
adds a notification mechanism. Notifications inform users about changes of 
properties in the system, which can trigger users to take further action. 
 
Next we see how LD instances are packaged using the IMS CP specification to 
construct units of learning (UOL). These UOLs are the input for the LD learning 
design engine discussed in the following chapter. Finally, we define some high 
level requirements which have to be met by any LD engine. 
 
Chapter 3 introduces the notion of an engine as a software component capable 
of interpreting a UOL by providing a personalized view of it. This is the result of 
applying all rules defined in the UOL as defined by LD. The engine output is an 
XML format that can be used by a player to generate the user interface. This 
thesis focuses on the engine’s design and implementation, although an 
example player is also provided as part of the software release.  
 
We demonstrate how an engine design can be formulated when we take the 
perspective of a finite state machine (FSM) (Sipser, 1997). A state is 
represented by the values of the properties defined in the UOL; however, it is 
also defined by progress information within the learning flow. We demonstrate 
that such progress information can also be captured with the same properties if 
we slightly extend the instantiation scopes defined in LD. We distinguish 
between explicit properties and implicit properties: the former are defined in the 
UOL by the UOL’s author, whereas the latter are defined by the engine when 
parsing the UOL. We also clarify the concept of a run, and see how this helps 
assigning real users to a UOL; users must be assigned to one or more roles 



 14 | Chapter 1 

defined in the UOL for each run. We discuss how the concept of runs and roles 
influences the scoping of the properties, and show what extensions the scoping 
definitions need in order to support the notation of the explicit properties. The 
scope of a property determines how many distinct instances of this property will 
be generated by the engine during runtime. Combining the population of the 
UOL with the run and the role concepts leads to the conclusion that an LD 
engine may be perceived as a collection of FSMs in which each distinct FSM is 
defined by the user, role and run identities. 
 
Next we define the input and output alphabets of the FSMs. Both are expressed 
in the form of events specific to the UOL. These events lead to state changes 
and can trigger an output function. In turn, an output function can trigger new 
events, leading to new state changes. This mechanism causes state changes to 
ripple through the chain of events.  
 
We then take a closer look at the event handling by way of an event dispatcher, 
a collection of LD rules defined by the UOL, several event handlers and a 
property store. We show that property changes trigger one or more event 
handlers depending on the rules defined by the UOL. These event handlers can 
modify properties themselves and thereby raise new events. We show that it is 
possible to express the LD business logic such as, for example, determining the 
completion status of an act by event handlers. However, it is also possible to 
express the conditions defined in the UOL through such event handlers, which 
solves the problem of determining when to evaluate the conditions. Their 
evaluation is also triggered by state changes. 
 
Finally, we discuss in more detail how the UOL is parsed, showing that the UOL 
is split up into smaller fragments. These fragments are personalized when 
retrieved by inserting the property values as defined for the user in a particular 
role and run into the XML snippets. We show that personalization of the UOL 
has become almost trivial through the introduction of the FSM. 
 
This approach provides a solid guideline for implementing an LD runtime 
environment. Using this design we built the CopperCore runtime engine, which 
has been released as open source and can be used as reference 
implementation by anyone interested in building their own application or 
integrating the engine into their own environment.  
 
Chapter 4 describes the CopperCore reference implementation and, more 
specifically, the provided APIs. In this chapter we discuss how CopperCore can 
be reused through the provided Application Programming Interfaces (APIs). 
First, CopperCore’s two APIs are described. The first interface, the 
CourseManager, deals with administrative tasks such as the publication of 
UOLs as well as the creation of users and their assignment to runs and roles. It 
contains all calls needed to prepare a UOL for execution; we discuss the most 
commonly used calls in more detail. 
 
The next interface is the LDEngine API. The name itself suggests that it is 
focused on the execution of the UOLs prepared earlier through the 



  Introduction | 15 

CourseManager. We discuss the three major calls of this API: getActvityTree(), 
getEnvironmentTree() and getContent(). All these return fairly extensive 
personalized XML fragments that need further rendering by the calling party: for 
each call we give a detailed description of the returned XML format. After 
discussing the APIs, a sequence diagram that depicts an example of interaction 
between a user, a client LD player and the CopperCore engine is investigated in 
more detail.  
 
The second part of the chapter addresses CopperCore’s architecture. We show 
how the APIs and some of the constructs discussed in chapter 3 are 
implemented with J2EE (J2EE, 2007). We motivate our choice for the J2EE 
specification and discuss implementation strategies that can be pursued when 
deploying CopperCore.  
 
To address research question (ii), in chapter 5 we discuss the integration of 
other specifications and learning support services with CopperCore. We use the 
example of IMS QTI to describe the CopperCore Service Integration (CCSI) 
architecture. The CCSI development took place sometime after the public 
release of CopperCore; we demonstrate how CCSI can be embraced with 
minimal intrusions on existing code. We see that CCSI can be wedged between 
a CopperCore client and the CopperCore engine, requiring minimal client side 
code changes. We also illustrate how the proxy pattern (Gamma, Helm, 
Johnson, & Vlissides, 1995) helped us achieve this objective. 
 
We acknowledge that there may be many implementations for each service and 
specification; new specifications and services may also emerge and require 
integration. We show how we used the bridge pattern (Gamma et al., 1995) for 
this purpose, and introduce the concept of adapters. CCSI requires that 
adapters be provided for each specification and service, including CopperCore 
itself. Using the IMS QTI integration, we show that there is a need for these 
adapters to communicate with each other. We introduce a dispatcher for this 
purpose that acts as a kind of service bus, relaying events between the 
adapters. Furthermore, we show how this dispatcher also acts as a factory, 
providing for the dynamic linking of adapter implementations. 
 
Finally, we discuss the implementation of CCSI and provide some screen 
captures of a working example of the UOL with some IMS QTI items 
incorporated. This example illustrates how answering a question influences the 
learning flow defined in the UOL. We argue that the same principle applied for 
the IMS QTI integration can be applied to a whole range of services. 
 
Having addressed our two research and development questions, in chapter 1 
we reflect on the impact of CopperCore and CCSI on the LD community by 
reviewing the use of both products in other research and developments. The 
CopperCore development has been an iterative process carried out in the 
context of several externally funded projects. We discuss how these projects 
provided valuable validation opportunities for both the engine and the service 
integration. We also discuss the UNFOLD project that provides a platform for 
the LD community. We briefly touch upon the research and developments 



 16 | Chapter 1 

presented in the context of UNFOLD, and elaborate on the role of CopperCore 
and CCSI.  
 
Finally, we take a closer look at the reuse of CopperCore in the TELCERT and 
ELeGI projects. These projects acknowledge CopperCore as the de facto 
reference runtime environment for LD. We conclude that a number of learning 
design authors have been using CopperCore as a reference to help them better 
understand the specification; at the same time, they have also been validating 
the engine by deploying and testing numerous designs for all specification 
levels. We show that the engine has been reused in various settings and that 
new services have been successfully developed for CCSI. We argue, therefore, 
that we have successfully addressed our two research and development 
questions.  
 
However, we also conclude that the omission of an easy-to-use authoring 
environment has hampered further uptake of the specification. In chapter 7, we 
address this authoring issue by providing a complementary approach to LD 
authoring which relies on close integration of CopperCore and CCSI. We argue 
that the current toolset for LD authoring requires ample understanding of the 
specification. Furthermore, we argue that the current toolset, including 
CopperCore, favors a top-down design approach, yet many practitioners favor a 
more bottom-up approach to designing their learning (such as that provided by 
the Personal Competence Manager, or PCM). Moreover, for many of these 
practitioners the LD learning curve is too steep.  
 
We start by presenting the TENCompetence (TENCompetence consortium, 
2007) domain model and explaining its main concepts. Next we describe the 
architecture of the PCM, followed by an in-depth description of the PCM using 
the wireframe designs available during writing. We show how users can easily 
create and edit their own competence plans and activities. These activities can 
be structured by creating competence development plans (CDP), which are 
targeted at attaining certain competences. The PCM allows for easy 
arrangement of the activities within a CPD by way of a graphical editor, it also 
allows for the sharing of most of these entities with other users, which users can 
edit together. 
 
We demonstrate how the TENCompetence concepts can be mapped onto LD, 
which makes it possible to capture a competence development plan in a UOL. 
We recognize that working within the PCM brings ease of editing without too 
much concern about design formalization. The UOL however, provides the 
advantages of a formal learning design; LD’s major advantages include quality 
assurance, reusability, advanced designs and accountability. It is up to the user 
to decide whether the advantages of formalization through a UOL outweigh 
those of the native PCM editing environment. 
 
We show that an exported UOL can be enhanced with the regular LD authoring 
tools. It can then be imported back into the PCM by creating a new action that 
links to this UOL, thus closing the editing loop. This requires the close 
integration of an LD runtime environment: we argue that CCSI and 



  Introduction | 17 

consequently CopperCore can be used for this purpose. The editing cycle 
allows practitioners to adopt a bottom-up approach to designing their learning – 
no LD knowledge is required at this stage. Those same practitioners may 
decide at some point that capturing their design in a formal specification is 
preferable. If the design needs further enhancement, ample LD knowledge is 
required; however, a working design is available as starting point for this editing, 
which can be very helpful. 
 
In the remaining sections we reflect on the technical implications of importing 
the UOL into the PCM. We explore the issues involved in the provision of 
services, assignment to runs and population of roles. We argue that CCSI 
provides a good starting point for this integration, but also recognize that some 
issues require further analyses. 
 
Finally, in chapter 8 we review our findings and elaborate on our experiences 
during the development and use of CopperCore and CCSI. We also reflect on 
their shortcomings and propose specific areas for further research and 
development. 

 





Chapter 2   

IMS Learning Design 



 20 | Chapter 2 

IMS Learning Design 

The first part of this chapter provides an overview of the LD specification and 
serves as background for readers unfamiliar with it. The last section provides 
some requirements and considerations for the runtime implementation of LD. 
Although LD itself is not the focus of this thesis but rather a given, a basic 
understanding of the specification will help to understand the challenges for the 
design and implementation of an associated runtime. Koper (Koper, 2005a) 
states that every learning practice has an underlying learning design, just as 
every building has an underlying architecture. As in architecture, where similar 
buildings can be constructed using the same design, the learning design can 
also be applied over and over again in similar situations. However, this learning 
design can be implicit, and in education there is no common practice of using a 
formal notation for such a learning practice. Koper also indicates that this lack of 
a formal, commonly understood notation hampers broader communication 
about effective educational practice, and impedes the evaluation of existing 
designs. 
 
Derived from theory, examples and patterns, Koper set out the following 
requirements for a formal learning design notation. 
 

“1. The notation must be comprehensive. It must describe the teaching and 
learning activities of a course in detail and include references to the learning 
objects and services needed to perform the activities. This means describing: 

• How the activities of both the learners and the staff roles are integrated. 

• How learning resources (objects and services) are integrated. 

• How both single and multiple user models of learning are supported. 
2. The notation must support mixed mode (blended learning) as well as pure 

online learning. 
3. The notation must be sufficiently flexible to describe learning designs based on 

all kinds of theories; it must avoid biasing designs towards any specific 
pedagogical approach. 

4. The notation must be able to describe conditions within a learning design that 
can be used to tailor the learning design to suit specific person or specific 
circumstances. 

5. The notation must make it possible to identify, isolate, de-contextualize and 
exchange useful part of learning design (e.g. a pattern) so as to stimulate their 
reuse in other contexts. 

6. The notation must be standardized and in line with other standard notations. 
7. The notations must provide a formal language for learning designs that can be 

processed automatically. 
8. The specification must enable a learning design to be abstracted in such a way 

that repeated execution, in different settings and with different persons, is 
possible.” 

 

These requirements led to the development of LD 1.0, first released on 20 
January 2003. LD is a formal language using XML as its meta-language. The 
official documentation can be found on the IMS (2003) website. IMS has 



  IMS Learning Design | 21 

developed a set of three document types for its specifications: an information 
model (IMSLD-IM, 2003), a best practices and implementation guide (IMSLD-
BPG, 2003) and an XML binding (IMSLD-XB, 2003) document. The information 
model is the normative description of the specification. The best practices and 
implementation guide provides more information and background, including 
scenarios, examples and guidance to specification implementers. Finally, the 
XML binding document describes the XML grammar used to capture the 
concepts described in the information model. LD recognizes three levels of the 
specifications – A, B and C. Each level builds on the previous one, and extends 
the specification with additional features. Learning designs as well as 
implementations are considered compliant to a level. For learning designs this 
means they only use elements of that specific level; for implementations, all 
language elements defined for that level are supported. Compliancy to a higher 
level automatically implies compliancy to all lower levels. 
 
In the following sections, LD is discussed in detail. First, its base concepts and 
constructs are described as defined in level A, followed by the more advanced 
features covered by levels B and C. 

IMS Learning Design concepts 

Figure 2.1 depicts the core components of LD level A. 

 
 
Level A is the most basic version of the specification; it includes core 
components only. The backbone of LD is formed by the learning design, which 
is the wrapper for all the concepts we discuss in the following sections. The 
method describes the workflow of learning and teaching processes defined by 
the learning design. We shall call this the learning flow. To construct the 
learning flow, the building blocks of activities, roles, environments, learning 
objectives and prerequisites are required. For the time being, it is sufficient to 

 
activities 

 
roles 

 
environments 

 
prerequisites 

 
method 

 
learning 

objectives 

Figure 2.1 Level A components of IMS Learning Design 



 22 | Chapter 2 

think of the method as a construct that defines who should do what at a 
particular moment in time. 

ROLES 

Roles consist of a collection of role elements. A role is an abstraction of the 
responsibility a user has during the learning process. Two role types are 
distinguished in LD: learner roles and staff roles. These can be organized into 
hierarchies specifying their dependencies. A user who has been assigned to a 
role deep in the hierarchy is also implicitly assigned to all ancestor roles. 
Besides the distinction between staff and learner roles, no particular semantics 
are imposed or assumed by LD, and the learning designer is free to add any 
number and type of roles to the design. Although roles are primarily intended to 
describe the nature of a user’s involvement in the design, they can also be used 
to group people. Defining the roles and hierarchies is part of the design 
process; populating the roles with actual users, however, is done during 
runtime.  
 
Additional instances of these roles may be instantiated during runtime if the 
learning design permits. This way the exact number of instances needed for a 
particular role can be defined during runtime. For each role, a minimum and 
maximum number of users that must/may be assigned can be specified. 
Furthermore, it is possible to indicate whether sub-roles are exclusive, meaning 
that the same user cannot be assigned to more than one sibling role 
simultaneously. A simple XML snippet of some role definitions might look like 
this: 
 
<roles> 
  <learner identifier="Learner" create-new="allowed" max-persons="10"> 
    <title>Learner</title> 
  </learner> 
   <staff identifier="Teacher" create-new="not-allowed"> 
     <title>Teacher</title> 
     <staff identifier="Recorder"> 
       <title>Recorder</title> 
     </staff> 
  </staff> 
</roles> 

 
This snippet declares one learner role that may be instantiated many times 
during runtime. In each instance of this role only 10 people may be assigned. 
Furthermore, a staff role with the name ‘Teacher’ is defined that may be 
instantiated only once; this role can be further refined as a ‘Recorder’. 

ACTIVITIES 

Activities are the next building blocks for the method. They define what a 
learner or teacher has to do according to the learning design, and come in two 
flavors: learning activities and support activities. The learning activities are 
targeted at learning and performed by users in the learner roles. In contrast, the 
support activities are intended to be performed primarily by members of the staff 
roles. However, in certain pedagogical scenarios these support activities have 



  IMS Learning Design | 23 

to be performed by learners as well; in such cases, the support activity is a 
special kind of learning activity.  
 
Besides semantic differences, the support activity also has an additional 
reference to roles which represent the users who will benefit from this support. 
How activities are completed is defined by the learning design. In LD level A, for 
example, they can either be completed by choice of the user or, alternatively, by 
a time limit. In level B, more sophisticated completion mechanisms are 
available. The learning designer can add feedback that should be presented by 
the runtime once an activity is completed. Each activity also has an 
environment, which associates the necessary learning resources with the 
activity. Activities themselves can be structured into sequences and selections 
via the activity structure element. Sequences group activities in a fixed order; 
these activities must be rendered in this order during runtime, and each 
following activity will only become available after the previous one has been 
completed. Completing the last activity will also complete the sequence itself. 
Selections also group activities, but, unlike sequences, all activities will be 
rendered at once. Users may pick activities from this list of activities. Selections 
have thresholds defining the minimum number of activities to be completed 
before the activity structure itself is completed. Activity structures may nest 
other activity structures, allowing the creation of fairly complex hierarchies of 
sequences and selections. Although the activity structure also defines part of 
the teaching–learning flow, it is not considered part of the method.   
 
A sample XML snippet of some looks like this: 
 
<activities> 
  <learning-activity identifier="Reflect"> 
    <title>Reflect on Experience</title> 
    <activity-description> 
      <item identifier="Reflect_AD_res" identifierref="an_id"/> 
    </activity-description> 
    <complete-activity> 
      <user-choice/> 
    </complete-activity> 
    </learning-activity> 
.. 
.. 
  <activity-structure identifier="Reflection"  
                            structure- type="sequence"> 
    <title>Reflection</title> 
    <learning-activity-ref ref="Reflect"/> 
    <learning-activity-ref ref="Describe"/> 
    <learning-activity-ref ref="Create_page"/> 
    <learning-activity-ref ref="Post_page"/> 
    <learning-activity-ref ref="Review_Outcomes"/> 
  </activity-structure> 
</activities> 
 
The snippet above defines a learning activity with the title ‘Reflect on 
Experience’. Activity descriptions define items, which can be thought of as 
placeholders for resources. In principle, all resource types and formats are 
allowed, but in practice these resources are often web pages. When elaborating 



 24 | Chapter 2 

on level B, we see that LD also has a special resource type that requires 
different treatment. Resources are either bundled with the learning design itself, 
or are accessible via an absolute URL. The activity defined in the XML snippet 
can be marked as completed by the user (the runtime should present the user 
with an option to do so). Note that this activity is atypical because it does not 
contain a reference to an environment. 
 
The next part of this snippet shows an activity structure ‘Reflection’ that has 
been defined as a sequence. This sequence is built by referencing to learning 
activities. The runtime should present these learning activities in the same order 
as defined, giving access only to all completed activities and the first incomplete 
activity. 

ENVIRONMENTS 

An environment is a container of resources aggregated into hierarchies. 
Resources can be simple learning objects or, alternatively, one of following 
learning services: send mail, conference, index search and monitor. LD allows 
the extension of this list in the future. Learning objects can refer to one or more 
resources that are either bundled with the design itself or available through an 
absolute URL. The send mail service provides the means to send a message to 
users in particular roles. The conference service declares either synchronous or 
asynchronous conference facilities. The index search service defines access to 
the learning design artefacts either by defining indexes or by defining a free text 
search facility. The runtime is responsible for providing these services during 
execution of the design.  
 
Environments can be nested, allowing their reuse in different contexts. They are 
typically referenced from activities. The following code snippet is an example of 
an environment: 
 
<environments> 
  <environment identifier="Italy_Background_Env"> 
    <title>Italian Background for the Treaty of Versailles</title> 
    <learning-object identifier="Italy_Background_LO"> 
      <item identifier="Italy_BG_item" identifierref="Italy_BG_res"/> 
    </learning-object> 
  </environment> 
  <environment identifier="Italy_Serbia_Confer"> 
    <title>Italy-Serbia Forum</title> 
    <service identifier="Italy_Serbia_Confer_SO"> 
      <conference conference-type="asynchronous"> 
        <participant role-ref="ITALY"/> 
        <participant role-ref="SERBIA"/> 
        <participant role-ref="Teacher"/> 
        <participant role-ref="Expert"/> 
          <item identifier="I-Italy_Serbia_Confer_SO"  
                identifierref="RES-ITALY_Agree_AD_res"/> 
      </conference> 
    </service> 
  </environment> 
</environments> 

 



  IMS Learning Design | 25 

The snippet above is of a nested environment. The root environment element 
merely contains two other environments. The first sibling environment contains 
a learning object, and the second sibling environment an asynchronous 
conference service. 

LEARNING OBJECTIVES AND PREREQUISITES 

The learning objective element defines the intended learning outcome, while the 
prerequisites define the required entry level. Both learning objectives and 
prerequisites can be defined either in an informal, human-readable form, or 
through other, machine-readable specifications such as IMS RDCEO (2002). 
Learning objectives and prerequisites can be defined at the level of the 
complete design and/or that of the learning activities.  

METHOD  

With all building blocks in place, we now elaborate the method. The method 
element ties all concepts together by constructing plays, which are informed by 
the theatrical plays. These plays orchestrate which teachers and learners 
represented through their roles are ‘on stage’. Furthermore, plays define what 
should be done when, and prescribe how the teachers and learners should 
interact. Like a theatrical play, the teacher–learner interactions are divided into 
acts that offer synchronization moments. Within each act, teachers and learners 
are supposed to perform their activities. All must have done so – or have left the 
stage, to use the dramatic metaphor – before the next act can start. Role parts 
are used to define which activities must be performed by whom; they associate 
a role with an activity, implying that members of that role should perform that 
activity. Alternatively, they can associate a role with an environment which is a 
shorthand notation for an implicit activity instructing the user merely to study the 
resources in that environment. 
 
An act can contain many role parts, all of which will be performed concurrently. 
This can be compared with actors being on stage simultaneously. The role part 
is considered complete when all users have completed the associated activity: 
the learning design defines when the act is completed. In level A, the options 
are limited to defining the role parts that must be completed or, alternatively, 
setting a time limit after which the act is completed automatically. This time limit 
can be absolute or relative to the moment of initial deployment of the design. 
The play can be completed either by completing the last act or by defining a 
time limit. Finally, the method can be constructed by more than one play. Each 
play could, for example, offer a different learning style. Multiple plays are 
provided concurrently. 
 
The following is an XML snippet of the method element: 
 
<method> 
  <play identifier="play1"> 
    <act identifier="firstact"> 
      <title>ACT1: VERSAILLES OVERVIEW</title> 
      <role-part identifier="RolePart1"> 
        <title>Title rolepart 1</title> 



 26 | Chapter 2 

        <role-ref ref="All"/> 
        <learning-activity-ref ref="Versailles_Overview"/> 
      </role-part> 
      <complete-act> 
        <when-role-part-completed ref="RolePart1"/> 
      </complete-act> 
    </act> 
    <act> 
      <title>ACT2: INTRODUCTION TO PREPARATORY PHASE</title> 
        <role-part identifier="RolePart3"> 
          <role-ref ref="Learner"/> 
          <learning-activity-ref ref="Preparation_Intro"/> 
        </role-part> 
        <role-part identifier="lastrolepartact2"> 
          <role-ref ref="Support_Staff"/> 
          <support-activity-ref ref="Support_Preparation_Intro"/> 
        </role-part> 
        <complete-act> 
          <when-role-part-completed ref="lastrolepartact2"/> 
        </complete-act> 
    </act> 
    <complete-play> 
      <when-last-act-completed/> 
    </complete-play> 
  </play> 
</method> 

 
The example above shows a play with two acts. The first act contains one role 
part. This act is complete when all members of the ‘All’ role have completed the 
‘Versailles_Overview’ learning activity. As soon as this act has been completed, 
the next act will become available. Members of the ‘Learner’ role can perform 
the learning activity ‘Preparation_Intro’, while simultaneously, members of the 
role ‘Support_Staff’ can perform the support activity 
‘Support_Preparation_Intro’. The act is complete when the last role part has 
been completed by all members in that role. Finally, the play is complete when 
the last act has been completed. 

 

 
 

IMS Learning Design level A 

 
Properties 

 
Conditions 

 
Monitor 

 
Global 

elements 

Figure 2.2 IMS Learning Design level B add-ons 



  IMS Learning Design | 27 

 
With LD level A it is possible to model multi-role and multi-user learning 
designs. However, the possibilities for designing runtime personalization are still 
rather limited. Level B adds four new concepts to the LD core, as depicted in 
figure 2.2 that enable runtime personalization.  

PROPERTIES 

Properties are similar to variables as defined in common programming 
languages such as C or Basic. They have a unique identifier and are of a 
certain data type. LD recognizes the following property data types: string, 
boolean, integer, real, uri, datetime, file, text and duration. Each property is 
capable of holding a single value corresponding to its type. Furthermore, each 
has to be declared explicitly before it can be used. Valid values can be limited 
by adding restrictions to each property declaration. The runtime environment is 
responsible for enforcing these restrictions, which can be used, for example, to 
limit user input. Each property can optionally be seeded with an initial value. 
 
Unlike most programming languages, properties are persistent beyond the 
lifetime of a learning design runtime session. The runtime environment is 
expected to ensure this persistence. Properties also have an instantiation 
scope, determining how many occurrences of a property should be created 
during runtime. The following scopes are defined in LD: local, local personal, 
local role, global personal and finally global. These scopes determine when a 
new property should be instantiated. For example, a local personal property will 
be instantiated for each learning design user. The scopes are closely related to 
the repeated deployment of a learning design during runtime; this deployment 
instance is called a run (IMSLD-BPG, 2003; Tattersall et al., 2005a). A run 
provides a context for assigning users to the roles of a learning design. An LD 
runtime environment should be capable of deploying multiple runs of the same 
learning design where each run provides a context for locally scoped properties. 
Table 2.1 depicts the relationship between the values of the property scope 
attribute and their instance occurrences.  

Table 2.1 Relationship between property scope and their instantiations 

Property scope Occurrence 

Local One for each run 

Local personal  One for each user in a run 

Local role One for each role instance1 in a run 

Global personal One for each user 

Global One instance only 

 

                                                      

1 Additional role instances can be created during runtime for some roles. These new role instances 

also lead to the creation of additional role property instances where appropriate. 



 28 | Chapter 2 

Properties can be grouped together, which allows them to be addressed by a 
single reference. The following XML snippet defines some properties and 
combines them into a property group. 
 
<properties> 
  <globpers-property identifier="email"> 
    <global-definition uri="http://coppercore.org/email-new"> 
    <title>Email address</title> 
    <datatype datatype="string"/> 
   </global-definition> 
  </globpers-property> 
 
  <globpers-property identifier="username"> 
    <global-definition uri="http://coppercore.org/username-new"> 
      <title>User name</title> 
      <datatype datatype="string"/> 
    </global-definition> 
  </globpers-property> 
 
  <locpers-property identifier="prop1"> 
    <datatype datatype="real"/> 
    <initial-value>12.50</initial-value> 
    <restriction restriction-type="maxInclusive">12.50</restriction> 
    <restriction restriction-type="fractionDigits">2</restriction> 
   </locpers-property> 
 
  <property-group identifier="group1"> 
    <title>Group 1</title> 
    <property-ref ref="email"/> 
    <property-ref ref="username"/> 
    <property-ref ref="prop1"/> 
  </property-group> 
</properties> 

 
The snippet above declares two global personal properties containing an email 
address and a user name. These properties will be instantiated once for each 
user. The snippet also depicts the declaration of a local property of type real 
with a maximum of 12.5. When viewing this property, two fraction digits are 
rendered. It will be instantiated for every user and run combo. Finally, the 
snippet also demonstrates how these properties can be grouped together to 
allow easy reference to them via the group ID. 

GLOBAL ELEMENTS 

Property values can be manipulated by two other level B constructs: global 
elements and conditions. Global elements are XML constructs that extend the 
W3C XHTML specification. Four global elements are defined: set property, get 
property, set property group and get property group. These constructs should 
be rendered by the runtime environment as either entry fields providing the 
possibility to change the property value, or text fields showing the properties’ 
value. The runtime environment should ensure that restrictions defined for these 
properties are respected when a user enters data for them. The property 
elements in the global content have an attribute that determines whether this 
property refers to the user’s property or to that of a user being supported. The 
support context is determined by the LD element that refers to this global 



  IMS Learning Design | 29 

content. Support activities and the monitor objects provide these support 
contexts by referring to the roles that are should be supported or monitored. It is 
up to the runtime to provide a mechanism that allows the selection of a specific 
user from the total list of users being supported or monitored. The set property 
element also has an attribute that limits the number of times a property may be 
set by a user. 
 
LD uses the IMS content package specification (CP) (IMSCP-IM, 2003) as 
means for packaging the learning design and the associated resource together. 
This packaging is discussed in more detail later, but for the time being it can be 
thought of as a zip file containing all resource files as well as the learning 
design itself. The LD item model was informed by and based on CP. It binds 
resources to the learning design; each item is associated with a resource 
element which either links to one of the files in the content package or to an 
external resource via an absolute URL. Resource elements have type attributes 
that determines the kind of resource referenced. LD supports two resource 
types: ‘webcontent’ and ‘imsldcontent’. Whenever a resource contains global 
elements, the type of resource should be set to ‘imsldcontent’. This triggers the 
runtime to parse this resource for global elements and render the content 
accordingly. We will see in chapter 5 that we extend the supported resource 
types to enable the integration of other specifications and learning services. 
 
The following XML snippet depicts a resource with one item that has a 
reference to a resource with global content.  
 
<learning-object identifier="review_student_lo"> 

<item identifierref="review_student_res"/> 
</learning-object> 
.. 
.. 
<resource identifier="RES review_student_res" type="imsldcontent" 
          href="review_student.xml"> 
</resource> 

 
The following XML snippet is the actual content of the “review_student.xml” file 
referenced by the resource in the previous snippet. Because the resource type 
is defined as ‘imsldcontent’, the content must be rendered in a special manner. 
The value of ‘datetimestarted’ property for a supported person must be 
rendered, and user input control should be generated for properties ‘test2’ and 
‘test3’. 
 
<?xml version="1.0"?> 
<html xmlns:imsld="http://www.imsglobal.org/xsd/imsld_v1p0"  
      xmlns="http://www.w3.org/1999/xhtml"> 
<head><title>Example of global content</title></head> 
<body> 
<p>When did the user start?</p> 
<imsld:view-property ref="datetimestarted" property-of="supported-person" 
view="title-value"/> 
 
<p>Enter your thoughts below</p> 
<imsld:set-property ref="thoughts" property-of="self" view="title-value"> 
</imsld:set-property> 



 30 | Chapter 2 

<p>Should the role property be visible?</p> 
<imsld:set-property ref="test2" property-of="self" view="title-value"/> 
<p>Should the role property be visible with a collapse and expand 
control?</p> 
<imsld:set-property ref="test3" property-of="self" view="title-value"/> 
</body></html> 

 

CONDITIONS 

The second construct for manipulating property values, besides the global 
elements, are conditions. These conditions consist of an antecedent and a 
consequence. In the condition “if X then Y”, the “if X” part is the antecedent and 
“then Y” is the consequence. These conditions can be compared with those 
found in programming languages. What sets them apart from most 
programming languages, however, is the fact that the conditions are not 
imperative, meaning that the order of the evaluation is not determined by the 
order in which they are entered in the learning design. Instead, they resemble 
the production rules of a production system. Their antecedents must be 
continuously monitored by a runtime system to determine when to evaluate the 
consequences. A consequence might be an instruction to show or hide IMD LD 
constructs such as activities, items, environments or parts of the global content. 
It might also be the manipulation of property values: the change of a property 
value could cause antecedents of one or more other conditions to evaluate to 
true. This results in the execution of their consequences, and so on. The 
runtime must pay special attention to avoid ending up in an infinite loop. It 
resembles a production system but with a twist – it processes the ripple effect 
caused by events and consequences, rather than attempting to find a solution 
via forward or backward reasoning. 
  
Both the antecedent and the consequence make use of expressions built 
around an operator and zero or more operands. An operator can act also as an 
operand for another operator. LD contains a number of Boolean operators such 
as and, or, is, not, greater than and less than. These Boolean operators are 
typically the root for antecedent expressions. For the consequence, additional 
operators such as sum, subtract, multiply, divide and no-value are available. 
Besides these generic operators, LD-specific operators include member of role, 
date time activity started and time unit of learning started. All expressions use 
the Polish2 notation, also known as prefix notation. This is most natural notation 
to use when representing expressions in a hierarchically structured language 
such as XML. 
 
The following XML code snippet illustrates some example conditions. 
 
</conditions> 
  <if> 
    <and> 
      <not><no-value><property-ref ref="result"/></no-value></not> 

                                                      

2 Invented by Polish logician Jan Łukasiewicz. 



  IMS Learning Design | 31 

      <greater-than> 
        <current-datetime/><property-value>2003</property-value> 
      </greater-than> 
    </and> 
  </if> 
  <then> 
    <change-property-value> 
       <property-ref ref="result"/> 
      <property-value> 
        <calculate> 
          <sum> 
            <property-ref ref="result"/> 
            <property-value>1</property-value> 
          </sum> 
        </calculate> 
      </property-value> 
    </change-property-value> 
  </then> 
 
  <if> 
    <is-member-of-role ref="learner"/> 
  </if> 
  <then> 
    <show> 
      <class class="calculate"/> 
    </show> 
  </then> 
  <else> 
    <hide> 
      <class class="calculate"/> 
    </hide>  
  </else> 
</conditions> 

 
The antecedent of the first condition is fired when the property ‘result’ has a 
value and the current date time is after 2003; the consequence of the first 
condition states that the value of a property ‘result’ will be set to the sum of the 
value of property ‘result’ and 1. The second condition states that all XHTML with 
class attribute ‘calculate’ will be visible whenever the user is a member of the 
learner role. Otherwise, these elements will be hidden. 

MONITOR 

The monitor element, finally, is an additional service added by LD level B. It 
allows property values to be viewed or set for members of a specified role, or 
for the current user. Which properties should be viewed is defined by items 
referring to resources of type ‘imsldcontent’. Thus the monitor element itself 
provides the context for any property references, and the ‘imsldcontent’ 
resource type defines which properties must be shown or set. The next code 
snippet is an example of the monitor element stating that members of the role 
‘Learner’ will be monitored. The ‘imsldcontent’ resource ‘portfolio.xml’ declares 
which properties are monitored. 
 
<service identifier="portfolio_view"> 
  <monitor> 
    <role-ref ref="Learner"/> 
    <item identifierref="portfolio_res"/> 



 32 | Chapter 2 

  </monitor> 
</service> 
.. 
.. 
<resource identifier="portfolio_res" type="imsldcontent" 
          href="portfolio.xml"> 
</resource> 

 
The content of the ‘portfolio.xml’ is depicted below: 
 
<?xml version="1.0"?> 
<html xmlns:imsld="http://www.imsglobal.org/xsd/imsld_v1p0"  
      xmlns="http://www.w3.org/1999/xhtml"> 
<head><title>Portfolio</title></head> 
<body> 
<p>The portfolio data are:</p> 
<imsld:view-property ref="document_for_activitiy_a" property-
of="supported-person" view="title-value"/> 
<p /> 
<imsld:view-property ref="document_for_activitiy_b" property-
of="supported-person" view="title-value"/> 
</body></html> 

 
The XHTML document states that two properties, ‘document_for_activity_a’ and 
‘document_for_activity_b’, will be examined. 

 
 
 
 
Figure 2.3 depicts the notification extension contributed by LD level C. 
Notifications alert users of events that have occurred during runtime. They can 
be triggered by the completion of learning activities, support activities, acts, 
plays and the learning design itself. They consist of a message sent to all 
notification receivers. There is the possibility to attach a learning activity or 
support activity to the notification message; the runtime must ensure that this 
activity is visible and accessible by the notification receiver. This effectively 

 
 

IMS Learning Design level B 

 
Notifications 

Figure 2.3 IMS Learning Design level C 



  IMS Learning Design | 33 

overrules any other visibility rules defined for this activity. The following XML 
code snippet depicts an example of a notification triggered as part of the 
consequence of a condition. 
 
<if> 
  <and> 
    <not><no-value><property-ref ref="value1"/></no-value></not> 
     <is> 
       <property-ref ref="operator"/> 
       <property-value>divide</property-value> 
     </is> 
  </and> 
</if> 
 
<then> 
  <change-property-value> 
    <property-ref ref="result"/> 
    <property-value> 
      <calculate> 
        <divide> 
          <property-ref ref="value1"/> 
          <property-ref ref="value2"/> 
        </divide> 
      </calculate> 
    </property-value> 
  </change-property-value> 
  <notification> 
    <email-data username-property-ref="username" 
                email-property-ref="email"> 
      <role-ref ref="Learner"/> 
    </email-data> 
    <learning-activity-ref ref="Review-calculation"/> 
    <subject>Result has been processed</subject> 
  </notification> 
</then> 
 
The XML snippet above defines that every user in the role ‘Learner’ will receive 
a notification when property ‘value1’ has a value and property ‘operator’ equals 
‘divide’. Furthermore, the learning activity ‘Review-calculation’ will be made 
available to these users.  
 
For each of the major LD building blocks described in this section, more 
detailed information can be found in the LD information model.  

IMS Learning Design binding and packaging 

In the previous section we have seen several examples of XML snippets. These 
snippets represent valid IMS Learning Design according to a particular binding. 
The binding defines LD’s formal grammar. In theory, there could be many 
bindings for the specification, but in practice only one is currently defined. XML 
schema (W3C, 2007) is used as a formalism for describing the grammar and 
thereby also the binding. For LD, three incremental XML schemas have been 
defined. This makes it relatively easy to validate whether a learning design is 
lexically level A, B or C compliant, but XML schemas’ limitations make it 



 34 | Chapter 2 

impossible to validate the learning design completely. Additional validation 
steps are required to ensure the correctness of the design. 
 
Besides defining a grammar, LD also specifies how a learning design should be 
packaged. The package is called a Unit of Learning (UOL): a complete, self-
contained unit of education or training such as a course, module, lesson, etc. 
LD recommends the use of CP for this purpose. We have already seen in the 
previous section that the item model used by LD is informed by CP. A content 
package consists of a manifest and associated resources; the manifest contains 
one or more organizations, which describe how the resources are structured. In 
the case of a UOL, the manifest is a learning design. A CP – and therefore also 
a UOL –  is often zipped into a single file for ease of use, although this is not 
obligatory.  
 
Figure 2.4 is a graphical representation of the structure of a UOL. It shows the 
UOL containing a manifest that has metadata, a learning design and resources. 
These resources may refer to one of the physical files included with the UOL. 
 

 
 
 

More practical details about LD and example UOLs can be found on the 
learning networks site on LD at http://imsld.learningnetworks.org/. 

Runtime considerations 

The best practices and implementation guide (IMSLD-BPG, 2003) provides 
some insights into the main requirements for the implementation of a runtime 
environment for LD. In this section we present an overview of these 

Unit of Learning 

Manifest 

Metadata 

Learning Design 

Resources 

Files typically of type webcontent 
or imsldcontent 

Figure 2.4 The structure of a Unit of Learning 



  IMS Learning Design | 35 

requirements. Figure 2.5 depicts a high-level view of the main components of 
an LD runtime implementation as set out in the guide. 
 

 
 
 
This figure depicts a data store taking care of the runtime persistence. This 
includes, amongst others, the persistence of property values, run memberships 
and role memberships. Business logic rules as defined by LD and the specific 
UOL are applied to the data persisted in the storage. The outcomes of applying 
these rules are rendered to the user via the presentation layer. We will call the 
layer responsible for applying the business rules the LD engine, or engine for 
short. The layer responsible for rendering the outcomes of this engine we will 
call the LD player, or player. Finally, external services can connect to the 
business logic layer for tight integration into existing learning management 
systems. The type of services integrated can range from educational services, 
such as forums, to administrative services like user registration. This thesis 
focuses on the design and development of the LD engine and the integration of 
services and other specifications. Although we also provide an LD player as a 
reference, we do not deal with the specifics of the player and its user interface 
aspects.  
 
From the detailed descriptions of LD above, we can derive the following main 
categories of runtime requirements. 

VALIDATION 

A reusable engine cannot make assumptions about the source of the UOL. A 
UOL can be created via an authoring environment that only produces valid 
UOLs, but it can also be created with a text editor and zip utility. The latter is, of 
course, error prone. Therefore, every UOL needs to be validated. This 
validation provides authors with useful feedback about mistakes they might 
have made in their designs, and ensures that no unexpected or undesired 
behavior will occur during runtime. Validation of the UOL involves checking the 
correctness of the zip file, the lexical validity of the XML files using the available 

Storage 

LD runtime 
business logic 

layer 

LD runtime 
presentation 

layer 

External 
services 
(legacy) 

Figure 2.5 High level view on IMS Learning Design runtime 



 36 | Chapter 2 

schemas, referential integrity within the XML files and the resources of the UOL 
for completeness.  
 
Next to this technical validation, the learning design requires a semantic 
validation for those constructs that cannot be expressed by an XML schema. An 
example would be validating the constraints defined for the role element. 
Validation should ensure that the minimum number of persons assigned to a 
role is fewer than or equal to the maximum. A more complex example of 
semantic validation deals with the typecasting of properties. We have seen that 
properties have data types and that expressions allow the property values to be 
changed. These assignments can require type-implicit type conversions, also 
known as coercions. LD does not clearly specify how to deal with these 
coercions. Two approaches are possible when determining how the coercions 
need to be validated: runtime dynamic coercion and parse time static coercion. 
The first attempts the typecasting ‘just in time’ during runtime. The advantage is 
that typecasting possibilities are maximized because the property values are 
used to determine whether the typecast is possible. For example, value ‘1’ can 
be converted to an integer, whilst ‘one’ cannot. The drawback is that runtime 
errors can occur because conversion is not possible. The second coercion type 
is more restrictive, and determined during parse time. The parser determines 
the typecasting based on the data types of the expression, and not on the 
actual property value. Here the cast from string to integer will not be allowed. 
The drawback is that far fewer expressions are allowed; the advantage, 
however, is that these errors occur during parsing and not during runtime. The 
CopperCore engine implementation that we present in this thesis uses parse-
time coercion to avoid unexpected behavior during runtime.  
 
Some validation can only be done during runtime. We have seen that properties 
can have value constraints; the engine should enforce these constraints by 
validating the values set for these properties. We have also seen role 
assignment constraints that should be enforced by the engine. How to deal with 
these runtime constraints is up to the LD player implementation. A player could 
duplicate the validation mechanisms, preventing the user from entering invalid 
data. Alternatively, a player could rely on the engine for reporting back errors. 
The latter is simpler, but far less user friendly. The engine has to ensure that 
both types of validation are possible, and must therefore provide the player with 
sufficient data to allow preemptive validation. 

PARSING 

The UOL needs to be parsed and the defined learning flow interpreted. From 
the learning design method section within the UOL, business rules need to be 
extracted and executed during runtime. Executing these rules will result in a 
personalized view of the learning design for each user. Interpreting the rules 
involves correct interpretation of the completion rules and timely interpretation 
of the conditions. It is likely that state data of multiple users is involved when 
evaluating these business rules. Parsing can be handled in many different 
manners: it could, in theory, be done just in time, taking the complete UOL, 
unpacking it and interpreting it for each and every request to the engine. This, 



  IMS Learning Design | 37 

clearly, is not the most efficient approach. It is more sensible to pre-parse the 
UOL and dissect it into more manageable parts that will be interpreted. 

PUBLISHING 

A UOL needs to be imported into the engine before it can be delivered during 
runtime. At a minimum, an engine needs to create a handle for accessing this 
UOL. It makes sense to precede the publishing by the validation of the UOL, 
preventing incorrect UOLs from being deployed. Furthermore, the publishing 
provides a good starting point for the pre-parsing and pre-processing of the 
UOL.  
 
How to deal with UOL republications is a challenge for which several 
implementation strategies are possible. An engine could disallow republication, 
thereby avoiding any of the associated problems. Alternatively, it could allow 
republication but automatically create an additional handle for the republished 
UOL – thus, one for the old publication and one for the new. In effect, this 
means that both UOLs will run side by side. An engine could also override the 
old publication, which has the advantage that existing runs are also updated, 
thus allowing corrections of design errors after initial delivery. The 
disadvantage, however, is that a number of runtime problems could occur 
because, for example, properties have been added, removed or changed in the 
new design. This could leave an engine in an undefined or unexpected state. In 
the CopperCore engine discussed in this thesis, we allow the overwriting of a 
UOL by a new version because we feel the advantages outweigh the 
disadvantages. 

PROVISIONING 

The learning design refers to resources packaged within the UOL. The runtime 
environment has to ensure that these resources are available for rendering on 
the user’s computer. Furthermore, it must ensure that the UOL itself is 
provisioned. For this purpose, the UOL must be instantiated. An instance of a 
UOL is known as a run; each run has its own identity and lifetime cycle, users 
are enrolled for a run, and all population is done in the context of a run. Users 
may be assigned to multiple runs of the same UOL but with, for example, 
different role assignments in each run. The runtime should provide the means to 
create and manage these runs. 

POPULATION 

We saw earlier that LD uses the role element as an artefact for representing 
users during design time. These placeholders must be populated with real users 
during runtime. Therefore, any runtime environment should provide the means 
to allocate real users to the roles whilst guarding the constraints placed upon 
them. Furthermore, it should be possible to create new instances of these roles 
during runtime if the learning design specifies that this is allowed. Each user will 
have an individual state for a UOL run. These states incorporate the user’s 
progress as well as the values for each property defined in the UOL. They 
should be persisted and accessible by the runtime at all times, as LD 



 38 | Chapter 2 

coordinates multiple roles for multiple users. This requirement imposes 
limitations on the possible engine designs. 

PERSONALIZATION 

The engine must ensure that the content presented to the user is adapted 
according to rules defined in the UOL. We have seen how this personalization 
can be specified through roles, properties and conditions. Therefore, an engine 
needs the user, run and role identities to be able to personalize the UOL 
content for a user. These identities are essential when parsing the business 
rules and conditions defined by the UOL; therefore, they have to be passed to 
the engine as context when applying and evaluating the business rules and 
conditions. 

INTEGRATION 

The engine has to offer the means to interface with external services. These 
services are either defined in the learning design or needed for embedding the 
runtime into existing learning management systems. This connectivity can be 
very proprietary and closed when the engine is specifically designed to be 
integrated in a specific learning management system. For a reusable engine, 
however, it must be as open as possible to allow the engine to be used in 
various environments and circumstances. 
 
Having briefly discussed the main categories of requirements for an LD engine, 
a natural, top-down workflow approach emerges (Westera, Brouns, Pannekeet, 
Janssen, & Manderveld, 2005). The learning design is authored first. Next, this 
design is published, and if validation does not report any errors, it can be 
populated by assigning users to runs and roles. The design may then require 
adaptations based on the outcome of the experience gathered during runtime. 
These adaptations result in a modified UOL, which can be republished. 
 

 

Figure 2.6 Example screen shot of publishing process (source: ELeGI project) 



  IMS Learning Design | 39 

 
Figure 2.6 depicts an example of a typical user interface for managing the 
publication and population processes. The resulting runtime experience is 
shown in figure 2.7. Both screenshots were taken from the ELeGI project 
(ELeGI, 2007), to be discussed in more detail in chapter 1. 
 

 

 

Figure 2.7 Example of runtime experience (source: ELeGI project) 

 
In the following chapters we discuss how an engine can be designed to 
elegantly meet the requirements. We describe how this engine can be reused in 
a variety of settings, and examine the integration of other services and 
specifications. We also investigate how to incorporate this engine into an 
environment, helping to overcome some issues with the top-down authoring 
process. 





Chapter 3   

Designing a Learning Design Engine 
as a Collection of Finite State 
Machines 

Vogten, H, Tattersall, C., Koper, R., van Rosmalen, P., Brouns, F., Sloep, P., 
Van Bruggen, J. and Martens, H. (2006). Designing a Learning Design Engine 
as a Collection of Finite State Machines. International Journal on E-Learning, 
Vol 5(4), 641-661 



 42 | Chapter 3 

Abstract 

Specifications and standards for e-learning are becoming increasingly sophisticated and complex as 
they deal with the core of the learning process. Simple transformations are no longer adequate to 
successfully implement these latest specifications and standards for e-learning. IMS Learning 
Design (LD) (IMSLD-IM, 2003) is a representative of such a new specification in the field of e-
learning. Its declarative nature, expressiveness and scope increase the complexity for any 
implementation. This probably is the largest hurdle that stands in the way of successful general 
deployment of this type of specification.  

This article describes how an engine for interpreting LD can be designed as a collection of finite 
state machines (FSMs). An FSM is a computational model where a system is described through a 
finite number of states and their transition functions that map the change from one state to another. 
In the case of LD each state can be seen as constructed from a set of properties which can either 
be declared explicitly in LD or implicitly by the engine. State transitions are implemented through a 
mechanism of events and event handlers, completing the finite state machine. By reusing certain 
type of properties across FSMs it is possible to create an automatic propagation mechanism taking 
care of group dynamics without the need for any additional efforts. With the FSMs in place, 
personalization, one of the key features of LD, becomes a simple task. By combining the principles 
presented in the article, it becomes clear that an elegant design becomes feasible. This is 
demonstrated in the first actual implementation called CopperCore (Martens, Vogten, Van 
Rosmalen, & Koper, 2004). 

Introduction 

As open specifications (and standards) in e-learning are becoming more 
mature, their richness and complexity increases (IEEE, 2003; IMS, 2003). Early 
specifications dealt solely with meta-data. Later specifications focused on other, 
more complex educational processes. Good examples of such emerging new 
specifications, dealing with pedagogical frameworks, are IMS Simple 
Sequencing and IMS Learning Design. Implementation of these more complex 
specifications is not as straightforward. There is a need for additional guidelines 
to help developers incorporate these specifications into their e-learning 
systems. This article provides guidelines for implementers wanting to 
incorporate the IMS Learning Design (LD) specification into their products. The 
abbreviation LD is used when referring to the specification as laid down in IMS 
Learning Design (IMSLD-IM, 2003). The abbreviation UOL is used when 
referring to a learning design instance coded according to LD. 
 
LD is used to specify the learning design of e-learning courses (so-called 'units 
of learning'). A unit of learning (UOL) is a package that consists of meta-data 
about the course, the learning design of the course and references to physical 
resources and/or the physical resources themselves (learning objects and 
learning services) that are used in the course. By providing a generic and 
flexible language, the LD specification supports the use of a wide range of 
pedagogies. It is based on a pedagogical meta-model (Koper & Manderveld, 
2004; Koper & Olivier, 2004) supporting personalization of learning routes and 
reusability. The learning design specification is designed to allow for repetitive 
use in different situations with different persons and contexts. 
 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 43 

learning-activity

play

act

role-part

activity-structure

role

activity

environment

learning-object

service

0..*

0..*

0..*0..*1..*

1..*

0..*

0..*

 

Figure 3.1 A UML (OMG, 2003) class diagram showing the core components of LD 

 
A schematic overview of the core components and interrelationships is provided 
in figure 3.1. LD starts from the principle that a person is assigned to one or 
more learner or staff roles. So all references to users, be it learners or staff, are 
made through these roles and never on an individual (personal) basis. In a role, 
a person has to perform learning activities to attain specified learning-
objectives. Activities can be combined into two types of activity-structures. First, 
an activity sequence by which the activities have to be performed in the order 
as specified in the structure. Second, an activity selection, by which a given 
number of activities may be selected from the number present in the selection. 
These activities are performed in an environment consisting of learning objects 
and learning services (communication, search, collaboration, etc.). The order in 
which activities have to be performed at all is specified per role. LD uses the 
metaphor of a theatrical play for this purpose. LD consists of one or more plays; 
a play consists of one or more sequential acts; an act consists of one or more 
concurrent role-parts. The role-part specifies the activity to be performed by a 
role when the act is started. The act synchronizes activities of the different roles 
over time. A role-part of the next act can only be accessed when the current act 
is completed. There are several conditional constructs that control the 
completion of an act, which allows the creation of cohorts of users working 
together. An example of this is the synchronization of tutors and learners by 
way of an act to ensure a sufficient number of tutors will be available when the 
learners start with their activities. Finally, the play sequences the acts in such a 
manner that it meets the learning objectives, given certain prerequisites. 

 
LD also provides properties, conditions, and notifications to personalize learning 
designs, to enable more elaborate workflows and interactions based on user 
dossiers.  
LD is implemented as an eXtensible Mark-up Language (XML) (W3C, 2003) 
binding. We assume the reader has good background knowledge of the major 



 44 | Chapter 3 

constructs of LD. The full detailed specification of LD can be downloaded from 
the IMS website (http://www.imsglobal.org); (IMS, 2003), where also the XML 
bindings in the form of XML Schemas can be found. The LD specification is 
described at three levels. In this article we always refer to the most elaborate 
Level C. 
 
LD is a declarative language. This means that it describes what behavior is 
expected by an implementation supporting LD without stating how this behavior 
should be achieved. Furthermore LD is an expressive language, which means 
that it has the ability to express a learning design in a clear, natural, intuitive 
and concise way, closest to the original problem formulation. Both LD’s 
expressiveness and declarative nature make it ideal for its target audience of 
educational designers, but difficult for implementers because knowledge about 
the domain is required and implementation routes and strategies are not 
obvious. 
 
The following XML code is an example of a small part of an LD instance. 

Example 1: declaration of roles 
<imsld:roles identifier="roles"> 
  <imsld:learner identifier="novice" min-persons="5" 
                 max-persons="10"> 
    <imsld:title>Novice students</imsld:title> 
  </imsld:learner> 
  <imsld:learner identifier="advanced" min-persons="1" 
                 max-persons="5" create-new="allowed"> 
    <imsld:title>Advanced students</imsld:title> 
  </imsld:learner> 
</imsld:roles> 

 
The example code above demonstrates both the declarative nature of LD and 
its expressiveness. Notice that two roles are declared with attributes stating the 
minimum and maximum number of members for each defined role. For the 
second learner role it is possible to have N instances of this role during 
execution time due to the declaration of the create-new attribute. LD does not 
make any assumptions about how, when, and who should be assigned to these 
roles nor does it state how and when the mentioned constraints should be 
checked. It merely declares valid states. 
 
Another example below shows how LD can express dynamic behavior in a very 
declarative manner. 

Example 2: conditional completion of activity 
<imsld:complete-act> 
  <imsld:when-condition-true> 
    <imsld:role-ref ref="tutor"/> 
    <expression> 
      <imsld:complete> 
        <imsld:support-activity-ref ref="mark-assignment1"/> 
      </imsld:complete> 
    </expression> 
  </imsld:when-condition-true> 
</imsld:complete-act> 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 45 

 
This example states that an act will be completed when all tutors have 
completed a certain support activity with id ‘mark-assignment1’. Apparently LD 
expects that the completion of activities will be tracked during run time (at least 
for the activity with id ‘mark-assignment1’) and that the activity is completed for 
all users in the role 'tutor'. Again, how this is achieved is left up to the 
implementers of the specification. LD merely specifies valid state transitions. 
 
To produce the learning experience expressed by a UOL, a software 
component capable of interpreting this UOL is needed. This component is 
referred to as an ‘engine’. The output of an engine is a personalized version of 
the UOL according to all rules defined by LD. This article demonstrates how an 
engine can be designed with relative ease when approached from the 
perspective of a finite state machine (FSM) (Sipser, 1997). A finite state 
machine stores the state of a system at any given time. There are a finite 
number of states. The system may change from one state to another through 
transition functions. A set of rules working on certain input, the input alphabet 
determines which transition is performed. By extending the LD’s native property 
mechanism with new properties, each state is reflected by a set of properties. 
We will see that state transitions are realized through events and event 
handlers. With the FSM machine in place, execution of a UOL can be reduced 
to personalization of preparsed content. How the content is preparsed and 
persisted is part of what we call the publication process. Finally, we will see that 
personalization is a matter of a simple XML translation. 

The engine as a collection of finite state machines 

At the heart of LD are interactions, between users in particular roles or between 
users and the engine. The results of these interactions can be captured in 
properties. Properties can be explicitly declared in LD, but there are also 
properties in LD that are presupposed to exist. An example is a property that 
captures the completion status of an activity for every individual user. We will 
call these properties implicit properties. The following example shows three LD 
code fragments. The first fragment declares an explicit property. The second 
fragment shows that the learning-activity is considered as completed when the 
value for this explicit property is set. The last fragment shows how the following 
learning-activity is made visible depending on the completion state of the 
previous learning-activity. For this purpose the completion state is stored in an 
implicit property. 
 

Example 3: explicit and implicit property 
<!-- declaration of the explicit property containing the essay --> 
<imsld:locpers-property identifier="essay"> 
  <imsld:title>Assignment 1</imsld:title> 
  <imsld:datatype datatype="file"/> 
</imsld:locpers-property> 
 
<!-- create an essay --> 



 46 | Chapter 3 

<imsld:learning-activity identifier="first_assignment" isvisible="true"> 
  <imsld:title>Assignment</imsld:title> 
  <imsld:activity-description> 
    <imsld:item identifierref="item1" isvisible="true"/> 
  </imsld:activity-description> 
  <imsld:complete-activity> 
    <imsld:when-property-value-is-set> 
      <imsld:property-ref ref="essay"/> 
    </imsld:when-property-value-is-set> 
  </imsld:complete-activity> 
</imsld:learning-activity> 
 
<!-- condition handling the visibility of the next assignment --> 
  <imsld:if> 
    <imsld:complete> 
      <imsld:learning-activity-ref ref="first_assignment"/> 
     </imsld:complete> 
  </imsld:if> 
  <imsld:then> 
    <imsld:show> 
      <imsld:learning-activity-ref ref="second_assignment" />  
    </imsld:show> 
  </imsld:then> 

 
An FSM consists of a set of possible states, a start state, an input alphabet, a 
transition function and an output alphabet. A transition function is associated 
with an input symbol and causes the transition from the current state to a next 
state. A state change generates the output alphabet. Within the context of LD, 
the state of each individual user is represented by the set of values of all the 
properties that are either defined explicitly or implicitly by the learning design. 
As an engine has to deal with multiple users an engine is a collection of FSMs. 
FSMs offer a logical, methodical approach towards sequential input processing, 
that is relatively easy to design and implement and allows one to avoid error-
prone conditional programming. 
 
Properties are defined during a publication process. A UOL is parsed and 
analyzed by the engine during which all explicit and all needed implicit 
properties are defined and persisted in a database with individual values per 
user. These values represent the state of these users at any time. Execution of 
this UOL consists of personalizing the UOL for the user, which is in fact 
adapting the UOL according to the property values of this user. For example, a 
UOL can contain additional activities for novice users that are not required for 
more advanced users. During execution the UOL is personalized for every user 
depending on the value of a property holding their level of experience. A state 
represents the position of a user with respect to his or her progress in the UOL. 
The start state is defined by the initial values of the properties. These initial 
values are either given in the LD or are set as result of executing other UOLs at 
earlier stages. The input alphabet is made up of all LD constructs generating 
events and the transition functions are defined by LD constructs dealing with 
interactions. When, for example, the engine provides feedback when an activity 
is completed, the engine reacts to a user action, namely completing an activity. 
In terms of an FSM, this can be formulated as follows: the engine responds to a 
change of state that is caused by the user completing an activity. Example 3 
translates into an FSM as follows. When the UOL is published properties are 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 47 

created for every user. There are at least two properties. First the explicit 
property 'essay', next the implicit property 'completion of activity first 
assignment'. Initially the value of the explicit property is null for all users 
because the essay has not been created yet and there was no initial value set. 
The value for the implicit property is set to 'uncompleted' by design. The input 
alphabet consists of the LD constructs 'upload an essay’ and ‘an essay has 
been uploaded.'. Transition functions are ‘set property value’, ‘complete activity’ 
and ‘show another activity’. Once a student creates and sends in an essay, the 
properties for this student are changed, while the properties for other students 
remain unchanged. So for that particular student, the activity is completed and 
the next activity is shown, while for other students the first activity can still be 
uncompleted and the second activity hidden. 
 
There are a number of cases defined in LD where the change of state itself 
causes another change of state. A fairly obvious example is the LD construct 
change-property-value that can be triggered by the completion of an activity. In 
order to cope with these LD constructs when using an FSM, the definition of an 
FSM must be extended to allow each state to have an output that itself can be 
an input for the FSM. This type of final state machine is also known as a Moore 
machine (Sipser, 1997). By introducing this feedback loop, we should be able to 
deal with chains of state changes that can occur through several LD constructs. 
 
The subsequent sections explain in depth how the concept of FSM is 
implemented in the engine. First the concepts of runs and roles are introduced; 
these concepts together with the user are the primary key to access a single 
FSM from the collection of FSMs. The next section shows how each state is 
persisted by the use of properties. A number of property types can be 
distinguished each with their own characteristics and use. The subsequent 
section deals with the transition function of the FSM. The concept of an event is 
introduced as the core of the input and output alphabets. It will become clear 
how the engine is capable of dealing with these events. Then we will return to 
the start of the process, explaining the importance of preprocessing the UOL. 
Finally, bringing all the previous concepts together, personalization will be 
shown to have become a straightforward XML transformation. 

Populating the UOL 

Before a UOL can be ‘executed’, users (learners, staff, etc.) have to be 
assigned to it. LD does not refer to users directly, but uses a proxy through 
roles for this purpose. It is the engine’s responsibility to bind actual users to 
abstract roles. A ‘run’ is introduced as a pedagogically neutral term for binding a 
group of users to a UOL by way of a publication.  
 



 48 | Chapter 3 

+Publication +Run

+UnitOfLearning +User

1..*

1..*

0..*assigned

0..* 0..*

enrolled
 

Figure 3.2 A run as an instance of a published unit of learning 

 
Figure 3.2 depicts a UML class diagram of a run showing the run as 
intermediate between users that are enrolled for a UOL and a publication of this 
UOL. One or more users are assigned to each run, forming the community of 
users taking part in the UOL together at the same time. Users can enroll in a 
particular UOL and are assigned to one or more runs for the UOL. A run is 
assigned to exactly one publication, which in turn is associated with exactly one 
UOL. For each publication one or more runs may exist, allowing parallel 
execution of the same UOL. For now, it is sufficient to understand that a 
publication is the result of preprocessing a UOL so that it can easily be 
processed by the engine during execution of the UOL. 
 
Runs provide a mechanism for binding users to the UOL, allowing at the same 
time multiple reuse of the same UOL, both sequentially and in parallel. 
Furthermore, it allows users to be grouped together in cohorts. However, 
individual users still must be mapped to the roles defined in the UOL. In order to 
satisfy this requirement two new constructs are introduced: ‘role-participation’ 
and ‘run-participation’. Role-participation defines which roles a user may 
assume when participating in a run. Run-participation defines the active role for 
a user in a particular run at any specific moment in time. 
 

+run+publication

+role

+user

+role participation

+run participation

1..*

0..*

may assume

current role

1..*

assigned to

0..*

active role

0..*0..*

 

Figure 3.3 Relation between run and role 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 49 

 
Figure 3.3 depicts the relationships in a UML class diagram. LD specifies that it 
is possible to have multiple instances for some roles and the figure shows that 
the allowable roles are associated with the publication as well as with the run. 
Role instances can be dynamically created during execution of the UOL as 
defined by LD. To be able to reuse a UOL, these newly created instances of the 
roles cannot be associated with the publication since they are different for each 
run. As a result, some of the roles are associated with the run and should be 
considered copies (or instances) of roles defined in the UOL. The difference 
between roles associated with the publication and those associated with the run 
is reflected in the way information about them is persisted. Information about 
roles associated with the publication is stored through global UOL properties 
whereas information about roles associated with the run is stored through local 
UOL properties. In the following section the difference between these types of 
properties is explained in more detail. In short, global UOL properties have the 
same value for all runs of the same UOL; however, local UOL properties can 
have different values for each run of the same UOL. 
 
With the addition of role-participation and run-participation, all members of a 
particular role can be determined, thereby satisfying the last remaining 
requirement with regard to user population that is assigning individual users to 
roles. 
 
How, why, when, and by whom users are assigned to roles is not part of the 
functionality of the engine. This is very much dependent on the business model 
of the party incorporating the engine and is considered to be out of scope for 
the engine. The engine, however, must provide interfaces allowing the 
manipulation of the model presented in figure 3.3 Relation between run and 
role. When doing so, the engine enforces the rules implied by both the model 
and the UOL preventing the system getting into a state not allowed by the UOL. 
Examples of such potential invalid states are role assignments to child roles 
without being assigned to the parent. Another example is the assignment to two 
roles which are declared to be mutual exclusive through the match-persons 
attribute on the role element. 
 
We will see that the engine is a collection of FSMs and that the user, run, and 
role are the primary key when determining which FSM is being referred to at 
any point in time during execution. Before going into more detail, the property 
mechanism, which is essential when defining state, is discussed in the next 
section. 

Properties 

Properties represent data that need to be persisted. Each property consists of a 
property definition with one or more property values. The property can be either 
defined/declared directly, which makes it an explicit property, or can be 
presupposed which makes it an implicit property. The property definition 



 50 | Chapter 3 

determines the type, the default value, the scope, and owner of each property. 
Initial values are used as the initial state for the FSM. The scope of a property is 
either local, which means that it is bound to the context of a run or global, which 
means there is no direct relation with a run. The owner defines to whom or what 
a property belongs. The combination of scope and owner determines when and 
how properties are instantiated. The term ‘instantiated’ is informed by the world 
of object orientation. A property is instantiated when a new instance of a 
property, here a new persistent data store, is created according to its definition. 
The new property is assigned the initial property value of its corresponding 
property definition. The implicit value ‘null’ is assigned when no initial property 
value is defined. This is only needed for explicit properties as implicit properties 
always have an initial value which is set by the engine when creating this 
property. 
 

+property definition
-type

-scope

-owner

-initialValue

+property

-value0..*1

instance

 

Figure 3.4 Property definition and properties 

 

Figure 3.4 shows a UML class diagram of a property definition and its 
instantiated property. How and when properties should be instantiated is 
determined by the scope and owner. Table 3.1, shows valid combinations of 
scope and owner and describes the instantiation moment and the impact of this 
for the state. 
 

Table 3.1 Property types per scope and owner 

  Scope 
  Local Global 

O
w

n
e
r 

 

 

User 

A property is instantiated for every 

user for every run. Parallel runs can 

result in different states per run as the 

values may vary per run. 

Example: essay created, grade 

received. 

A property is instantiated once for 

every user. This part of a user’s state 

is the same for every run. 

Example: first name, surname, email 

address. 

 

 

UOL 

A property is instantiated for each run. 

The property is a part of the state of all 

users of a run. 

Example: start date of the run; a url for 

a website, information about roles that 

are instantiated per run. 

A property is instantiated for each UOL 

and is used for persisting results from 

the parser. This property is not part of 

anyone’s state. 

Example: information about roles that 

do not have instances per run. 

 

Role 

A property is instantiated for each role 

in each run. The property is part of the 

state for all the users in the group. 

 



Scope 
Local Global 

  Designing a Learning Design Engine as a Collection of Finite State Machines | 51 

   
Example: essay created together by all 

members of a role. 

 

 

None 

 A single property is instantiated once 

and typically contains information 

which is global for all UOLs and users. 

This property is not part of anyone’s 

state. 

Example: general system parameters. 

 
There are some interesting things to note in this table. It becomes apparent that 
there are different types of properties. Some properties are unique per 
individual, others for each individual in a run and yet others are common 
between groups of persons in a particular role or to individuals in a run. Note 
that scope and owner apply both to implicit and explicit properties. 
 

 

Figure 3.5 State a combination of sets of properties 

 
Figure 3.5 shows how the different sets of properties make up the state for a 
particular user. Note that part of the state is shared amongst users and that a 
user can have more than one state at any moment in time if we take the 
perspective of the engine as a collection of FSMs. It becomes clear that the 
state is not purely related to the user, but also to the run and the role in which 
the user is participating. So, from the perspective of the engine as a collection 
of FSMs, the user, run, and role are the primary key for determining which FSM 
is being referred to at any point in time. The collection of all states for a user is 
also known as the user’s dossier. Since the FSMs are for a part making use of 
the same properties, manipulating these properties propagates to all the FSMs 
involved. This also explains why the initial state for one FSM could be 

Global User 

Properties 

Local-Role 
Properties 

 

N
o

t-
s
h

a
re

d
 

S
h

a
re

d
 

State for a user in a run and a role 

Global Properties 

Local UOL 
Properties 

Local-User 

Properties 



 52 | Chapter 3 

influenced by the final state of another FSM. This interlocking of FSMs provides 
a mechanism for dealing with group behavior in the engine. 
 
It is important to understand that the engine is responsible for determining the 
scope and owner for each of the implicit properties it defines. In the Examples 2 
and 3 at the beginning of this section it was mentioned that the engine is 
responsible for adding completed properties for a number of constructs. The 
engine is also responsible for determining what the ownership and scope of 
each of the completed properties should be. Learning-activity, support-activity 
but also activity-structure, role-part, act, play, and unit-of-learning are LD 
constructs for which the completion status needs to be recorded. The owner 
and scope for all these completed properties should be user and local. This is 
true for all except for the unit-of-learning. The completion of the unit-of-learning 
can be relevant beyond the run, for example in a curriculum, and its scope 
should therefore be global. These types of considerations should be made 
carefully for each implicit property that is introduced. 
 
Another issue to notice in table 3.1 is that a new type of property, the global 
UOL property, has been added in addition to the ones that are defined in LD. 
This is a special category of properties, not known in LD, which is used by the 
engine to facilitate persistence of the parsing results during the preprocessing. 
Parsing converts the UOL into a format that can be easily interpreted during the 
personalization stage. The results of this parsing consist of XML documents 
derived from the original UOL. These XML documents are stored in global UOL 
properties. By doing so, the engine extends the use of properties as mechanism 
for persisting state for the FSM towards a more generic store. The extension 
allows an efficient implementation of the engine with minimal code and optimal 
reuse. 

EVENT HANDLING 

We have seen that properties provide the means for persisting state of a user 
(even multiple states). To complete the idea of FSMs we need a transition 
function that is capable of changing the state on the basis of an input alphabet. 
As noted earlier, the engine will be a Moore machine, making it necessary to 
have a mechanism that can react to a change of a state in the manner required 
by LD for some of its constructs. These reactions will form the output alphabet. 
 
LD provides some instructions to let the user manipulate properties, and 
thereby state, directly. Examples are the set-property or user-choice 
instructions. However, most constructs change property values in a more 
indirect fashion.  



  Designing a Learning Design Engine as a Collection of Finite State Machines | 53 

 

Figure 3.6 Example state diagram 

 
Figure 3.6 shows an example FSM responding to the input alphabet. S0 
represents the start state for the state machine for a particular user, run and 
role. The user interacts through the engine by manually setting a property and 
thereby changing state. The input is represented by the edge between S0 and 
S1. We assume that the UOL for which this state machine is drawn, contains a 
conditional construct that states that setting property x to value y should result 
in the completion of learning activity Z. The result of this output is state S2 and 
the output itself is represented by the edge between S1 and S2. 
 
Obvious questions are: what are the alphabets and how can they be ‘read’ and 
‘written’? The answer to the first question can be found by thinking of both 
alphabets in terms of events. Everything that can change the state of an FSM is 
considered to be an event and the collection of events thus forms the input 
alphabet of the FSM. The output alphabet consists of the input alphabet 
extended by additional events as a result of the LD semantics. An example of 
such an additional event can been seen in Example 3 where the activity is 
completed when the property essay has been set. This triggers the activity 
completed event, which becomes part of the input alphabet. The input and 
output alphabet will vary of course from one UOL to another as the properties 
defined in the UOL will differ and therefore also the potential events. Events can 
be classified into two classes: property events which, are triggered whenever a 
property value is changed and timer events, which are triggered after a defined 
duration of time. 
 
The output alphabet can consist of events triggered on the basis of changed 
property values and a number of events that will not cause any state changes. 
Among the latter are events triggering notifications and e-mail messages. The 
remainder of this section deals with the implementation of the event processing 
mechanism in the engine.  
 
Figure 3.7 shows the architecture of the event handling mechanism of the 
engine. The property store contains all states of all users. Whenever a property 
value is changed the property store raises a new event. This event is captured 
by the event dispatcher.  
 

S0 S1 

Set-property x to value 
y 

S2 

Complete learning activity Z 



 54 | Chapter 3 

 

Figure 3.7 Overview of the event handling mechanism 

 
The event dispatcher consults a store containing the rules defined by LD. This 
store is filled with information during the preprocessing of the UOLs. The event 
dispatcher requires this information to determine what needs to happen next. In 
most cases, no information is found in this rule store, meaning no further action 
is needed. However, on some occasions information is found, determining what 
the next step should be. Based on the information retrieved, the event 
dispatcher can determine which event handler to call. Each of the event 
handlers represents a type of LD rule. For example the LD rule stating the 
completion of the activity ‘first-assignment’ after the ‘essay’ property has been 
set in Example 3 is handled by such an event handler. 
 
For LD quite a number of event handlers can be defined amongst which are 
handlers that process the completion of unit-of-learning, act, play, and role-
parts, as well as handlers that deal with the conditional constructs in general. 
These event handlers react by changing one or more properties when certain 
conditions defined by the business rule in LD are fulfilled. This in turn causes 
one or more new events to be raised forming a chain of events. The event 
handlers do not necessarily react by changing property values. They may raise 
events triggering notifications or e-mail messages. Notice that an event can 
trigger zero, one or more event handlers, and that an event handler can change 
zero, one, or more properties. Furthermore, the change of properties can 
supersede the scope of a single FSM because the same properties can be 
shared amongst different FSMs. Therefore multiple FSMs can change state 
simultaneously as a result of a single event. An example is the last student who 
completes a learning-activity. This can cause the containing role-part to be 
completed for all users in that specific role. This characteristic ensures 
propagation and, as a result, the synchronization of different roles and groups 
working together. This propagation can occur within the perspective of a single 

 

E
v
e
n

tH
a

n
d

le
r 

 

E
v
e
n

tH
a

n
d

le
r 

 

e
v
e

n
t 

d
is

p
a
tc

h
e
r 

 

e
v
e

n
t 

h
a
n

d
le

r 

event 

event 

event event 

property store 
change of 

property value 

LD rules 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 55 

user having multiple FSMs (one for every role the user may assume) or within 
the perspective of groups within a run or even at the level of the whole user 
community known to the engine. It is important to understand that in order for 
this mechanism to function properly state changes propagating over several 
FSMs are considered as atomic actions. 
 
Timer events do not start with a change of a property value, but are raised by 
some timer. The rest of the event handling mechanism is exactly the same as 
for events raised through change of a property value. It is clear that there is a 
risk of recursion causing endless loops. It is the responsibility of the validation 
process during the preprocessing stage to detect these recursions. 

Publication 

A publication is the result of preprocessing a UOL. We have already seen that 
the properties and event handling mechanisms depend on the outcome of this 
process. The part of the engine responsible for this process is called the 
publication engine. 
 

: Publication Engine : Validator : LDParser : PersistentStore

validate UOL( )

validation results 

[valid]: parse UOL( )

parsing results 

* [n]: persist structures( )

 

Figure 3.8 Publication process 

 
Figure 3.8 shows a UML sequence diagram representing the publication 
process. The first step of the publication process is to check the UOL validity. 
Validation covers a numbers of aspects. The UOL is checked for completeness, 
that is, whether all locally referenced resources are also included in the UOL. 
The UOL is validated against the LD schema using a validating parser (for 
example Xerces). These types of validation are straightforward and revolve 
around XML technology. More interesting types of validation cover the 
semantics of a UOL. All references are checked to determine if no erroneous 
cross-references have been made. Examples of such errors would be a role-ref 



 56 | Chapter 3 

referring to a property. Another type of semantic validation includes the checks 
for invalid attribute values: for example, when the minimum number of persons 
in a role exceeds the maximum number of persons in a role. Recursions can 
occur whenever and wherever elements can include other elements by 
reference. The environment element is a good example of such a construct. 
Checking for recursion is especially important to prevent event handlers falling 
into endless loops.  
 
If the validation is successful, the LD parser is invoked. The LD parser converts 
the LD into a format that can be easily interpreted during the execution phase. 
This intermediate XML format is used during the personalization stage. As 
noted earlier, global UOL properties are used to store these small XML 
documents. It is important to highlight that the actual resource is not part of 
such an XML document but is stored separately on a web server and is 
referenced from these XML documents.  
 
Another important result of the parsing process is the store containing rules that 
should be applied to a UOL. The event dispatcher retrieves these entries to 
determine what actions need to be taken when an event occurs. Finally, the 
publication process is responsible for creating all property definitions both for 
the explicit and the implicit properties. 

Personalization 

A UOL is executed when a user in a specific role accesses a run of a UOL, 
which should result in an adapted view of the UOL according to this role and the 
user’s property values. This adaptation process is known as personalization and 
is one of the core requirements of LD. Personalization involves adaptation of 
the LD according to rules defined by LD, which describe how the engine should 
react to certain states. An example is feedback, which only should be provided 
when the corresponding activity has been completed; in other words, when a 
certain state has been reached. 
 
Another example is the personalization of the content. Table 3.2 shows the 
preparsed content for a monitor-object in the left column. The right column 
shows the result of the personalization. Note that the reference to the property 
has been replaced with its actual value. 

 

Table 3.2 Example of Personalization 

Preparsed XML content Personalized XML content 
<body> 
<h1>Monitor student progress</h1> 
<strong>Score on essay</strong> 
<imsld:view-property ref="score" 
property-of="supported-person" 
view="value"/> 
</body> 

<body> 
<h1>Monitor student progress</h1> 
<strong>Score on essay</strong> 
<cc:view-property> 
  passed 
</cc:view-property>  
</body> 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 57 

 
Once the FSM is in place, personalization and therewith execution of LD 
becomes relative straightforward because the majority of the complexities are 
taken care of by the event handling mechanism. 

 

Figure 3.9 The personalization process 

 

The result of the personalization process as shown in figure 3.9, is a 
personalized XML document. This is created by merging the XML document 
that was stored as a result of the publication, with the property values from the 
persistent property store. The exact method of merging the preparsed XML 
document with the property values varies, depending on the type of element 
and corresponding rules. The process results in the replacement, addition, or 
removal of some XML elements. A number of personalization types are defined 
in LD, which can be classified into the following three classes: 

• Personalize the activity tree. An activity tree is the combination of all 
plays and their sub elements. The activity tree is personalized on the 
basis of the current FSM defined by the run and the current role of the 
user. Further personalization takes place on the basis of completed and 
visibility properties which were introduced earlier. The outcome is an 
XML representation of the activity tree reflecting the current status of 
the user. 

• Personalize the environment tree associated with an activity. The 
environment tree is adapted using visibility properties in a similar way 
as is the activity tree, resulting is an XML representation of the activity 
tree reflecting the current status of the user. 

• Personalize the content of various LD constructs. References to 
properties are replaced by their actual contents and parts of the content 
may be hidden on the basis of the value for the different class 
properties. Class properties are implicit properties created during 
publication which reflect the visibility status (hidden or visible) for 
classes of content. 

 

property  

store 

 
personalization 

personalized 
XML 

document 

pre-parsed 
XML 

document 



 58 | Chapter 3 

In conclusion, it can be said that once the FSM mechanism is in place, 
personalization is reduced to a simple XML transformation that should obey the 
rules of LD. 

Implementations 

The Open University of the Netherlands developed the predecessor of LD, 
called EML (Hermans et al., 2004) in 1998. EML has very similar objectives to 
LD, although it is not an open specification and the actual tagging of the XML 
language is quite different. The consecutive versions of EML have resulted in a 
number of players. A first prototype was developed in 1999 as a proof of 
concept, followed shortly after by the first system, called Edubox which went 
into regular exploitation at the Open University of the Netherlands in September 
2000. 
 
Recently we implemented an open source LD engine with the name 
‘CopperCore’, which was partly funded by the European Commission through 
the ALFANET (2004; Van Rosmalen et al., 2004) (IST-2001-33288) project. 
This engine was built using the design approach outlined in this article and has 
been made available as an open source product through SourceForge 
(http://sourceforge.net). The analysis and ideas presented in this article were 
based on previous experience with the implementations of the Edubox player 
and put into practice in the CopperCore engine. The first release supports the 
view that the approach presented in this article results in an elegant, lightweight 
design capable of supporting the complete LD specification. 

Conclusions 

With the arrival of the latest specifications and standards for e-learning, the 
sophistication, expressiveness, and complexity have increased considerably. 
Simple transformations are not adequate to implement these specifications and 
standards successfully. LD is a representative of such a new specification. Its 
declarative nature and expressiveness increases the complexity for any 
implementation. This is probably the largest obstacle that stands in the way of 
successful general deployment of this type of specification. Work needs to be 
done to help the community of implementers to overcome this hurdle. 
 
In this article we have shown that by taking the approach of an FSM, it is 
possible to break down a complex specification like LD into a few basic 
constructs that allow elegant and relative lightweight designs and 
implementations. This breakdown is accomplished by exploiting the property 
mechanism beyond its direct usage in LD itself. The use of implicit properties 
helps harmonize the different kind of rules defined in LD, and reduces them to 
simple property operations. Furthermore the property mechanism acts as a 
store for the result of the publication process especially for the preparsed XML 



  Designing a Learning Design Engine as a Collection of Finite State Machines | 59 

content. The event mechanism helps break down the large number of rules to 
their basics in the form of event handlers. Each of these event handlers have 
dedicated tasks that deal with different aspects of the rules as is laid down by 
LD, but all have the same basic mechanism. Again this helps to reduce the 
complexity enormously. Decomposition of the complexity is essential and is 
achieved by having implementers focus on the proper implementation of the 
event handlers themselves. Implementers of an event handler do not have to 
worry about the larger picture as it is dealt with by the event handling 
mechanism. The same event handling mechanism ensures that reactions to 
certain events are adequately propagated throughout the whole system. By 
doing so, all group and role dynamics are automatically incorporated into the 
engine without additional efforts as the engine is regarded to be a collection of 
FSMs. By the introduction of the run and the roles, it has become clear what 
should be considered as primary key for each of the FSMs. We have shown 
that by selecting the right owner and scope of the properties we can interlock 
the FSMs which results automatically in the correct propagation of state 
changes. Again no additional efforts have to be made because the event 
handling mechanism propagates state changes throughout all interlocked 
FSMs. 
 
With these constructs in mind, implementation of an engine has not become 
simple, but far less complex than may have been anticipated at first sight. 
 





Chapter 4   

A Reference Implementation of a 
Learning Design Engine 

Martens, H. & Vogten, H. (2005). A Reference Implementation of a Learning 
Design Engine. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on 
Modelling and Delivering Networked Education and Training (pp. 91-108). 
Berlin-Heidelberg: Springer Verlag. 



 62 | Chapter 4 

Summary 

Since the release of LD there has been a need for a reference implementation of a player for the 
specification. CopperCore provides a way for implementers to jumpstart building an LD-compliant 
learning management system. It provides two major APIs to deal with the processing of LD. One 
covers administration-related tasks while the other deals with the runtime delivery of LD. 
CopperCore has been implemented using J2EE and the main components are implemented as 
Enterprise Java Beans. The use of J2EE allows a number of different implementation strategies 
giving developers the choice between a pure web-based approach and a dedicated native Java 
client. CopperCore is now readily available to all developers who wish to integrate LD support into 
their own software. It is released under the GNU General Public License and is available for free 
through SourceForge at http://www.coppercore.org. 

Introduction 

From the moment the Learning Design (LD) specification (IMSLD-IM, 2003; 
IMSLD-BPG, 2003; IMSLD-XB, 2003) was published there has been a need for 
software capable of processing LD-compliant content. LD is a powerful and 
complex specification, and it is not a trivial matter to implement an LD player. In 
response to this need, the Educational Technology Expertise Centre of the 
Open University of the Netherlands launched an initiative to develop a reusable 
kernel dealing with the intricacies of processing LD. Since this kernel should be 
able to be used in different settings, it is not a standalone product but needs to 
be integrated in a learning management system. The kernel, known as 
CopperCore, has been developed under the GNU General Public License and 
is available through SourceForge at http://www.coppercore.org. 
 
CopperCore has the following features: 

• A validation routine for the manifest file containing the LD ensuring only 
valid LD is processed. Validation includes both technical and semantic 
checks and the validation results are reported. 

• An administrative backend with regard to publications, user 
management, runs and roles. These concepts are discussed below. 

• Interpretation of LD and delivery of personalized content according to 
the rules defined in LD. This is achieved by keeping track of the user’s 
progress and settings. 

• Platform independence, based on a strategic choice for Java and J2EE 
(J2EE, 2007). 

This chapter provides background information for implementing an LD-
compliant player based on CopperCore. First a conceptual overview is given of 
the two major functional Application Programming Interfaces (APIs) dealing with 
administrative tasks and runtime delivery. The next section gives a brief 
technical overview of the architecture of CopperCore and discusses the 
technical design decisions. This helps the reader understand the final section 
dealing with implementation strategies. 



  A Reference Implementation of a Learning Design Engine | 63 

Conceptual overview 

In order to process LD successfully, CopperCore functionality has been divided 
into two major parts. The CourseManager handles administrative functionality 
such as users, roles, runs and publications. In contrast, the LDEngine forms the 
heart of CopperCore and deals with the runtime delivery of the personalized 
content as defined in the LD. Well-defined APIs are available for both parts to 
developers who wish to integrate CopperCore into their own products. The next 
section provides an overview of the functionalities found in the APIs. 

CourseManager 

The CourseManager deals with all administrative tasks required in order for the 
LDEngine to work. The CourseManager covers user management, role 
assignments, run management and publications. All these concepts are 
discussed next. 

PUBLICATIONS 

According to the LD specification a learning design needs to be packaged in a 
content package (IMSCP-IM, 2003) which is a ZIP file containing all resources. 

This content package must contain a file named imsmanifest.xml containing 

the learning design itself. All other files in the package are additional resources. 
A content package containing LD is called a Unit of Learning (UOL). Before a 
UOL can be deployed, CopperCore creates a publication for the UOL, taking 
care of several aspects needed during deployment. 
First, the UOL is validated to make sure no syntactic or semantic errors are 
present in the package. Validation includes validation against schemas, 
validation of the package itself with regard to the resources included, and 
validation of semantics of the learning design. Detected errors are stored in a 
list of messages which can be reported back to the user. 
Second, CopperCore breaks down the learning design into more manageable 
parts such as activities, environments, learning objects, roles, etc. Third, 
CopperCore analyses the roles that are declared in the learning design. This is 
necessary since users need to be assigned to particular roles before they can 
start using the system. Finally all content contained in the UOL is copied to a 
web server directory for retrieval during deployment. 
Publishing a UOL can be done by simply calling an API method called 

publishUOL. 

USER MANAGEMENT 

LD focuses on delivering personalized education. This is achieved by describing 
a learning design through profiles using the role. CopperCore deals with this 
personalized delivery by creating a dossier for each user. In order to do so, 
CopperCore requires users to be defined. For this purpose a user may be 
added to CopperCore using the createUser API call. The only parameter  



 64 | Chapter 4 

passed is the user id. All other user information needed should be defined in LD 
as global personal properties and stored in a user’s dossier. Once defined, 
users cannot be deleted. 

RUN MANAGEMENT 

LD may refer to all users in a role, i.e. a grouping of users. A grouping 
mechanism is required that allows the division of the user population into 
smaller cohorts working together in one particular learning design. A group 
could, for example, represent a classroom, or a number of students participating 
in a distance learning course. The term “run” is used in this context. Users are 
never assigned directly to a publication but they are enrolled for a particular 
learning design by adding them to a specific run. Therefore each publication 
must have at least a run. If necessary, more runs can be added depending on 
the particular circumstances. A new run can be created in CopperCore using 

the createRun API call passing the id of the publication as one of its 

parameters. 
 
The next step is assigning the users to a particular run. As stated earlier, who 
should be assigned to which run depends very much on the circumstances. It is 
important to understand that only participants of the same run can cooperate 
and are “visible” to each other in the same learning design. So when LD refers 
to all users, in effect it refers to all the participants in a specific run. Users can 

be added to a run by calling the method addUserToRun. Users may be 

removed from a run by calling removeUserFromRun. 

ROLE MANAGEMENT 

Roles are the main personalization mechanisms of LD and are essential for 
creating different paths through a learning design. Roles may be seen as a 
representation of users with a certain profile. It is the task of role management 
to populate these roles with actual users of a run. Users can be assigned to a 

role using the method addUserToRole and can be removed using 

removeUserFromRole. 

 
Different users can be assigned to different roles, but it is also possible to 
assign an individual user to multiple roles. However, when the LDEngine 
delivers the learning design to a user it personalizes the design using the role of 
the user. Therefore only one role may be active at any moment for each user. 
This role is called the active role. A user can switch roles at any time by 
selecting a new active role from the list of roles he or she is assigned to. The 

method setActiveRole sets the active role for a user. 

 
LD defines a hierarchy of roles. This has an impact on the interpretation of the 
roles. A sub-role is considered to inherit all the properties of its ancestor roles. 
For example, a sub-role of the role “learner” will inherit the properties of this 
“learner” role and everything available to the “learner” is also available to its 
sub-role. CopperCore states that a user may only be assigned to a sub-role 
when the user is already assigned to the parent of that sub-role. The hierarchy 



  A Reference Implementation of a Learning Design Engine | 65 

of roles starts with a common root and all users must be assigned to this 
common root before doing any further role assignments. 
 
LD supports the runtime creation of new roles. For example, if a role is used to 
group users together with a maximum of ten users, a new role may be created 
during runtime whenever this maximum is exceeded. In LD these roles have an 

attribute “create-new” with the value “allowed”. A new instance of a role can 

be created by calling the method createRole. Users can be assigned to these 

roles in the same way as with regular roles. 
 
The UML class diagram of role and run model supported by CopperCore is that 
shown in figure 3.3. 

LDEngine 

After the UOL is published, users are assigned to the run and to their roles and 
the delivery of the learning design can start. LD defines a hierarchy of activities 
to be performed by a role in the method section. For each activity there are a 
number of resources, learning objects and services, grouped in an environment. 
Environments are also hierarchies. 
 
CopperCore defines a number of concepts and API calls for retrieving the 
information contained in these hierarchies which are discussed in detail in the 
following sections. 

ACTIVITY TREE 

An activity tree is an XML representation of the method section of LD 
personalized for a user. Personalization consists of two parts. First, the active 
role of the user requesting the activity tree is taken into account. Only those 
activities associated with the active role, or one of its parent roles, will be 
included in the activity tree. CopperCore deals with this personalization during 
the publication stage by splitting the method hierarchy up into a number of 
smaller hierarchies based on the defined roles, using the role-part constructs in 
LD. 
 
Second, personalization deals with the individual progress of users. This mainly 
involves keeping track of the completed activities for a user. CopperCore deals 
with all defined rules in LD, such as the completion of activity structures, acts, 
plays and the unit of learning. The resulting XML tree is based on the 
application of these rules on a personal basis. A personalized activity tree can 
be retrieved by calling the method getActivityTree. This method is called in the 
context of a user in a specific run and returns an XML representation of the 
activity tree for this user. A visual representation of the underlying schema of 
this XML response (an activity tree schema) is shown in figure 4.1. 
 



 66 | Chapter 4 

 

Figure 4.1 Activity tree schema 

 
The schema closely resembles the original LD. However, there are some 
differences, especially when reflecting the user’s progress. The root element of 
the activity tree is the learning design itself. It contains one or more plays. A 
play contains one or more acts and an act is made up of role parts. A role part 

itself contains an activity which is a learning-activity, support-

activity, activity-structure or an environment-activity. The last 

is not an activity as such but represents an environment with an implicit activity, 
such as an activity that instructs the learner to read the documents in the 
environment. Each of the elements may contain a title which can be used in the 
user interface when representing a node of the activity tree. 
 
The activity tree contains only those nodes available to the user at the moment 
of retrieval, which is a major difference from the original learning design 
containing all potential nodes for all users. This filtering of nodes is only one 
result of the personalization. Another aspect of the personalization can be seen 
when examining the attributes of the nodes. Table 4.1 describes each of the 
attributes. 

Table 4.1 Activity tree node attributes 

Attribute Description 
completed This attribute may have the value true, false or 

unlimited. The attribute indicates if a user has 
completed the node or, if the value is unlimited, that 
the node should be considered completed. The 

following nodes have a completed attribute: act, 

activity-structure, environment-

activity, learning-activity, learning-

design, play, support-activity. 



  A Reference Implementation of a Learning Design Engine | 67 

environment This attribute contains a space-separated list of ids 
belonging to environments of the activity 
represented by the node. The values of this 
attribute should be passed when retrieving the 

environment via the getEnvironmentTree API 

call. This attribute is used in the following elements: 

activity-structure, learning-activity, 

support-activity, environment-activity. 
identifier This attribute is the identifier of the object 

represented by the node. Note that this is not the 
identifier of the node itself and therefore multiple 
nodes may have the same identifier value if they 
are pointing to the same object. This identifier 
should be used when retrieving the content of the 
object represented by the node via the 

getContent API call. The identifier attribute is 

used in activity-structure, environment-

activity, learning-activity, learning-

design, play, role-part, support-

activity. 
isvisible This attribute indicates if a node is visible for the 

user or not. For Level A it means that this value is 
identical to the value defined initially in the learning 
design because there are no constructs allowing the 
value to be changed. The attribute may occur in 

learning-activity, play, support-

activity. 
role This attribute contains the role name which was the 

basis for generating this activity tree. The attribute 

occurs only in the learning-design node. 
structure-
type 

This attribute can have the values sequence or 
selection indicating which type of activity structure is 
represented by the activity-structure node in which 
the attribute occurs. 

time-limit This attribute indicates that the completion of a 
node is dependent on a timed event. It occurs in an 
act, learning-activity, play, support-activity. 

user-choice This attributes indicates that a user must indicate 
when an activity has been completed. There should 
be a means in the user interface allowing for this. 
When a user indicates completion of the activity, 

completeActivity should be called. The 

attribute may occur in learning-activity, 

support-activity. 



 68 | Chapter 4 

ENVIRONMENT TREE 

An environment tree is a representation of the environment and the learning 
objects and services belonging to one or more activities. The environment tree 

may be retrieved by calling getEnvironmentTree which results in an XML 

document according to the schema shown in figure 4.2. The root element is 

environments which can contain one or more environments. An environment 

consists of zero or more learning object, environments and services. There are 

three types of services: send-mail, conference and index search. Send-mail 

contains the send-to element representing the recipients of the mail and the 

from element representing the sender of the mail. The content of the title 

element should be used to represent a node in the user interface. In LD Level A 
there is no personalization of the environment tree.  

 
 

 

Figure 4.2 Environment tree schema 

 
The attributes in table 4.2 may be defined for these elements: 

Table 4.2 Environment tree node attributes 

Attribute Description 
class The class attribute allows the nodes to be typed by a 

space- separated list of types. For LD Level A this 
attribute should be considered merely as 
documentation. From Level B onwards it can be used to 
hide or show these nodes. The attribute may occur in 

conference, index-search and send-mail. 
conference
-type 

This attribute indicates what type of conference is 
referenced by the conference element. Allowed values 
are synchronous, asynchronous and announcement. It 
is the responsibility of the integrating module to provide 
a link to a service having the appropriate features. 



  A Reference Implementation of a Learning Design Engine | 69 

identifier This attribute is the identifier of the object represented 
by the node. Note that this is not the identifier of the 
node itself and therefore multiple nodes may have the 
same identifier value if they are pointing to the same 
object! This identifier should be used when retrieving 
the content of the object represented by the node via 

the getContent API call. The identifier attribute is 

used in index-search, learning-object and 

send-mail. 
isvisible This attribute indicates whether a node is visible for the user. 

For level A it means that this value is identical to the value 

defined initially in the learning design because there are no 

constructs allowing the value to be changed. The attribute 

may occur in conference, environment, index-

search, learning-object, send-mail. 
parameters This attribute contains the parameters defined in a 

learning design for a service. The attribute may occur in 

conference, index-search, send-mail. 
select This attribute defines who should receive the mail 

defined by the send-mail element. Allowed values are 

person-in-role and all-persons-in-role. 
type This attribute contains the type of the learning-object 

element as defined in LD. 
user-id This attribute is used in the send-to and from 

elements and contains the user ids of the receivers and 
sender of the mail. In Level B this will be extended with 
the email addresses of the sender and receivers of the 

email. This explains why the from element is available 

here already (for Level A it could be omitted as the 
sender’s identity is known as he or she is typing the 
mail). 

CONTENT 

All nodes in both the activity tree and the environment tree may contain content. 

The content can be retrieved by calling the getContent method while passing 

the identifier of the object to be retrieved as parameter. Content is returned as 
personalized XML resembling the original learning design content. All content 
may include a title and metadata if these were defined in the UOL to which the 

content belongs. The getContent call does not return the actual content of the 

items. Each item contains a fully qualified URL to the location of the resource 
representing this content. So retrieving the complete content of any element 
consists of a two-stage process which involves as a first step the retrieval of a 
personalized XML structure of the content, followed by the retrieval of the 
resources referenced by the items. 
 
Figure 4.3 shows the schema for the content model of a learning activity (the 
Learning-activity schema). Like all content objects, a learning activity may 



 70 | Chapter 4 

contain a title and metadata. Furthermore it may contain learning objectives, 
prerequisites and an activity. All these elements have exactly the same content 
structure, starting with one or more item elements which may be surrounded 
with an optional title and metadata. An item may have zero or more sub-items. 
Again, an optional title and metadata may be present. An item represents a kind 
of paragraph structure where the title element should be used as a heading. 
How this hierarchy is presented in the user interface is left to the integrator of 
CopperCore. An item has a required Uniform Resource Identifier (URI) 
(Berners-Lee, 1994) attribute that contains an absolute Uniform Resource 
Locator (URL) (Berners-Lee, Masinter, & McCahill, 1994 B.C.) to the location of 
the associated resource. A resource may be any resource that can be rendered 
in a web browser. 
 

 

Figure 4.3 Learning-activity schema 

 

The learning-objectives and prerequisite elements can also occur in the content 
model of a learning design. The feedback-description is only shown when it is 
present in the original UOL and if the user has completed the learning activity. 

Feedback description may also occur in the content models of the learning 

design the play and the act and will be present only if the corresponding 
element has been completed by the user. 
 



  A Reference Implementation of a Learning Design Engine | 71 

Figure 4.4 shows the content model for a learner role (the learner schema). 
Clearly, the main structure of the content model is very similar for all elements. 
The information element that may be presented to the user as additional 
information is new. The information element may also occur in the staff and act 
element. 
 

 

Figure 4.4 Learner schema 

 
The content elements can contain a number of attributes included for reference 
only. The most relevant are presented in table 4.3. 

Table 4.3 Learner tree node attributes 

Attribute Description 
Identifier 
 

The identifier of the object. It occurs in the elements 

act, activity-structure, environment, 

item, learner, learning-activity, 

learning-design, learning-object, play, 

roles-to-support, send-mail, staff, 

support-activity. 
isvisible This attribute holds an integer value indicating if an 

object was visible or not. This attribute may occur in 

the elements act, item, play, learning-

activity, support-activity, learning-

object and send-mail. 
url This attribute contains the absolute URL to an 

resource for which an item is a placeholder. The 

attribute occurs in the item element only. 
Class The class attributes assign an element to one or more 

categories. The visibility of these categories may be 
manipulated via conditions in Levels B and C of LD. 

The class attribute can occur in send-mail and 

learning-object. 

OVERVIEW 

Figure 4.5 gives an example of a typical calling sequence of the LDEngine API. 
 



 72 | Chapter 4 

 

Figure 4.5 Sequence diagram of LDEngine calls 

 
There are three “swim lanes” representing the user, the client integrating 
CopperCore and the CopperCore LDEngine API. In the example, a user starts 
by selecting one of the runs, probably from a list of runs for which the user is 
enrolled. After the user selects the run, the client application retrieves the 
activity tree for the user and run combination. The activity tree is returned as an 
XML file as discussed earlier. The client transforms this XML data in such a 
manner so that the user may select one of its nodes. After the user has selected 
a node from the activity tree, the client retrieves the environment tree belonging 
to this node. Both the identifier of the node in the activity tree and the list of 
environment objects are passed as parameters. As a result, CopperCore 
responds with the XML representation of the requested environment trees. The 
client renders this tree into a format suitable for the user. Next, the client 
retrieves the content for the node selected from the activity tree. The content is 
returned as XML and the client parses this content so it may retrieve all the 
needed resources referenced from the item inside the content. These resources 
are merged or linked and also presented to the user. 
 
The user may now select a node from the environment tree. The client acts on 
this request by fetching the content from the CopperCore API and rendering the 
content in a similar fashion to the rendering of the content of the selected 
activity node. 
 
This is merely a short example of the type of interaction which takes place 
between the user, client and CopperCore but it gives an idea of the 
dependencies between the activity tree, environment tree and content. 



  A Reference Implementation of a Learning Design Engine | 73 

Technical overview 

CopperCore is implemented using Sun’s Java 2 Platform, Enterprise Edition 
(J2EE). The most pertinent reasons for this choice are: 

• The kernel should be able to run on multiple platforms supporting 
multiple operating systems. Java is an obvious choice. 

• The kernel should be accessible via web services or similar web-
oriented technologies, but should allow for non-web-based access as 
well. Enterprise Java Beans (EJBs) provide a mechanism for this. 

• The kernel should be scalable when necessary. This is another reason 
for choosing EJBs. 
 

Figure 4.6 shows the technical architecture of the CopperCore kernel. All 
persisted data is stored in a relational database. CopperCore uses a JDBC 
driver to access the database. Using this extra layer between the data 
components and the actual database allows CopperCore to use different 
DBMSs by just switching the JDBC driver. The “Data Access Layer” is 
responsible for all interactions with the database and is made up of BMP entity 
beans. The “Database Access Layer” is split into two major parts. 
 
The first part consists of properties. Although CopperCore currently only 
implements LD Level A, internally it depends heavily on the property 
mechanism. The other part of the “Database Access Layer” deals with course 
administration, which involves concepts such as users, runs, unit-of-learning 
etc. 
 
The next layer of the architecture is the “Business Logic Layer” and contains all 
components representing the business logic of CopperCore. This layer is made 
up of a number of container components which are representations of the 
learning design that are directly or indirectly accessible through the API. Each 
container contains all the business logic it needs to adapt itself to the profile of 
the user accessing the LD component. For this purpose, the container makes 
extensive use of the property mechanism which contains its own business logic 
for retrieval and storage of properties. The EventDispatcher and EventHandler 
components deal with all event handling business logic occurring in the system. 
Finally the parser deals with the processing of an LD XML instance. It analyses 
and decomposes the LD into smaller parts suitable for further processing during 
runtime. 
 



 74 | Chapter 4 

 

Figure 4.6 CopperCore technical architecture 

 
The next layer comprises three session beans. The first bean is the 

LDCourseManager bean. It deals with all administrative calls necessary to 

prepare delivery of an LD instance. Typical interfaces offered deal with the 
publication of an XML LD instance, creation of users, creation of runs and 

assignment of roles. The second bean is the LDEngine. This is the core of the 

delivery mechanism. This bean handles the personalization of the LD instance 
for a particular user at a particular time. Calls that deal with the retrieval of 
personalized activity trees, environment trees and content are available. Finally, 

there is a Timer bean which deals with all time-related events specified in the 

learning design. Due to implementation restrictions in J2EE the clients should 

generate timer events on regular intervals by calling proces(). CopperCore 

does not make any assumptions about the granularity of the intervals, by 
ensuring no time-related events are missed. 
 

JDBC database connectivity layer

Relational database

Database Access layer

User

Role

UnitOfLearning 

RoleParticipationEvent

RunParticipation

Run

PropertyDefinition PropertyLookup

PropertyGroupValue

 
PropertyValue

PropertyGroup

PropertyGroupDefinition 

CopperCore Client Libraries

LDValidator

Business Delegates

LDEngine LDCoursemanager Timer

Application Programming Interfaces

LDEngine LDCoursemanager Timer

Business logic layer

EventDispatcher

PropertyFactory

EventHandler 

PropertyParser

Containers

Play

Role

EnvironmentTree

ActivityTree

RolePart

Email 

Act

Activity 

Environment

LearningDesign

ActivityStructure



  A Reference Implementation of a Learning Design Engine | 75 

The final layer is the “CopperCore Client Libraries” and is not a layer in the 
formal sense. It is a collection of libraries that should be used by an 
implementation making use of CopperCore. The most important library is the 
validator. As the name implies, the validator validates a UOL content package. 
Several checks are made to see if the package is complete, if the learning 
design is well formed and valid against the schema, and if the learning design is 
semantically correct. The library should be called by all clients to make sure that 
everything is correct before proceeding. In addition to the validator, three 
business delegates are offered for the three API beans. A business delegate 
contains the code to make the actual connection to the enterprise bean, making 
life easier for implementers. 

Implementation Strategies 

The main design decision when building CopperCore was to give implementers 
maximum flexibility to use the kernel in the way they see fit. However, this also 
implies that CopperCore itself is not a complete LD player. To make effective 
use of CopperCore, the kernel has to be integrated into a larger application. 
This application has to implement different services, the most important being 
the graphical user interface (GUI), without which the kernel cannot be used by 
an end-user. The GUI not only gives the learners and tutors access to the LD, 
but should also enable administrators to manage the learning process by letting 
them create new publications, add new users to the system, create a run for a 
publication, and so on. 
 
The other major service being offered by the application is the possibility to 
serve the resources which are included in the LD package to the client. 
CopperCore does not implement a mechanism to deliver this content directly 
through the kernel. It does, however, extract the resources from the package 
and stores them on the file system when a UOL is published. Furthermore, 
CopperCore changes the local references to these resources into an 
application-specific reference, so the application is able to serve these 
resources to the end-user upon request. The easiest way to implement this 
service is to use a web server in the application. 
 
CopperCore has been developed using J2EE. The kernel itself is implemented 
as three EJBs which must be installed and run on a Java Application Server 
such as JBoss (JBoss, 2004). This gives CopperCore the flexibility to run on 
different operating systems, the scalability to cope with load increases and the 
ability to be called from different kinds of clients (e.g. web-based clients or 
native Java clients). The downside of this approach is that the J2EE 
specification does not allow access to the underlying file system. CopperCore 
requires access to the file system to store the resources found in an LD 
package. To solve this problem CopperCore contains a CopperCore Client 
Library which is implemented as a set of Java classes that are used in the 
context of the calling application. This way access to the file system is allowed. 
Furthermore the library implements business delegates to hide the 



 76 | Chapter 4 

implementation details of accessing the remote EJBs which make up the 
CopperCore kernel. 
 
Figure 4.7 shows the two main approaches to calling CopperCore. A client calls 
CopperCore directly via Java native calls, or an intermediate server allows 
clients to call CopperCore via the http protocol using a common web browser. 
Which approach to choose is up to the requirements of the software clients that 
access CopperCore. Different aspects of client software influence the decision 
for either a native Java client or a web browser client. When considering the 
ease of distributing the client application to the end-users, the web browser of 
course has the upper hand. No local software installation is required apart from 
having a recent web browser, which is the case for the majority of users. 
Updating the software is also easier using this web-based approach – only the 
web application on the server has to be updated to allow all users access to the 
latest version of the software. Compare this to delivering a new version of the 
software to individual users who may have different kinds of software 
configurations, different operating systems, different Java virtual machines, and 
so on. Furthermore, versioning becomes an issue as different users may install 
different versions of the client software. 
 
Another issue is the access to the server. Since CopperCore runs on a Java 
application server, each client must have access to this server. In most places 
strict security policies exist making it easier to access the server via the most 
widely used port 80 for http traffic as opposed to the more obscure ports 
required for the native Java calls. Finally, rendering the LD content (mainly 
(X)HTML documents) is easier in a web browser.  
 

 

Figure 4.7 Implementation strategies for CopperCore 



  A Reference Implementation of a Learning Design Engine | 77 

 
A native client is usually more responsive, the GUI can be more elaborate, 
making handling of large amounts of data more intuitive, and avoiding port 80 
can make the application more secure by not exposing some of the APIs to the 
Internet. 
A common way of building clients for CopperCore is to create a web client to be 
used by end-users acting as either a student or a tutor. In other words, these 
users are all assigned to one or more runs and access the UOL in the context of 
a role. For a user who administers CopperCore a native Java client might be 
more appropriate. The demonstration implementation which can be downloaded 
from http://coppercore.org illustrates this concept. It implements a web-based 
player used for accessing the LD. Although the interface is rather primitive it 
illustrates how such a web client could be built. For administrators, a simple 

command line interface to CopperCore (clicc) is implemented as a native 

Java application. 
 
Building a web client requires implementers to create a web application. A 
common approach to implementing a web application on the J2EE platform is 
using servlets to dynamically create the Internet pages that are served to the 
browser on the end-user’s machine. These servlets call the CopperCore kernel 
on behalf of the client to maintain the actions performed by the user and to 
retrieve the personalized LD based upon the actions. To ease access to the 
kernel, the web application should use the CopperCore client library as is 
shown in figure 4.7. 
 
Building a native Java client is straightforward as far as the kernel is concerned. 
There are a few clearly defined APIs that can be called. Using the CopperCore 
client library makes accessing the kernel even easier by hiding all the intricacies 
of connecting to the remote EJBs. There is, however, one major issue in 
building a management application in this way. As noted above, an EJB is not 
allowed to access the file system. To circumvent this problem, CopperCore 
accesses the file system from within the client library. This client library, 
however, runs in the context of the calling application. In the case of a 

management application like clicc, this implies that access to the file system 

is in the context of the application itself. In other words, access to the file 
system is relative to the location of the application instead of to the location of 
the server. Being aware of this problem is the major hurdle for an implementer. 

The problem itself can be solved in different ways: clicc takes the easiest 

approach by running the application on the server itself, another option is to 
store the resources on a file share on the server, and finally an intermediate 
server application could be created which stores the resources of a publication 
in the appropriate place on the server. 





Chapter 5   

CopperCore Service Integration 

Vogten, H., Martens, H.,Nadolski, R., Tattersall, C., Van Rosmalen, P., and 

Koper
, 
R. (2007). CopperCore Service Integration. Interactive Learning 

Environments, Vol. 15(2), 171-180 



 80 | Chapter 5 

Abstract 

In an e-learning environment there is a need to integrate various e-learning services like 
assessment services, collaboration services, learning design services and communication services. 
In this article we present the design and implementation of a generic integrative service framework, 
called CopperCore Service Integration (CCSI). We will concentrate on the integration of two 
services: CopperCore, an IMS Learning Design service and an IMS Question and Test 
Interoperability service called Assessment Provision through Interoperable Segments (APIS). One 
of the design goals of the architecture was to minimize the intrusion for both the services as well as 
any legacy client that already uses these services. The result of this work is that the flow of learning 
activities can be made dependent on test results. 

Introduction 

This article describes the design and implementation of a generic integrative 
service framework, called CopperCore Service Integration (CCSI) (Vogten & 
Martens, 2006), for the IMS Learning Design (LD) specification (IMSLD-IM, 
2003; IMSLD-BPG, 2003; IMSLD-XB, 2003). This work was done as part of the 
JISC ELF (Wilson, Blinco, & Rehak, 2004) (JISC, 2006) toolkit strand project 
called SLeD2 (2005) as a joint effort of both The Open University and the Open 
University of the Netherlands. The project extended earlier work which involved 
building an LD runtime service and a corresponding web-based client 
application called SLeD.  
 
The LD runtime service, called CopperCore (Martens et al., 2004), processes 
units of learning (UOLs) which are IMS content packages containing a learning 
design defined in LD. CopperCore does not make any assumptions about the 
type of user interface used by the calling party. This allows CopperCore to be 
integrated in web clients as well as rich client platform applications. In fact, 
CopperCore does not provide any user interface at all, and all methods are only 
available through an Application Programming Interface (API). Therefore 
CopperCore cannot be used as a standalone product and must be used as a 
service integrated into a larger framework or Learning Management System 
(LMS). CopperCore relies on the provisioning of other services by this 
framework or LMS for parts of the LD processing. 
 
Some of the services on which CopperCore relies are generic and may be used 
by other services as well. Examples of such common services are authorization 
and authentication. Although technically challenging, these types of services are 
not the focus of our work as they apply to all service oriented architectures. 
However, there are a number of e-learning oriented services that are tightly 
integrated with the LD specification that provide our focus. Typically, these can 
be found in the service section of the LD environment. Note the LD term service 
refers to the functional concept of a learning service supporting a user in the 
learning process. The LD term service does not refer to the technical notion of a 
service as in the term web service although the technical implementation of an 
LD service could well be achieved by a web service. The LD specification 
includes a number of services such as a mail service, synchronous and 



  CopperCore Service Integration | 81 

asynchronous conferencing service and an index and search service. LD also 
allows additional services to be specified when needed. 
 
Furthermore LD specifies how other IMS specifications should be integrated. 
Examples of such specifications are the IMS Question and Test Interoperability 
(QTI) specification (IMSQTI, 2006) and the IMS Simple Sequencing 
specification (IMS Simple Sequencing, 2006). Although these specifications are 
quite clear on the authoring aspects of their integration, they are not particularly 
clear on their runtime aspects. An example is the integration of QTI items in the 
UOL. During runtime there must be a means of reacting to outcomes of QTI 
assessment items within the learning design workflow. 
 
These implications are not well understood. The CCSI framework provides an 
extensible solution for the tight integration of loosely coupled services. The 
cross service concerns in particular are targeted by CCSI, alleviating the calling 
process from the burden of dealing with these concerns. In the remainder of this 
article the CCSI framework will be further elaborated by focusing on the 
integration of the CopperCore service and a QTI service which is called 
Assessment Provision through Interoperable Segments (APIS) (Barr, 2000). 
APIS is an implementation of a computer aided assessment service conforming 
to QTI and is also funded under the JISC ELF toolkit strand. 

Integrating IMS Learning Design and QTIv2 

With the release of the second version of QTI guidelines (QTIv2) for the 
integration of LD and QTI were described (IMSQTI-IG, 2006). The integration of 
LD and QTI revolves around aligning LD properties and QTI variable names. 
Essentially, when property identifiers and variable names are declared to be 
lexically identical at design time (that is in LD-based and QTI-based XML), they 
are considered to be a shared variable in runtime software environments that 
involve LD and QTI-based processing. 
 
One implementation strategy for the guidelines above could be to build an 
integrated system combining the functionality of both the CopperCore and APIS 
service. However, given the considerable efforts that have been invested in the 
CopperCore and APIS services, this may not be an economically viable 
solution. Another approach would be an adaptation of both CopperCore and 
APIS allowing them to directly communicate with each other. This approach has 
two major drawbacks. First of all this introduces undesired dependencies 
between services. Secondly, this solution is not scalable as each new service 
being integrated requires an ever growing integration effort required to support 
communication with all the others. In the next section the architecture for CCSI 
is described that has none of the above drawbacks, together with a number of 
benefits. 



 82 | Chapter 5 

CopperCore Service Integration Architecture 

In order to make the service integration viable it is essential that the 
underpinning architecture is not intrusive, meaning adaptation to this 
architecture should only require minimal changes in the code of the existing 
services, like CopperCore and APIS and the existing clients using these 
services. Service and client implementers are unlikely to make it a priority to 
adapt their code solely for CCSI.  
 
By the introduction of an intermediate service layer composed of a dispatcher 
and adapters we can meet the above requirements. This approach is a well 
known in the software industry and is described by the adapter design pattern 
(Gamma et al., 1995). The adapter pattern converts the interface of a class into 
another interface clients expect. Adapter lets classes work together that could 
not otherwise because of incompatible interfaces. In case of CCSI, each 
adapter is a software component encapsulating a single service 
implementation. The dispatcher is the central component, responsible for the 
orchestration between these services. To make this orchestration possible, all 
adapters share a common API providing the dispatcher a standard interface to 
all integrated services. Each adapter implements specific code to access the 
underlying service by implementing this common interface. This way the 
required code adaptations needed for the service integration are now 
encapsulated in the adapters, leaving the services untouched. 
 
For each type of service (LD services, QTI services or conferencing services) 
multiple implementations may exist. In order to make these service 
implementations interchangeable a contract between the client and the adapter 
is introduced for each service type in the form of an interface. This principle is 
described by the bridge pattern, another well known design pattern (Gamma et 
al., 1995). The bridge decouples an abstraction from its implementation so that 
the two can vary independently. In the case of CCSI the bridge is the interface 
that describes the common functionality for the aforementioned service types. 
Adapters are allowed to extend this functionality by exposing the complete API 
of the underlying service implementations. Not only does this provide a richer 
system, it also makes the adapter transparent for any client using the original 
service. However, clients that make use of the extended functionality will need 
to be modified when another service implementation is used that does not 
provide this functionality. 
 
Each interface is accompanied by an abstract adapter. Each abstract adapter 
implements the default hooks for the dispatcher. This alleviates the 
implementers of specific adapters from reimplementing these hooks over and 
over again. The implementations of these abstract adapters can act as proxy for 
the service preventing. However when needed additional actions may be added 
by the implementations of the abstract adapters. This principle is also known as 
the proxy pattern (Gamma et al., 1995). 



  CopperCore Service Integration | 83 

Adapter

LDAdapter QTIAdapter

Dispatcher

«Interface»
ICopperCoreAdapter

«Interface»
IDispatcher

«Interface»
IAPISAdapter

CopperCoreAdapter

CopperCoreService APISService

«Interface»
IAPISService

«Interface»
IQTIAdapter

«Interface»
ILDAdapter

«Interface»

ICopperCoreService

APIS Adapter

1

*

 

Figure 5.1 CopperCore Service Integration architecture 

 
Figure 5.1 depicts the CCSI architecture. The dispatchers most important role is 
the propagation of events through all defined adapters. It is the responsibility of 
the adapters to listen for these events. Vice versa, it is the responsibility of each 
adapter to trigger the dispatcher when an event occurs that has potential cross 
service repercussions. 
 
The dispatcher is also responsible for returning an adapter of the requested 
type to the client, thereby acting as an adapter factory corresponding to the 
abstract factory pattern (Gamma et al., 1995). This adapter factory is necessary 
because the types and implementation of the adapters are not known in 
advance, and may vary even during deployment by simply adding or replacing 
adapters. Adapters can come in two flavors depending on the way the client 
wishes to access the adapter. This can be done either via native Java calls or 
via SOAP web services. All adapters are declared in the CCSI service definition 
file. This file contains information about the base service type, the implementing 
Java class and WSDL URL. 
 
Furthermore figure 5.1 depicts two adapter types; an adapter for the LD service 
and an adapter for the QTI service. Note that there could have been additional 
adapters for other services as well. The common interfaces for these service 
types are defined by the interfaces ILDAdapter and IQTIAdapter. Each adapter 
must implement the interface for its base type. Figure 5.1 also shows two 
abstract classes: LDAdapter and QTIAdapter These classes implement the 
hooks for the dispatcher. They act as extension points for any implementation of 



 84 | Chapter 5 

the LD or QTI services. Both the CopperCoreAdapter and the APISAdapter 
provide an interface that can be used by client applications. This interface is a 
replication of the original interface provided by the service that is being 
integrated, hence the dependency relationship between ICopperCoreAdapter 
and ICopperCoreService and between IAPISAdapter and IAPISService. By 
maintaining this relationship between the interfaces the impact for existing 
clients migrating to CCSI is limited to a minimum. Vice versa, when a service 
implementation is modified the impact is limited to the adapter acting as proxy 
for that particular service. 
 

 

Figure 5.2 Sequence diagram showing the processing of a QTI item and the resulting event 

handling by the dispatcher 

 
Figure 5.2 depicts a sequence diagram representing the processing of a QTI 
item within the context of a UOL run. The client (for example SLeD) creates a 
new instance of the Dispatcher. The dispatcher reads the CCSI service 
definition file and is informed about all available adapters. In the case of the 
example we only have the CopperCoreAdapter and the APISAdapter. Next, the 
client will request a handle for an LDAdapter. Depending on the technology 
used, an instance of the CopperCore adapter or a URL to the WSDL of the 
CopperCore adapter is returned. The dispatcher provides the client with an 
identical API in the CopperCoreAdapter compared to the original CopperCore 
service. So legacy clients, like SLeD, only have to be slightly modified. At some 
stage in the process the client retrieves QTI content and reacts by requesting 
the dispatcher to provide a handle to a QTI adapter. In our example the handle 
for the APIS adapter is returned. The client makes a request for the rendered 

: Client

: ICopperCoreAdapter : ICopperCoreService: IAPISAdapter : IAPISService

: Dispatcher

getContent( )

IMS QTI item

create( )

Dispatcher

getLDAdapter( )

CopperCoreAdapter 

create( )

CopperCoreAdapter 

getQTIAdapter( )

ApisAdapter

create( )

ApisAdapter

getContent( )

QTIItem

response( )

Response

propertyEvent( )

handleEvent( )

setProperty( )

getContent( )

response( )

handleEvent( )



  CopperCore Service Integration | 85 

content of the QTI item to the APIS adapter. The user response to this item is 
passed on to the APIS adapter. The APIS adapter processes this response, 
which results in a change of one of the variables defined by the QTI item’s 
response section. It is the responsibility of the QTIAdapter to notify the 
dispatcher about this property event. In turn the dispatcher propagates this 
event to all adapters that have registered themselves as listeners for this event 
type allowing them to react to this event. 
 
In order to synchronize the value of the QTI outcome variable, a corresponding 
LD property needs to be defined in the UOL. The CopperCoreAdapter will verify 
if this property exists and if so the value of the LD property will be set to the 
value of the QTI outcome. After all adapters have been informed about the 
property event, the result of the APIS adapter is finally returned to the client. 
 

 

Figure 5.3 Two consecutive screenshots of the SLeD client are captured while processing a UOL 

containing a QTI item. 

Integration of other services 

CCSI was developed with the integration of different kinds of services in mind, 
especially those defined in the service section of LD although other types of 
services are conceivable too. In fact, in SLeD2 a number of adapters for these 
services were developed such as a search adapter and a forum adapter. The 
principle of integration is exactly the same as was done for the QTI adapter. 
However, the type of events that are dispatched may differ per adapter type. 
For example, for the forum adapter it is relevant to be informed about new runs 
(Tattersall et al., 2005a) being created for a UOL. A run is a runtime 



 86 | Chapter 5 

instantiation of a UOL and involves the enrollment of individual users to the 
defined roles in the UOL thereby populating the UOL. Similarly, it is relevant for 
the forum adapter to be informed about user subscriptions and role changes 
within the run of a UOL. The events are generated by the CopperCore adapter 
and can be picked up by any forum adapter. The forum adapter 
implementations may react to these events by creating new topics and granting 
users the corresponding access rights. Momentary two asynchronous forum 
adapters are developed, one for Moodle and one for Knowledge Network, a 
proprietary system of The Open University, which can be switched by merely 
changing the deployment configuration. 
 
Another example of a service currently integrated through CCSI is the search 
service. Like with the forum adapter, there are two adapter implementations 
available. One adapter uses the Google API as search service provider. The 
other adapter uses the aforementioned Knowledge Network as service provider. 

Related work 

In the field of learning service integration some interesting related work has 
emerged. The IMS Tools Interoperability Guidelines (TIG) (IMS-TIG, 2006) is 
worth mentioning here. TIG deals with the interoperability of tools and LMS and 
is a first attempt to any standardization in this area. It shows some resemblance 
to the solution presented in this paper although there is a significant difference. 
The focus of SIG is mainly on technical aspects of the integration and less on 
the functional integration of the different services. TIG will not deal with any 
functional inter service dependencies, like the orchestration of property values 
between services, as shown in our example. 
 
Another interesting, closely related development is the Business Process 
Execution Language (BPEL) (IBM et al., 2006) for Web Services. BPEL primary 
focus is the orchestration of SOAP web services. All logic for this orchestration 
is declared in an XML file which is interpreted by a BPEL engine. Recently tools 
for BPEL, like engines and editors have become widely available. Assis 
(Sherrat & Jeyes, 2006), also a JISC funded project, is worth mentioning in this 
context. In the Assis project BPEL was used for the orchestration of web 
services handling IMS Simple Sequencing and QTI. 
 
BPEL holds some promising advantages over the presented approach in the 
paper, like standardization of the workflow solution and the separation of the 
workflow description from the actual implementation. However, at the same time 
extra overhead and complexity is introduced by the use of BPEL and one can 
argue if this outweighs the simplicity of CCSI. Especially in cases where 
services are not SOAP compliant the approach taken by CCSI has the 
advantage that it can make use of these services directly. This advantage 
should not be underestimated as the battle between SOAP and the its light 
weight counterpart ReST (Fielding, 2000) is not yet decided (zur Muehlen, 
Nickerson, & Swenson, 2004) either way.  



  CopperCore Service Integration | 87 

Conclusion 

Interoperability specifications like LD and QTI are having an ever growing 
impact on the e-learning community. As a result the number of implementations 
is steadily growing; initiatives such as the JISC ELF have demonstrated this via 
the delivery of several services dealing with these specifications (for example, 
APIS and CopperCore). However at the same time, runtime inter-specification 
operability issues are not yet understood. In this article, an approach was 
presented that deals with the interoperability of e-learning services within the 
context of LD. As basis for presenting the CCSI solution two service 
implementations were chosen; CopperCore and APIS. The need for integrating 
these two components can be explained by the fact that QTI is a natural 
complement to LD. 
 
Both CopperCore and APIS were independently developed as part of the JISC 
ELF and both are already being used by legacy systems. The latter introduced 
an additional requirement as the identified solution must deal with legacy 
services and legacy clients. The switch to the new architecture should cause 
minimal intrusions in any existing code. Furthermore, the provided solution 
should be robust for new developments as the integrated services have their 
own development dynamics. 
 
The CCSI architecture, informed by a number of design patterns, deals with 
these requirements by seamlessly inserting itself between the service and 
client. By replicating the original API the consequences for the client are limited 
to a switch of services factory. The underlying services do not have to be 
changed at all. All inter-service issues are dealt with in the adapter and 
dispatcher. We have seen that there is an adapter for each service type and 
that an adapter has a contract enforced by an interface per service type. The 
latter concept makes the adapter robust for changes in the services; it makes it 
possible to completely switch service implementations with minimal 
consequences. 
 
Finally, as highlighted earlier the CCSI architecture is not limited to the 
integration of CopperCore and APIS. Other services such as the forum and 
search service can and in fact have already been integrated in a very similar 
manner although the types of events are different. For these services multiple 
adapter implementations exists which can be interchanged without any need to 
change any client code. The work on CCSI will be taken up by the European 
Commission funded TENCompetence (TENCompetence, 2006) programme.  
 
All code for CCSI is available as open source and may be downloaded from 
SourceForge at http://sf.net/projects/ccsi. For an easy up and running example 
of CCSI the CopperCore Runtime Environment, also known as CCRT, can be 
downloaded from http://coppercore.org. This runtime contains deployable 
versions of the CopperCore service, the APIS service and the CCSI integrative 
service. Additionally, the SLeD2 player can be downloaded from 



 88 | Chapter 5 

http://sourceforge.net/projects/ldplayer. Finally, the example UOL can be 
downloaded from http://dspace.ou.nl/handle/1820/555. 
 

Acknowledgements 

The work on this paper has been partly sponsored by the TENCompetence 
Integrated Project that is funded by the European Commission’s 6

th
 Framework 

Programme, priority IST/Technology Enhanced Learning. Contract 027087 
(www.tencompetence.org). The technical work that is described has been 
sponsored by the JISC ELF programme. 
 



 

Chapter 6   

Impact of CopperCore and CCSI 



 90 | Chapter 6 

Introduction 

In the previous chapters we discussed our approach to addressing the two 
research and development questions of this thesis. This resulted in the 
CopperCore and CCSI developments. In this chapter, we focus on the impact of 
CopperCore and CCSI on the LD community, which has resulted in their real-
world use in various projects and initiatives. This use supports our claim that the 
presented designs and implementations have successfully answered our 
research and development questions. The relevant projects shall be described 
in more detail here. 
 
CopperCore provided the LD community with a runtime to validate designs; LD 
authors have been using it as a reference for their own designs. At the same 
time, however, the community has tested CopperCore by deploying numerous 
designs in a form of real-world validation that did not reveal fundamental flaws 
in our approach, but rather (besides the occasional bug) some performance 
issues with the engine. In this chapter we discuss how we addressed these 
bugs and issues in several development iterations.  
 
We illustrate various real-world cases where CopperCore has been reused, 
such as reuse of the engine through the APIs, source code, and engine design. 
We show that CopperCore has established itself as the de facto reference 
runtime in the LD community. By far the majority of initiatives and projects either 
use the engine or are referring to it as being the reference implementation. We 
also present some examples where new services have been successfully 
developed and incorporated in CCSI. This substantiates the claim that the 
presented architecture is extensible, but also that our CCSI architecture is 
generic as well, as some services are new to LD.  
 
Finally, we argue that providing the community with a runtime implementation 
for LD was an important step in making the LD specification usable. At the 
same time, we suggest that the LD toolset’s lack of maturity, in particular that of 
the authoring environments, is still a hurdle for the wider uptake of the 
specification. 

Impact and development approach 

The most recent version of CopperCore is version 3.1, which along with its 
sources can be downloaded from the SourceForge website. The chart in figure 
6.1 shows the number of CopperCore downloads (about 10,000) since its 
release, as provided by SourceForge (2008). Of course, these statistics cannot 
directly be translated into actual usage numbers. But they are at least indicative, 
and do give an impression of the general interest CopperCore has raised so far. 
Even if only a small percentage of these downloads have resulted in actual 



  Impact of CopperCore and CCSI | 91 

engine use, it still amounts to significant usage numbers, certainly when taking 
into account that the engine is targeting a niche audience. 
 

 

Figure 6.1 CopperCore download statistics from SourceForge 

 
The statistics are cumulative, starting from the first release. Since then a 
number of new features have been added to CopperCore. The latest version 
includes support for all three levels of the specification, whereas only levels A 
and B were previously supported. The provided APIs now also support access 
via SOAP (W3C, 2000); this is similar to the APIs described in chapter 4 with 
the exception of the protocol used. An out-of-the-box installable version of 
CopperCore has been added (CopperCore Run Time, or CCRT) and 
incorporates CCSI. The example LD player is also shipped by default with 
CCRT and can render IMS QTI items through the use of CCSI as shown in 
chapter 5. Anyone wanting to experiment with LD can download CCRT to get 
started immediately.  
 
All these developments took place in a number of iterations, most of them 
integral parts of international projects. Besides providing the necessary funding, 
these projects also provided valuable validation moments for the engine design, 
its internal workings and the correctness and completeness of the APIs. Other 
developers have been using the APIs to integrate the CopperCore engine into 
the larger frameworks of these projects, while authors have been using the 
engine in developing their own UOLs, and learners have used the outcomes of 
these developments in pilots. Each iteration provided an opportunity for further 
improvements and the inclusion of new features. We discuss these projects in 
some detail and explain what they contributed to the development and 
validation of CopperCore and CCSI. 
 
A number of related projects and initiatives reused CopperCore and CCSI. 
Worth mentioning here is the UNFOLD project (UNFOLD, 2007), which aimed 
to support and facilitate Communities of Practice (CoPs) working with LD and 
related specifications. The idea stemmed from the so-called Valkenburg group 
of e-learning experts interested in improving the pedagogical quality of e-
learning courses in an interoperable fashion, with user-friendly tools. This group 
reached consensus that EML and LD provide good starting points towards this 



 92 | Chapter 6 

ambition. We briefly mention some of the projects presented in the context of 
UNFOLD and report on the use of CopperCore and CCSI within these projects.  
 
Finally, we also present projects and initiatives not directly related to the core 
development of CopperCore and CCSI nor disseminated through UNFOLD. 

CopperCore development 

The development of CopperCore was largely funded by the international 
projects described below. By aligning our development efforts with these 
projects we were able to establish a number of major development cycles. 
These projects thus contributed or still contribute to the core development of 
CopperCore and CCSI, and also provided opportunity to test the developments. 

ALFANET PROJECT 

The initial development of CopperCore was undertaken as part of the European 
ALFANET project (Van Rosmalen et al., 2007; Van Rosmalen & Boticario, 
2005; Boticario & Santos, 2007; Fuentes et al., 2005) (IST-2001-33288). One of 
the key challenges addressed by ALFANET is adaptation of learning to 
learners’ personal interests, characteristics and goals. Learners require content 
and activities based on their preferences and prior knowledge, not just static, 
page-turning sequences. ALFANET produced a learning environment that 
integrates principles and tools from the fields of learning design and artificial 
intelligence. This environment offers intelligent personalization capabilities that 
support effective and flexible learning scenarios consistent with the demands of 
the knowledge society. It was built in three main cycles, each incrementally 
increasing functionality. The first cycle ended up with a base system operating 
on top of LD level A. The second included an initial version of all components 
on top of LD level B, while the third offered an extensive set of adaptive features 
to choose from. All three cycles used CopperCore for processing the developed 
UOLs. 
 
Figure 6.2 shows the final architecture of the ALFANET project (Santos, 
Boticario, & Barrera, 2008). This architecture consists of a dispatcher 
coordinating the services available in the system. One of these services is 
CopperCore, which is split into two parts in this diagram, corresponding to the 
developed APIs. The LD interpreter represents the functionality accessible 
through CopperCore’s LDEngine API, and the Courses Manager represents the 
functionality available via its CourseManager API (see also chapter 4). 
 



  Impact of CopperCore and CCSI | 93 

Administration

Module

J2EE Application Server

Security Layer Presentation Layer

Dispatcher

IMS-LD 

Interpreter

Tracker

Interaction

Module

Contents

Server

User Manager

Audit

Module

Server

Courses

Manager

Services

Data

Common

Repositories
WebDAV Serv er

Authoring Tool

WebDAV Client

Object Model

System Manager

IMS-QTI

Interpreter

Adaptat.

Module
MAPM

 

Figure 6.2 ALFANET system architecture 

 
This service-based architecture integrates autonomous services such as 
CopperCore into the dotLRN learning management system (dotLRN, 2008), 
which itself is based on the OpenACS (OpenACS, 2008) framework. The 
dotLRN system also provided the core of the presentation layer. The 
CopperCore player used in ALFANET was based on the demo web player 
provided with CopperCore (a snapshot of this integration is shown in figure 6.3). 
ALFANET also focused on the use of e-learning standards and provided early 
IMS QTI integration. However, compared to CCSI, this integration is looser and 
more indirect. Both the LD and IMS QTI specifications run side by side, and 
integration is established through ALFANET’s adaptation module. 
 
Each development cycle included an evaluation round with users from different 
backgrounds (company employees, private persons and university students) in 
different domains. There were courses for university students on ‘How to teach 
through the Internet’ (UNED) and ‘Communication technology’ (OUNL); a 
Spanish course for private German learners (KLETT); and an internal staff 
training course ‘Environment and electrical distribution’ (EDP). The evaluation 
results can be found in (Barrera et al., 2005). These pilots used LD to model 
their predesigned adaptations (Towle & Halm, 2005) and thus provided the first 
validation of the CopperCore engine. The work revealed several bugs in engine 
implementation which were subsequently corrected; but it also showed that the 
design principles of the engine were sound because the learning designs used 



 94 | Chapter 6 

for the pilots incorporated complex adaptations. Evaluation of the pilots 
revealed that authors found the environment complex, while the users found the 
authoring process too formalized and felt that production and presentation 
integration were lacking (i.e. no sense of ‘what you see is what you get’). 
 

Figure 6.3 Screenshot of the ALFANET system 

 
CopperCore version 1.0 was released as the outcome of the work for the 
ALFANET project. This engine was LD level A and B compliant, and provided 
the LD community with the first runtime ever. 

SERVICE-BASED LEARNING DESIGN PLAYER 

The development of SLeD (SLeD, 2005; McAndrew et al., 2004; McAndrew, 
Nadolski, & Little, 2005) has been a collaborative effort of the Open University 
in the UK (OUUK) and the Open University of the Netherlands (OUNL). The 
project was funded under the JISC eLearning Programme (JISC, 2006) by four 
project grants, and also linked to the UNFOLD (UNFOLD, 2007) project.  
 
The first SLeD project (SBLDS, 2004) aimed foremost at developing a service-
based LD player. For this purpose a new LD player was developed that used 
the CopperCore APIs. A web interface was also developed for the 
CourseManager API. The SLeD player integrated proprietary learning services 
provided by OUUK, and its development was carried out by OUUK. OUNL was 
responsible for the further development of CopperCore. This resulted in its 



  Impact of CopperCore and CCSI | 95 

second release, this time including support for LD level C and SOAP compliant 
APIs. The latter opened up the use of CopperCore to a broader range of 
applications, as it meant the API was no longer dependent on the use of Java. 
With support from the Reload development team, CCRT was produced. This 
allowed SLeD to be installed almost out of the box. 
 
The second SLeD project (DLD, 2005) was targeted at content-based 
demonstrators with a range of features and illustrating the reuse of the 
outcomes of the previous project. As a sort of showcase, the services provided 
by the previous project were to be integrated with an existing learning 
management system. For this purpose, SLeD was loosely integrated with the 
Moodle system (Moodle, 2006), which provided SLeD with a forum service; it 
also meant the SLeD player could be used from within Moodle. The outcomes 
of this project were disseminated to the wider LD user community via UNFOLD, 
and various UOLs developed and demonstrated using these SLeD tools. 
 
The third SLeD project (SLeD2, 2005) targeted the development of a technical 
methodology for integrating service calls in LD. This generic approach, 
implemented through CCSI, was demonstrated by integrating an IMS QTI 
service (see chapter 4 for details). OUNL was responsible for the design and 
development of the CCSI framework and the IMS QTI adapter, while OUUK 
implemented all other adapters (such as the e-Portfolio adapter) and updated 
the SLeD player to work with CCSI and the new adapters. A number of other 
services were also integrated as part of the work on this project, including a 
search service via Google and integration with an e-portfolio service. Other 
projects, too, contributed service adapters. The e-Adventure (Moreno-Ger, 
Martínez-Ortiz, Luis Sierra, & Fernández/Manjón, 2007) used CCSI to integrate 
a game service with LD. The TENCompetence project developed an adapter for 
integrating widgets (Wilson, Sharples, & Griffiths, 2007). Furthermore, the 
adapter concepts within the CCSI framework were taken up by the E-
Framework Services for Course Evaluation project (EFSCE, 2007).  
 



 96 | Chapter 6 

 

Figure 6.4 Screenshot of SLeD player 

 

The SLeD outcomes were evaluated by Liverpool Hope University using real 
students in their SLIDe project (Barret-Baxendale, Hazlewood, Oddie, & 
Anderson, 2005; SLeDID, 2005). One conclusion was that SLeD performed 
poorly in real-life situations, resulting in unacceptable response times. 
Therefore, the final project in the SLeD development, D4LD, aimed to mediate 
these performance issues. Funded by the JISC Design for Learning Programme 
(D4LD, 2006), the project aimed to improve general SLeD performance to make 
it more suitable for running real-life courses with the infrastructure. This resulted 
in the latest 3.1 release of CopperCore and CCSI, incorporating considerable 
performance benefits. As part of this project, OUUK carried out a performance 
stress test (Hutchinson, 2007). The results indicated that the performance 
issues reported by Liverpool Hope had been solved. However, they also show 
that CopperCore and CCSI are not yet ready for large-scale enterprise level 
deployment, because overall performance drops considerably with serious user 
load. Once the load passes a critical threshold, more request are coming in than 
can processed on average resulting in an ever growing queue of outstanding 
requests. The performance stress test suggests that the critical threshold lies 
somewhere between 150 and 200 concurrent users. 



  Impact of CopperCore and CCSI | 97 

UNFOLD 

The UNFOLD project was conceived to promote and coordinate the adoption, 
implementation and use of IMS Learning Design and related specifications. The 
UNFOLD project team argued that it would take the active involvement of many 
different professional groups for the IMS Learning Design specification to 
successfully provide better learning opportunities. But often these groups are 
not in contact with each other: those developing specifications do not usually 
work with authors of learning materials, and tools developers do not usually 
work with teachers and learners. If progress is to be made on these aims, 
information needs to flow between these disparate groups of people.  
 
To meet this need, UNFOLD’s core activity has been to support and facilitate 
CoPs, groupings of people who come together based on common interests and 
expertise, creating, sharing and applying knowledge within and across the 
boundaries of tasks, teams and organizations. Three CoPs were launched in 
July 2004, for systems developers, learning designers and teachers.  
 
Several CoP meetings were organized, bringing experts together to share their 
experiences. CopperCore was presented to the broader community of practice 
during the first UNFOLD meeting. Participants were invited to create their own 
UOLs by using the Reload (Reload, 2007) authoring tool. The UOLs produced 
were then evaluated using the CopperCore engine and demo player. During 
these meetings, the ALFANET and SLeD projects were also presented. The 
following list summarizes some of the work presented that used the 
CopperCore engine. 
 

• Reload (Milligan, Beauvoir, & Sharples, 2005; Reload, 2007) has 
established itself as the reference LD authoring environment. The 
Reload editor has been extended with a Reload Learning Design Player 
which provides preview functionality. This player uses the CopperCore 
engine and a modified version of the LD player provided with 
CopperCore. CopperCore is bundled together with the Reload Learning 
Design Player into one installation package. To this end, the Reload 
and CopperCore teams worked together on the configuration of CCRT. 

 

• Another LD editor and designer is CopperAuthor (Van der Vegt, 2006), 
which has similar preview functionality to Reload and also integrates 
CopperCore for this purpose. 
 

• Collage (Hernández-Leo et al., 2006a) is an adaptation of the Reload 
editor, and allows teachers to design collaborative learning experiences 
without specific LD knowledge. It makes use of collaborative learning 
flow patterns representing practitioners’ best practices to model the flow 
of collaborative learning activities. For this purpose, Gridcole 
(Hernández-Leo, Villasclaras-Fernández, Asensio-Pérez, Dimitriadis, & 
Marcos-García, 2006b) has been developed which uses an adapted 
version of the CopperCore engine. This adaptation deals with the 
integration of several collaborative services. 



 98 | Chapter 6 

 

• In their article ‘Learning units design based in grid computing’, (Navarro, 
Diaz, Such, Martín, & Peco, 2007) introduce the notion of grid learning 
objects as an alternative to user grid computing in e-learning. To 
demonstrate their approach, the authors implemented a system that 
integrates a GRID infrastructure and the CopperCore engine. 
 

• Researchers from the COLLIDE group at Universität Duisburg-Essen 
introduced an extension to the CopperCore engine that uses LD to 
control learning support environments remotely (Harrer, Malzahn, 
Hoeksema, & Hoppe, 2005). They achieved this by scripting the 
learning flow in LD and allowing CopperCore to interact with the 
learning support environments. Their approach resembles the more 
generic approach taken in CCSI. 
 

• In ‘Crosscutting runtime adaptations of LD execution’ (Zarraonandia, 
Dodero, & Fernández, 2006) the authors explain how they increase 
UOL reusability by offering designers an alternative to predesigned 
adaptation by allowing slight alterations of the original design during 
runtime. Their approach aims for the middle ground between LD’s 
formal, elaborate process of top-down authoring and the need for 
authors to do quick modifications during runtime. They achieved this 
without modifying CopperCore. Because they considered these types of 
modifications as crosscutting concerns, they decided to intervene on 
the engine’s output through aspect-oriented programming (Elrad, 
Filman, & Bader, 2001). This allowed them to make the necessary 
changes without having to modify any code to the engine itself. 
 

• GRAIL (Gradient-lab RTE for Adaptive LD in dotLRN) is an alternative 
LD runtime implementation developed at the Telematics Engineering 
Department of the Carlos III University of Madrid (Escobedo de Cid, 
Fuente Valentín, & Guitérrez, 2007). The CopperCore engine design 
served as a reference for GRAIL’s design, which is implemented as 
extension of the dotLRN framework. This framework was also used in 
the ALFANET project. The outset for GRAIL is very different from that 
of CopperCore: the latter is implemented as an independent service 
that requires further integration into a learning management system 
such as dotLRN; GRAIL, however, is tightly integrated with the dotLRN 
framework from the start. This conscious choice for a single framework 
means GRAIL is directed at end users, whereas CopperCore is more 
directed at developers. The deliberate choice for the dotLRN 
framework, or any modular e-learning environment for that matter, 
makes the integration of e-learning services much easier. First, these 
services are already provided by the platform, and second, the platform 
architecture most likely provides the scaffolding that allows this 
integration. GRAIL also provides a player and an interface for UOL 
administration. An obvious drawback of the choice for dotLRN is the 
automatic exclusion of other learning management systems.  

 



  Impact of CopperCore and CCSI | 99 

In the context of UNFOLD, various UOLs have been produced and tested 
through CopperCore and can be retrieved from the UNFOLD website. 
CopperCore was used as a reference by the UNFOLD community to help better 
understand the LD specification (Griffiths, Blat, Elferink, & Zondergeld, 2005a). 
As these insights grew, the community also helped test the engine in real 
practice by deploying various learning designs at all levels of LD. A collection of 
these designs have gathered and can be downloaded through the Learning 
Networks (2008) repository. In most cases, CCRT was installed for this purpose 
either with or without the SLeD player. However, the UNFOLD CoP also reused 
the CopperCore engine itself via the APIs and/or directly through modifications 
of the source code or code introspection. Furthermore, CopperCore has been 
recognized by the CoP as the de facto reference implementation for LD. We 
therefore conclude that the UNFOLD experience supports our claim of having 
answered the first research and development question of this thesis.  

TENCOMPETENCE 

The latest project pushing the CopperCore and CCSI developments forwards is 
TENCompetence (Koper & Specht, 2007; TENCompetence consortium, 2007), 
which has devoted a work package to the further development of LD-related 
tools. As part of this work package, the CopperCore environment has been 
further extended to support the integration of SCORM and LD (Tattersall, 
Vogten, Martens, & Koper, 2006). This integration is implemented by extending 
CCSI with an additional SCORM adapter. In a similar fashion, CCSI has been 
extended with a widget adapter, allowing the integration of a complete range of 
widgets in the CopperCore environment (Wilson et al., 2007). Figure 6.5 shows 
two examples of widget adapters – a chat widget and a Google Maps widget – 
working with SLeD. The widget adapter allows the easy and flexible adaptation 
of various widgets to the runtime environment.  
  

 

Figure 6.5 Screenshot of chat and Google Maps widgets 

 
It will be possible to configure these widgets with the ReCourse editor (Griffiths, 
Beauvoir, Barret-Baxendale, Hazlewood, & Oddie, 2007), the Reload successor 
currently being developed in TENCompetence. TENCompetence has finished 



 100 | Chapter 6 

its second year, and work on developments such as the ReCourse editor and 
widget framework will continue for at least two years.  
 
This concludes our review of the projects that significantly contributed to the 
development of CopperCore and CCSI. Next we discuss the UNFOLD project, 
which acted as a dissemination and discussion platform for many LD-related 
developments. 

TELCERT AND ELEGI 

Besides the aforementioned projects, a number of other initiatives made use of 
CopperCore and CCSI in some form or another. Of these, we briefly mention 
TELCERT (Nadolski, ONeill, Vegt, & Koper, 2006) and the European Learning 
Grid Infrastructure project (ELeGI) (ELeGI, 2007; Gaeta, Gaeta, & Ritrovato, 
2007). TELCERT’s aim is to help transform the adoption of standards-based e-
learning products and services by providing tools and test systems that assure 
interoperability. It produced an LD application profile that could generated 
reference UOLS, which were tested using CopperCore. 
 
The ELeGI project, an EU-funded integrated project with 23 partners from 9 EU 
countries has the ambitious goal to ‘radically advance the effective use of 
technology-enhanced learning through the design, implementation and 
validation of a pedagogy-driven, service-oriented software architecture based 
on Grid technologies’. The ELeGI project is structured along two main action 
lines: ELeGI formal and ELeGI informal. Figure 6.6 shows the architecture 
devised for the formal action line. 
 



  Impact of CopperCore and CCSI | 101 

Contents & Services Orchestration

Semantic Annotation, 

Discovery & Composition 

Sub-System

Infrastructure Services

Role&Memb.

Management 

Sub - System

Grid Layer

Personalization

Sub - System

Learner Model 

Management 

Sub-System

Learning Experience  

Management Sub - System

S
u
p

p
o
rt

S
e
rv

ic
e
s

Ontology 

Management 

Sub-System

E-Learning ApplicationApplication Layer

Learning 

Layer

Learning 

Metadata   

Sub -System

S
e

m
a
n
ti
c

S
e
c
u
ri

ty

Communication/

Collaboration Sub-

System

Didactic Model 

Management 

Sub-System

Environment

Managment 

Services

GRID Middleware for VO Management

Learning

Services

GRASP Service

Data Services

Driver Services

Personalisation  (LIA)

Onotology authoring tool (KRT)

Learner Profile authoring tool

LEM authoring tool

Semantic Annotation and Discovery

Confrence 

XP

WSRP 

portal

UoL engine

 

Figure 6.6 ELeGI architecture (source: ELeGI final report) 

 
The Contents & Services Orchestration sub-system deals with the issues of 
execution of UOLs described using the LD. CopperCore has been used as 
engine for this purpose. The architecture allows the dynamic binding of learning 
resources, learning objects and services by exploiting the underlying grid layer. 
CopperCore was modified to enable this dynamic binding of learning resources. 
The ELeGI project is an example of cross-platform integration because large 
parts of its infrastructure were developed with .NET. 

Conclusions 

In this chapter we discussed what impact both CopperCore and CCSI had on 
the LD community. Indicative of this impact are the SourceForge download 
statistics, which add up to 10,000 downloads. We also described several 
projects in detail that either contributed to the development of CopperCore and 
CCSI, or have been using and reusing them. 
 
CopperCore and CCSI were developed in several cycles as part of work 
undertaken in the ALFANET, SLeD and TENCompetence projects. Each of 
these projects led to new releases of CopperCore and CCSI. In addition, they 
provided not only the necessary resources for these developments but also 
validation of the design and implementations. Developers not directly involved 
in the development of CopperCore and CCSI used the APIs to integrate the 
engine in other frameworks and players. CCSI was extended with new adapters 



 102 | Chapter 6 

such as a SCORM and a widget adapter. CopperCore’s source code was also 
reused and modified to fit specific purposes within the projects. Although 
CopperCore and CCSI were first and foremost developed as reference 
implementations to stimulate further uptake of the LD specification, we also paid 
attention to performance issues in the D4LD project. Performance stress tests 
showed that the SLeD environment is suitable for deployment scales of up to 
150 simultaneous users. 
 
The UNFOLD CoP have been using and reusing CopperCore and CCSI in 
various projects with a complete range of learning designs. This real-world 
usage not only underlines the importance of having a reference implementation 
for the LD specification, but also provides practical evidence for the soundness 
of our engine design and implementation. CopperCore helped the CoP better 
understand the LD, a whole range of UOLs have been produced and validated 
via CopperCore, and these UOLs helped test the CopperCore engine.  
 
This does not mean there been no criticism. The performance issues were 
already mentioned. Various other issues, too, were encountered over time, as 
could be expected. Nevertheless, they all boiled down to coding bugs: so far 
there have been no problems that would indicate a fundamental flaw in the 
design of either CopperCore or CCSI. Most reported issues were resolved in 
the subsequent development cycle, and became available with the next release. 
Another point of criticism concerned our choice to use J2EE and EJBs for 
persistence as it was deemed unnecessarily complex. Developers with the 
necessary skills are scarce, and in retrospect, we have to admit that this has 
probably limited engine developments to some extent. Some of the benefits we 
expected as result of our use of J2EE never materialized; optimising an 
enterprise server does require considerable skill and expertise. In addition, 
rather than benefiting from increased performance, the EJBs seemed to slow 
down the engine. Potential gains expected from load balancing were never 
really put into practice. Emerging technologies such as Hibernate (Hibernate, 
2008) and JPA (EJB 3.0 software expert group, 2008) would probably have 
been better persistence frameworks. It should be emphasised, however, that 
such theorising is easy with the wisdom of hindsight about trends in software 
development and use of the CopperCore engine. Initial research into migration 
towards a lighter framework using a simple servlet container such as Tomcat 
and a persistence framework like JPA indicates that migration seems feasible 
without massive effort, though further investigation is needed. 
 
The first research and development question of this thesis was: 

i) How can a fully compliant reusable reference runtime environment 
for the IMS Learning Design specification be designed and 
implemented? 

 
We conclude that we were successful in answering this question with the 
CopperCore engine and its underlying design, both of which have demonstrated 
sound in real-world practice. Furthermore, CopperCore has demonstrated in 
practice to be capable of processing all levels of specification. This can be 
concluded from the various UOLs of all levels that were created and 



  Impact of CopperCore and CCSI | 103 

successfully deployed by the CoPs. The engine has established itself as a de 
facto reference implementation for LD both for learning design authors and 
developers. Furthermore, the engine has been reused in various ways and in all 
kinds of situations, as discussed previously. 
 
The second research and development question was: 

ii) How, given a reference implementation for the IMS Learning 
Design specification, can implementations for other e-learning 
specifications and learning support services be integrated 
generically at runtime level? 

 
We conclude that we successfully answered this question through CCSI, which 
provides a generic framework for integrating other specifications and e-learning 
services. The SLeD project demonstrated such integration via the CCSI 
framework. In similar fashion, adapters for gaming and widgets have been 
developed and integrated. These adapters in particular are evidence of the 
generic nature of the solution, as they are not part of the standard services 
originally defined in LD.  
 
We also conclude that CopperCore and CCSI have played a critical role in the 
uptake of LD. The first hurdle for LD uptake (i.e. having a runtime for the 
specification) has been overcome. However, at the same time we must 
conclude that this uptake has been disappointing so far. Although LD generated 
lots of interest within the educational research sector, it not really left the 
research and development stages behind. In ‘Creating an 28 weeks course with 
LD and CopperCore’ (Spang Bovey & Dunand, 2006) and ‘Panning for gold’ 
(Bailey, Zalfan, & Davis, 2006), the authors argue that the maturity of the LD 
toolset is a major obstacle to uptake. Elsewhere, the current LD editing 
environments are identified as major hurdles due the amount of expertise they 
require (Sodhi, Miao, Brouns, & Koper, 2007). The ALFANET evaluation 
(Barrera et al., 2005) led to similar conclusions. In ‘Using the IMS Learning 
Design notation for the modelling and delivery of education’ (Tattersall, Sodhi, 
Burgos, & Koper, 2007), the authors argue for a balance between a restrictive 
environment and an unsupportive one, taking into account that teachers do not 
like prescriptive methods. In ‘Crosscutting runtime adaptations of LD execution’ 
(Zarraonandia et al., 2006) the authors also argue for more flexibility and 
adaptation possibilities during runtime. In the next chapter we therefore present 
a complementary approach for authoring LD which leans heavily on the close 
integration of CopperCore and an environment for personal competence 
development. 





Chapter 7   

Using the Personal Competence 
Manager as a complementary 
approach to IMS Learning Design 
Authoring 

Vogten, H., Koper, R.,Martens H. and Van Bruggen, J. (2008). Using the 
Personal Competence Manager as a complementary approach to IMS Learning 
Design authoring. Interactive Learning Environments, Vol 16(1), 83-100

 



 106 | Chapter 7 

 

Abstract 

In this article TENCompetence will be presented as a framework for lifelong competence 
development. More specifically, the relationship between the TENCompetence framework and the 
IMS Learning Design (LD) specification is explored. LD authoring has proven to be challenging and 
the toolset currently available is targeting expert users mostly working for institutions of higher 
educations. Furthermore these tools reinforce a fairly rigid top-down workflow approach towards 
design and delivery. This approach it is not always the most suitable model in all circumstances for 
all practitioners. TENCompetence provides an alternative bottom-up approach to LD authoring via 
its first implementation: the Personal Competence Manager (PCM). Constructs such as competence 
profiles and competence development programmes, let users define, modify, and acquire 
competences they need for achieving their personal goals. We will show how the PCM provides 
support for these constructs and stimulates the bottom-up development of learning materials. We 
will also show how these concepts can be mapped towards LD. This allows the ad hoc designs of 
the PCM to be captured in a Unit of Learning (UOL). These UOLs can be enhanced and eventually 
fed back into the PCM, therewith closing the edit cycle. This editing cycle allows for a gradual 
integration of bottom-up ad hoc designs with more formal top-down designs introducing LD in a 
gentle fashion. 

Introduction 

Emerging e-learning standardization initiatives have led to a number of 
interesting new specifications and standards. One of those initiatives is IMS 
Learning Design (LD) (IMSLD, 2003; Koper & Olivier, 2004; Olivier & Tattersall, 
2005). LD is a formal language for the specification of learning designs using 
semantically meaningful concepts from the pedagogical domain. The most 
relevant objectives achieved by applying LD are formalization, reproducibility 
and reusability of the learning designs. LD is a very expressive specification 
capable of describing a wide variety of learning designs. However it is also a 
very complex and complicated specification. The current toolset supporting LD 
is still very closely and directly informed by the specification itself and requires a 
profound understanding of the specification. Therefore LD is used mainly in 
institutions for higher education where sufficient expertise is available to work 
with the current toolset. 
 
The recently launched TENCompetence initiative targets the development of an 
infrastructure for lifelong competence development. TENCompetence has the 
ambition to support formal and informal learning during the lifetime of an 
individual. TENCompetence ambitions reach beyond the scope of the 
educational institutions. 
 
The first release of the TENCompetence software is called the Personal 
Competence Manager (PCM). The PCM provides an integrated environment for 
both learning and authoring without making a clear distinction between the two 
modes. This article will show how this aspect can be beneficial for the easy 
creation of simple units of learning (UOLs). A UOL is the collection of files 
including the learning design expressed in LD that is ready to be deployed in a 
suitable runtime environment. We will also see how UOLs can be enhanced and 
in turn be reused in the PCM closing the editing cycle. In this way a gentle 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 107 

introduction to LD authoring can be achieved using the PCM as an initial more 
loosely authoring environment. In later stage LD can be used to capture, 
enhance and redeploy the created learning experience when needed. 

IMS Learning Design (LD) tools 

LD is targeted at the educational designer allowing ‘learning designs’ to be 
explicitly modeled using semantically meaningful concepts from the pedagogical 
domain. Although expressive, the specification is also very complex due to the 
numerous language constructs, its declarative nature, and its fairly generic 
vocabulary (Griffiths & Blat, 2005; Olivier, 2004). However, LD was developed 
with a toolset in mind that would help the educational designer in using LD 
(Griffiths, Blat, García, Vogten, & Kwong, 2005b). Three years after the release 
of LD, a user community is established working on the development and 
enhancements of these tools. So far this has resulted in a toolset dealing with 
LD editing and authoring aspects on the one hand and runtime delivery aspects 
on the other hand (Griffiths et al., 2005b). These authors categorize the tools on 
two dimensions: 
 

1. Higher vs. lower level tools: This dimension is related to the level of 
expertise in LD required from the user of the tool.  

2. General purpose versus specific purpose tools: This dimension deals 
with the pedagogical scope of the tools. Specific purpose tools will hide 
complexity by translating generics into the specific context and filling in 
and leaving out optional elements where appropriate. Generic purpose 
tools however, will allow authoring and delivery of LD in all its glory. 

 
Although efforts have been made to create or adapt specialized authoring tools 
with some success such as COLLAGE (Hernández-Leo et al., 2006a), HyCo-
ALD (Berlanga & García, 2007) and MOT+ (Paquette, De la Teja, Léonard, 
Lundgren-Cayrol, & Marino, 2005), in general most of the available tools that 
are LD compliant on levels A, B and C must be categorized as generic and still 
rather low level. They allow the editing of the complete LD specification and 
keep very close to the specification. A typical example in this category is Reload 
(Reload, 2007; Milligan, Beauvoir, & Sharples, 2005) which is by far the most 
popular LD editor at the moment. However, as a consequence, an ample 
understanding of LD is required to use these tools. An even more profound 
understanding of LD is required when advanced concepts as described by 
levels B and C of LD, are required by the design. In general, this level of 
understanding is limited to expert educational designers and is rarely found in 
practitioners such as teachers. This leaves many practitioners out of the direct 
loop of designing and adapting UOLs. Some LD tools available allow limited 
post design runtime adaptations through code introspection (Zarraonandia et 
al., 2006). However, these post design runtime adaptations will not be reflected 
in the UOL and therefore will be lost in the next run (Tattersall et al., 2005a) of 
the same UOL.  
 



 108 | Chapter 7 

Furthermore, the current toolset imposes a, be it an implicit, top-down approach 
of the overall design and delivery process. This is further encouraged by the 
separation of the authoring environments and runtime delivery environments 
(Tattersall, Vogten, & Koper, 2005c). Typically, elicitation and selection of the 
type of educational scenarios is the first step in the design process followed by 
the coding of the scenario into a UOL using the authoring environment. Next 
this UOL is published so it can be delivered to teachers and learners via a 
runtime environment such as CopperCore (Martens et al., 2004). This UOL can 
be adapted, refined and improved in following design cycles repeating the 
whole process again. This workflow resembles the waterfall approach of 
traditional software development and has advantages especially in cases where 
the same UOL is offered to different groups for lengthy periods of time 
(Tattersall et al., 2005c). This approach can help enhance the quality of the 
learning experience because educational scenarios are made elicit in a very 
explicit and formal manner allowing reflection on the quality and effectiveness of 
the designs. This quality control can be further enhanced by collecting runtime 
data as is demonstrated in ALFANET (Van Rosmalen et al., 2007). Concluding 
it can be said that with the current toolset practitioners must adopt this top-down 
approach and need to have ample knowledge of LD. Therefore, LD has been 
taken up mainly by institutions for higher education where the required expertise 
can be found. 
 
In the following sections we will present the TENCompetence domain model 
(Koper, 2006) followed by the first implementation based on this domain model 
called the PCM. We will discuss how the PCM can complement the current 
toolset available for LD. We will discuss how the PCM empowers individual 
users to create basic UOLs using a bottom-up approach without the need for 
any specific LD expertise. Furthermore we will discuss how these UOLs can be 
fed back into the PCM allowing a more controlled and reproducible provisioning 
of the learning process.  

TENCompetence Domain Model 

The aims of TENCompetence have been defined on the web site 
(TENCompetence consortium, 2007) as: 
“A competence-based approach to lifelong learning aims to take account of all 
the informal and experiential learning that an individual acquires during the 
course of his or her lifetime rather than focusing solely on academic or 
theoretical achievement. This way an individual can make the most of his or her 
achievements, be they scholastic, work-based or the result of a leisure pursuit. 
The concept of competence development bridges the worlds of education, 
training, knowledge management, human resource management & informal 
learning in all domains which, hitherto, operated in relative isolation in respect of 
one another. A competence approach to lifelong learning ensures that the 
pursuit of a learning goal does not happen in a vacuum, but instead is bound to 
a precisely defined purpose such as an occupation, a profession, a market or a 
particular life or work situation.”  



  Using the PCM as a complementary approach to IMS Learning Design authoring | 109 

 TENCompetence is finding solutions for seven major problem areas (Koper & 
Specht, 2007) currently preventing an infrastructure for lifelong competence 
development to become a reality. TENCompetence is focusing at the needs of 
the individual lifelong learner that want to maintain their autonomy and control 
as much as possible. This aspect of user empowerment is typical for initiatives 
in the area of Personal Learning Environments (CETIS, 2007). Users are 
expected to develop their own competences, not merely by taking up 
competence development courses, but also by actively contributing to these 
courses.  
 
Before discussing the TENCompetence domain model we have to give our 
definition of a competence. We define a competence as the estimated ability of 
an actor to deal with certain critical events, problems or tasks that can occur in 
a certain situation. This estimation can be based on: self assessment, informal 
assessments by others, formal assessments by others or automated 
assessments. Competences can be attributed to an individual person, but also 
to a team or to an organization. We will use the term actor as a container for 
individuals, teams or organizations. Dealing with these critical events, problems 
or tasks requires a number of different competences. This set of required 
competences is called the competence profile (CP). Actors will develop and 
maintain many competences during their lifetime and these competences can 
be considered dispositions of these actors. A competence is a highly situational 
concept meaning that the definition and understanding of a competence is 
attributed to the relationship between actor and environment. Some of these 
competences are highly specific and others are transferable to more general 
situations. The specific labels we give to competences and CPs are determined 
by a community of practice that consists of all participants who are regular 
actors in that situation. Therefore, the competences for the same profession, job 
or function may vary from community to community even though the required 
behaviors are exactly the same. Finally, a competence is a latent characteristic 
of an actor: it is neither directly visible nor measurable. Only the concrete 
performances of actors are visible. From these performances we infer these 
latent characteristics and get an idea of the competences these actors have 
acquired. 
 
The TENCompetence domain model is the conceptual model for lifelong 
competence development and it describes the various entities and their 
relationships that play a role. The domain model is informed by our definition of 
competences, by the principles of LD and finally, by the concepts of learning 
networks (Koper, 2005b). 



 110 | Chapter 7 

competence profile
level

-target-function/job-level
-description
-period of validity

competence profile

goal

-type
-description
-pending : boolean

competence map

-domain

activity competence

{}

-description
-creator
-competence-type

competence
assessment

proficiency 
level

-target-proficiency-level
-description
-period of validity

knowledge
resource

actor

-role

action

-description
-start-time
-end-time
-b/logged : boolean

unit of
learning
(UOL)

competence
development
programme

(CDP)

learning network

-creator
-domain

competence
observatory

communication & 
collaboration

facilities

Common
Competence

Interoperability
Framework

topic

Unit of
Assessment

assessment
result

assessment
activity

competence
assessment

result

process
Log

product

learning
activity

support
activity

assessment
spec

IMS QTI

schedule

IMS LD

learning
path
spec

ePortfolio
spec

RSS

fake

*

*

*

*

export

0..1

1

<<use>>

*

*

result

-completed

objective/
prerequisite

*

*

*

1

export

import

***1..*

export

import

import

export

import

*

*

export

1..*

*

import

1..*

1*

*

export

1..*

1

*

*

export

import

export

import

import
export

*

*

*

<<use>>

 

Figure 7.1 UML Class Diagram of the TENCompetence Domain Model 

 

Figure 7.1 depicts the UML (OMG, 2003) class diagram of the TENCompetence 
domain model. The model is divided into four separate modelling areas: 
learning materials, actor performance, competence model and finally the 
learning network, or community of practice, as a container for all these 
concepts. The domain model will now be elaborated in more detail through 
these concepts and their relationships.  
 
Actors will perform actions in order to achieve their goals. Typical goals are: 
keeping up-to-date with a profession; improving particular competences; 
comparing competences with peers. These actions are always performed in the 
context of a community of practice which is represented by a learning network 
in the domain model. While performing actions, actors have the possibility and 
are stimulated to provide support to each other by means of communication and 
collaboration facilities. 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 111 

 
By performing the actions actors leave traces of their performance behind. 
These traces can take many forms ranging from mere activity logs to learning 
outcomes. These traces will be used to infer the measure in which an actor has 
acquired certain competences. Because competences are highly situational 
concepts their definitions are specific to the learning network. Competences can 
be acquired at different levels. These levels are modeled via proficiency levels, 
each representing a discrete ordinal measure to which a competence has been 
acquired. Competences can alternatively and/or additionally be assessed 
through specific competence assessments. 
 
A CP is a collection of competences, targeted at specific proficiency levels 
which are required to be able to deal with certain critical events, problems, or 
tasks in a certain situation. CPs can be further split up into CP levels 
representing the levels of a profession, for example, like trainer, master and 
trainee.  
 
Each learning network will define and describe its own set of competences and 
CPs. This set makes up the competence map of that community of practice. 
Some of these competences are generic and/or common to a domain but 
merely described differently for a particular community. A competence 
observatory will maintain the common and more formal definitions and 
descriptions for these generic competences ensuring transferability between 
communities of practice. Communities may contribute their competences and 
CPs to this observatory and thereby share their definitions with other 
communities. Equally communities may decide to reuse competences and CPs 
present in the competence observatory. 
 
Finally, the model for actions is informed by the concepts of learning design. 
Actions can be divided into: knowledge resources, activities, UOLs, and 
competence development programmes (CDPs). A CDP is an ordered set of 
activities and UOLs that have to be mastered to attain a certain competence or 
CP. CDPs can be exported to a learning path specification. We will see how the 
PCM, besides using LD as formalism for learning design which is quite natural, 
also uses LD as formalism for this learning path specification.  

The Personal Competence Manager 

The PCM is a client server application implementing a simplified version of the 
TENCompetence domain model. The PCM lets users manage their own 
competence profiles in the context of learning networks for which they are 
registered. These competence profiles can be used to reflect on their personal 
competences with respect to this profile. The PCM helps users find most 
suitable learning materials and learning opportunities for acquiring these 
competences. Furthermore the PCM encourages users to create and share 
their personal contributions with the rest of the community. For this purpose 
design and runtime are closely integrated in the PCM. The PCM does not work 



 112 | Chapter 7 

with concepts like releases or versions and the learning opportunities are 
continuously changing and hopefully thereby improving. This is very much in 
contrast with the top-down approach supported by the current LD toolset. 
 
At the time of writing of this article the design stages have been concluded and 
coding of the PCM has started. The software is available as open source on 
SourceForge at: http://sourceforge.net/projects/tencompetence/. Figure 7.2 
depicts the overall architecture for the PCM. The PCM is developed as a 
desktop client application using the Eclipse Rich Client Platform (Eclipse, 2007) 
allowing it to run on a range of platforms. The client is extensible via the Eclipse 
plug-in framework. The client communicates with the server using REST 
(Fielding, 2000) providing an easy to use interface for other clients in the future. 
The PCM server is deployed on a Tomcat application server. It provides several 
services which are governed by a servlet handler which in effect is acting as a 
simple service bus. The server core provides basic provisioning and query 
services for the data model objects we already encountered in the 
TENCompetence domain model. 
 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 113 

MySQL Database Server

Personal Competence Manager

<<artifact>>

Eclipse RCP

<<artifact>>

Personal Competence Manager

<<artifact>>

ReST Conduit

<<artifact>>

Core GUI Components

<<artifact>>

Client Data Model

<<artifact>>

Eclipse Plugin Framework

<<artifact>>

Rating Service Plugin

<<artifact>>

Forum Service Plugin

<<artifact>>

Message Service Plugin

Tomcat Application Server

<<artifact>>

ObjectRelational Mapping (Hibernate)

<<artifact>>

Authentication

<<artifact>>

Servlet Handler

<<artifact>>

Core Provisioning Service

<<artifact>>

Server Data Model

<<artifact>>

Query Service

<<artifact>>

Authorization

<<artifact>>

Forum Service

<<artifact>>

Rating Service

<<artifact>>

Message Service

REST

JDBC

 

Figure 7.2 PCM Architecture. 

 
Besides the core service, a number of additional, more autonomous services 
are provided by the server such as the forum, rating and message services. The 
idea is that these services will be extensible in future releases. Access to these 
services is governed by an authorization module. Finally, data persistence is 
managed through an object relational mapping using Hibernate. 
 
The core functionality of the PCM will be discussed using detailed screen 
designs that were available at the time of writing of this article. 
 



 114 | Chapter 7 

 

Figure 7.3 Screenshot of the PCM user Interface design 

 
Figure 7.3 depicts the main application window of the PCM. The PCM user 
interface can be roughly divided into two areas. The top half area (1 and 2) 
contains views and editors intended for viewing and editing CPs, competences, 
and actions. The lower half of the main window (3, 4 and 5) contains views that 
help and support the users in their task performed in the upper half. In figure 7.3 
the ‘Plan for Basic Guitar Skills’ is the active editor (area 2) and therefore 
provides the context for all views in the lower part of the screen. 
 
Figure 7.3 represents a snapshot of a situation where a learning network, in the 
PCM represented by its synonymous term community, already has been 
created and some content has been added to this network. Furthermore, any 
user may decide to start a new learning network at any moment in time. 
Learning networks are not governed by any central authority and can be set up 
by anyone. The creator of a learning network is also the owner of the 
community and determines policies for the learning network access. This 
principle of an entity owner controlling its access rights applies for almost all 
entities. The general idea is that the PCM should tend to openness whenever 
possible in order to stimulate active participation and contributions of all 
community members. The PCM relies on the principles of self-organization to 
regulate this process (Hadeli, Zamifirescu, van Brussel, Holvoet, & Steegmans, 
2003). 
 
View 1 of figure 7.3 shows the CP selected by the user. A user can select CPs 
via the competence selection dialog shown in figure 7.4. 
 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 115 

 

Figure 7.4 CP selection dialog 

 
Once the profile has been selected, the user may access the competence 
development plans for these competences. These will be opened in the CDP 
editor depicted in figure 7.3 (area 2). For any competence many CDPs may 
exist. The CDP is a container for a number of actions that represent a learning 
design targeted at the associated competence. A user may decide to simply 
start performing one of these actions by selecting them from the list, but can 
alternatively also decide to get some advice about the best next actions to take 
by clicking the ‘Show best route’ link. The PCM will now show a flow chart like 
navigational view of the CDP revealing the relations between the actions of the 
CDP.  
 



 116 | Chapter 7 

 

Figure 7.5 Navigation view. 

 
Figure 7.5 depicts this navigation view of the CDP. Actions in the CDP can be 
structured into sequences and selections. These concepts are very much 
informed by LD. By clicking ‘Show me what to do next’ the user activates the 
navigation service to receive help in selecting the best next action. In the first 
release of the PCM this navigation service will be implemented using the 
simplest of algorithms possible: suggest the next action which is not yet 
completed, but needs completing. In the future advanced navigation services 
will be available that also take personal preferences, learning styles and past 
performances of others into account. 
 
Users can actively contribute to a CDP by adding new actions or modifying the 
detailed learning path as shown in figure 7.5. By applying these changes to a 
CDP the user is sharing the changes with others. A shared CDP is behaving 
like a Wiki with regard to this sharing aspect. Alternatively, a user may decide to 
create a different CDP for the selected competence all together. This CDP will 
show up as alternative when another user is selecting a CDP in order to acquire 
this competence. 
 
When a user decides to perform an action from the CDP the action editor 
depicted in figure 7.6 is opened. 
 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 117 

 

Figure 7.6 Action editor 

 
The concept of an action was also informed by LD. Actions can take two forms: 
a link to an external implementation like for instance a link to a run of a UOL, or 
an action that is managed by the PCM itself. An action has a description 
instructing the learner what he is expected to do. Furthermore there are 
resources available helping the learner to perform this action. An action can be 
modified by changing the description and/or by modifying the resource 
associated with it. 
 
The bottom half of figure 7.3 that is composed out of area 3, 4 and 5 contain 
services that will help the users in performing their tasks. The agent view (area 
3), informs the user about events occurring in the community. Next (area 4) 
there is a group of services that are helping the user to perform the selected 
action (area 2) which consists of a rating service, a support forum, and a 
general discussion forum. Finally, there is a member services showing all the 
members of the community. The PCM will support FOAF (FOAF project, 2007) 
to support the creation of ad hoc user communities. The PCM may be extended 
with additional services via the standard plug-in mechanism provided by 
Eclipse. 

Capturing the Competence Development Plan using LD 

We have seen that the TENCompetence domain model and therefore also the 
PCM are informed by LD, especially the part dealing with learning materials. 
Concepts such as learning activities, support activities, learning resources and 
UOLs can be directly mapped onto concepts defined in LD. Furthermore, 
competences themselves can be mapped through LD prerequisites and 
objectives. Although this mapping may seem not that obvious at first, LD started 



 118 | Chapter 7 

out as a specification for modelling competence based learning (Tattersall et al., 
2005b). In the LD specification references are made to the ‘IMS Reusable 
Definition of Competency or Educational Objective’ specification (IMS RDCEO, 
2002) for both the prerequisites and objectives sections. Finally, the CDP brings 
all these components together and can be mapped onto the method section of 
LD. The CDP consists of a simple list of actions that may be performed by the 
user. This list can be mapped directly to a selection in LD. In more advanced 
designs of the learning path within the CDP there can be a mix of selections 
and sequences of actions. These constructs map directly onto the selections 
and sequences as defined in LD. So all CDPs main constructs can be mapped 
to equivalent LD constructs. Table 7.1 depicts the global mapping of the main 
entities found within the TENCompetence domain model onto the LD elements. 
Note that most elements have a direct one-to-one mapping with the exception 
of the CDP, which requires a more elaborate mapping because it provides the 
container for all other elements. 

Table 7.1 Translation of main TENCompetence Domain Model entities 

TENCompetence 
domain model entity 

IMS Learning Design element(s) 

knowledge resource learning-object 

learning activity learning-activity 

support-activity support-activity 

assessment-activity learning-activity with IMS Question and Test 
Interoperability content. 

unit-of-learning No mapping required because this is a place holder for the 
UOL itself. This allows a UOL to be fed back into the PCM. 

Competence prerequisite or learning-objective 

CDP unit of learning containing one learner role, the 
competences addressed by the associated CP expressed 
as objectives, selections and sequences as defined by the 
learning path of the CDP and a play for wrapping the 
activities. 

 
The user can initiate the transformation by clicking the ‘Export to LD’ option. 
The resulting UOL can be stored for publication or if needed, for further 
refinements and enhancements.  
 
Just as important as the data model entities themselves, is how the manner in 
which they are created. We have shown via the wire frames that editing a CDP 
and its components can be done without any knowledge or awareness of LD 
whatsoever. The PCM does not presume any particular workflow and allows a 
bottom-up approach because no distinction is made between design time and 
runtime. Via the principle of “what you see is what you get”, the PCM allows the 
active participation of learners in the creation of educational materials and 
scenarios. A learning design can become an emergent property of the work of a 
whole community. At any point in time a user may decide to capture the 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 119 

outcomes of this process in the form of a UOL by performing an export. The 
reasons for doing so can be numerous like being able to: 

• reflect on the quality of the learning design which can be achieved more 
easily now because the design is made explicit and formal; 

• reuse the same materials for another group of learners making the 
learning experience reproducible; 

• improve the design by adding more sophisticated features adding a 
great deal of extensibility and flexibility to the PCM; 

• share the design with other practitioners who could be using other e-
learning environments (LD provides this interoperability); 

• capture a design as a permanent record for the learning experience 
provided, this record in the form of a UOL can provide accountability 
independent of a particular version of particular software. 

 
The PCM uses LD as an export format for its CDPs. The exported UOL only 
captures parts of the functionality offered by the PCM because it is merely a 
snapshot of the design modelled through the CDP, not of the process that has 
lead to it. The context in which the CDP has been created, like the groups 
discussion, ratings of alternative CDPs, creation of ad hoc communities working 
together on the topic, building of reputations of users within the community, and 
so forth is not captured by the resulting UOL. Also personalized data such as 
the planned start and end dates for activities are not captured in the UOL 
because LD specifies a learning design at the level of user roles rather than at 
the level of an individual. This is also the reason that a UOL needs to be 
populated through the run mechanism before it can be deployed: the personal 
information has to be added by the runtime engine in order to deliver the 
design. 
 
The example depicted by figure 7.3 and figure 7.5 would result in the following 
LD fragment, which has been greatly simplified for readability purposes. 
 
<learning-design> 
  <title>Plan for Basic Guitar Skills</title> 
  <learning-objectives> 
    <item identifierref="basic_guitar_skills"/> 
  </learning-objectives> 
  <components> 
    <roles> 
      <learner identifier="learner"><title>Learner</title></learner> 
    </roles> 
    <activities> 
      <learning-activity identifier="a_beginners_course_guitar"> 
        <title>Beginners course guitar playing</title> 
      </learning-activity> 
      <learning-activity identifier="a_interactive_lessons:_scales"> 
        <title>Interactive lessons: scales </title> 
      </learning-activity> 
      <learning-activity identifier="a_rhythm"> 
        <title>Rhythm</title> 
      </learning-activity> 
      <learning-activity identifier="a_basic_guitar_skills"> 
        <title>Basic Guitar Skills</title> 
      </learning-activity> 



 120 | Chapter 7 

      <learning-activity identifier="a_basic_chords"> 
        <title>Beginners course guitar playing</title> 
      </learning-activity> 
      <activity-structure identifier="seq_1"  
                          structure-type="sequence"> 
        <learning-activity-ref ref="a_beginners_course_guitar" /> 
        <activity-structure-ref ref="sel_1"/> 
        <learning-activity-ref ref=" a_basic_chords "/> 
      </activity-structure> 
      <activity-structure identifier="sel_1" 
                          structure-type="selection"> 
        <learning-activity-ref ref="a_interactive_lessons:_scales" /> 
        <learning-activity-ref ref="a_rhythm"/> 
        <learning-activity-ref ref="a_basic_guitar_skills"/> 
      </activity-structure> 
    </activities> 
..</components> 
  <method> 
    <play> 
      <act> 
        <role-part> 
          <role-ref ref="learner"/> 
          <activity-structure-ref ref="seq_1"/> 
        </role-part> 
      </act> 
    </play> 
  </method> 
<learning-design> 

 
The translation of the constructs in the PCM has been fairly straightforward 
according to the rules described in table 7.1 All exported CDPs have such a 
fairly basic learning design because the possibilities to vary this design are 
relatively limited compared to the modelling possibilities and freedom offered by 
LD.  
 
The exported UOL can be edited with all available LD authoring tools, 
enhancing the design where needed. These tools allow more sophisticated 
editing of the UOL because they make all constructs of LD available to the user. 
However, this also implies that from this point onwards ample LD expertise is 
required to maintain the UOL. An enhanced design can be fed back into the 
PCM by creating a new action that wraps this UOL. The PCM integrates the 
CopperCore (Martens et al., 2004) LD runtime environment in order to deploy 
the modified UOL. Without this integration reuse of the enhanced UOL with in 
the PCM would not be impossible because the PCM would not be capable of 
interpreting the enhanced design itself. This also implies that once a UOL has 
been enhanced it can only be re-edited via the regular LD tools. 
 
This action that wraps the exported UOL, can replace the original CDP because 
its learning objectives are targeted towards the same competence as the CDP it 
was derived from. The action containing referring to the UOL could also be 
included into a bigger CDP which in turn could be exported to another UOL 
resembling the Russian dolls model. This way the bottom-up authoring 
approach provided by the PCM can be integrated with the more formal top-
down design approach associated with current LD authoring environments, 
providing the best of both worlds. Figure 7.7 depicts this editing cycle. 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 121 

 

 
 

Figure 7.7 The editing cycle 

 
In order for the round-trip editing cycle to succeed, a specific deployment 
approach for the exported UOL has to be chosen. Because the PCM relies on 
the ad hoc formation of communities per CDP, the resulting runtime delivery of 
the UOL should adhere to these communities as well. The proper integration of 
the PCM and the CopperCore runtime engine is crucial because the CDP 
membership and the UOL run subscriptions have to be kept synchronized at all 
time. Therefore exactly one run will be created of a UOL for every CDP 
containing that UOL. Users are added and removed from a run in accordance to 
their registration for the containing CDP. So de facto, the CDP population and 
the run population are kept in sync. For this first release of the PCM it is 
assumed that the UOL will allow users to be “rolled on” and “rolled off”. It is 
however possible to use LD constructs that forbid this type of continues 
registration by forcing users to be added in cohorts. These restrictions will 
simply be ignored in the first release of the PCM and need further investigation 
in the future. 
 
Because the exported UOL is wrapped with its own action when it is imported in 
the PCM, all regular support tools such as ratings and forums and self 
assessments are available when executing the UOL. Therefore, there is no 
need to synchronize outcomes of the CopperCore runtime engine with the 
PCM. However, in future releases, this could be the case. The CopperCore 
Service Integration framework (Vogten & Martens, 2006) provides a first 
direction towards a closer integration when the need should arise in future 
release of the PCM. 
 
The assignment of roles is another issue that needs to be resolved for the 
editing cycle of figure 7.7 to work. In LD, users can fulfill multiple roles in one 
design. A user needs to be assigned to one or more of such roles before the 
user can actively participate in a run. In those cases where a UOL is merely 
exported and not modified, this assignment is simple and can be done without 

Initial 
authoring 

of CDP via 

PCM 

 
Export 

CDP to LD 

 
Enhance 

LD 

 
Incorporat

e LD in 

CDP 



 122 | Chapter 7 

any additional actions because there will be only one role defined in the 
exported UOL as we have seen a few paragraphs ago in the simplified 
example. However, when the generated UOL is enhanced it is perfectly 
reasonable to have a more complex role structure. When the role mappings are 
the same for every user this is no real problem because the role assignments 
can still be handled automatically. However, when the design assumes users to 
take on different roles, the mapping is not that straightforward anymore. 
Intervention by a user or intelligent role mapping services may be required in 
those cases. For the first release of the software, simple mappings are 
assumed by default and user interaction is required for these more complex 
situations. For future releases this is an issue that needs further exploration. 

Conclusion and future work 

In this paper we have argued that LD is a very generic, complete and therefore 
also a complex specification. For a non specialist the use of LD in the daily 
teaching practice is only feasible with the help of sophisticated and probably 
specialized tools. The current state-of-the-art LD tools can be categorized as 
generic and LD aware, requiring a specialist’s expertise. Furthermore, an 
external data representation such as LD, leads to a natural separation of design 
time and runtime tooling. This in turn introduces a top-down workflow approach 
to provisioning of learning through consecutive stages of design, authoring, 
publication, user management, and finally delivery.  
 
Although this is a perfectly sound approach, it can also be problematic in cases 
where practitioners prefer a more bottom-up approach without having a very 
elicit view on the design. These practitioners will probably prefer an 
environment where there is no strict separation between design time and 
runtime. This approach is often more appealing, intuitive, and suitable for the 
initial stages of a design. The PCM provides this type of editing. Especially the 
CDP editor provides an easy means for creating a learning design that is built 
up from actions which in turn can be organized into sequences and selections. 
In a later stage, especially when a design has matured and proven to be 
particularly successful, there may be a need to redeploy the same design for a 
different group of learners. The ad hoc design can be exported to a UOL 
making the design formal. Other reasons for exporting the design could be the 
need to reuse the same design with other resources. It could also be the case 
that it would be worthwhile to redeploy the same design in a totally different e-
learning environment. Quality assurance could be another reason for 
formalizing an ad hoc design into a UOL. The exported basic designs can be 
improved upon with the normal LD tools and then be reused in the context of 
the PCM itself or by any other LD compliant environment. The PCM integrates 
LD tools such as CopperCore for this purpose. 
 
The approach presented in this paper allows for an easy introduction of users to 
LD in cases when there are clear benefits for the user to do so. The generated 
LD can be used as it is, but can also be improved upon. Whatever is the case, 



  Using the PCM as a complementary approach to IMS Learning Design authoring | 123 

the user will need ample LD knowledge from that point onwards. Nevertheless, 
the user has a clear motivation, one of the aforementioned reasons, to make 
the additional effort needed to become familiar with LD. Although the user can 
feed back the altered UOL into the PCM, once exported and modified, the point 
of no return has been passed. The PCM will not be able to help the user 
maintain the UOL. The reason for this is that advanced LD concepts have no 
equivalent in the PCM such as, for example, support for advanced 
personalization, support for different pedagogies, support for multiple roles and 
support for advanced role based workflow. Therefore, the PCM will never be 
able to really replace the existing LD tools but must rather be considered to 
offer a gentle introduction to LD for those practitioners who are new to the tools 
and concepts and do not have or see a need to invest in them right from the 
start.  
 
When exporting the CDP to a UOL two distinct approaches can be defined. 
First, the one discussed so far, where the produced UOL is reused in the 
context of the CDP. This export may assume that the services offered by the 
CDP will be available to the UOL as well because the UOL is reused in the 
same context. However, if the UOL is reused in a totally different context from 
the CDP, another type of export may be required because referenced and 
implicit services have to be defined and bundled in some form into the UOL. 
Although initial steps have been taken in this direction with, for example, the 
integration of assessment services through IMS Question and Test 
Interoperability (IMSQTI, 2006; Vogten et al., 2007), there is still further work to 
be done in this area especially regarding the standardization of service 
interfaces. For now the PCM will only support the first type of LD export 
requiring the PCM to run the constructed UOL. 
 
At the moment of writing several initiatives are improving on the available LD 
tools. In fact some of these initiatives have been bundled in the 
TENCompetence integrated project (TENCompetence consortium, 2007). It will 
be interesting to see how these tools develop and what this means for the 
integration in the PCM. A first step towards this integration is the harmonization 
of the look and feel of both the CDP editor and the Reload based LD editor. 
Work towards this direction has recently started and although at the time of 
writing this development is still very much in its early stages it looks like a 
promising step towards a more seamless integration of the PCM and LD.  
 
Until that time, the approach presented in this article combining the implicit 
bottom-up design method provided by the PCM and the more formal elicit top-
down design favoured by the current LD toolset offers a practical alternative. 





Chapter 8   

Review of Results and further 
Research and Development 



 126 | Chapter 8 

Introduction 

When the LD specification was officially released there was a real need for a 
reference implementation to help practitioners to better understand the 
specification. System integrators would be able to experiment with the 
integration of LD in their systems, and system developers would benefit from a 
reference design that demonstrated how an LD runtime environment can be 
built.  
 
Designing and implementing a runtime environment of this sort is in no way 
straightforward. LD combines characteristics from different languages; for 
example, declarative languages. We have seen that this is especially true for 
the LD conditions, which have similarities with production rules. It is also 
declarative in a more semantic sense: it requires much scaffolding from the 
runtime, as is the case, for example, with some of the services defined by LD. It 
is also a persistent language, meaning that the runtime is expected to 
automatically take care of persistence. LD shares some characteristics, too, of 
an imperative programming language in which statements are given in the order 
they are to be executed in. Finally, it resembles a workflow language, 
orchestrating the learning processes between the different learning and support 
roles.  
 
Given these combined characteristics, implementing a runtime environment 
requires considerable resources and effort, even when provided with a solid 
design. To give an idea of the magnitude of such an investment, the number of 
code lines can be used as a reference (Albrecht & Gaffney, 1983; Rosenberg, 
1997): for the CopperCore implementation this results in 30,000 lines of Java 
code. Although not a huge amount it does represent considerable effort, 
particularly as this is only the code for the engine. By comparison, the Apache 
HTTP 2.0.x involves 90.000 lines of code (M Squared Technologies, 2008). Any 
implementation, therefore, should be reusable in many different situations to 
make costly rebuilds less necessary. This may ease the uptake of LD because 
it can be used without having to invest in engine development.  
 
LD itself relies on other specifications and learning services. Although it comes 
with a fairly detailed description of how to incorporate these specifications and 
services in the learning design at a lexical level, very little is stated about the 
runtime implications. This situation led to the two research and development 
questions addressed in this thesis.  
 

i) How can a fully compliant reusable reference runtime environment 
for the IMS Learning Design specification be designed and 
implemented? 

ii) How, given a reference implementation for the IMS Learning 
Design specification, can implementations for other e-learning 



  Review of Results and further Research and Development | 127 

specifications and learning support services be integrated 
generically at runtime level? 

Review of the results 

In chapter 2 we defined the LD engine as a software component for processing 
LD’s business rules for any UOL. The engine supplies input for an LD player 
responsible for rendering the results of the engine in a form presentable to a 
user. The first question of this thesis addresses a reusable reference design 
and implementation of an LD engine. Starting with the more in-depth analysis of 
LD in chapter 2, we identified seven categories of requirements that must be 
met by an LD engine: validation, parsing, publishing, provisioning, population, 
personalization and integration. We now review our results by discussing how 
CopperCore has dealt with these requirements. 

VALIDATION 

CopperCore provides validation in two distinct stages. The first is validation of 
the structural soundness of a UOL package and the resources within it; in 
chapter 2, we saw how such a package is constructed. The second stage 
involves more semantic validation of the package by checking the constraints 
imposed on the learning design as defined by LD. CopperCore provides this 
validation as an integral part of the parsing process. 
 
CopperCore validates the UOL’s structural soundness in four consecutive 
steps. In the first step, the UOL content is unzipped while ensuring that the UOL 
contains an ‘imsmanifest.xml’ file. The second step involves validating this 
manifest file against the appropriate XML LD schema, which can be level A, B 
or C. If this validation is successful, the learning design contained in the 
manifest is parsed and all references checked, ensuring that each reference 
refers to a valid LD entity. This step is important because XML schema does not 
support this type of validation. Furthermore, any referential recursion could lead 
to unexpected results later on in the process. The third step comprises the 
validation of files of type ‘imsldcontent’. These can contain references to the 
properties and activities in the learning design which must be checked. Finally, 
the fourth step consists in cross checking all referenced resources in the 
manifest against the files contained in the UOL. This results in errors whenever 
files are missing from the UOL but referenced in the manifest and vice versa 
this check will result in warnings whenever files are included in the UOL that are 
never referenced from the manifest. All validation results are collected in a log 
which is returned to the client. Validation continues even if errors occur, 
allowing the user to correct as many errors as possible before the next 
validation attempt. After the first validation stage, CopperCore has ensured the 
correctness of the UOL package, and is ready to start the parsing stage. 



 128 | Chapter 8 

PARSING 

CopperCore parses the UOL as part of the publication of the UOL. This parsing 
– and more specifically, the learning design within the UOL – starts by building 
up an internal data model of the learning design in-memory. Various data model 
classes represent equivalent LD elements. After the construction of this in-
memory data model, the second, more semantic validation is performed. Most 
noteworthy is the validation of data types during this stage. CopperCore 
implements static, parse-time coercions checks for data types, and validation 
picks up on any illegal type conversions. We determined in chapter 2 that LD is 
unclear on this matter; we decided to let runtime predictability prevail over 
expressiveness in this case. 
 
If no validation errors occur, the parsing process proceeds with generating 
property definitions for the FSM properties as described in chapter 3. Each data 
model class is capable of generating the appropriate and required definitions 
associated with that class. For example, a learning object will create an implicit, 
local personal property definition containing the content of the learning object as 
part of its definition. In similar fashion, property definitions are generated for 
explicit properties. Data model objects with a visibility or completion state will 
generate property definitions for these attributes as well. In addition, specific 
property definitions will be created for the activity tree and environment trees 
discussed in chapter 4. After this process is complete, all necessary property 
definitions to capture the state of a single FSM have been created. 
Furthermore, the learning design has been dissected into XML snippets stored 
as part of the property definitions. These snippets form the source for the 
content personalization during runtime. 
 
After creating the property definitions, all explicit and implicit conditions are 
generated. These will be interpreted by the event handling mechanism 
discussed in chapter 3. Explicit conditions are simply defined in the learning 
design itself. Implicit conditions represent the business logic defined by LD, 
such as completion rules. The data model objects generate these implicit 
conditions using a slightly modified version of the LD expression language. All 
conditions are stored in a special property definition. Based on these conditions, 
an event table is built linking all potential triggers with the conditions to be 
evaluated. This table allows the event dispatcher described in chapter 3 to 
quickly decide which conditions should be evaluated after an event has 
occurred. If the antecedent of such a condition evaluates to true, the associated 
event handler will be launched and process the consequence of this condition. 

PUBLISHING 

CopperCore does not provide direct access to the validation and parsing stages 
through its API. Rather, this is done indirectly through the publication process. 
CopperCore first validates the UOL, making sure it is structurally sound. Next, 
the parser starts. If the publication is started in validation-only mode or if there 
have been validation errors, the publication process stops; in all other cases, it 
continues by persisting the outcomes of the parsing stage in a relational 



  Review of Results and further Research and Development | 129 

database. CopperCore will overwrite any existing property definitions, thereby 
effectively allowing republications of existing UOLs.  
 
Although republication is a powerful feature of the engine, it must also be used 
with care, especially once a UOL has been populated with users. The type and 
restrictions of explicit properties could have been changed between UOL 
versions. If these properties have already been instantiated, their values could 
conflict with the new property type or the restrictions imposed on them. In these 
cases CopperCore will reset their values automatically to the defined default 
value or to ‘null’ if no default value has been defined. In this way, users could 
lose data as result of republication.  
 
More important, existing property values can leave the engine in an unexpected 
state if the designer failed to consider them when changing the learning design. 
This state occurs, for example, when a learning design defines that an act is 
only completed if a property has the value 2. Suppose the same learning design 
only increments the value of this property when the value is 1, which also 
happens to be the default value: this design will not cause problems when 
populated with new users. However, suppose 0 was the default value in an 
older version of the same learning design, and that several users already have 
a 0 value for this property. These users would get stuck in their learning process 
once the new learning design was published, because the property value would 
never get to 2. Therefore, learning design authors have to be particularly careful 
when republishing a UOL, especially if they have modified the property 
declarations and/or conditions in their designs. 

PROVISIONING 

After successful publication, CopperCore provisions the resources contained in 
the UOL by creating a separate folder for each UOL in the root folder of a web 
server. All resources contained in the UOL are copied to this location. 
Republication simply overwrites the resources in this folder. The UOL itself is 
now ready to be provisioned through the creation of runs. In chapter 4 we 
described the CopperCore’s LDCourseManager API, which provides the calls 
necessary to create multiple runs for each UOL. CopperCore forces an 
evaluation of all defined conditions in the UOL once a user has been assigned 
to a run. This results in an initial seed of some of the properties, and allows 
CopperCore to process any tautologies that do not have a trigger. The following 
XML snippet is an example of such tautology. 
 
<if> 
  <is> 
    <property-value>1</property-value> 
    <property-value>1</property-value> 
  </is> 
  <then> 
    <hide> 
      <class class="answers" title="Show answers" with-control="true"/> 
    </hide> 
  </then> 
</if> 



 130 | Chapter 8 

 
This snippet will result in the hiding of all content with the class attribute 
‘answer’ for each user when users are assigned to the run. However, the 
expected runtime behavior for this type of tautology is not clearly documented in 
the LD information model. Because the condition has no trigger, it will no longer 
be evaluated. We have therefore chosen to force evaluation of these conditions 
during run population. 

POPULATION 

Population involves the assignment of users to specific roles within the context 
of a run. CopperCore has an active role for each user in a run to establish which 
FSM to use when personalizing the UOL; it is therefore mandatory to set this 
active role. This makes it possible for passing merely two parameters, the run-id 
and user-id, to suffice for most calls to the LDEngine API (as shown in chapter 
4). 
 
After population, the CopperCore engine creates instances for each property 
according to the associated property definition. As we saw in chapter 3, this 
definition determines the instantiation scope and default value. Properties are 
created just in time, meaning that they are instantiated when referenced for the 
first time. This late binding ensures that the aforementioned republication issues 
are kept to a minimum. Properties are automatically persisted by the 
CopperCore engine. This persistence is controlled by a transaction manager, 
and new event loops begin by setting up new transactions. This ensures that 
the engine state remains valid even when an error occurs during event 
handling. In such cases all changes are reverted, effectively reinstating the last 
known valid state of the FSMs. In chapter 3, we concluded that the engine can 
be thought of as a collection of FSMs, and therefore automatically ensures that 
CopperCore meets all multi-user and multi-role LD requirements.  

PERSONALIZATION 

We argued in chapter 3 that personalization is simply a matter of transforming 
the generic XML snippets into personalized content by replacing references to 
implicit and explicit properties with their actual values as defined in the FSMs. 
This also implies that the FSMs have to be up to date at any given moment. We 
described the event handler mechanism and stated how each FSM is kept up to 
date by reacting to triggers and launching the corresponding event handlers. 
Therefore, using the concept of the event handler, CopperCore merely has to 
respond to triggers occurring during runtime to keep the FSMs up to date. In 
most cases these triggers are properties changing their value, but the elapsing 
of time and changing of roles can also be triggers. CopperCore has a special 
timer that raises a trigger after a predefined time. The period has to be fine 
enough to handle any reasonable learning design, but at the same time course 
enough to avoid overloading the engine with events. The timer is configurable 
by the system administrator, and set to 30 minutes by default. Each trigger can 
cause one or more rules to be fired, which in turn launches specific event 



  Review of Results and further Research and Development | 131 

handlers. These event handlers could result in the change of property values, 
which in turn could trigger other events.  
 
CopperCore pays extra attention to recursions, as they could freeze up the 
engine. It does so in two ways. First of all, some types of recursion can be 
detected during the validation stage. Recursion may occur when resolving 
references in the UOL, as discussed in chapter 3, or when triggering events (a 
more subtle form of recursion). Consider the following LD snippet: 
 
<if> 
  <greater-than> 
    <property-ref ref="int-prop" /> 
    <property-value>1</property-value> 
  </greater-than> 
  <then> 
    <change-property-value> 
      <property-ref ref="int-prop" /> 
      <property-value> 
        <calculate> 
          <sum> 
            <property-ref ref="int-prop" /> 
            <property-value>1</property-value> 
          </sum> 
        </calculate> 
      </property-value> 
    </change-property-value> 
  </then> 
</if> 

 
Once the value for property ‘int-prop’ is set to 1 or higher it increases the value 
of property ‘int-prop’ by 1, which in turn satisfies the condition again. If the 
engine did not intervene, it would get stuck in an infinite loop. CopperCore 
counters this by allowing each rule, and therefore also each condition, to be 
fired once in the lifetime of an event chain. Setting the value of property ‘int-
prop’ to 1 would thus result in a value of 2 after completion of the event chain. 
The expected behavior, however, is not clearly documented in the LD 
information model, and our interpretation is mostly informed by practicality. Of 
course, this is not ideal and could result in interoperability issues. 
 
The event handling mechanism with all its safeguards such as recursion 
detection and transaction management ensures that CopperCore contains only 
valid states for each of its FSMs. The next step of personalization is the 
transformation of the generic XML snippets stored in the property definition. 
This process is fairly simple and consists in merging property values from an 
FSM into the generic XML snippet by replacing the property references with 
their actual value. CopperCore performs the transformation of these XML 
snippets when they are fetched through the LDEngine API. 

INTEGRATION 

CopperCore was designed to be reusable from its very conception. This was 
achieved by clearly separating the engine from the player and providing two 
APIs, which give access to the engine. The APIs presented in chapter 4 have 



 132 | Chapter 8 

proven quite stable. Chapter 4 was based on work done in the early stages of 
CopperCore’s development, at a time when it consisted in merely level A. 
Nevertheless, the API itself did not change at all when CopperCore progressed 
to become level-B and -C compliant.  
 
The same APIs were extended with SOAP-compliant equivalents; the SOAP 
protocol effectively opened up use of the engine beyond the Java-based 
developments. We succeeded in building an experimental ‘fat player client’ for 
the engine with the eclipse RCP framework using the SOAP calls. Figure 8.1 
shows a screenshot of this prototype. The ELeGI (ELeGI, 2007) project 
incorporated the engine in its .Net developments. Taken together, the fat client 
and ELeGI project demonstrate that the same engine can be used in different 
deployments and environments. 
 

 

Figure 8.1 Screenshot of CopperCore client using eclipse RCP and SOAP API 

 
In chapter 1 we provided several other examples of how the engine has been 
integrated and reused in different situations. When the development of 
CopperCore started, we decided to make the software available through an 
open-source license. This allowed another kind of reuse: developers can study 
and modify the source code of CopperCore and CCSI when needed for their 
own specific purposes. In chapter 1 we also presented some examples of a 
modified CopperCore source code.  
 



  Review of Results and further Research and Development | 133 

The CCSI architecture introduced adapters that stubbed the original 
CopperCore APIs with equivalents for both the Java RMI and SOAP protocols. 
However, the provided methods and passed parameters of these APIs 
remained the same. Therefore, only minor modifications to client code are 
required to migrate from the original CopperCore API towards these CCSI stub 
APIs. One design decision we took when defining the original APIs was to limit 
the number of available methods as far as possible. We also tried to make the 
correct sequence of required calls to the API as logical and intuitive as possible 
by creating chains of method calls where each call requires data obtained from 
a previous call to be passed as a parameter in the next call. This approach 
guides API users on invisible rails, as it were. However, it also limits the 
possibilities to use the engine in different ways than originally perceived. In the 
‘Further research and development’ section, we propose an alternative service 
design that would also offer a more granular API. 
 
We have now reviewed how CopperCore meets the runtime requirements of 
validation, parsing, publishing, provisioning, population, personalization and 
integration by applying the design approach presented in chapter 3 and chapter 
4. All three LD levels are supported by the current CopperCore version. 
Compliancy has been demonstrated in practice by various users’ applications of 
the engine in different projects. CopperCore itself has been downloaded about 
10,000 times, which is an indication of its impact. In addition, none of the 
published UOLs revealed fundamental problems with the engine design or 
compliancy, though we concluded in chapter 1 that performance tests revealed 
CopperCore to not yet be suitable for enterprise-scale deployments. This is 
disappointing, even if this kind of use was not the focus of our research and 
development; later in this chapter we discuss some proposals that could 
optimise performance. And by reviewing in chapter 1 the projects that have 
used CopperCore, we can nevertheless conclude that it has had a considerable 
impact on the LD community and established itself as the de facto reference 
runtime implementation for LD. It can thus provide guidance for those issues 
where the LD specification lacks clarity. Some of those issues we have already 
encountered, such as the processing of coercions, recursions and trigger-free 
tautologies.  
 
Our second research and development question addressed the generic 
integration of learning support services and other e-learning specifications into 
the CopperCore engine. In chapter 1 we gave an example of an asynchronous 
conference declaration in LD; the specification also allows other e-learning 
services to be referenced through declaration in similar fashion. An engine 
could provision all these services and specifications by simply implementing 
them as part of the engine core. However, this approach may not be overly 
sensible given that a number of implementations for these services are already 
available. Furthermore, LD allows the services to be extended in the future; 
other specifications, too, could become available. A more agile approach is 
therefore required to allow the integration of these services and specifications in 
the context of an LD runtime.   
 



 134 | Chapter 8 

Such integration involves more than just merely provisioning services. The LD 
runtime must be informed about the service outcomes to be able to adequately 
respond. chapter 5 presents the CCSI architecture and implementation as a 
generic solution for the integration of these services within CopperCore.  
 
CopperCore had already established an installed base when CCSI development 
started. Therefore, the CCSI architecture in chapter 5 adds a new layer of 
service adapters wedged between a CopperCore client and the service 
implementation to be integrated. These service adapters replicate the original 
interfaces of the service implementations. This means that only minimal code 
modifications need be applied to the existing clients in order to use CCSI. The 
service adapters enable the underlying service to listen for events from other 
service adapters, while simultaneously allowing events generated by the 
underlying service to be sent to a dispatcher. This dispatcher acts as a service 
bus, and at the same time is the central registration point for the service 
adapters. We saw that having this service registry allowed the seamless 
replacement of one adapter implementation by another as long as the service 
API was honored. Furthermore, new adapters can be added with the needed 
flexibility as new services become available.  
 
This CCSI architecture was elaborated by taking the example of the IMS QTI 
and LD integration. We showed how we used lexical similarities between 
properties, defined in both LD and IMS QTI, to synchronize assessment 
outcomes with a learning design. This integration was informed by IMS 
interoperability guidelines. Although not ideal, it provides a practical solution to 
the integration and interoperability problems between specifications. This was 
also the approach we took with CCSI in general: instead of having fairly heavy 
solutions for synchronizing services, it provides a lightweight, flexible and 
practical solution for service integration.  
 
The concept of property synchronization based on lexical similarity can also be 
applied to other services. Furthermore, events triggered as a result of 
administrative tasks such as run provisioning and run population can be used to 
instantiate some services. In chapter 1 we described some initiatives that 
extended CCSI with new service types, including new areas such as gaming 
(Moreno-Ger et al., 2007) and specifications like IMS SCORM (Tattersall et al., 
2006). Interesting, too, is the development of a widget adapter (Wilson et al., 
2007) which promises to provide much flexibility. 
 
With CCSI we demonstrated that it is possible to integrate e-learning services 
and other specifications with CopperCore. Our approach is both lightweight and 
generic while intruding little on existing developments. In chapter 1 we 
concluded that we successfully addressed both research and development 
questions with CopperCore and CCSI. However, we also concluded that the 
uptake of LD remained problematic even after the first range of applications 
such as CopperCore/CCSI, CCRT, Reload and SLeD became available. In 
‘Creating an 28 weeks course with LD and CopperCore’ (Spang Bovey & 
Dunand, 2006) and ‘Panning for Gold’ (Bailey et al., 2006), the authors argue 
that the maturity of the LD toolset is a major cause of this disappointing uptake. 



  Review of Results and further Research and Development | 135 

The current LD authoring environments in particular are identified as a major 
obstacle due the amount of expertise they require and the top-down approach 
they tend to impose. 
 
Therefore, we presented in chapter 7 a complementary approach to LD 
authoring that lowers the threshold for practitioners in adopting LD. This 
combines bottom-up authoring with easy-to-use tools with the more formal, top-
down approach currently favored by the LD toolset. We used the Personal 
Competence Manager (PCM) to illustrate this integration. The PCM allows 
users to develop their personal competences within a competence profile. Each 
competence may have one or more associated competence developments 
plans (CDP). These CDPs contain a number of activities that support a user in 
acquiring the competence. The PCM allows easy-to-use editors for these 
constructs. Effectively, this allows the creation of very simple learning designs, 
albeit not LD compliant. Because no distinction is made between design time 
and run time, authors can constantly modify their learning designs with 
instantaneous effect. 
 
Although the low threshold of this kind of editing is beneficial to most authors, 
we identified several arguments for investing in a more formal description of the 
learning design in LD: accountability, reproducibility, extensibility and quality 
control. We also explained how the PCM concepts can be mapped onto LD. 
Each CDP can be expressed and exported as a UOL, and enhanced using the 
regular LD authoring tools. Our approach is complementary because the LD 
authoring tools are still required to enhance, modify, or extend the UOL. The 
authoring cycle is completed by feeding the produced UOL back into the PCM 
as an alternative to the original CDP. This cycle makes it possible to use the 
most appropriate authoring tools for the situation at hand. Authors can benefit 
from the ease of use of the PCM’s simple authoring environment in situations 
where having a formal specification is not valuable. They may also decide to 
export their learning design to LD when, for example, it has matured into a 
stable state and requires further refinement not offered by the PCM. 
 
This authoring approach requires that CopperCore and the PCM be closely, 
seamlessly integrated; we have discussed some of the issues involved in 
achieving this including rolling-on and rolling-off users, inclusion or exclusion of 
services, and role assignments. The latter can be especially awkward because 
the PCM does not distinguish formal roles. How users should be assigned their 
corresponding roles when importing the UOL is a challenge still to be solved, 
and might require human intervention. In the ‘Further research and 
development’ section we discuss a design that could help solve some of these 
provisioning and population issues. 
 
We conclude that both research and development questions were successfully 
addressed by the work presented in this thesis. Both the CopperCore and CCSI 
developments have generated considerable interest and impact within the IMS 
LD community, and played important roles in the uptake of LD after its release. 
However, we must also conclude that the current LD toolset has not yet 
reached the necessary maturity for large-scale deployments. In ‘Learning 



 136 | Chapter 8 

design: concepts’ (Koper & Bennett, in press) the authors provide an overview 
of these issues. They can be technical – system performance, for example – but 
mostly concern usability, with LD authoring remaining particularly problematic. 
We have provided some solutions for these issues in this thesis. In the next 
section we identify some areas for future research and development.  

Further research and development 

We have established in this thesis how a reference runtime environment for LD 
can be designed and implemented. Our design and the resulting 
implementation were tested by their use in other research and developments 
and through small-scale experimental deployments. We produced an 
implementation that uses a collection of FSMs to deal with the challenge of 
processing the complex LD specification. The event managers were 
implemented elegantly by reusing the LD condition language to define their 
behavior. This allowed us to express LD’s ‘implicit’ business rules, as described 
in the IMS Learning Design Information Model, explicitly as LD conditions. This 
not only contributed to the overall elegance of our implementation, but also 
helps to understand and correctly interpret the specification; the lack of 
expressiveness of XML schema was one of its criticisms (Amorim, Lama, & 
Sánchez, 2006a; Amorim, Lama, Sánchez, Riera, & Vila, 2006b).  
 
The TELCERT project also addressed some of these issues. Additional 
descriptions in the form of natural language such as that provided in the IMS 
Learning Design Information Model are required to compensate for the 
limitations of the XML schema language. This also applies to the description of 
the LD runtime behavior, which is entirely in natural language. The use of 
natural language can lead to ambiguous interpretations, which in turn can lead 
to interoperability issues. In the previous sections we have already encountered 
ambiguities in the correct processing of coercions, recursions and tautologies.  
 
Because CopperCore has established itself as the de facto reference runtime 
implementation, it can help guide users and developers when the correct or 
desired interpretation of LD is unclear. However, it would be better to have a 
more precise and formal representation for those parts of the specification 
which could lead to ambiguity. In their articles ‘A learning design ontology based 
on the IMS specification’ (Amorim et al., 2006b) and ‘Semantic modelling of the 
IMS LD level B specification’ (Amorim et al., 2006a), the authors propose the 
use of first-order logic as a more formal notation. They distinguish two kinds of 
axioms: design time and runtime axioms. They focus on the former; we will deal 
with the latter. The event handlers described in chapter 3 responsible for 
processing LD’s business logic could be considered implementations of such 
runtime axioms.Table 8.1 shows the completion rules for an LD act; how part of 
the LD specification expressed in natural language is converted into a rule 
expressed by an LD condition. The first row contains the text of the IMS 
Learning Design Information Model dealing with the completion of an act. The 
next row describes the same completion rule but this time expressed by two 



  Review of Results and further Research and Development | 137 

formal, first-order logic axioms. This first-order logic formalization can be 
applied to a UOL. The third row depicts shows an XML snippet of a UOL 
dealing with the completion of an act, with the resulting LD condition 
represented in the fourth row. Note that all quantifiers have been resolved. The 
condition will be processed by an event handler as described in chapter 3, 
ensuring that the FSMs are kept up to date. 

Table 8.1 LD axiom in natural language and first-order logic, followed by its implementation as an 

event handler condition 

  

Information 
model 
description 

Page 42 (item 0.4.1): “This element states that an act is completed when the 
referenced role-part(s) is (are) completed. 
More than one role-part can be selected, meaning that all the referenced role-
parts must be completed before the act is 
completed.” 

Formal first-
order logic 
axioms    

∀ a, ca, rp | a ∈ Act ∧ ca ∈ Complete-Act ∧ complete-act-ref(ca, a) ∧ rp ∈ Role-
Part ∧ when-role-part-completed(rp,ca) → role-part-ref(rp, a) 
 

∀ a, rp | a ∈ Act ∧ rp ∈ Role-Part ∧ role-part-ref(rp,a) ∧ complete(rp) → 
complete(a) 

Example 
XML 
snippet of 
UOL 

<act id="act2"> 
  <title>ACT2: INTRODUCTION TO PREPARATORY PHASE</title> 
    <role-part identifier="RolePart3"> 
      <role-ref ref="Learner"/> 
      <learning-activity-ref ref="Preparation_Intro"/> 
    </role-part> 
    <role-part identifier="lastrolepartact2"> 
      <role-ref ref="Support_Staff"/> 
      <support-activity-ref ref="Preparation_Intro"/> 
    </role-part> 
    <complete-act> 
      <when-role-part-completed ref="lastrolepartact2"/> 
    </complete-act>  
</act> 

Generated 
condition to 
be 
interpreted 
by event 
handler 

<if> 
  <complete> 
    <role-part-ref=="lastrolepartact2"/> 
  </complete> 
</if> 
<then> 
  <complete> 
    <act-ref ref="act2" /> 
  </complete> 
</then> 

 
Having this formalization of the LD specification will help developers and 
authors correctly and unambiguously interpret the specification. But it could also 
help to generate the conditions processed by the event handlers. The logic for 
creating these conditions is currently hard coded in the engine. If the translation 
of the first-order logic axioms could be automated, parts of this logic could be 
externalized. This is not just a good idea in general, but would also improve the 
robustness of the code and make it more flexible and adaptable for future 
changes.Table 8.1, however, shows only a single example; further investigation 
is needed to determine whether all LD runtime rules can be expressed this way. 
 



 138 | Chapter 8 

CopperCore struggled with performance issues. Most were effectively 
addressed in the latest release of CopperCore, making the engine suitable for 
deployments of up to 150 simultaneous users. Nevertheless, our 
implementation of the property persistence requires further attention. 
CopperCore implements the proposed design of chapter 3 quite literally, 
meaning that properties are retrieved whenever needed to evaluate 
expressions, personalize the activity tree or monitor progress. Although property 
retrieval is fast, doing so can still slow things down simply because there are so 
many properties, each referenced and fetched separately. Most time is lost in 
the overhead when establishing a connection with the EJBs. Closer inspection 
revealed that fetching one property has more or less the same performance 
impact as fetching 100 properties simultaneously, because the overhead is the 
predominant factor. Therefore, the solution for increasing overall performance 
lies in clustering the property access. The challenge here is to find a balance 
between the current situation, where each property is retrieved separately, and 
retrieving all properties for all users simultaneously. Several grouping 
mechanism can be envisaged for collective retrieval. 
 
Two major arguments withheld us from implementing any of the suggested 
performance optimizations in the last update. First, the current performance 
appears acceptable and adequate for the typical use of the CopperCore engine 
at this moment in time. Second, the suggested adaptations would ultimately 
clutter up the clean design we described in chapter 3. In other words, we let 
readability and cleaner implementation prevail over performance optimization. 
 
Our CCSI approach showed how specifications such as IMS QTI and learning 
services like forums can be integrated with CopperCore. We have seen that 
CopperCore behaves similarly to any other service: an adapter has to be 
provided and communication is handled through the dispatcher. The CCSI 
approach is generic, to the extent that it could be used in absence of an LD 
service. What makes the LD adapter and therefore CopperCore stand out is the 
fact that it is also the integrative container for all other specifications. A UOL 
contains the learning design, the IMS QTI items and all the resources. 
CopperCore therefore provisions the content for the other services.  
 
However, a different approach for a service-oriented architecture using more 
fine-grained services is also conceivable. Because our CCSI approach is 
generic, one could argue that the CCSI architecture could have been used for a 
complete engine redesign. There are indeed some similarities between the 
CopperCore and CCSI designs. The CCSI dispatcher and the engine’s event 
dispatcher have similar purposes, and the adapters and event handlers also 
show commonalities. The merger of CCSI and CopperCore could have resulted 
in architecture similar to that presented in figure 8.2. 
 



  Review of Results and further Research and Development | 139 

Service Bus

IMS LD Services Other Services

<<component>>

Dispatcher

<<component>>

Property
 Service

<<component>>

IMS LD Rules 
Service

<<component>>

User Management 
Service

<<component>>

Role Management 
Service

<<component>>

Content 
Service

<<component>>

MessageService

<<component>>

Services

<<component>>

Validation
 Service

<<component>>

Publication 
Service

<<SOAP/RMI>> <<SOAP/RMI>>

 

Figure 8.2 Integrated CopperCore CCSI architecture 

 
The architecture of figure 8.2 is probably not fully accurate and some services 
are likely missing, but it does show how the CopperCore engine could be 
broken up into more independent, finer grained services. These resemble 
services as defined by CCSI, and also communicate with each other through a 
dispatcher. Each service would be accessible through its own API, not shown in 
the diagram. An high-level public API such as that provided by CopperCore 
could be added to the service bus. The services themselves would expose a 
more technically oriented, finer grained API.  
 
We considered using this architecture because it is cleaner and more modular, 
but there were practical and technical considerations not to do so. We 
anticipated problems with the number of events being sent via the bus and the 
impact this would have on performance. These events are so numerous 
because each property value change triggers an event, and our design relies on 
having many properties represent a single FSM. The performance of the bus is 
therefore critical. Because we do not want to make assumptions about how the 
underlying services are deployed, this architecture must support remote 
message invocation protocols such as SOAP and RMI to communicate with the 
services. However, these protocols have considerable performance overhead. 
In our CCSI approach such performance penalties are limited because only a 
limited number of events are dispatched. Nevertheless, the proposed 
architecture of figure 8.2 requires further research into solutions to the expected 
performance issues. Peter and Vantroys (2005) looked into using a workflow 
engine to build an LD runtime, and it would be interesting to also explore if and 
how orchestration and workflow standards such as BPEL4WS and XPDL could 
play a role in our revised architecture. Another consideration for not revising our 
architecture was a practical one. CopperCore by that time already had an 
installed base, and implementing this architecture would likely have resulted in 
major code and API changes. 
 



 140 | Chapter 8 

In chapter 7 we concluded that there are still unresolved issues regarding 
rolling-on and rolling-off users and their role assignments later in the process. 
This provisioning problem is not unique to CopperCore, although its specific 
implementation is. We would face similar problems if we wanted to enrol users 
in other e-learning environments. Therefore, a generic solution for this type of 
problem could be very useful. 

<<component>>

Handle service

<<component>>

CopperCore Provisioning

<<component>>

Provisioning Service

<<component>>

CopperCore Engine

<<component>>

Provisioning Rules

<<component>>

Other Provisioning

RegisterProvider

ProvisioningRule

<<component>>

Requestor

<<component>>

Authoring

CourseManager

ProvideAccessProvideHandle

Provide

 

Figure 8.3 Proposed architecture for generic provisioning service 

 

Figure 8.3 depicts a draft architecture for generic provisioning with a handle 
service at its core. This handle service has two purposes. First, it will provide a 
unique handle for each learning unit. We use the term ‘learning unit’ deliberately 
here because it can represent not only a UOL but also any other learning 
artifact that can be provisioned. The handle represents the learning unit and not 
an instantiation of it; in the case of LD, then, it represents the UOL and not a 
run, which could be implemented by using the URI of the UOL. This handle 
should be used when referring to this learning unit.  
 
The second purpose of the handle service is to provision a learning unit 
instance for a particular user. We foresee at least three responses to such a 
provisioning request: request denied, meaning that the user will not be granted 
access to learning unit; request granted, which will return a URL that gives 



  Review of Results and further Research and Development | 141 

access to a particular learning unit instance; and request postponed, meaning 
that the decision whether the user will be granted access to the learning unit is 
postponed. The requestor must be able to deal with all three responses, and 
inform the user about the access status. For the handle service to process 
these requests, at least one provisioning service should have registered with 
the handle service.  
 
Figure 8.3 shows a CopperCore provisioning service. This particular service 
would have a database with rules providing information about the roll-on and 
roll-off behavior for each of the provided UOLs, and even for defining 
assignments to the UOL roles. This database could be filled by the UOL author 
in an authoring environment; these rules themselves could be very simple, as 
described in chapter 7, or very complex, taking complicated planning issues into 
consideration. It should also be possible to define manual provisioning, leaving 
the roll-on and roll-off up to human operators like tutors. Once the correct rules 
have been defined, the actual provisioning happens through the 
CourseManager interface described in chapter 4.  
 
This architecture provides merely a first step towards a working solution for the 
provisioning problems of chapter 7. Because it is a generic approach, it would 
provision access to other learning services in a similar fashion. However, 
several issues need further investigation, such as authentication issues (single 
sign-on) and definition of the provisioning rules. But the provisioning service 
would certainly allow exciting new possibilities for combining environments: for 
example, a Moodle course could be referenced from a UOL or vice versa. It 
would also be interesting to investigate whether CCSI could be used as an 
implementation framework for this architecture, in which case the handler 
service would be one of the CCSI adapters.  
 
The uptake of LD has been hampered by the maturity of the available toolset. 
This can largely be explained by the fact that LD covers so many concepts: 
defining roles and groups, learning content, sequencing of learning content, and 
personalization of learning. LD’s strength is that it ties all these concepts 
together into a single package. However, this is also a weakness. Building tools 
that support the complete specification is complex and requires considerable 
effort. We also saw in the Moodle example in chapter 1 that integration with 
other environments is possible but not straightforward, given that concepts likely 
overlap (Burgos, Tattersall, Dougiamas, Vogten, & Koper, 2006). In addition, 
successful Web 2.0 (O'Reilly, 2006) developments are currently taking a very 
different direction. Although the term Web 2.0 can mean radically different 
things to different people, some characteristics are generally attributed to it, 
such as the preference for micro formats rather than heavyweight 
specifications, and the trend to use REST- and JSON-based APIs. Syndication 
and aggregation of data using RSS, Atom and mash-ups also belong to the 
current practice attributed to Web 2.0-based applications, giving users control 
over the environment. 
 
These technological aspects only partly contribute to the current success and 
hype of Web 2.0. However, they are enabling technologies allowing the easy 



 142 | Chapter 8 

uptake of new Web 2.0 developments. It would be interesting to investigate 
whether there are lessons to be learned from the Web 2.0 approach for the 
work presented in this thesis. Table 8.2 compares some of the aforementioned 
Web 2.0 characteristics with those currently found in the CopperCore and CCSI 
toolset. 

Table 8.2 Comparison of Web 2.0 and CopperCore/CCSI 

 Typical for Web 2.0 CopperCore/CCSI 

API interfacing REST and JSON: 
lightweight protocols 
easy to use in browsers 

RMI and SOAP: enterprise 
solutions, relative 
heavyweight, difficult to 
use 

Formats Micro formats extending 
XHTML 

XML format partly 
extending XHTML but also 
closely related to LD 
specification 

Syndication/ 
aggregation 

RSS and Atom Syndication through 
integration of services with 
CCSI. Content itself cannot 
be syndicated 

Mash-ups Merging of content from 
different sources 

Mostly merging content 
from UOL zip file, although 
reference to external 
resources is possible 

Content Contributions by 
individual users, 
modified continuously  

Contributions by authors of 
learning design and only 
updated with new releases 
of UOL 

Communities Ad hoc transient, often 
self-organized 

Predefined by membership 
of runs 

Locus of Control User Designer 

 
We must keep in mind the considerable tensions and contradictions between 
developing a runtime for LD and a typical Web 2.0 application. For example, 
Web 2.0 focuses on control by the individual user and the user’s position in the 
wider community. LD, in contrast, is directed at orchestration of users where the 
designer is in control. Communities are often ad hoc and transient in Web 2.0 
environments, while they are defined formally through runs and roles in LD. This 
has led to some of the issues already discussed in chapter 7 regarding run and 
role assignments. The provisioning architecture depicted in figure 8.3 may also 
provide a solution for these situations. 
 
Further research is needed to investigate how an LD runtime can be 
implemented such that it manifests some Web 2.0 features like agility, simplicity 
and syndication, while still being fully LD compliant. Whether this can be 
achieved without modification to the specification itself is uncertain. A starting 
point could be the definition of more granular services such as those presented 
in figure 8.2.  



 

References 



 

References 

Albrecht, A. J., & Gaffney, J. E. (1983). Software Function, Source Lines of 
Code, and Development Effort Pediction: a Software Science Validation. 
IEEE Transactions on Software Engineering, 9(6), 639-648. 

ALFANET (2004). The ALFANET Project. Retrieved January 10, 2004, from 
The Website of the ALFANET Project: http://alfanet.ia.uned.es/ 

Amorim, R., Lama, M., & Sánchez, E. (2006a). Semantic Modeling of the IMS 
LD Level B Specification.  The 6th IEEE Conference on Advanced 
Learning Technologies, 880-882. 

Amorim, R., Lama, M., Sánchez, E., Riera, A., & Vila, X. (2006b). A Learning 
Design Ontology based on the IMS Specification. Educational Technology 
& Society, 9(1), 38-57.from http://www.ifets.info/journals/9_1/5.pdf 

Atkinson, M. P., Bayley, P. J., Chilsom, K. J., Cockshott, W. P., & Morrison, R. 
(1990). An approach to persistent programming. In S. B. Zdonik & D. 
Maiers (Eds.).  (26 ed., pp. 141-146) (chap. 4).Morgan Kaufmann. 

Bailey, C., Zalfan, M. T., & Davis, H. C. (2006, January 1). Panning for Gold: 
Designing Pedagogically-inspired Learning Nuggets. Educational 
Technology & Society, 9(1), 113-122. 

Barr, N. (2000). Assessment Provision through Interoperable Segments. 
Retrieved January 15, 2006, from The website of the APIS project: 
http://sourceforge.net/projects/apis/ 

Barrera, C., Boticario, J., Gaudioso, E., Rodriguez, A., Hoke, I., Boy, J., et al. 
(2005). D66 - Evaluation Results. ALFANET Project Deliverable. Retrieved  
http://rtd.softwareag.es/alfanet/PublicDocs/ALFANET_D66_v1.zip 

Barret-Baxendale, M., Hazlewood, P., Oddie, A., & Anderson, M. (2005, 
December 16). SliDe final report. Retrieved January 02, 2008, from 
website of SliDe: http://www.hope.ac.uk/slide/documents/slide_final.doc 

Berlanga, A., & García, F. (2007, August 17). IMS LD reusable elements for 
adaptive learning designs. Journal of Interactive Media in Education,from 
http://jime.open.ac.uk/2005/11 

Berners-Lee, T. (1994, June 1). Universal Resource Identifiers in WWW: A 
Unifying Syntax for the Expression of Names and Addresses of Objects on 
the Network as used in the World-Wide Web. Retrieved July 03, 2004, from 
http://www.ietf.org/rfc/rfc1630.txt 

Berners-Lee, T., Masinter, L., & McCahill, M. (1994, December 1). Uniform 
Resource Locators (URL). Retrieved from http://www.ietf.org/rfc/rfc1738.txt 

Boticario, J., & Santos, O. (2007, September 28). An open IMS-based user 
modelling approach for developing adaptive learning management 



  References | 145 

systems. Retrieved January 03, 2008, from Journal of Interactive Media in 
Education: http://www-jime.open.ac.uk/2007/02/ 

Brownston, L., Farrel, R., Kant, E., & Martin, N. (1985). Programming expert 
systems in OPS5: an introduction to rule-based programming.  Addison-
Wesley Longman Publishing Co., Inc. 

Burgos, D., Tattersall, C., Dougiamas, M., Vogten, H., & Koper, R. (2006, 
September 12). Mapping IMS Learning Design and Moodle. A 
firstunderstanding.  IEEE Technical Committee on Learning Technology, 
Proceedings of Simposo Internacional de Informática Educativa (SIIE06) . 
León, Spain. 

Burgos, D., Tattersall, C., & Koper, R. (2007, August 2). How to represent 
adaptation in e-learning with IMS learning design. Interactive Learning 
Environments, 15(2), 161-170. 

CETIS (2007). PLE Report. Retrieved August 01, 2007, from the website of 
CETIS: http://wiki.cetis.ac.uk/Ple 

D4LD (2006, December 31). Design for Learning Design. Retrieved 2007, from 
website of JISC: 
http://www.jisc.ac.uk/whatwedo/programmes/elearning_pedagogy/elp_desi
gnlearn.aspx 

Deursen, A. v., Klint, P., & Visser, J. (2000, June). Domain-specific languages: 
an annotated bibliography.  ACM SIGPLAN Notices, 35, 26-36, 6 . New 
York, NY, USA: ACM. 

DLD (2005). Demonstrating learning design. Retrieved January 17, 2008, from 
website of JISC: 
http://www.jisc.ac.uk/whatwedo/programmes/elearning_framework/elfdemo
_dld.aspx 

dotLRN (2008, January 3). dotLRN. Retrieved January 18, 2008, from website 
of dotLRN: http://dotlrn.org/ 

Eclipse (2007, May 1). Eclipse. Retrieved May 07, 2007, from Website of 
Eclipse Consortium: http://www.eclipse.org 

EFSCE (2007). E-Framework Services for Course Evaluation. Retrieved 
January 02, 2008, from website of EFSCE: 
http://www.efsce.ecs.soton.ac.uk/index.htm 

EJB 3.0 software expert group (2008). Java Persistence API. Retrieved 
November 25, 2007, from website of Sun: 
http://java.sun.com/javaee/technologies/persistence.jsp 

ELeGI. (2007, June 20). Publishable Final Activity Report. Retrieved  
http://213.27.211.106/elegi/wp-content/uploads/2007/06/elegi-publishable-
final-activity-report-10.pdf 

Elrad, T., Filman, R. E., & Bader, A. (2001). Aspect-oriented programming: 
Introduction. Communications of the ACM, 44(10), 29-32. 



 146 | References 

EML 1.0 (2000, December 20). EML 1.0 specification. Retrieved May 21, 2008, 
from Dspace site of the Open University of the Netherlands: 
http://hdl.handle.net/1820/81 

EML 1.1 (2002, July 18). EML 1.1 specification. Retrieved May 21, 2008, from 
Dspace site of the Open University of the Netherlands: 
http://hdl.handle.net/1820/80 

Escobedo de Cid, J. P., Fuente Valentín, L. d. l., & Guitérrez, S. (2007, 
September 28). Implementation of a Learning Design Run-Time 
Environment for the .LRN Learning Management System. Retrieved 
November 29, 2007, from Journal of Interactive Media in Education: 
http://www-jime.open.ac.uk/2007/07/ 

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based 
Software Architectures. Retrieved June 12, 2007, from Website of Roy 
Tomas Fielding at UC Irvine: 
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 

FOAF project (2007). FOAF. Retrieved from Website of the Friend of a Friend 
project: http://www.foaf-project.org/ 

Fuentes, C., Carrión, J., Arana, C., Boticario, J., Barrera, C., Santos, O., et al. 
(2005, April 30). D82 - Public Final Report. Retrieved  
http://rtd.softwareag.es/alfanet/PublicDocs/ALFANET_D82_Public.zip 

Gaeta, A., Gaeta, M., & Ritrovato, P. (2007, September 29). Gaeta, A.; Gaeta, 
M.; Ritrovato, P.. Personal and Ubiquitous Computing, 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns, 
Elements of Reusable Object-Oriented Software. Addison-Wesley. 

Griffiths, D., Beauvoir, P., Barret-Baxendale, M., Hazlewood, P., & Oddie, A. 
(2007, November 19). Development and evaluation of the Reload Learning 
Design Editor. Retrieved January 21, 2008, from Paper presented at 
TENCompetence Open Workshop on Current research on IMS Learning 
Design and Lifelong Competence Development Infrastructures: 
http://hdl.handle.net/1820/1135 

Griffiths, D., & Blat, J. (2005). The Role of Teachers in Editing and Authoring 
Units of Learning Using IMS Learning Design. International Journal on 
Advanced Technology for Learning, 2(4), 243-251. 

Griffiths, D., Blat, J., Elferink, R., & Zondergeld, S. (2005a). Open Source and 
IMS Learning Design: Building the Infrastructure for eLearning.  
Proceedings of the First International Conference on Open Source 
Systems (OSS 2005), Proceedings of the First International Conference on 
Open Source Systems (OSS 2005). Genova, Italy. 

Griffiths, D., Blat, J., García, R., Vogten, H., & Kwong, K.-L. (2005b). Learning 
Design Tools. In R. Koper & C. Tattersall (Eds.). Learning Design, a 
Handbook on Modelling and Delivering Networked Education and Training 
(pp. 109-135) (chap. 7). Heidelberg: Springer. 



  References | 147 

Hadeli, P., Zamifirescu, C., van Brussel, S.-G. B., Holvoet, T., & Steegmans, E. 
(2003). Self-Organising in Multi-Agent Coordination and Control Using 
Stigmergy. Retrieved July 19, 2007, from Paper presented at The First 
Workshop on Self-Organising Engineering Applications (ESOA 
2003).Melbourne Australia: 
http://esoa.unige.ch/esoa03/papers/esoa03_7c.pdf 

Harrer, A., Malzahn, N., Hoeksema, K., & Hoppe, U. (2005, August 25). 
Learning Design Engines as Remote Control to Learning Support 
Environments. Retrieved November 29, 2007, from Journal of Interactive 
Media in Education: http://jime.open.ac.uk/2005/05/ 

Hermans, H., Manderveld, J., & Vogten, H. (2004). Educational Modelling 
Language. In W. Jochems, J. van Merriënboer, & R. Koper (Eds.), Open 
and Flexible Learning. integrated E-LEARNING implications for pedagogy, 
technology & organization (pp. 80-99) (chap. 6). London, New York: 
RoutledgeFalmer. 

Hernández-Leo, D., Villasclaras-Fernández, E., Asensio-Pérez, J., Dimitriadis, 
Y., Jorrín-Abellán, I., Ruiz-Requies, I., et al. (2006a). COLLAGE: A 
collaborative Learning Design editor based on patterns. Educational 
Technology & Society, 9(1), 58-71. 

Hernández-Leo, D., Villasclaras-Fernández, E. D., Asensio-Pérez, J. I., 
Dimitriadis, Y. B.-L. M. L., & Marcos-García, J. A. (2006b). Tuning IMS LD 
for implementing a collaborative lifelong learning scenario.  IEEE 
International Conference on Advanced Learning Technologies, Proceedings 
of the 6th IEEE International Conference on Advanced Learning Technologies, 
1160-1161. Kerkrade, the Netherlands: IEEE. 

Hibernate (2008). Hibernate. Retrieved November 25, 2007, from Hibernate 
website: http://www.hibernate.org/ 

Hutchinson, S. (2007, April 17). Performance Test Results Report 
for the Sled player. Retrieved from website of SLeD: 
http://sled.open.ac.uk/sledweb/perf/Sled%20Performance%20Testing%20
Results.pdf 

IBM, BEA Systems, Microsoft, SAP AG, & Siebel Systems (2006). Business 
Process Execution Language for Web Services. Retrieved February 16, 
2006, from Website of IBM: http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/ 

IEEE (2003). IEEE Learning Technology Standards Committee. Retrieved from 
Website of Learning Technology Standards Committee: http://ltsc.ieee.org 

IMS (2003). IMS Global Learning Consortium. Retrieved November 11, 2003, 
from Website of IMS Global Learning Consortium: http://www.imsglobal.org 

IMS RDCEO (2002, October 1). IMS Reusable Definition of Competency or 
Educational Objective. Retrieved November 28, 2007, from Website of IMS 
Global Learning Consortium: 
http://www.imsglobal.org/competencies/index.html 



 148 | References 

IMS Simple Sequencing (2006). IMS Simple Sequencing. Retrieved from 
Website of IMS Global Learning Consortium: 
http://www.imsglobal.org/simplesequencing/index.html 

IMS-TIG. (2006). IMS Tools Interoperability Guidelines. Retrieved January 12, 
2006, from http://www.imsglobal.org/ti/index.html 

IMSCP-IM (2003). IMS Content Packaging Information Model. Retrieved 2004, 
from Website of IMS Global Learning Consortium: 
http://www.imsglobal.org/content/packaging/cpv1p1p2/imscp_infov1p1p2.h
tml 

IMSLD (2003). IMS Learning Design Specification. Retrieved July 03, 2003, 
from Website of IMS Global Learning Consortium: 
http://www.imsglobal.org/learningdesign/index.cfm 

IMSLD-BPG. (2003, January 20). IMS Learning Design Best Practice Guide. 
Retrieved June 10, 2003, from 
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html 

IMSLD-IM (2003, January 20). IMS Learning Design Information Model. Version 
1.0 Final Specification. Retrieved June 10, 2003, from Website of IMS 
Global Learning Consortium: 
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_infov1p0.html 

IMSLD-XB. (2003, January 20). IMS Learning Design XML Binding. Retrieved 
June 10, 2003, from 
http://www.imsglobal.org/learningdesign/ldv1p0/imsld_bindv1p0.html 

IMSQTI (2006). IMS Question and Test Interoperability. Retrieved January 12, 
2006, from Website of IMS Global Learning Consortium: 
http://www.imsglobal.org/question/index.html 

IMSQTI-IG. (2006). IMS Question and Test Interoperability Integration Guide. 
Retrieved  http://www.imsglobal.org/question/qti_v2p0/imsqti_intgv2p0.html 

J2EE (2007, July 19). Java Platform, Enterprise Edition. Retrieved July 19, 
2007, from http://java.sun.com/javaee/: 

JBoss (2004, July 19). JBoss Application Server. Retrieved from 
http://www.jboss.org: 

JISC (2006). JISC E-Learning Framework: Technical Framework and Tools 
Strand. Retrieved February 20, 2006, from Website of the JISC E-Learning 
Framework, technical framework and tools strand: 
http://www.jisc.ac.uk/index.cfm?name=elearning_framework 

Koper, R. (2001, November 1). Modeling units of study from a pedagogical 
perspective: the pedagogical meta-model behind EML. Retrieved January 
14, 2008, from OTEC working paper: http://hdl.handle.net/1820/36 

 Koper, E. J. R. (2005a). An Introduction to Learning Design. In E. J. R. Koper & 
C. Tattersall (Eds.). Learning Design: A Handbook on Modelling and 
Delivering Networked Education and Training (pp. 3-20) (chap. 1).Springer 
Verlag. 



  References | 149 

Koper, R. (2005b). Designing Learning Network for Lifelong Learners. In R. 
Koper & C. Tattersall (Eds.). A Handbook on Modelling and Delivering 
Networked Education and Training (pp. 239-252) (chap. 14).Springer. 

Koper, R. (2006). TENCompetence Domain Model. Retrieved May 12, 2007, 
from http://hdl.handle.net/1820/649 

Koper, R., & Bennett, S. (in press). Learning Design: Concepts. In P. Kinshuk, 
D. Sampson, H. H. Adelsberger, & J. M. Pawslowski (Eds.), International 
Handbooks on Information Systems. Handbook on Information 
Technologies for Education and Training.from 
http://hdl.handle.net/1820/831 

Koper, E. J. R., & Van Es, R. (2004). Modeling units of learning from a 
pedagogical perspective. In R. McGreal (Ed.). Accessible eduction using 
learning objects. London: RoutledgeFalmer. 

Koper, R., Hermans, H., Vogten, H., & Brouns, F. (2007, October 2). 
Educational Modelling Language. Retrieved January 05, 2008, from 
http://eml.ou.nl: http://eml.ou.nl 

Koper, R., & Manderveld, J. (2004, September 1). Educational Modelling 
Language: Modelling reusable, interoperable, rich and personalised units 
of learning. British Journal of Educational Technology, 35(5), 537-552. 

Koper, R., & Olivier, B. (2004). Representing the Learning Design of Units of 
learning. Educational Technology and Society, 7(3), 97-111. 

Koper, R., & Specht, M. (2007). TenCompetence: Lifelong Competence 
Development and Learning. In M. Sicilia (Ed.). Competencies in 
Organizational E-Learning: Concepts and Tools (pp. 230-247) (chap. 11). 
Idea Group Inc. 

Koper, R., & Tattersall, C. (2005). Learning Design: A Handbook on Modelling 
and Delivering Networked Education and Training. Berlin Heidelberg New 
York: Springer Verlag. 

LAMS (2008). LAMS. Retrieved January 16, 2008, from website of LAMS 
International: http://www.lamsinternational.com/ 

Learning Networks (2008, May 23). Learning Networks Repository. Retrieved 
May 23, 2008, from Learning Networks repository: 
http://dspace.learningnetworks.org/handle/1820/16 

M Squared Technologies (2008, May 21). Effective Lines of Code eLOC Metrics 
for popular Open Source Software. Retrieved May 21, 2008, from website 
of M Squared Technologies: 
http://msquaredtechnologies.com/m2rsm/rsm_software_project_metrics.ht
m 

Martens, H., Vogten, H., Van Rosmalen, P., & Koper, E. J. R. (2004). 
CopperCore. Retrieved January 14, 2005, from SourceForge: 
http://coppercore.org 



 150 | References 

McAndrew, P., Nadolski, R., & Little, A. (2005). Developing an approach for 
Learning Design Players. Journal of Interactive Media in Education, 

McAndrew, P., Woods, W., Little, L., Weller, M., Koper, E. J. R., & Vogten, H. 
(2004, June 3). Implementing Learning Desing to support web-based 
learning. Retrieved January 03, 2008, from AusWeb04.The Tenth 
Australian World Wide Web Conference: 
http://ausweb.scu.edu.au/aw04/papers/refereed/mcandrew/ 

Milligan, C. D., Beauvoir, P., & Sharples, P. (2005, July 1). The Reload Learning 
Design Tools. Retrieved November 29, 2007, from Journal of Interactive 
Media in Education: http://jime.open.ac.uk/2005/06/ 

Moodle (2006). Moodle. Retrieved from Moodle website: http://moodle.org/ 

Moreno-Ger, P., Martínez-Ortiz, I., Luis Sierra, J., & Fernández/Manjón, B. 
(2007, September 28). Adaptive Units of Learning and Educational 
Videogames. Retrieved November 29, 2007, from Journal of Interactive 
Media in Education: http://jime.open.ac.uk/2007/05/ 

Nadolski, R., ONeill, W., Vegt, W. v. d., & Koper, R. (2006, February 13). 
Conformance Testing, the Elixir within the Chain for Learning Scenarios 
and Objects. Retrieved December 03, 2007, from Dspace site of the Open 
University of the Netherlands: http://hdl.handle.net/1820/581 

Navarro, L., Diaz, A., Such, M., Martín, D., & Peco, P. (2007, September 28). 
Learning Units Design based in Grid Computing. Retrieved November 29, 
2007, from Journal of Interactive Media in Education: 
http://jime.open.ac.uk/2007/10/ 

O'Reilly, T. (2006, September 30). What Is Web 2.0., O'Reilly. Retrieved 
October 05, 2007, from O'Reilly web site: 
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html 

Olivier, B. (2004). Learning Design Update. Retrieved August 4, 2006, from 
http://www.jisc.ac.uk/uploaded_documents/Learning_Design_State_of_Pla
y.pdf 

Olivier, B., & Tattersall, C. (2005). The Learning Design Specification. In R. 
Koper & C. Tattersall (Eds.). Learning Design. A Handbook on Modelling 
and Delivering Networked Education and Training (pp. 21-40) (chap. 2). 

OMG (2003). Unified Modeling Language (UML). Retrieved January 21, 2006, 
from website of Object Management Group: http://www.omg.org 

OpenACS (2008, January 4). OpenACS. Retrieved January 17, 2008, from 
website of OpenACS: http://openacs.org/ 

Paquette, G., De la Teja, I., Léonard, M., Lundgren-Cayrol, K., & Marino, O. 
(2005). An Instructional Engineering Method and Tool for the Design of 
Units of Learning. In R. Koper & C. Tattersall (Eds.). Learning Design. A 
Handbook on Modelling and Delivering Networked Education and Training 
(pp. 161-184) (chap. 9).Springer. 



  References | 151 

Peter, Y., & Vantroys, T. (2005). Platform Support for Pedagogical Scenarios. 
Educational Technology & Society, 8(3), 122-137. 

Reload (2007). Reload Learning Design Editor. Retrieved June 12, 2006, from 
the website of the Reload Project: http://www.reload.ac.uk/ 

Rosenberg, J. (1997). Some Misconceptions About Lines of Code.  Fourth 
International Software Metrics Symposium (METRICS'97), 137-142. 

Santos, O., Boticario, J., & Barrera, C. (2008, May 1). ALFANET: An Adaptive 
and Standard-Based Learning Environment Built Ipon DOTLRN and Other 
Open Source Developments. Retrieved May 01, 2008, from website of 
Jesús G.Boticario: http://www.ia.uned.es/~jgb/publica/dotrln-ocsjgbcb-
final.pdf 

SBLDS (2004, April 10). SBLDS: Service Based Learning Design System. 
Retrieved January 17, 2008, from website of JISC: 
http://www.jisc.ac.uk/whatwedo/programmes/elearning_framework/sblds.as
px 

SCORM (2008, May 21). SCORM 2004 3rd Edition. Retrieved May 21, 2008, 
from website of ADL: http://www.adlnet.gov/scorm/index.aspx 

Sherrat, R., & Jeyes, S. (2006). Assis, Final Report. Retrieved February 21, 
2006, from Website of the university of Hull: 
http://www.hull.ac.uk/esig/downloads/Final-Report-
Assis.pdf#search=%22assis%20final%20report%20jisc%22 

Sipser, M. (1997). Introduction to the Theory of Computation.  PWS Publishing 
Company. 

SLeD (2005, February 1). Service Based Learning Design Player. Retrieved 
January 10, 2004, from http://sled.open.ac.uk: 

SLeD2 (2005). SLeD2. Retrieved December 01, 2007, from website of JISC: 
http://www.jisccollections.co.uk/sitecore/content/Home/whatwedo/program
mes/elearning_framework/elftoolkit_ou.aspx 

SLeDID (2005). SLeD integration demonstrator. Retrieved December 14, 2007, 
from website of JISC: 
http://www.jisc.ac.uk/whatwedo/programmes/elearning_framework/elfdemo
_livhope.aspx 

Sodhi, T., Miao, Y., Brouns, F., & Koper, R. (2007, June 25). Design Support for 
non-expert authors in the creation of units of learning - a first exploration. 
Retrieved January 21, 2008, from Dspace site of the Open University of the 
Netherlands: http://hdl.handle.net/1820/984 

SourceForge (2008). CopperCore. Retrieved May 21, 2008, from SourceForge: 
http://sf.net/projects/coppercore 

Spang Bovey, N., & Dunand, N. (2006, September 25). Seamless production of 
interoperable e-Learning units: stakes and pitfalls.  Dspace site of the 
Open University of the Netherlands,  TENCompetence Conference. March 
30th-31st, Sofia, Bulgaria TENCompetence. 



 152 | References 

Tattersall, C., Sodhi, T., Burgos, D., & Koper, R. (2007, December). Using the 
IMS Learning Design Notation for the Modeling and Delivery of Education. 
In L. Botturi & T. Stubbs (Eds.). Handbook of Visual Languages for 
Instructional Design: Theories and Practices (pp. 299-314) (chap. XV).Idea 
Group Inc. 

Tattersall, C., Vogten, H., Brouns, F., Koper, R., Rosmalen, P. v., Sloep, P., et 
al. (2005a). How to create flexible runtime delivery of distance learning 
courses. Educational Technology & Society, 8(3), 226-236. 

Tattersall, C., Vogten, H., & Hermans, H. (2005b). The Edubox Learning Design 
Player. In R. Koper & C. Tattersall (Eds.). Learning Design, a Handbook on 
Modelling and Delivering Networked Education and Training (pp. 303-310) 
(chap. 19). Heidelberg: Springer. 

Tattersall, C., Vogten, H., & Koper, R. (2005c). An Architecture for the Delivery 
of E-learning Courses. In R. Koper & C. Tattersall (Eds.). Learning Design. 
A Handbook on Modelling and Delivering Networked Education and 
Training (pp. 63-73) (chap. 4).Springer. 

Tattersall, C., Vogten, H., Martens, H., & Koper, E. J. R. (2006, January 19). 
How to use IMS Learning Design and SCORM 2004 together.  
International Conference on SCORM 2006 Tamkang University, Taipei, 
Taiwan. 

TENCompetence (2006). TENCompetence. Retrieved from The website of 
TENCompetence: http://www.tencompetence.org 

TENCompetence consortium (2007). TENCompetence Project. Retrieved 
February 01, 2006, from Website of the TENCompetence project: 
http://www.tencompetence.org 

Towle, B., & Halm, M. (2005). Designing Adaptive Learning Environments with 
Learning Design. In E. J. R. Koper & C. Tattersall (Eds.). Learning Design: 
A Handbook on Modelling and Delivering Networked Education and 
Training (pp. 215-226) (chap. 12).Springer Verlag. 

UNFOLD (2007, December 31). UNFOLD. Retrieved from UNFOLD web site: 
http://www.unfold-project.net:8085/UNFOLD 

Van der Vegt, W. (2006, February 17). CopperAuthor. Retrieved January 03, 
2008, from SourceForge: http://sourceforge.net/projects/copperauthor/ 

Van Rosmalen, P., & Boticario, J. (2005). Using Learning Design to Support 
Design and Runtime Adoptation. In R. Koper & C. Tattersall (Eds.). 
Learning Design. A Handbook on Modelling and Delivering Networked 
Education and Training (pp. 291-301) (chap. 18).Springer. 

Van Rosmalen, P., Vogten, H., van Es, R., Passier, H., Poelmans, P., & Koper, 
R. (2007). Authoring a full life cycle model in standards-based, adaptive e-
learning. Educational Technology & Society, 9(1), 72-83.from 
http://www.ifets.info/journals/9_1/7.pdf 



  References | 153 

supported e-learning. International Journal of Continuing Engineering 
Education and Lifelong Learning, 15(3-6), 261-271. 

Vogten, H., & Martens, H. (2006). CopperCore Service Integration. Retrieved 
February 02, 2006, from Website of the CopperCore Service Integration 
framework: http://sf.net/projects/ccsi 

Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, P. v., & Koper, 
E. J. R. (2007). CopperCore Service Integration. Journal on Interactive 
Learning Environments, 15(2), 171-180. 

W3C (1999, November 16). XSL Tranformations. Retrieved January 13, 2008, 
from Website of W3C: http://www.w3.org/TR/xslt 

W3C (2000, May 8). SOAP. Retrieved from Website of W3C: 
http://www.w3.org/TR/soap/ 

W3C (2003). XML Extensible Markup Language. Retrieved November 05, 2003, 
from Website of W3C: http://www.w3.org/XML/ 

W3C (2007). XML Schema. Retrieved from Website of W3C: 
http://www.w3.org/XML/Schema 

Westera, W., Brouns, F., Pannekeet, K., Janssen, J., & Manderveld, J. (2005). 
Achieving E-Learning with IMS Learning Design - Workflow Implications at 
the Open University of the Netherlands. Educational Technology & Society, 
8(3), 216-225. 

Wilson, S., Blinco, K., & Rehak, D. (2004, January 7). Service-Oriented 
Frameworks: Modelling the infrastructure for the next generation of e-
Learning Systems. Retrieved April 14, 2005, from WebSite of the Joint 
Information Systems Committee: 
http://www.jisc.ac.uk/uploaded_documents/AltilabServiceOrientedFramewo
rks.pdf 

Wilson, S., Sharples, P., & Griffiths, D. (2007, July 8). Extending IMS Learning 
Design services using Widgets: Initial findings and proposed architecture. 
Retrieved January 05, 2008, from Dspace site of the Open University of the 
Netherlands: http://dspace.ou.nl/handle/1820/963 

Workflow Management Coalition (2005, October 3). Workflow Management 
Coalition Workflow Standard - Process Definition Interface XML Process 
Definition Language. Retrieved November 10, 2007, from website of 
WFMC: 

Zarraonandia, T., Dodero, J. M., & Fernández, C. (2006). Crosscutting runtime 
adaptations of LD execution. Educational Technology & Society, 9(1), 123-
137. 

zur Muehlen, M., Nickerson, J. V., & Swenson, K. D. (2004). Developing Web 
Service Choreography Standards; The case of REST vs. SOAP. Decision 
Support Systems, 37 

 

Van Rosmalen, P., Brouns, F., Tattersall, C., Vogten, H., Bruggen, J. v., Sloep, 
P., et al. (2004). Towards an open framework for adaptive, agent-





 

Summary 

“We shall not cease from our exploration, and at the end of all our exploring, we 
shall arrive where we started and know the place for the first time.” 

T.S. Elliot 



 

Summary 

IMS Learning Design (LD) is a formal language for describing learning designs 
which uses eXtensible Mark-up Language (XML) as its meta-language. A meta-
language is used to make statements about another language: for example, 
English grammar is a meta-language for English. When the LD specification 
was officially released, there was a need for an associated reference runtime 
implementation to help practitioners better understand the specification. System 
integrators would be able to experiment with the integration of LD in their 
systems, and system developers could benefit from using it as a reference for 
their own developments.  
 
However, designing and implementing a reference LD runtime environment is 
not straightforward. The specification combines characteristics from different 
languages: for example, it shares some characteristics of an imperative 
programming language in which statements are given in the order they are to 
be executed in. But it also has some characteristics of a declarative 
programming language. LD’s conditions require constant evaluation, and 
resemble production rules in a production system. LD is also declarative in a 
different sense: it expects much scaffolding from the runtime, as is the case, for 
example, with services referenced by a mere declaration. In addition, LD is a 
persistence language, implying that the runtime is expected to automatically 
take care of persistence. Finally, it resembles a workflow language, 
orchestrating the learning processes between the different roles of different 
users. Therefore, implementing a runtime environment requires considerable 
resources and effort. Any reference implementation, therefore, should be 
reusable in many different situations to make costly rebuilds less necessary.  
 
The first research question of this thesis is thus formulated as follows: 
 

i) How can a fully compliant reusable reference runtime environment 
for the IMS Learning Design specification be designed and 
implemented? 

 
LD also relies on other specifications and learning services. Although it comes 
with a fairly detailed description on how to incorporate these specifications and 
services in the learning design at a lexical level, very little is stated about the 
runtime implications. This situation has led to the second research question:  
 

ii) How, given a reference implementation for the IMS Learning 
Design specification, can implementations for other e-learning 
specifications and learning support services be integrated 
generically at runtime level? 

 
In chapter 2 we review LD in more detail by discussing its main constructs: we 
see that it comes in three flavours, each extending the other. LD level A defines 



  Summary | 157 

the core entities for the specification. It provides constructs for specifying 
objectives, prerequisites, roles and activities. The method construct combines 
these roles and activities into role-parts, which can be organized into acts, 
which in turn can be sequenced through plays. The method is very much 
inspired by the theatre. There, a play also has roles and acts and actors who 
each know the role they are supposed to play. Actors know when to appear on 
stage, for example, and when to interact with each other. Similarly, the LD play 
determines which activities have to be performed by what roles, and who will 
interact with whom at what moment.  
 
Level B offers the means to personalize a learning design by adding properties 
and conditions to the specification. LD properties are similar to the variables 
found in most programming languages. They are not identical, however: they 
also have value constraints and a scope, and automatic persistence properties 
can be manipulated directly by user input, or alternatively via the consequences 
of conditions. LD conditions will be familiar for anyone with a programming 
background. However, these conditions are not imperative, as in most 
programming languages; the runtime environment must determine when the 
conditions should be evaluated. Through these conditions many different LD 
structures can be shown or hidden, which is the one of the principles behind 
personalization in LD.  
 
Finally, Level C contributes only a notification mechanism to the specification. 
Notifications inform users about events occurring during runtime.  
 
A learning design can be bundled together with its resources to form a unit of 
learning (UOL). A UOL can be compressed into a single file suitable for further 
processing. From LD, we derive a set of requirements that any LD runtime must 
meet in one way or another: validation, publishing, provisioning, population, 
personalization and integration. We define an LD engine as a software 
component capable of processing the LD specification. An engine is indifferent 
to the user interface used to present the engine’s results to the user. The 
software that renders the engine’s output is called the LD player; one engine 
can have many players. An engine is designed as part of an enclosing 
framework, such as a learning management system. 
 
The aforementioned requirements form the starting point for the design of an LD 
engine that we discuss in chapter 3. This design is from the perspective of a 
finite state machine (FSM). We use LD properties to capture the state of an 
FSM, and extend these properties by the concept of implicit properties which, 
unlike their explicit counterparts, are not defined by the UOL authors. Rather, 
they are generated by the engine when the UOL is published; they typically 
capture completion and visibility states. We discuss how a UOL can be 
populated by real users using the concept of a run. Multiple runs can be created 
for a single UOL, each with their own user population. The users are assigned 
to one or more of the roles defined in the corresponding UOL. We explain the 
relationship between runs, roles and the scope of the properties. Each FSM is 
represented by all implicit and explicit properties belonging to a user performing 
a role in a UOL run. We argue that there is no single FSM for a UOL, but rather 



 158 | Summary 

a collection of them. A single FSM is unambiguously addressed by a run, a user 
and a role.  
 
Having defined how state is represented by the FSM collection, we focus next 
on state transitions. These are triggered by events which can be generated 
through direct user intervention or via external incentives such as the passing of 
time. They can cause state changes, which in turn can trigger conditions 
defined in the UOL. This way, a single event can cause a ripple effect not 
constrained to a single FSM, but able to affect many FSMs throughout the 
engine. We elaborate on the concepts of a dispatcher and event handlers 
responsible for this event processing. The event handlers act upon the design in 
the UOL, processing the consequences of conditions defined in the UOL but 
also dealing with business rules defined by LD such as the completion of roles-
parts, acts and plays. During the UOL’s publication, all LD business rules are 
expressed as conditions using an extended version of the LD condition 
language.  
 
Because properties can be shared between several FSMs, FSMs can 
simultaneously change state as a result of altering the value of a single 
property. This automatically deals with any synchronization issues during the 
learning flow orchestration. Because the event handlers ensure that each FSM 
is in the correct state at any given moment in time, personalization becomes a 
‘fill in the blanks’ exercise where references to properties in the UOL are simply 
replaced by their actual values in the appropriate FSM, regardless of whether 
these properties are explicit or implicit. 
 
Our engine design was put into practice through an implementation called 
CopperCore, which has been released as open source using the GPL license. 
The CopperCore engine is intended to be reused as a service via its APIs. In 
chapter 4, we take the perspective of a software agent doing just this. We refer 
to this agent as the client. The CopperCore API is split into a CourseManager 
API and an LDEngine API. The CourseManager API provides access to the 
engine’s management functionality, including the publication of a UOL, the 
creation of user accounts, runs, and the assignment of users to roles. These 
methods are necessary to prepare a UOL for its execution.  
 
The execution itself is achieved through the LDEngine API, which returns 
personalized XML snippets resembling parts of the original UOL. We discuss 
the three main calls of the LDEngine API in more detail, and show how the 
returned XML snippets are based on the original UOL. We also describe in 
detail how a client can call the CopperCore engine, and elaborate on the 
expected output. The relationships between the consecutive API calls are 
further clarified via a sequence diagram representing a typical client scenario.  
 
Finally, we discuss why we implemented the CopperCore engine as a J2EE 
application. We review some of the possibilities and issues involved in the 
different deployment strategies for the client and the engine. 
 



  Summary | 159 

Chapter 5 takes the CopperCore engine as starting point. Given this reference 
implementation for LD, how can other specifications and learning services be 
integrated in a generic fashion? We present an architecture wedged between 
the client and the CopperCore engine which allows new services to be added 
while requiring minimal code changes in any existing clients that may want to 
use this new architecture. This is important because the CopperCore engine 
had been released for some time when work on this service architecture 
started.  
 
We define service adapters, which position themselves between the original 
service and a client, and replicate the original API of a service. One adapter 
informs a dispatcher about calls to the connected service that could be relevant 
for other services, while other service adapters monitor these events and react 
to them if necessary. The dispatcher functions as a service bus, relaying events 
between services. The adapters are defined for various service types such as 
LD, IMS QTI, forums, search, etc. For each type, multiple adapter 
implementations may exist, each of which must register with the dispatcher and 
thereby inform the dispatcher that it should be used for the associated service. 
This allows the flexible configuration of services. We have implemented this 
service integration architecture and released it as CopperCore Service 
Integration (CCSI); just like CopperCore, it can be downloaded from 
SourceForge and is available as open source under a GPL license. CCSI can 
be installed as addition to CopperCore by simply being deployed on the same 
application server.  
 
We elaborate on the CCSI architecture by using the integration of LD and IMS 
QTI as an example. We achieved this integration by synchronizing IMS QTI 
outcome variables with LD properties on the basis of lexical similarity, an 
approach which was also recommended by IMS. Finally, we discuss some 
alternative approaches and argue why we chose in favour of the CCSI 
implementation. 
 
Chapter 1 reflects on the impact of CopperCore and CCSI on the LD community 
by reviewing the use of both products in other research and developments. Both 
developments of CopperCore  and CCSI’ were iterative processes carried out in 
the context of several externally funded projects. These projects contributed the 
necessary resources, but also to the practical validation of the design and 
implementation of CopperCore and CCSI. 
 
ALFANET was the founding project and resulted in the first release of 
CopperCore on SourceForge. CopperCore itself was integrated as a separate 
service in the ALFANET framework. This was followed by a series of SLeD 
projects carried out with the British Open University which delivered a complete 
new player, and CopperCore was enhanced to support level C and thereby the 
full specification. It was also extended with SOAP-compliant APIs, added to 
open up the engine for non-Java environments. Furthermore, SLeD facilitated 
the development of CCSI. The SLeD products were installed by Liverpool Hope 
University to run pilots with its own students as part of a JISC evaluation 



 160 | Summary 

project. These pilots revealed performance issues with CopperCore which were 
then successfully addressed in the final SLeD projects. 
 
The UNFOLD project provided a platform for the LD community to meet and 
exchange ideas and experiences. We briefly describe some of the research and 
developments presented in the context of the UNFOLD project that reused 
CopperCore and CCSI. Finally, we take a closer look at the reusing of 
CopperCore in the TELCERT and ELeGI projects.  
 
Based on the impact of CopperCore and CCSI, we conclude that CopperCore 
has established itself as the de facto reference runtime environment for LD. We 
also conclude that many learning design authors have used CopperCore as a 
reference to help them better understand the specification. At the same time, 
they also tested the engine in real world practice by deploying and testing 
designs for all specification levels. The engine has been used many times in 
various ways, thereby demonstrating its reusability. We also show that a 
number of new services have been successfully developed for CCSI. We 
therefore conclude that we have successfully addressed the two research and 
development questions of this thesis.  
  
CopperCore and CCSI dealt with the biggest obstacles to the uptake of the LD 
specification. However, the uptake has still been disappointing. This has been 
ascribed to the toolset’s lack of maturity, felt most significantly in the authoring 
environments. The current LD authoring tools are inadequate for supporting 
non-expert users, and enforce the top-down model of authoring which seems so 
natural to LD. In chapter 7, we thus propose a complementary authoring 
approach that closely integrates CopperCore and CCSI in a Personal 
Competence Manager (PCM). This approach combines both worlds: on the one 
hand, the informal approach with easy-to-use editing tools favoring bottom-up 
authoring; and on the other, the more formal, top-down approach currently 
favored by the LD toolset.  
 
The PCM allows users to develop their personal competences by selecting 
competence profiles. Each competence may have one or more associated 
competence developments plans (CDP). These CDPs contain a number of 
activities that support acquisition of the competence. The PCM provides easy 
editing of these constructs, which can be considered a form of creating simple 
units of learning. These simple units of learning, however, are not LD compliant. 
Although the lower threshold of this kind of editing is beneficial to most authors, 
we provide several arguments (e.g. accountability, reproducibility, extensibility, 
quality control) as to why a formal UOL can be beneficial. The concepts of the 
PCM, such as competences, competence profiles and competence 
development plans, can be mapped onto LD, making it possible to export any 
CDP as a UOL. Such exported UOLs may be enhanced by using the regular LD 
authoring tool set, like Reload. The common LD authoring tools are still required 
to modify such a UOL; we therefore consider our approach complementary to 
these tools.  
 
The authoring cycle is completed by feeding the produced UOL back into the 
PCM as an alternative to the original CDP. This cycle makes it possible to use 



  Summary | 161 

the most appropriate authoring tools for the situation at hand. Authors can 
benefit from the ease of use of the PCM’s simple authoring environment in 
situations where having a formal specification is not valuable or sensible. They 
may also decide to export their learning design to LD when, for example, it has 
matured into a stable state and requires further refinement not offered by the 
PCM. 
 
This authoring approach requires close integration of CopperCore and the 
PCM. This integration must be seamless; to this end, several issues require 
further research. These include rolling-on and rolling-off users, inclusion or 
exclusion of services, and role assignments. The latter can be especially 
complicated because the PCM does not distinguish any formal roles: ad hoc 
roles may emerge and be formalized in the resulting LD design.  
 
In chapter 8 we review our results. We reflect on our research and development 
questions by discussing how we met the set of requirements for an LD engine 
formulated in chapter 2. We conclude that we have successfully answered both 
questions, but also identify several topics that require future research and 
development. We argue that the XML schema formalism is lacking some 
expressiveness. Therefore, LD cannot solely be described via an XML schema; 
additional descriptions in natural language are still necessary. This is not ideal, 
as it could lead to different interpretations of the specification. We propose to 
use first-order logic to formalize LD’s expected runtime behavior, and to use this 
formalism to automatically generate the CopperCore engine’s implicit 
conditions.  
 
We also touch upon some criticism of our choice of J2EE. We argue that 
modern persistence frameworks could help simplify the engine, and elaborate 
on the reported performance problems: although these were addressed, we 
identified additional measures needed to make CopperCore suitable for use at 
an enterprise level. We propose performance improvements by introducing a 
more efficient approach to property fetching, but also discuss some of the 
drawbacks. 
 
We then reflect on a more harmonized service architecture based on the 
CopperCore and CCSI concepts. This integrated approach splits up the current 
engine into separate services, each with a separate API. This architecture is 
elegant, extensible and flexible, but we also anticipate performance issues with 
this approach.  
 
We propose a generic approach (i.e. not only limited to LD and CopperCore) to 
solving the provisioning issues of chapter 7. We present an initial architecture 
that can transform a UOL’s abstract handler into a URL pointing to a fully 
deployed UOL instance.  
 
Finally, we propose to examine more closely the success of Web 2.0. By 
identifying some of its typical characteristics and comparing them with the 

designs and implementations presented in this thesis, we identify some areas of 
potential future research. 





 

Samenvatting 



 

Samenvatting1 

IMS Learning Design (LD) is een formele taal voor het vastleggen van learning 
designs. LD maakt hiervoor gebruik van de eXtensible Mark-up Language 
(XML) als metataal. Een metataal is een taal die wordt gebruikt om een andere 
taal te beschrijven. Zo is bijvoorbeeld de Nederlandse grammatica een metataal 
voor de Nederlandse taal. Toen de LD-specificatie werd gepubliceerd ontstond 
de behoefte aan een referentie-implementatie voor deze specificatie. Zo’n 
referentie-implementatie maakt de specificatie inzichtelijker en eenvoudiger te 
begrijpen voor gebruikers, doordat gemaakte ontwerpen ‘afgespeeld’ kunnen 
worden. Zo kunnen softwareontwikkelaars experimenteren met de integratie 
van LD in hun eigen omgevingen. Ontwikkelaars hebben ook baat bij een 
werkende implementatie als referentie voor hun eigen implementaties van de 
specificatie. Echter, het ontwerp en de bouw van zo’n referentie-implementatie 
is geen vanzelfsprekendheid. De specificatie combineert namelijk 
eigenschappen van verschillende talen. Zo heeft LD kenmerken van een 
imperatieve programmeertaal waarbij de volgorde van de statements bepaald 
hoe ze later dienen te worden uitgevoerd. Echter, LD is ook declaratief. Dit geldt 
met name voor de condities van LD, die een voortdurende evaluatie behoeven, 
waarbij de volgorde niet van tevoren is vastgelegd. In dat opzicht lijken 
condities op productieregels in een productiesysteem. LD is ook declaratief in 
een andere betekenis van het woord. LD veronderstelt, dat de implementatie in 
diverse ondersteunende diensten voorziet, die door middel van een simpele 
declaratie kunnen worden gespecificeerd. Dit geldt bijvoorbeeld voor de 
services waaraan de LD-specificatie refereert. LD is ook een persistente taal, 
wat inhoudt dat alle persistentie automatisch door een implementatie 
afgehandeld dient te worden. Tot slot lijkt LD ook op een workflow-taal die de 
interacties tussen personen, rollen en activiteiten in het learning design 
orkestreert. Zo’n LD-implementatie vergt aanzienlijke middelen en inzet, zelfs 
indien hiervoor een ontwerp beschikbaar is dat zich al in de praktijk heeft 
bewezen. Het is derhalve verstandig om zo’n referentie-implementatie 
herbruikbaar te maken voor diverse situaties en omgevingen.  
 
De eerste onderzoeksvraag van dit proefschrift is daarom als volgt 
geformuleerd:  

i) Hoe kan een herbruikbare geheel compatibele referentie-implementatie 
voor de IMS Learning Design specificatie worden gebouwd?  

 
LD leunt op andere specificaties en e-learning diensten. Hoewel de specificatie 
een vrij gedetailleerde beschrijving bevat hoe deze andere specificaties dienen 
te worden geïntegreerd op lexicaal niveau, is er zeer weinig gespecificeerd over 
de consequenties hiervan tijdens de uitvoering van zo’n ontwerp in runtime. 
Deze situatie heeft geleid tot het tweede onderzoeksvraag van dit proefschrift: 

                                                      
1 Bij de vertaling hebben we zoveel mogelijk termen vertaald. Waar dit niet goed mogelijk was zijn 

de originele Engelse termen cursief gedrukt. 



  Samenvatting | 165 

ii) Hoe, gegeven de referentie-implementatie voor de LD-specificatie (i), 
kunnen implementaties voor andere e-learning specificaties en diensten 
op een generieke manier worden geïntegreerd tijdens de runtime? 

 
In hoofdstuk 2 zien we dat LD drie varianten kent, waarbij elke variant een 
uitbreiding is op de vorige. LD-niveau A bevat de belangrijkste constructies van 
de specificatie en vormt daarmee het meest basale niveau van de specificatie. 
Het biedt constructies voor het formuleren van leerdoelen, voorwaardelijkheden, 
rollen en activiteiten. De method combineert rollen en activiteiten in role-parts. 
Role-parts kunnen worden geordend via acts die op hun beurt worden 
geordend via plays. De method is geïnspireerd op de metafoor van het theater. 
Acteurs spelen hier ook een rol en voeren handelingen (activities) uit op het 
toneel. Iedere acteur kent de rol die hij geacht wordt te spelen. Acteurs weten 
wanneer ze op het toneel moeten verschijnen en hoe ze met andere acteurs 
samen moeten spelen. De play, het draaiboek in LD, bepaalt dus welke 
activiteiten, wanneer en door wie moeten worden uitgevoerd. LD-niveau B 
voegt hieraan de mogelijkheid tot personalisatie toe. Niveau B van de 
specificatie maakt het mogelijk om properties te definiëren die essentieel zijn 
voor de personalisatie. Deze properties zijn vergelijkbaar met variabelen van 
reguliere programmeertalen. De specificatie kent echter speciale 
eigenschappen toe aan deze variabelen. LD-properties kenmerken zich doordat 
ze regels kennen die de toegestane waarden bepalen. Properties hebben ook 
nog een instantiebereik en zijn automatisch persistent. De waarden voor deze 
properties worden oftewel rechtstreeks door een gebruiker ingevoerd, of zijn het 
gevolg van het evalueren van een conditie. Deze LD condities zullen een ieder 
die enige programmeerervaring heeft, bekend voorkomen. Maar de condities 
van LD zijn niet imperatief zoals bij de meeste programmeertalen. De 
implementatie is verantwoordelijk voor de evaluatie, in de juiste volgorde, van 
de relevante condities. Via deze condities is het mogelijk om verschillende LD-
elementen te tonen of te verbergen. Dit verbergen en tonen is de basis van de 
personalisatie van een ontwerp. Tot slot voegt niveau C van LD slechts een 
notificatiemechanisme toe aan de specificatie. Dit notificatiemechanisme 
informeert gebruikers, via berichten, over gebeurtenissen die tijdens de 
uitvoering van een ontwerp zijn opgetreden. 
 
Een learning design, inclusief alle benodigde bronnen, kan worden gebundeld, 
om zo een leereenheid te vormen (UOL). Een UOL kan vervolgens worden 
gecomprimeerd tot een enkel bestand dat geschikt is voor verdere verwerking 
door een runtime omgeving. We definiëren een LD-engine, of engine, als een 
softwarecomponent die in staat is om de regels van de LD-specificatie te 
interpreteren en toe te passen op een UOL. Een engine heeft zelf geen 
gebruikersinterface. Een zogenaamde LD-player, of player, gebruikt de 
resultaten van de engine om deze in een geschikt formaat aan de gebruiker te 
presenteren. Dezelfde engine kan door verschillende players worden gebruikt. 
De engine is ontworpen om in een bredere context te worden ingezet. 
Bijvoorbeeld, als onderdeel van een bestaande e-learning omgeving. Aan de 
hand van de LD-specificatie beschrijven we een aantal categorieën van eisen 
waaraan elke LD-implementatie moet voldoen. Deze categorieën van eisen zijn 



 166 | Samenvatting 

als volgt: validering, publicatie, facilitering, bemensing, personalisatie en 
integratie. 
 
De bovengenoemde categorieën van eisen zijn uitgangspunt geweest voor een 
ontwerp van een LD-engine zoals we die in hoofdstuk 3 hebben besproken. De 
idee achter het ontwerp is het concept van een finite state machine (FSM). De 
LD properties representeren de toestand van zo’n FSM en we introduceren 
impliciete properties om alle eigenschappen van LD te kunnen vastleggen. 
Impliciete properties zijn, in tegenstelling tot hun tegenhangers, expliciete 
properties, niet gedefinieerd door de auteurs van de UOL. Zij worden 
gegenereerd door de engine op het moment dat de UOL wordt gepubliceerd. 
Deze impliciete properties beschrijven de toestand van bepaalde 
eigenschappen van objecten, zoals bijvoorbeeld afronding en zichtbaarheid. We 
lichten toe hoe een UOL kan worden bemenst met gebruikers door het concept 
van een run te introduceren. Meerdere van dergelijk runs kunnen worden 
gecreëerd voor één enkele UOL waarbij iedere run bemenst is door zijn eigen 
groep gebruikers. Deze gebruikers worden vervolgens toegewezen aan een of 
meerdere rollen zoals die in de UOL zijn gedefinieerd. Vervolgens komt de 
relatie tussen de run, de rol en het bereik van de properties aan de orde. Elke 
FSM is opgebouwd uit de verzameling van alle impliciete en expliciete 
properties. Deze verzameling properties wordt geadresseerd door de gebruiker, 
de run en de rol die de gebruiker vervult in die run. We concluderen dan ook dat 
er voor een enkele UOL een hele verzameling van FSM’s bestaan. Iedere 
individuele FSM wordt geïdentificeerd door de run, de gebruiker en zijn rol. Nu 
we hebben beschreven hoe de engine kan worden gezien als verzameling van 
FSM’s, richten we ons op de toestandsveranderingen. Toestandsveranderingen 
zijn het gevolg van gebeurtenissen. Deze gebeurtenissen, kunnen het gevolg 
zijn van directe interactie van de gebruiker met het systeem, maar ze kunnen 
ook veroorzaakt worden door externe prikkels, zoals het verstrijken van tijd. 
Deze toestandsveranderingen kunnen op hun beurt weer leiden tot nieuwe 
gebeurtenissen enzovoort. Op deze manier kan een rimpeleffect van 
toestandsveranderingen ontstaan dat zich niet beperkt tot één enkele FSM. Dit 
rimpeleffect kan zich uitspreiden over vele FSM’s. Vervolgens werken we de 
dispatcher en de event handlers verder uit die verantwoordelijk zijn voor de 
verwerking van deze gebeurtenissen. De event handlers worden gedefinieerd 
door het ontwerp, zoals dat is vastgelegd in een UOL. Event handlers 
verwerken de consequenties van de expliciete condities zoals die zijn 
vastgelegd in een UOL. Echter, ze verwerken ook de consequenties van de 
impliciete regels die zijn bepaald door de LD-specificatie zelf, zoals bijvoorbeeld 
de afronding van rol-parts, acts en plays. Tijdens de publicatie van een UOL, 
zullen alle impliciete LD-regels worden uitgedrukt als expliciete condities. 
Hiervoor hebben we een licht aangepaste versie van de LD-conditietaal 
gebruikt.  
 
Omdat sommige properties gedeeld worden door meerdere FSM’s, kunnen 
meerdere FSM’s ook gelijktijdig van toestand veranderen als gevolg van de 
verandering van een waarde van slechts één enkele property. De 
synchronisatie van de learning-flow tussen verschillende FSM’s wordt op deze 
wijze automatisch geregeld. Omdat iedere FSM te allen tijden in de juiste 



  Samenvatting | 167 

toestand verkeert, is personalisatie van een UOL vereenvoudigd tot een soort 
invuloefening waarbij alle verwijzingen naar properties in een UOL worden 
vervangen door de werkelijke waarden van de FSM. Het maakt hierbij niet uit of 
het hierbij gaat om expliciete of impliciete properties.  
 
We hebben ons engineontwerp gerealiseerd via de CopperCore implementatie. 
CopperCore is uitgebracht onder de GPL open source licentie. De CopperCore 
engine is bedoeld om te worden hergebruikt en beschikt daarom over een 
aantal API’s. 
 
Hoofdstuk 4 benaderen we vanuit het perspectief van een software agent die de 
CopperCore engine gaat gebruiken via deze API’s. We noemen een dergelijke 
software agent ook wel client. De CopperCore API is opgesplitst in een 
CourseManager API en een LDEngine API. De CourseManager API geeft 
toegang tot de administratieve functionaliteit van de engine. Dit omvat de 
publicatie van UOLs, het aanmaken van gebruikersaccounts, runs en de 
toewijzing van gebruikers aan de rollen. Deze methoden zijn erop gericht om 
een UOL te gereed te maken zodat hij kan worden ‘afgespeeld’. Voor het 
feitelijke uitvoeren van een UOL wordt de LDEngine API gebruikt. De LDEngine 
API genereert gepersonaliseerde XML fragmenten die een grote gelijkenis 
vertonen met onderdelen van de oorspronkelijke UOL. We bespreken de drie 
voornaamste LDEngine API methoden in detail en laten zien hoe de 
resulterende XML fragmenten zijn afgeleid van de originele UOL. We 
beschrijven in detail hoe een client de CopperCore engine kan aanroepen en 
welke resultaten dit oplevert. Een sequentiediagram licht de relaties tussen de 
opeenvolgende API calls toe waarbij we een typisch scenario als uitgangspunt 
gebruiken. 
 
Tot slot bespreken we de reden waarom wij gekozen hebben om CopperCore 
als een J2EE-toepassing te implementeren. Hierbij laten we een aantal van de 
configuratiestrategieën en mogelijkheden voor zowel de client als de engine de 
revue passeren. 
 
Hoofdstuk 5 neemt de CopperCore engine als uitgangspunt. Centraal staat de 
vraag hoe educatieve specificaties en diensten op een generieke manier 
geïntegreerd kunnen worden via de CopperCore referentie-implementatie voor 
LD. We presenteren een architectuur die als wig tussen de client en de 
CopperCore engine is geplaatst. Deze architectuur maakt het mogelijk om 
nieuwe diensten toe te voegen, terwijl tegelijkertijd slechts minimale wijzigingen 
nodig zijn in de broncode van reeds bestaande clients om gebruik te maken van 
deze nieuwe architectuur. Dit is belangrijk omdat de CopperCore engine reeds 
enige tijd beschikbaar was toen deze diensten-integratie-architectuur werd 
ontworpen. Om de inbreuk op de bestaande code te beperken zijn service 
adapters gedefinieerd die zich nestelen tussen de originele dienst en een 
aanroepende cliënt. Deze service adapters repliceren de originele API van de 
dienst die ze integreren. Een service adapter informeert een dispatcher over 
gebeurtenissen die van belang kunnen zijn voor andere diensten. Andere 
service adapters houden deze gebeurtenissen in de gaten en reageren hierop 
indien dit van belang is. De dispatcher werkt dus als een soort service bus en is 



 168 | Samenvatting 

een doorgeefluik voor berichten binnen het systeem. We hebben verschillende 
service adapters gedefinieerd, elke voor verschillende soorten specificaties en 
diensten, zoals bijvoorbeeld LD, IMS QTI, fora, zoekdiensten enz. Voor elke 
service adapter kunnen in principe meerdere implementaties bestaan. Zo’n 
implementatie voor een service adapter meldt zichzelf aan bij de dispatcher. Dit 
maakt een dynamische configuratie van de diensten mogelijk. We hebben deze 
diensten integratie architectuur geïmplementeerd en uitgebracht onder de naam 
CopperCore Service Integration (CCSI). Net als CopperCore is CCSI via 
SourceForge te downloaden. CCSI is beschikbaar als open source door middel 
van een GPL licentie. CCSI kan worden geïnstalleerd als aanvulling op 
CopperCore door deze op dezelfde applicatieserver te installeren. 
 
Vervolgens werken we de CCSI-architectuur verder uit door de integratie van 
LD en IMS QTI als voorbeeld te nemen. Wij hebben deze integratie bereikt door 
de IMS QTI uitkomstvariabelen en de LD-properties met elkaar te 
synchroniseren op basis van hun lexicale gelijkenis. Deze aanpak wordt ook 
aanbevolen door IMS. Tot slot bespreken we een aantal alternatieve 
benaderingen en beargumenteren we waarom we uiteindelijk hebben gekozen 
voor de CCSI oplossing. 
 
Hoofdstuk 6 begint met de vaststelling, dat beide onderzoeks- en 
ontwikkelvraagstukken van dit proefschrift in principe zijn beantwoord. We 
reflecteren op de invloed van zowel CopperCore en CCSI op de LD-
gemeenschap door het gebruik van beide producten in andere onderzoeks- en 
ontwikkelprojecten te bekijken. De ontwikkeling van CopperCore en CCSI was 
een iteratief proces en deze iteraties hebben plaatsgevonden in de context van 
extern gefinancierde projecten. Deze projecten hebben niet alleen bijgedragen 
aan de ontwikkeling van CopperCore- en CCSI-implementaties, maar ze 
hebben ook bijgedragen aan de validering ervan.  
 
Het ALFANET-project was het startsein voor deze ontwikkelingen en de eerste 
versie van CopperCore op SourceForge was een resultaat van dit project. 
CopperCore fungeerde als een aparte dienst in een overkoepelende ALFANET-
architectuur. ALFANET werd opgevolgd door een reeks SLeD-projecten die 
samen met de Britse Open Universiteit zijn uitgevoerd. Als onderdeel hiervan is 
CopperCore verbeterd zodat ook niveau C van de LD-specificatie wordt 
ondersteund. Bovendien zijn SOAP compatibele API’s aan CopperCore 
toegevoegd, zodat ook niet-Java-omgevingen gebruik kunnen maken van 
CopperCore. SLeD stond ook aan de basis van de ontwikkeling van CCSI. 
Voorts is er een geheel nieuwe player in het kader van SLeD ontwikkeld. Een 
aangepaste versie van de SLeD-omgeving is door Liverpool Hope University 
gebruikt om praktische ervaringen op te doen met hun studenten als onderdeel 
van een JISC-evaluatieproject. Deze experimenten brachten problemen met de 
prestaties van CopperCore aan het licht bij gebruik met grotere aantallen 
gebruikers. In het laatste SLeD-project zijn deze problemen geadresseerd en 
grotendeels verholpen. 
 
Het UNFOLD-project verschafte de LD-gemeenschap een platform om elkaar te 
ontmoeten en van gedachten te wisselen over nieuwe ideeën en ervaringen. 



  Samenvatting | 169 

We beschrijven kort enkele van de onderzoeks- en ontwikkelactiviteiten die in 
het kader van UNFOLD zijn gepresenteerd en gaan daarbij met name in op het 
hergebruik van CopperCore en CCSI. Tot slot bespreken we het hergebruik van 
CopperCore in de TELCERT- en EleGI-projecten. 
 
Gebaseerd op de invloed van CopperCore en CCSI op de LD-gemeenschap 
kunnen we concluderen dat CopperCore is uitgegroeid tot de de facto 
referentieimplementatie voor LD. We concluderen ook dat de LD-gemeenschap 
CopperCore heeft gebruikt om een beter en dieper inzicht te krijgen in LD-
specificatie. Tegelijkertijd heeft diezelfde gemeenschap CopperCore in de 
praktijk gevalideerd, door het testen van hun ontwerpen met behulp van 
CopperCore voor alle niveaus van de specificatie. Bovendien hebben we gezien 
dat CopperCore meermaals is hergebruikt en dat dit op verschillende manieren 
is gebeurd. We hebben ook vastgesteld dat er met succes diverse nieuwe 
diensten aan CCSI zijn toegevoegd. Daarmee rechtvaardigen we de conclusie 
dat we beide onderzoeks- en ontwikkelvragen van dit proefschrift succesvol 
hebben beantwoord. 
 
CopperCore en CCSI hebben de grootste barrière voor een succesvolle start 
van LD weggenomen. Echter, we moeten ook vaststellen dat het gebruik van 
LD nog altijd achter blijft bij de verwachtingen. Het gebrek aan volwassenheid 
van de huidige generatie LD-software is hiervoor de hoofdoorzaak. Met name 
de beschikbare auteurs omgevingen worden als problematisch ervaren. Deze 
omgevingen ondersteunen de niet-expertgebruiker onvoldoende en ze leggen 
de auteurs een top-down benadering op, die erg eigen is aan LD maar vaak niet 
wenselijk wordt gevonden. Daarom presenteren we in het volgende hoofdstuk 
een complementaire aanpak voor deze top-down benadering door gebruik te 
maken van een hechte integratie van CopperCore en CCSI in de Personal 
Competence Manager (PCM). 
 
In hoofdstuk 7 beschrijven we een aanpak voor de LD-auteursproblematiek die 
twee werelden combineert. Aan de ene kant is er de informele aanpak met 
eenvoudig te gebruiken software die een bottom-up aanpak toestaat. Aan de 
andere kant is er de meer formele top-down benadering, zoals die momenteel 
wordt ondersteund door de LD-auteursomgevingen. De PCM ondersteunt 
gebruikers bij het bereiken van hun competenties via het kiezen van 
competentieprofielen. Iedere competentie in zo’n profiel kent één of meerdere 
competentie-ontwikkelplannen (CDP). Deze CDP’s bevatten de leeractiviteiten 
die nodig zijn om een competentie te bereiken. In feite biedt de PCM 
eenvoudige voorziening die gemakkelijk zijn te gebruiken om leereenheden te 
maken. Deze leereenheden zijn echter niet LD-compatibel. Deze manier van 
leereenheden maken is weliswaar erg gemakkelijk voor auteurs, maar er zijn 
ook omstandigheden waarbij een meer formele beschrijving van zo’n 
leereenheid door middel van LD te prefereren is. De factoren die bij deze 
overweging een rol spelen zijn o.a.: aansprakelijkheid, reproduceerbaarheid, 
uitbreidbaarheid en kwaliteitscontrole. Doordat de concepten van de PCM 
vertaald kunnen worden naar constructen van LD is het mogelijk om een 
leereenheid vanuit de PCM te exporteren naar een UOL. Zo’n UOL kan 
vervolgens met de beschikbare auteursomgevingen voor LD aangepast en/of 



 170 | Samenvatting 

verbeterd worden. Omdat we de bestaande LD-auteursomgeving nog altijd 
nodig hebben, beschouwen we onze aanpak dan ook als complementair. De 
ontwikkelcyclus kan vervolgens worden gesloten door een al dan niet 
aangepaste UOL weer te importeren via de PCM. Een dergelijke UOL vormt 
dan een alternatief voor de originele leereenheid. Op deze manier is het 
mogelijk om de meest geschikte auteursomgeving te gebruiken al naargelang 
de behoefte. Auteurs kunnen profiteren van het gemak en de eenvoud van de 
PCM voor situaties waarbij een formele representatie van hun leereenheid niet 
belangrijk is of geen toegevoegde waarde heeft. Diezelfde auteurs kunnen 
gebruik maken van de kracht van de formele LD-specificatie door hun initiële 
ontwerp te exporteren naar een UOL omdat er bijvoorbeeld behoefte is aan 
verfijningen van het ontwerp waarin de PCM niet kan voorzien. 
 
De geschetste aanpak vergt een nauwe integratie van CopperCore met de 
PCM. Deze integratie zou naadloos moeten zijn en er zijn nog verschillende 
problemen die opgelost moeten worden voordat dit een feit is. Deze problemen 
betreffen het toewijzen van gebruikers aan runs, de integratie van diensten en 
het toewijzen van rollen. Zekere het laatste kan problematisch zijn omdat de 
PCM geen formeel onderscheid maakt tussen de rollen van gebruikers. In de 
PCM kunnen ad hoc rollen ontstaan die vervolgens in de resulterende UOL 
worden geformaliseerd. Hoe we deze toewijzing automatisch kunnen regelen, 
blijft een vraag en mogelijk zal hiervoor in sommige gevallen menselijk 
interventie nodig zijn. 
 
In hoofdstuk 8 bekijken we de resultaten. Hierbij gebruiken we de categorieën 
van eisen, zoals die in hoofdstuk 2 zijn besproken, als leidraad. We komen tot 
de conclusie dat we de onderzoeks- en ontwikkelvraagstukken van dit 
proefschrift met succes hebben beantwoord. Echter we identificeren ook enkele 
aandachtsgebieden die verder onderzoek en ontwikkeling vergen. We stellen 
dat het XML-schemaformalisme onvoldoende expressief is. De LD-specificatie 
kan niet in zijn geheel worden beschreven met een XML schema. Daardoor zijn 
er additionele regels nodig die momenteel in natuurlijke taal zijn beschreven. Dit 
geldt des te meer voor de beschrijving van het runtime gedrag omdat hier 
helemaal geen formalisme is gebruikt. Dit is niet ideaal, omdat dit tot 
verschillende interpretaties kan leiden. Daarom stellen we voor om eerste orde 
logica te gebruiken voor het vastleggen van het gewenste runtime gedrag. Dit 
formalisme kan worden gebruikt om de impliciete condities te genereren die 
nodig zijn voor de correcte verwerking van LD. 
 
We reageren op kritiek voor onze keuze voor het complexe J2EE. We stellen 
dat moderne persistentie-oplossingen kunnen helpen met het vereenvoudigen 
van het ontwerp. Voorts gaan we dieper in op de prestatie-problemen van 
CopperCore waardoor CopperCore nog niet geschikt is om op institutioneel 
niveau te worden ingezet. Om deze prestaties te verbeteren stellen we voor om 
het ophalen van de properties efficiënter te maken door de properties te 
bundelen.  
 
Vervolgens bespreken we een meer modulaire, geharmoniseerde diensten-
architectuur die de concepten van CopperCore en CCSI combineert. De huidige 



  Samenvatting | 171 

CopperCore engine wordt hierbij in verschillende kleinere diensten opgesplitst, 
waarbij ieder dienst zijn eigen API heeft. Deze aanpak is elegant, uitbreidbaar 
en flexibel, maar we verwachten ook wel problemen met de prestatie van dit 
systeem. 
 
We stellen ook een generieke aanpak voor om de problemen van hoofdstuk 7 
omtrent de beschikbaarheid van runs op te lossen. We presenteren een eerste 
versie van een architectuur die in staat is om abstracte handles te vertalen naar 
URL’s voor de corresponderende run. Onze oplossing is niet beperkt tot LD en 
CopperCore, maar zou ook in andere omgevingen kunnen worden toegepast. 
 
Tot slot kijken we naar het succes van de huidige Web 2.0 toepassingen. We 
identificeren enkele eigenschappen van Web 2.0 en vergelijken deze met de 
ontwerpen zoals ze in het proefschrift zijn gepresenteerd. Op basis van deze 
vergelijking suggereren we enkele gebieden die verder aandacht verdienen. 



 



 

Acknowledgement



 

Acknowledgements 

This thesis is a milestone in a journey I embarked on almost 10 years ago. It all 
started in 1998 with the exciting prospect of developing a new e-learning 
environment for the Open University of the Netherlands. A new educational 
language, later to become known as EML, was to play an important role in this 
new environment, and ultimately resulted in the research and developments 
described in this thesis. I have met many fellow travellers on this journey, some 
whose company I enjoyed for only parts of it, others who still accompany me 
until this day. To all of them I owe my gratitude for their stimulating company 
and the opportunity to do such arresting work together. I wish to express my 
appreciation to some in particular, while acknowledging at the same time that I 
will no doubt forget to mention many others. To them I apologize upfront. 
 
First of all I wish to thank my supervisor and co-supervisor. Rob Koper 
stimulated me to write this thesis and provided me with the opportunity to do so. 
I felt honoured, because I am not part of OTEC’s academic staff and this 
opportunity is not something to take for granted. Jan van Bruggen was willing to 
take on the role of co-supervisor at a late stage in the process, and his 
invaluable comments helped me set my beacons and stay on course. Colin 
Tattersall was my initial co-supervisor, and thanks go to him for having faith in 
me and believing in a good outcome right from the start. 
 
Also special thanks to Harrie Martens, who was one of my fellow travellers from 
the first hour. He co-developed and co-authored most of the work discussed in 
this thesis. He was also my sounding board in sometimes heated discussions. 
We developed a professional respect for each other that could easily withstand 
occasional disagreements: our cooperation hit the bulls eye. Thanks also to 
Peter van Rosmalen, who paved the way for me by taking this PhD route first. 
His help in various roles such as project leader, fellow PhD student and 
occasionally ad hoc bellboy lightened my work more than once, while his 
famous one-liners always brightened my day. And to Francis Brouns, who was 
also a fellow traveller and companion from the start. She often had to deal with 
the consequences of my taking this journey, both at work and in private. To 
Mieke Haemers, too, who was a true coach throughout the writing of this thesis. 
She did a wonderful job helping with all the formalities as well as the final 
proofreading.  
 
Many thanks also to all the people in the ALFANET project team: Cristina 
Arana, Carlos Fuentes, Jesús González Boticario, Carmen Barrera, Olga 
Santos, Jürgen A. Schmidt, Ingeborg Hoke, Elsa Escala, Adalberto Moutinho, 
Francisco Barros, Roberto Canada, Peter van Rosmalen, Harrie Martens, René 
van Es, Patricia Poelmans, Frans Mofers, Harrie Passier, Slavi Stoyanov, John 
van der Baaren, Leo Wagemans. A project which had a rough start, but which I 
will remember foremost as the foundation for the CopperCore engine. 
 
Many thanks to all those in the various SLeD projects: Patrick McAndrew, 
Martin Weller, Will Woods, Juliette White, Alex Little, Simon Hutchinson, Mark 



  Acknowledgements | 175 

Barrett-Baxendale, Harrie Martens and Rob Nadolski. I especially enjoyed the 
fruitful and uncomplicated cooperation of our various projects. 
 
I would also like to thank Phil Beauvoir, Paul Sharples and Scott Wilson for their 
many contributions and inspiring discussions in the UNFOLD and 
TENCompetence projects. Many thanks to Ruud Lemmers, too, for his efforts to 
keep the TENCompetence developments on track. I learned a lot from our joint 
development efforts. 
 
Finally, I wish to express my gratitude to everyone, past and current, from the 
OTEC development programme, without whom this thesis would not have been 
possible. And last but not least, to Marc Verhooren for his contributions to the 
Edubox system and LD specification, which in many respects paved the way for 
the work presented in this thesis. 
 





 

Curriculum Vitae 



 

Curriculum Vitae 

Hubert Vogten, born on the 16
th
 of February 1967 in Sittard the Netherlands, 

began his career in 1990 at the Open University of the Netherlands (OUNL). 
Since then, he has been active in educational technology in various roles. He 
started developing hypertext and hypermedia systems in projects both for the 
university itself and in industry, mostly using either Smalltalk or C++, until in 
1994 he founded his own company which successfully developed a system 
capable of representing OUNL curricula and the complex associated 
regulations. This system handled the remapping of some 10,000 student 
records onto OUNL’s redefined curricula. 
 
In 1994 Vogten was hired by the European Association of Distance Teaching 
Universities for the JANUS project (EU 3

rd
 framework). In the following year, he 

joined the European Open University Network, where he was responsible for 
the network’s technology development. He participated in the EOUN project (4

th
 

framework) and wrote a successful proposal for the WIRE project (EU Ten-
Telecom programme). During this period he also worked with new and 
emerging technologies such as satellite technology through VSATs, point-to-
point and multi-point video conferencing, interactive television, email, chat, 
computer conferencing, and new web technologies to establish a ‘European 
Virtual University’. This meant he was involved in setting up one of the earliest 
websites in the Netherlands. 
 
In 1998 Vogten was asked to rejoin the Open University to work on a new 
virtual learning environment. As a result he was closely involved in the 
development of EML, and helped develop its first series of prototypes. This led 
to a range of Edubox systems going into production at the OUNL. At the same 
time, he was also involved in standardizing EML through IMS, work which 
eventually resulted in the release of the LD specification in 2003.  
 
Vogten has participated in various R&D projects such as ALFANET (5

th
 

framework); a series of SLeD projects (JISC); and TENCompetence (6
th
 

framework), for which he helped research and develop an open source runtime 
environment for LD. His current work focuses on researching and developing 
services for lifelong competence development. 
 



 

SIKS Dissertatiereeks 



 

SIKS Dissertatiereeks 

1998 

1998-1 Johan van den Akker (CWI) 

 DEGAS - An Active, Temporal Database of Autonomous Objects 

1998-2 Floris Wiesman (UM) 

 Information Retrieval by Graphically Browsing Meta-Information 

1998-3 Ans Steuten (TUD) 

A Contribution to the Linguistic Analysis of Business Conversations within the 

Language/Action Perspective 

1998-4 Dennis Breuker (UM) 

 Memory versus Search in Games 

1998-5 E.W.Oskamp (RUL) 

 Computerondersteuning bij Straftoemeting 

1999 

1999-1 Mark Sloof (VU) 

Physiology of Quality Change Modelling; Automated modelling of Quality Change of 

Agricultural Products 

1999-2 Rob Potharst (EUR) 

Classification using decision trees and neural nets 

1999-3 Don Beal (UM) 

The Nature of Minimax Search 

1999-4 Jacques Penders (UM) 

The practical Art of Moving Physical Objects 

1999-5 Aldo de Moor (KUB) 

Empowering Communities: A Method for the Legitimate User-Driven Specification of 

Network Information Systems 

1999-6 Niek J.E. Wijngaards (VU) 

Re-design of compositional systems 

1999-7 David Spelt (UT) 

 Verification support for object database design 

1999-8 Jacques H.J. Lenting (UM) 

Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for Discrete 

Reallocation. 

2000 

2000-1 Frank Niessink (VU) 

 Perspectives on Improving Software Maintenance 

2000-2 Koen Holtman (TUE) 

 Prototyping of CMS Storage Management 



  SIKS Dissertatiereeks | 181 

2000-3 Carolien M.T. Metselaar (UVA) 

Sociaal-organisatorische gevolgen van kennistechnologie; een procesbenadering en 

actorperspectief. 

2000-4 Geert de Haan (VU) 

 ETAG, A Formal Model of Competence Knowledge for User Interface  Design 

2000-5 Ruud van der Pol (UM) 

 Knowledge-based Query Formulation in Information Retrieval. 

2000-6 Rogier van Eijk (UU) 

 Programming Languages for Agent Communication 

2000-7 Niels Peek (UU) 

 Decision-theoretic Planning of Clinical Patient Management 

2000-8 Veerle Coup‚ (EUR) 

 Sensitivity Analyis of Decision-Theoretic Networks 

2000-9 Florian Waas (CWI) 

 Principles of Probabilistic Query Optimization 

2000-10  Niels Nes (CWI) 

Image Database Management System Design Considerations, Algorithms and 

Architecture 

2000-11  Jonas Karlsson (CWI) 

 Scalable Distributed Data Structures for Database Management 

2001 

2001-1  Silja Renooij (UU)  

  Qualitative Approaches to Quantifying Probabilistic Networks 

2001-2  Koen Hindriks (UU) 

  Agent Programming Languages: Programming with Mental Models 

2001-3  Maarten van Someren (UvA) 

  Learning as problem solving 

2001-4  Evgueni Smirnov (UM) 

 Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets 

2001-5 Jacco van Ossenbruggen (VU) 

  Processing Structured Hypermedia: A Matter of Style  

2001-6 Martijn van Welie (VU) 

 Task-based User Interface Design 

2001-7 Bastiaan Schonhage (VU) 

 Diva: Architectural Perspectives on Information Visualization 

2001-8 Pascal van Eck (VU) 

 A Compositional Semantic Structure for Multi-Agent Systems Dynamics. 

2001-9 Pieter Jan 't Hoen (RUL) 

Towards Distributed Development of Large Object-Oriented Models, Views of Packages 

as Classes 



 182 | SIKS Dissertatiereeks 

2001-10  Maarten Sierhuis (UvA) 

Modeling and Simulating Work Practice BRAHMS: a multiagent modeling and simulation 

language for work practice analysis and design 

2001-11  Tom M. van Engers (VUA) 

Knowledge Management: The Role of Mental Models in Business Systems Design 

2002 

2002-01  Nico Lassing (VU) 

 Architecture-Level Modifiability Analysis 

2002-02  Roelof van Zwol (UT) 

 Modelling and searching web-based document collections 

2002-03  Henk Ernst Blok (UT) 

 Database Optimization Aspects for Information Retrieval 

2002-04  Juan Roberto Castelo Valdueza (UU) 

 The Discrete Acyclic Digraph Markov Model in Data Mining 

2002-05  Radu Serban (VU) 

The Private Cyberspace Modeling Electronic Environments inhabited by Privacy-

concerned Agents 

2002-06  Laurens Mommers (UL) 

Applied legal epistemology; Building a knowledge-based ontology of the legal domain  

2002-07  Peter Boncz (CWI) 

 Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications 

2002-08  Jaap Gordijn (VU) 

 Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas  

2002-09  Willem-Jan van den Heuvel(KUB) 

  Integrating Modern Business Applications with Objectified Legacy Systems  

2002-10  Brian Sheppard (UM)  

 Towards Perfect Play of Scrabble  

2002-11 Wouter C.A. Wijngaards (VU) 

 Agent Based Modelling of Dynamics: Biological and Organisational Applications 

2002-12 Albrecht Schmidt (Uva) 

 Processing XML in Database Systems 

2002-13 Hongjing Wu (TUE) 

 A Reference Architecture for Adaptive Hypermedia Applications 

2002-14  Wieke de Vries (UU) 

Agent Interaction: Abstract Approaches to Modelling, Programming and Verifying Multi-

Agent Systems  

2002-15 Rik Eshuis (UT) 

 Semantics and Verification of UML Activity Diagrams for Workflow Modelling 

2002-16 Pieter van Langen (VU) 

 The Anatomy of Design: Foundations, Models and Applications 



  SIKS Dissertatiereeks | 183 

2002-17 Stefan Manegold (UVA) 

 Understanding, Modeling, and Improving Main-Memory Database Performance  

2003 

2003-01 Heiner Stuckenschmidt (VU) 

 Ontology-Based Information Sharing in Weakly Structured Environments 

2003-02 Jan Broersen (VU) 

 Modal Action Logics for Reasoning About Reactive Systems 

2003-03 Martijn Schuemie (TUD) 

 Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy 

2003-04 Milan Petkovic (UT) 

 Content-Based Video Retrieval Supported by Database Technology  

2003-05 Jos Lehmann (UVA) 

 Causation in Artificial Intelligence and Law - A modelling approach 

2003-06 Boris van Schooten (UT) 

 Development and specification of virtual environments 

2003-07 Machiel Jansen (UvA) 

 Formal Explorations of Knowledge Intensive Tasks 

2003-08  Yongping Ran (UM)  

 Repair Based Scheduling  

2003-09 Rens Kortmann (UM) 

 The resolution of visually guided behaviour  

2003-10 Andreas Lincke (UvT) 

Electronic Business Negotiation: Some experimental studies on the interaction between 

medium, innovation context and culture  

2003-11 Simon Keizer (UT) 

 Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks 

2003-12 Roeland Ordelman (UT) 

 Dutch speech recognition in multimedia information retrieval 

2003-13 Jeroen Donkers (UM) 

 Nosce Hostem - Searching with Opponent Models 

2003-14 Stijn Hoppenbrouwers (KUN) 

  Freezing Language: Conceptualisation Processes across ICT-Supported Organisations 

2003-15 Mathijs de Weerdt (TUD) 

 Plan Merging in Multi-Agent Systems 

2003-16 Menzo Windhouwer (CWI) 

Feature Grammar Systems - Incremental Maintenance of Indexes to Digital Media 

Warehouses 

2003-17 David Jansen (UT) 

 Extensions of Statecharts with Probability, Time, and Stochastic Timing 

2003-18 Levente Kocsis (UM) 

 Learning Search Decisions 



 184 | SIKS Dissertatiereeks 

2004 

2004-01 Virginia Dignum (UU) 

 A Model for Organizational Interaction: Based on Agents, Founded in Logic 

2004-02 Lai Xu (UvT) 

 Monitoring Multi-party Contracts for E-business  

2004-03 Perry Groot (VU) 

 A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving  

2004-04 Chris van Aart (UVA) 

 Organizational Principles for Multi-Agent Architectures 

2004-05 Viara Popova (EUR) 

 Knowledge discovery and monotonicity 

2004-06 Bart-Jan Hommes (TUD) 

 The Evaluation of Business Process Modeling Techniques  

2004-07 Elise Boltjes (UM) 

Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar abstract denken, 

vooral voor meisjes 

2004-08 Joop Verbeek(UM) 

Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politiële 

gegevensuitwisseling en digitale expertise  

 2004-09 Martin Caminada (VU) 

 For the Sake of the Argument; explorations into argument-based reasoning 

2004-10 Suzanne Kabel (UVA) 

 Knowledge-rich indexing of learning-objects  

2004-11 Michel Klein (VU) 

 Change Management for Distributed Ontologies 

2004-12 The Duy Bui (UT) 

 Creating emotions and facial expressions for embodied agents  

2004-13 Wojciech Jamroga (UT) 

 Using Multiple Models of Reality: On Agents who Know how to Play  

2004-14 Paul Harrenstein (UU) 

 Logic in Conflict. Logical Explorations in Strategic Equilibrium  

2004-15 Arno Knobbe (UU) 

 Multi-Relational Data Mining  

2004-16 Federico Divina (VU) 

 Hybrid Genetic Relational Search for Inductive Learning  

2004-17 Mark Winands (UM) 

 Informed Search in Complex Games  

2004-18 Vania Bessa Machado (UvA) 

 Supporting the Construction of Qualitative Knowledge Models  



  SIKS Dissertatiereeks | 185 

2004-19 Thijs Westerveld (UT) 

 Using generative probabilistic models for multimedia retrieval  

2004-20 Madelon Evers (Nyenrode) 

 Learning from Design: facilitating multidisciplinary design teams  

2005 

2005-01 Floor Verdenius (UVA) 

 Methodological Aspects of Designing Induction-Based Applications  

2005-02 Erik van der Werf (UM)) 

 AI techniques for the game of Go  

2005-03 Franc Grootjen (RUN) 

 A Pragmatic Approach to the Conceptualisation of Language  

2005-04 Nirvana Meratnia (UT) 

 Towards Database Support for Moving Object data  

2005-05 Gabriel Infante-Lopez (UVA) 

 Two-Level Probabilistic Grammars for Natural Language Parsing  

2005-06 Pieter Spronck (UM) 

 Adaptive Game AI  

2005-07 Flavius Frasincar (TUE) 

 Hypermedia Presentation Generation for Semantic Web Information Systems  

2005-08 Richard Vdovjak (TUE) 

 A Model-driven Approach for Building Distributed Ontology-based Web Applications  

2005-09 Jeen Broekstra (VU) 

 Storage, Querying and Inferencing for Semantic Web Languages  

2005-10 Anders Bouwer (UVA) 

 Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments  

2005-11  Elth Ogston (VU) 

 Agent Based Matchmaking and Clustering - A Decentralized Approach to Search  

2005-12 Csaba Boer (EUR) 

 Distributed Simulation in Industry  

2005-13 Fred Hamburg (UL) 

 Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen  

2005-14 Borys Omelayenko (VU) 

Web-Service configuration on the Semantic Web; Exploring how semantics meets 

pragmatics  

2005-15 Tibor Bosse (VU) 

 Analysis of the Dynamics of Cognitive Processes  

2005-16 Joris Graaumans (UU)  

  Usability of XML Query Languages 

2005-17 Boris Shishkov (TUD) 

 Software Specification Based on Re-usable Business Components  



 186 | SIKS Dissertatiereeks 

2005-18 Danielle Sent (UU) 

 Test-selection strategies for probabilistic networks  

2005-19 Michel van Dartel (UM) 

 Situated Representation  

2005-20 Cristina Coteanu (UL) 

 Cyber Consumer Law, State of the Art and Perspectives  

2005-21 Wijnand Derks (UT) 

Improving Concurrency and Recovery in Database Systems by Exploiting Application 

Semantics  

2006 

2006-01 Samuil Angelov (TUE) 

 Foundations of B2B Electronic Contracting  

2006-02 Cristina Chisalita (VU) 

 Contextual issues in the design and use of information technology in organizations  

2006-03  Noor Christoph (UVA) 

 The role of metacognitive skills in learning to solve problems  

2006-04 Marta Sabou (VU) 

 Building Web Service Ontologies  

2006-05 Cees Pierik (UU) 

 Validation Techniques for Object-Oriented Proof Outlines  

2006-06 Ziv Baida (VU) 

Software-aided Service Bundling - Intelligent Methods & Tools for Graphical Service 

Modeling  

2006-07 Marko Smiljanic (UT) 

 XML schema matching -- balancing efficiency and effectiveness by means of clustering  

2006-08 Eelco Herder (UT) 

 Forward, Back and Home Again - Analyzing User Behavior on the Web  

2006-09 Mohamed Wahdan (UM) 

 Automatic Formulation of the Auditor's Opinion  

2006-10 Ronny Siebes (VU) 

 Semantic Routing in Peer-to-Peer Systems  

2006-11 Joeri van Ruth (UT) 

 Flattening Queries over Nested Data Types  

2006-12 Bert Bongers (VU) 

Interactivation - Towards an e-cology of people, our technological environment, and the 

arts  

2006-13 Henk-Jan Lebbink (UU) 

 Dialogue and Decision Games for Information Exchanging Agents  

2006-14 Johan Hoorn (VU) 

Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements 

Change  



  SIKS Dissertatiereeks | 187 

2006-15 Rainer Malik (UU) 

 CONAN: Text Mining in the Biomedical Domain  

2006-16 Carsten Riggelsen (UU) 

 Approximation Methods for Efficient Learning of Bayesian Networks  

2006-17 Stacey Nagata (UU) 

 User Assistance for Multitasking with Interruptions on a Mobile Device  

2006-18 Valentin Zhizhkun (UVA) 

 Graph transformation for Natural Language Processing  

2006-19 Birna van Riemsdijk (UU) 

 Cognitive Agent Programming: A Semantic Approach  

2006-20 Marina Velikova (UvT) 

 Monotone models for prediction in data mining  

2006-21 Bas van Gils (RUN) 

 Aptness on the Web  

2006-22 Paul de Vrieze (RUN) 

 Fundaments of Adaptive Personalisation  

2006-23 Ion Juvina (UU) 

 Development of Cognitive Model for Navigating on the Web  

2006-24 Laura Hollink (VU) 

 Semantic Annotation for Retrieval of Visual Resources  

2006-25 Madalina Drugan (UU) 

 Conditional log-likelihood MDL and Evolutionary MCMC  

2006-26 Vojkan Mihajlovic (UT) 

 Score Region Algebra: A Flexible Framework for Structured Information Retrieval  

2006-27 Stefano Bocconi (CWI) 

Vox Populi: generating video documentaries from semantically annotated media 

repositories  

2006-28 Borkur Sigurbjornsson (UVA) 

 Focused Information Access using XML Element Retrieval  

2007 

2007-01 Kees Leune (UvT) 

 Access Control and Service-Oriented Architectures  

2007-02 Wouter Teepe (RUG) 

 Reconciling Information Exchange and Confidentiality: A Formal Approach  

2007-03 Peter Mika (VU) 

 Social Networks and the Semantic Web  

2007-04 Jurriaan van Diggelen (UU) 

 Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach  

2007-05 Bart Schermer (UL) 

Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for 

Agent-enabled Surveillance 



 188 | SIKS Dissertatiereeks 

2007-06 Gilad Mishne (UVA) 

 Applied Text Analytics for Blogs  

2007-07 Natasa Jovanovic' (UT) 

 To Whom It May Concern - Addressee Identification in Face-to-Face Meetings  

2007-08 Mark Hoogendoorn (VU)  

 Modeling of Change in Multi-Agent Organizations  

2007-09 David Mobach (VU) 

 Agent-Based Mediated Service Negotiation  

2007-10 Huib Aldewereld (UU)  

 Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols  

2007-11 Natalia Stash (TUE)  

Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia 

System  

2007-12  Marcel van Gerven (RUN)  

Bayesian Networks for Clinical Decision Support: A Rational Approach to Dynamic 

Decision-Making under Uncertainty  

2007-13  Rutger Rienks (UT)  

 Meetings in Smart Environments; Implications of Progressing Technology  

2007-14  Niek Bergboer (UM)  

 Context-Based Image Analysis  

2007-15  Joyca Lacroix (UM)  

 NIM: a Situated Computational Memory Model  

2007-16  Davide Grossi (UU)  

Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations for 

Multi-agent Systems  

2007-17  Theodore Charitos (UU)  

 Reasoning with Dynamic Networks in Practice  

2007-18  Bart Orriens (UvT)  

 On the development an management of adaptive business collaborations  

2007-19  David Levy (UM)  

 Intimate relationships with artificial partners  

2007-20  Slinger Jansen (UU)  

 Customer Configuration Updating in a Software Supply Network  

2007-21  Karianne Vermaas (UU)  

Fast diffusion and broadening use: A research on residential adoption and usage of 

broadband internet in the Netherlands between 2001 and 2005  

2007-22  Zlatko Zlatev (UT)  

 Goal-oriented design of value and process models from patterns  

2007-23  Peter Barna (TUE)  

 Specification of Application Logic in Web Information Systems  



  SIKS Dissertatiereeks | 189 

2007-24  Georgina Ramírez Camps (CWI)  

 Structural Features in XML Retrieval  

2007-25 Joost Schalken (VU)  

 Empirical Investigations in Software Process Improvement 

2008 

2008-01 Katalin Boer-Sorbán (EUR)  

 Agent-Based Simulation of Financial Markets: A modular, continuous-time approach 

2008-02 Alexei Sharpanskykh (VU)  

 On Computer-Aided Methods for Modeling and Analysis of Organizations  

2008-03 Vera Hollink (UVA)  

 Optimizing hierarchical menus: a usage-based approach  

2008-04 Ander de Keijzer (UT)  

 Management of Uncertain Data - towards unattended integration  

2008-05 Bela Mutschler (UT)  

 Modeling and simulating causal dependencies on process-aware information systems 

from a cost perspective  

2008-06 Arjen Hommersom (RUN)  

 On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence 

Perspective 

2008-07 Peter van Rosmalen (OU) 

 Supporting the tutor in the design and support of adaptive e-learning 

2008-08 Janneke Bolt (UU)  

 Bayesian Networks: Aspects of Approximate Inference 

2008-09 Christof van Nimwegen (UU) 

 The paradox of the guided user: assistance can be counter-effective 

2008-10 Wouter Bosma (UT) 

 Discourse oriented summarization 

2008-11 Vera Kartseva (VU) 

 Designing Controls for Network Organizations: A Value-Based Approach 

2008-12 Jozsef Farkas (RUN) 

 A Semiotically Oriented Cognitive Model of Knowledge Representation 

2008-13 Caterina Carraciolo (UVA) 

 Topic Driven Access to Scientific Handbooks 

2008-14 Arthur van Bunningen (UT) 

 Context-Aware Querying; Better Answers with Less Effort 

2008-15 Martijn van Otterlo (UT) 

The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the 

Markov Decision Process Framework in First-Order Domains 

2008-16 Henriëtte van Vugt (VU) 

 Embodied agents from a user's perspective 



 190 | SIKS Dissertatiereeks 

2008-17 Martin Op 't Land (TUD) 

 Applying Architecture and Ontology to the Splitting and Allying of Enterprises 

2008-18 Guido de Croon (UM) 

Adaptive Active Vision 

2008-19 Henning Rode (UT) 

From Document to Entity Retrieval: Improving Precision and Performance of Focused 

Text Search 

2008-20 Rex Arendsen (UVA) 

Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van 

elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven. 

2008-21 Krisztian Balog (UVA) 

People Search in the Enterprise 

2008-22 Henk Koning (UU) 

Communication of IT-Architecture 

2008-23 Stefan Visscher (UU) 

Bayesian network models for the management of ventilator-associated pneumonia 

2008-24 Zharko Aleksovski (VU) 

Using background knowledge in ontology matching 

2008-25 Geert Jonker (UU) 

Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-

signed Currency 

2008-26 Marijn Huijbregts (UT) 

Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled 


