Aspects of Feedback
in Intelligent Tutoring Systems
for Modeling Education

Proefschrift

ter verkrijging van de graad van doctor
aan de Open Universiteit
op gezag van de rector magnificus
prof. mr. A. Oskamp
ten overstaan van een door het
College voor promoties ingestelde commissie
in het openbaar te verdedigen

op vrijdag 13 september 2013 te Heerlen
om 14.00 uur precies

door
Henricus Jeroen Maria Passier

geboren op 18 augustus 1962 te Hilversum

Promotor
Prof. dr. A. Bijlsma Open Universiteit

Overige leden beoordelingscommissie

Prof. dr. E. Barendsen Radboud Universiteit
Prof. dr. M.C.J.D. van Eekelen Open Universiteit
Radboud Universiteit
Prof. dr. ir. S.M.M. Joosten Open Universiteit
Dr. R. Kuiper Technische Universiteit Eindhoven
Dr. B.J. Heeren Open Universiteit

Cover by Monique Vossen, Visuele Communicatie, Open Universiteit
Thesis printed by Canon business services, Heerlen

ISBN: 978-94-91825-20-0

Copyright (©) 2013 by H.J.M. Passier

Contents

Introduction
1.1 Research context
1.2 Examples
1.3 Modeling
1.4 Feedback
1.5 Restriction on models
1.6 Examples extendedo
1.7 Summary
1.8 Thisthesis.o
1.9 Originof chapters. L L.
A framework for practicing modeling
2.1 Imtroduction
2.2 Main concepts and functionso
2.3 The framework
2.4 Additional concepts L
2.5 Related work on modeling 1TSs 0L
2.5.1 Model-based,
2.5.2 Constraint-based
253 Authoring Lo
2.6 Research questions
2.7 Haskell preliminaries L oL
Feedback in an 1Ts for solving equations
3.1 Imtroduction
3.2 The feedback framework
3.3 Syntax analysis
34 Rewriting terms Lo Lo o
3.5 Progression and indicators L
3.6 Hints s

21
21
24
36
40
50
51
o4
56
58
58

i

CONTENTS

3.7 Ageneraltool 75
3.8 Related work oo 76
3.9 Conclusion.o 80
Feedback in authoring tools 83
4.1 Introduction Lo 83
4.2 Schemata and schema representations 85
4.3 Schema analysis to detect authoring problems 87
4.3.1 Data structures and definitions 88
4.3.2 Solving authoring problems with schema analysis . . . 91
44 Related work o 96
45 Conclusion. 97
Supporting several model languages 99
51 Introduction Lo 99
5.2 UML-Class diagrams 100
52,1 Anexample Lo 100
5.22 Syntax 101
5.2.3 Semantics 102
524 Typesoferrors 102
5.3 The framework 105
5.3.1 The central model 106
5.3.2 Translationso 108
5.3.3 Analysis functions oo oo 112
54 Related work oo 113
5.5 Conclusions 116
From ill-defined to well-defined tasks 117
6.1 Introduction o 117
6.2 DTDs and Regular Expressions 119
6.2.1 Syntax 119
6.2.2 Language 120
6.2.3 Rewriterules 121
6.3 Removing non-determinism 122
6.3.1 Strategy for removing non-determinism 123
6.3.2 Normal form for content models. 125
6.4 Precise content models oL 126
6.4.1 Strategy for precise content models 127
6.4.2 Using the strategy 127

6.5 Correct content models 128

CONTENTS iii

6.5.1 Strategy for correct content models 128

6.5.2 Using the strategy 129

6.6 Experiment and validation 130
6.6.1 Results 130

6.6.2 Discussion L 131

6.7 Related Worko 132
6.8 Conclusions 132

7 Epilogue and future work 133
7.1 SUmmaryo .o e 133
7.2 Putting things into perspective 135
7.3 Futureworko 139
Bibliography 141
Samenvatting 157
Dankwoord 169

Curriculum Vitae 171

v

CONTENTS

Chapter 1

Introduction

1.1 Research context

The research in this thesis is about automatic feedback generation by intel-
ligent tutoring systems during modeling as an activity in courses that are
part of a bachelor computer science curriculum.

Modeling plays a crucial role in computer science. Examples of model-
ing activities include Object-Oriented (00) modeling (for example domain
modeling, use case modeling, communication modeling, and design model-
ing) using the notation Unified Model Language (UML) |21, 85|, database
modeling using the Entity Relationship (ER) model notation [30], process
modeling using Petri nets [1, 127|, and string modeling using regular ex-
pressions [66]. Courses in the bachelor curriculum Informatics at the Open
Universiteit (OU), in which these modeling activities play a role, are [81,
136, 157, 158, 160].

Modeling is a difficult and creative activity. Students, when learning
modeling, can make many mistakes, syntactic as well as semantic. To op-
timize the learning process, immediate feedback from a lecturer is essen-
tial [113]. This is a problem at the OU, because due to our emphasis on
distance education the number of contact hours is very limited.

In distance education, students study their study material mostly at
home and individually. The material includes both the learning content and
supporting components such as study hints, exercises with detailed answers,
and summaries. Although the material is developed to be studied indepen-
dently, limited additional guidance is organized in the form of lectures and
discussion groups in which lecturers and students can meet each other.

There are two types of lectures, namely face to face and online. In a face
to face lecture, lecturer and students meet each other physically in a room.

1

2 CHAPTER 1. INTRODUCTION

In an online lecture the lecturer and students meet each other in a virtual
class room. A virtual class room is a web- or software-based online learning
environment where students participate in synchronous instruction. The
number of lectures for a course of 4.3 ECTS (nominally 120 study hours) is
usually five face-to-face lectures of three hours or about eight online lectures
of one and a half hours. The current trend is an increase in online meetings
at the cost of face to face lectures. It should be clear that, in comparison
with regular universities, the number of contact hours by means of lectures
is very limited and thus so are the possibilities of giving immediate feedback.

Besides lectures, each course is supported by a discussion group. A dis-
cussion group is a web-based or an Usenet-based service in which students
and lecturers can communicate with each other. Within such a group, stu-
dents can ask questions so that fellow students and lecturers can answer
them and discuss subject matter. One drawback of this medium is its asyn-
chronous character which causes feedback to be delayed. Furthermore, it
is definitely not the intention to discuss all students’ solutions on exercises
part of the study material, because this would be very labor intensive. It is
as Sara Guri-Rosenblit [56] stated: ‘The lack of direct teacher and student-
student communication has been the Achilles heel of distance education for
centuries’.

In this context, it is obviously useful to investigate the possibilities of an
e-learning system in which students can learn to develop models by practic-
ing and for which the system produces immediate feedback on the modeling
steps and subsequent artifacts made by the student.

It should be emphasized that the focus in this research is on practicing:
i.e. students first receive information about the modeling skill by reading
books, studying examples, and possibly by attending online lectures. After
that, a phase of practicing takes place during which a student can complete
a number of exercises and receives feedback about, for example, the steps
taken and the quality of the resulting model. This means that the e-learning
system we will develop is assumed not to be used for learning theory about
modeling.

In the next sections, we will explain the problem of the lack of immediate
feedback on individual modeling activities in more detail. We will present
two examples, describe what modeling means in the context of computer
science, what feedback is and why it plays a crucial role in learning modeling,
and what types of models will have our attention in this research. In the
next chapter, we will describe the ideas of an intelligent tutor system, a type
of e-learning system that automatically generates feedback during modeling
activities.

1.2. EXAMPLES 3

1.2 Examples

To explain what we mean by modeling and feedback, we firstly present two
examples. The first example is about modeling an XML content model [158].
The second example is about modeling a domain model [81, 136].

Example one: Modeling an XML content model. In a course about
XML, students learn about the schema language Document Type Definition
(DTD) [109]. Roughly, a schema written in the DTD language lists a number
of element declarations where each element declaration consists of the name
of the element declared and a content model. The content model specifies
the names of the child elements that may occur and in which order. For
example, in

<!ELEMENT book (title, author+, chapter+)>

an element with name book is defined. The content model is (title,
author+, chapter+), which means that each element book must have an
title element, followed by one or more author elements, and one or more
chapter elements.

In an exercise, the studnet is asked to define a content model for element
rec based on the following example XML document:

<recs>
<rec>
<a/>
</rec>
<rec>
<a/><a/>
</rec>
<rec>
<a/><c/>
</rec>
<rec/>
</recs>

The answer given at the end of the chapter is: ‘A correct content model is
(a, b, (a, b | ¢)?)?. Other solutions are possible.’.

It is important to note that in courses and books about XML, as far as
we know, no systematic way for modeling an XML content model is pre-
sented!. As a result, students solve these problems by their own trial-and-
error methods resulting in correct but also incorrect models mostly reached

'Tn one book [109], it is observed that element content can be written using a variation
of the regular expression notation. However, it does not explain how to reach a ‘good’
model.

4 CHAPTER 1. INTRODUCTION

Member Book

- name: String - number: Mumber

* *

Lending

- startDate: Date
- endDate: Date

Figure 1.1: A domain model for lending books from a library

in an inefficient way?.

Suppose a student produced the content model (a, (b,(a, b | c)?))7.
A relevant question the student could ask is: ‘Is this correct too?’. Another
interesting question the student could ask is: ‘Have I reached the solution
in an efficient way?’. The answer (a, b, (a, b | ¢)?)? does not answer
such questions. In other words, what the student misses here is a recipe
consisting of certain steps which should be performed in a particular order,
immediate feedback at the level of these steps and the resulting content
model, and a way of comparing his or her resulting model to the answer’s
model.

Example two: Modeling a domain diagram. The second example is
about modeling a domain model using the UML class diagram notation [85].
A domain model consists of classes representing concepts in the domain of
interest, attributes of these classes, and associations between these classes.

The exercise asks the student to make a domain model of the following
situation: ‘A library lends books. We speak about a lending when one book
is borrowed by one member and concerns a certain period of time. A member
can borrow several books.” The answer given is: ‘Figure 1.1 shows a possible
diagram’.

Suppose a student produced the domain model showed in figure 1.2. Again,
the student cannot find an answer on the question ‘Is my diagram correct
too?’.

2Recently, we have observed this by a number of think-aloud sessions during which
students modeled some content models.

1.3. MODELING 5

Lending

- member: string
- bookMumber, number
- startDate: Date
- endDate: Date

Figure 1.2: Another domain model of lending books from a library

1.3 Modeling

The previous section presented two examples of models. This section gives
an overview of what modeling is and what types of models exist in the
context of designing an information system.

Definitions. Generally, many definitions exist of what a model is and
what modeling is [65, 140]. An elementary universal description is that ‘A
model is a replication of a real world entity that requires some simplifying
assumptions and may be physical or conceptual’ [65]. Modeling then is
the process of constructing such a model. In our context, we can use the
definition of Sommerville, i.e. ‘Modeling means developing abstract models
of an information system, with each model presenting a different view or
perspective of that system’ [140]. Sommerville talks explicitly about models
because an information system is such a complex system that more than one
model is often needed to specify sufficiently the system to be developed, and
each model describes the system from a specific perspective.

Notation. A model represents a system and uses some kind of notation.
There are several classifications of these languages [65, 140]. In the context
of information systems, we can mainly distinguish four types of languages,
namely graphical versus textual languages and formal versus informal lan-
guages. A graphical language uses a diagram technique with for example
named symbols representing concepts, lines representing relationships, and
various other graphical notations to represent constraints. A teztual lan-
guage uses a natural or mathematical languages. A formal language, comes
with a formal set of rules which defines its syntax and semantics precisely,
whereas an informal language misses these formal set of rules. Some exam-
ples of each category are:

6 CHAPTER 1. INTRODUCTION

Formal - graphical: Petri nets, UML class diagrams and ER-diagrams

Informal - graphical: Structured Analysis and Design Technique (SADT)3.

Formal - textual: DTDs, regular expressions and proposition logic

Informal - textual: UML use case descriptions

Semantics. Informally, the semantics of a model specifies a mapping be-
tween ‘the symbols used and the way they are structured’ in a model and
‘what these structured symbols mean’.

For example, in figure 1.1 the model consists of two different symbols,
namely named rectangles and lines between these rectangles. The rectan-
gles are interpreted as classes, where each class is a set of objects. The
lines between the rectangles are interpreted as associations, where each as-
sociation expresses a relationship between the objects of those classes. As a
result, each (syntactically correct) UML class diagram has a certain meaning.
In case of figure 1.1, there are three classes (Member, Lending and Book)
and two relationships (one relationship between the objects from the classes
Member and Lending, and one relationship between the objects from the
classes Lending and Book).

The semantics of a model can be correct or incorrect. A model is seman-
tically incorrect, if the semantics of that model deviates from the semantic
truths concerned in the domain of interest. For example, we can make a
UML class diagram representing that ‘a car has one wheel’. The semantics
of this model is ’a car has one wheel’, but in our real world the semantics of
this model is incorrect.

Categories of models. There exist several ways of categorizing these
models [65, 82, 94, 140]. Sommerville distinguishes the following types of
models [140]:

o (Contert models — This type of models represents the system from an
external perspective and helps in deciding on the system boundaries,
i.e. which functions should be included in the system and which are
provided by the environment of the system. Context models might
describe the organization of the context in terms of the concepts in-
volved and/or the (automated) processes in which the system will be
used. An example of a context model is the context model as part of

3Gee: http://www.cs.toronto.edu/ jm/2507S/Notes04/SADT.pdf

1.3. MODELING 7

Jackson Software Development [68]. A uML activity diagram and a
UML use case diagram can be used as context models too.

e Interaction models — This type of models represents the interactions
between a user and the system, between other systems and the system
being developed, and between the components of the system. Exam-
ples of interaction models are the use case model using the UML use
case model notation and the sequence diagram to model the interaction
between components of the system.

e Structural models — This type of models represents how the system is
organized and the structure of the data the system processes. Struc-
tural models can describe the static structure as well as the dynamic
structure of a system. The static structure of a system describes the
components of the system and the static relation between these compo-
nents. The dynamic structure describes the organization of the system
in terms of a set of interacting threads. An example of a structural
model is the class model using the UML class diagram notation.

e Behavioral models — This type of models represents the dynamic be-
havior of a system and how the system responds to events. A stimulus
could be some data that arrives or some event that happens triggering
the system to process. In the first case we talk about data driven mod-
els, in the second case we talk about event driven models. An example
of a data driven model is the data-flow diagram (DFD), an example of
an event driven model is a state diagram using the UML state diagram
notation.

Another categorization is distinguishing between analysis models and design
models.

o Analysis models — We can characterize analysis as specifying the what:
what is the system supposed to do. Analysis designates some kind of
understanding of a problem or situation and captures the requirements
without prematurely adopting implementation decisions, i.e. omitting
technology dependent details and using concepts solely drawn from
the problem domain [49, 78].

e Design models — We can characterize design as specifying the how:
how will it do it. Design is related to the creation of a solution for
the analyzed problem and must define a software solution that effec-
tively and efficiently satisfies the requirements specified in analysis.

8 CHAPTER 1. INTRODUCTION

In doing this, the design model will often incorporate new artefacts
(new concepts, operations, etcetera) and it can take into account the
concrete technological platform on which the software system is to be
built. Two examples are the controller class in a design model as access
point for the user interface classes and an extra association between
two classes to make a data retrieval more efficient [85]. In fact, the de-
sign has to provide a creative solution for the problem specified in the
analysis and takes into account, for example, non-functional require-
ments such as performance, reuse, maintainability, etcetera [67, 78].
This creative aspect of design models makes it generally more difficult
to give meaningful feedback during the creation of a design model as
opposed to analysis models.

Modeling and model transformation. During modeling, first an ab-
stract model is made which presents a particular view or perspective of a
system. After that, subsequent stages can follow in which the model can
be further optimized, simplified, etcetera. These optimizations and simpli-
fications are examples of model transformations. By model transformation,
one or more target models are generated from one or more source models
according to a transformation definition, where each transformation defi-
nition is a set of rules that together describe how the transformation is
performed [95]. We can distinguish between endogenous versus exogenous
transformations and horizontal versus vertical transformations [95]. Endoge-
nous transformations are transformations between models expressed in the
same language. Examples are model optimization (improve certain oper-
ational qualities while preserving the semantics of the model), refactoring
(change the internal structure of a model to improve certain qualities with-
out changing its behaviour), and simplification (translating certain syntactic
constructs into simpler ones). Ezogenous transformations are transforma-
tions between models expressed in different languages. An example of an
exogenous transformation is code generation, where, for example, a design
model is translated into source code. Another example is the transformation
of some requirements into a first design model. A horizontal transformation
is a transformation where the source and the target models reside at the same
abstraction level. Refactoring is a typical example of this type of transfor-
mation. A wertical transformation is a transformation where the source and
the target models reside at different abstraction levels. An example is model
refinement where a model is gradually refined into a full-fledged model ready
for implementation by adding more and more concrete details.

1.4. FEEDBACK 9

Stategies and rules of thumb. Modeling is constructive in nature. A
model is often developed stepwise following some phases, such as by iden-
tifying the aim of the model, exploring the problem domain, building the
model using some rules according to a strategy or some rules of thumb,
refactoring and optimizing the model, and finally testing whether the model
is acceptable or not. For some models there exists a strategy (also proce-
dure or recipe) of how to develop such a model. A strategy describes how
basic steps may be combined to solve a particular problem. An example
of a model that can be developed according to a strategy is a precise XML
content model. We will show an example of this in section 1.6. For other
types of models, there are only some rules of thumb. A rule of thumb is a
principle that is not intended to be strictly accurate or reliable. An example
of a model for which only some rules of thumb exist is a domain model. We
will show an example of this in section 1.6.

1.4 Feedback

Feedback is as crucial in learning a complex task such as modeling is. Feed-
back is used in many learning paradigms. It is an accepted psychological
principle that one of the essential elements needed for effective learning is
feedback [113].

There are many definitions of feedback [28, 34, 132, 150|. Examples of
definitions are: ‘Feedback is information presented that allows comparison
between an actual outcome and a desired outcome’ [150] and ‘Feedback
allows the comparison of an actual performance with some set standard of
performance’ [75].

Both definitions emphasize the fact that there must be at least one ‘de-
sired outcome’ or ‘standard of performance’. In our context, this means that
there is at least a standard model to compare with the student’s final model
in cases we want to give feedback on the level of the final model. In case we
want to give feedback on the level of the student’s steps in reaching a final
model, we need to know a strategy, which steps in which order are allowed.
This is an important issue, because we can only give feedback on models or
parts of models for which such a standard model and/or strategy exists.

The best timing of feedback, immediate versus delayed, is still an open
question [45, 113]. It seems there exists an agreement that immediate feed-
back produces a better effect during initial stages of learning, i.e. immediate
feedback guides the learner and results in superior initial performance as the
time required for mastery, whereas delayed feedback produces better effect
during later stages of teaching, i.e. delayed feedback fosters the development

10 CHAPTER 1. INTRODUCTION

of secondary skills such as error detection and self-correction [58, 113].

Merriénboer and Kirschner distinguish between cognitive and corrective
feedback [96]. Cognitive feedback allows the learner to reflect on the qual-
ity of the found solutions or the quality of the problem solving process of
non-recurrent skills. The main function of cognitive feedback is to foster re-
flection in the receiver’s mind. Corrective feedback gives learners immediate
information on the quality of the performance of recurrent skills. The main
function of corrective feedback is to correct errors.

Mitrovic [105] describes, besides corrective feedback, the importance of
positive feedback. Positive feedback reduces student uncertainty about ten-
tative but correct steps. An example of positive feedback is: ‘Yes, that was
a correct step’. Positive feedback is useful when a student is uncertain but
nevertheless happens to perform the right step. Positive feedback should be
immediately given after a step in the solution process.

We did not find any literature about feedback during modeling activi-
ties outside the context of an e-learning system. Literature about feedback
during modeling activities in the context of an e-learning system will be
discussed in the next chapter. Modeling is at least an important part of
problem solving [22, 143, 147, 148, 151], If we consider modeling as problem
solving, we can find literature.

Modeling, or more generally problem solving, consists of several stages
[137]. These include identifying a goal to reach, exploring the problem do-
main, selecting and applying multiple rules in some order to reach a solution,
and testing whether the solution is acceptable or not. During this process, a
learner may use declarative knowledge and cognitive strategies within that
domain, and combine relational as well as procedural rules [48]. In their
book Ten steps to complex learning, Merriénboer and Kirschner talk about
schema-based processes, where knowledge is used in the form of cognitive
schemata that can be interpreted so as to be able to reason about the prob-
lem domain (i.e. mental models) and to guide the problem solving process
(i.e. coguitive strategies).

Feedback during problem solving activities must help the learner in find-
ing and following the right strategy or schema, and detection of knowledge
gaps. Initial feedback may be in the form of hints, may include the ap-
propriateness of selected solution paths, and correctness of steps. Later, as
learners transition from novice to expert, feedback should be more about
the efficiency of problem solving [137].

1.5. RESTRICTION ON MODELS 11

1.5 Restriction on models

The distinction between analysis and design described in section 1.3 is not
precise enough to define on what categories of models feedback can be given.
To describe more precisely on what categories of models feedback can be
given, we use a categorization that distinguishes the following three dimen-
sions [49] (see figure 1.3):

e Reality — Does the model represent a software system or an application
domain? In the first case, we talk about a system model. A system can
be an existing system, a part of it, or a system under development.
In the second case, we talk about a domain model, i.e. that portion
of reality that affects and is affected by the software system. Usually,
the system model and domain model will have some overlap, i.e. both
models will share some concepts and/or descriptions, while others exist
only in one of the two models.

e Purpose — Is the model a specification of a domain/system to be built
or a description of an existing domain/system? In the first case, a
specification, the model is used as a form of forward engineering, i.e.
specifies something that must exist, and can be used as a template to
guide the construction of the system. Furthermore, it is possible to
reason about the system/process before actually constructing it. In
this case, we mainly talk about a design model. In the second case, a
description, the model is used in a way of reverse engineering, i.e. the
model is a conceptual tool to understand an existing system /process
that has to be, for example, maintained or improved. In this case, we
mainly talk about an analysis model.

e Abstraction — Is the model an abstract representation (black box model
or logical view) or a concrete representation (white box model or im-
plementation view)? In the first case, an abstract representation, we
talk about a logical model which describes the system /process in terms
of what it must do (requirements of the system). In the second case, a
concrete representation, we talk about an implementation model which
describes how the requirements are met by the implementation.

It should be noticed that the degree of abstraction is relative, i.e. a
model is an abstraction with respect to some other model [79]|. For
example, a UML specification of a business system is an abstraction
of the implementation of that system, but the UML specification itself
is a concrete realization of the use cases describing the functionality

12 CHAPTER 1. INTRODUCTION

Purpose

sp ecif!_c-a-l-qon -

desériptiun e e

Reality

5 i sstem.~
abstract domain Systam,

concrete

Abstraction

Figure 1.3: Three orthogonal dimensions (source: Journal of Object Tech-
nology, 2009, volume 8, No 1, page 109)

offered by the system. Furthermore, the level of abstraction is grad-
ual. For example, by adding extra classes not part of the problem
domain, a (abstract) domain model evolves into a (less abstract and
more concrete) design model.

The three dimensions give rise to eight categories of models. In a typical
(greenfield) software development project, only three of these categories are
relevant.

1. First, an abstract domain description is developed to understand and
describe the application domain, eventually completed with an ab-
stract description of the business processes involved. Examples are a
UML domain class diagram [85] and a Petri net as business process
description [1].

2. Second, an abstract system specification is developed to specify what
the software system should do. Examples are a UML use case model,
a UML system sequence diagram, and a UML class diagram as basis
for a design model, thus without taking new artefacts introduced for
technical reasons as performance and platform choices [85].

1.6. EXAMPLES EXTENDED 13

3. Third, a concrete system specification is developed to specify how the
software system should implement what it should do taking into ac-
count, for example, performance issues and the characteristics of the
platform chosen. An example is a UML design model [85]. After the
concrete specification is finished, the specification can be implemented
using a programming language.

It is the third category where it is often difficult to give valuable feedback,
i.e. no standard models or strategies exist and design choices often depend
on the actual situation and are affected by aspects as performance, costs,
maintainability, platform choice, etcetera. The cube-shape in figure 1.3, de-
picted by the dotted lines, defines the categories of models we will permit,
i.e. all types of abstract models.

Remark. In the ‘greenfield’ example above, the UML class diagram notation
is used to express three types of models, namely an abstract domain model
(first step), an abstract system specification (second step), and a concrete
system specification (third step). Each of these models serves a particular
perspective and plays a certain role in the analysis and design process [130].
For example, in the first step the model involves the perspective of peo-
ple working in a particular business process and has the role of describing
that part of reality, whereas in the third step the model involves the per-
spective of code implementation and has the role of specifying the system’s
functions and architecture. By a number of endogenous vertical model trans-
formations, the abstract domain model describing the application domain
is transformed into a concrete system specification. These model transfor-
mations entail a path through the three dimensional space in figure 1.3. In
a final step, the concrete system specification can be transformed into code
skeletons which can be further implemented.

1.6 Examples extended

The previous sections 1.3 and 1.4 described what modeling and feedback
mean. We now extend our examples, i.e. classify both models and the lan-
guages used, show the strategy or schema used to develop the model, and
describe the type of feedback we want to give.

Example one: Modeling an XML content model. An XMI content
model is an example of a structural model, specifying the possible sequences
of child elements of an element, and can be used as analysis model as well

14 CHAPTER 1. INTRODUCTION

as a design model. We distinguish two situations:

Situation 1: As stated in section 1.2, the course XML: Theory and ap-
plications does not describe a method for modeling XML content models.
Assuming this situation, where the student tries to solve the problem at
home using pen and paper, we are not able to give feedback at all: not at
the level of the ‘steps’ followed, not about the efficiency of the method used,
nor about the correctness of the resulting model. The student is left with
all his or her questions.

Situation 2: As is described in chapter 6, we distinguish between precise
and correct XML content models. Precise content models describe exactly
the set of allowed sequences of XML elements, but nothing more, whereas
correct models describe at least the sequences of XML elements we want to
have. For both types of models, we have described a strategy for developing
such models. Here, we focus on precise models only.

The method for modeling precise models consists of a set of rewrite rules,
a strategy specifying in which order the rules should be applied, and a goal
to reach. The method uses the regular expression language [66], which is
a mathematical language with a clear syntax and semantics. For model-
ing a precise XML content model, only the following three rewrite rules are
needed?:

R|S = S|R (la)
R? = €¢|R (1b)
RS|RT = R(S|T) (1c)

The goal to reach is a deterministic model. A content model is deterministic
if an XML processor can check an XML document against a DTD without
looking forward in the document (i.e. inspecting only the current element).
For example, the content model (a,b) | (a,c) is not deterministic. After ap-
plying rule 1c the model equals a, (b | ¢) and this model is determinsitic. A
simplified version of the strategy for reaching a deterministic precise model
is:

Step 1. Write down the element content as a number of choices based on the
example XML file.

Step 2. Remove non-determinism by applying rule 1c and, if necessary, rule 1a
until the model is deterministic.

Step 3. Remove all occurrences of €, the symbol which represents empty

“Here we present only the main steps. For more details, see chapter 6.

1.6. EXAMPLES EXTENDED 15

content, by applying rule 1b until all e-symbols are removed.

Notice that in the first step an initial model is made, whereas the steps two
and three are a matter of model transformations.

Now, the answer could show a correct model as well as a derivation to
reach this model. The following example shows a correct derivation following
the strategy. The first expression is the element content as a number of
choices. The standard precedence levels apply: the unary operator 7 binds
stronger than sequence, which binds stronger than choice.

a,bla,b,a,bla,b,cle = a,b(e|a,b|c)|e (1c)
= a,b,(a,b|c)?|e (1b)
— (@b (ablan? (1b)

Suppose the student’s derivation was:

a,bla,ba,bla,bycle = a,(b|bya,b|bc)|e (1c)
= a,(b(clad|c)[€) (L)
= a,(b,(a,b|c)?|e) (1b)
= a,(b (a,b]c)?)? (1b)

Notice that the student has made a mistake. In the second step, rule 1c is
erroneously applied (the last bracket, marked by double quotes, is placed
erroneously). Due to this erroneous application the third, fourth and final
models are not correct.

The student can now see in addition to a correct model the derivation
reaching this correct model. But again, in the situation where the student
solves the problem at home using pen and paper he or she cannot detect
automatically the mistake made; for the student it might be just another
derivation. Moreover, the question whether the student’s model is correct
is not answered. The student may determine that the start of his or her
derivation can be more efficient by factor out sub-expression a, b instead of
a only.

The conclusion must be that the situation is less improved. Only in the
situation in which the student starts the derivation in the same way, he/she
is helped. In all other cases, the student misses information. One solution
could be to show all possible derivations. However this is not always possible
and is at least very labor intensive.

As a final remark, in a situation where multiple sequences of a,b are
expected, the introduction of sub-expression (a,b)* is a consideration. The
final model then will be something like (a,b)*, ¢, which is an example of a
correct model. Notice that the introduction of the star-operator is not a
logical step but a design decision.

16 CHAPTER 1. INTRODUCTION

Example two: Modeling a domain diagram. The domain model using
the UML class diagram notation is a structural model, i.e. specifies which
classes exist in the domain of interest, the attributes of each class, and the
associations between these classes. A domain model can be used as analysis
model (describing the domain as-is) as well as a design model (specifying
the domain as to-be).

Developing a domain model is not an algorithmic activity. There is no
set of rules and corresponding strategy to develop a domain model with a
certain result. As a result, we are not able to give feedback on the model
development steps. Instead, some rules of thumb can be used guiding the
developer in a certain direction. Furthermore, by model transformations as
refactoring and refinement, the model can be improved and concretesized.
As an example, a general schema for creating a domain model is [85]:

1. find the conceptual classes;
2. draw them as classes in a UML class diagram;

3. add associations and attributes.

Additional guidelines exist, for example the Noun phrase analysis or Linguis-
tic analysis |2, 85], the Commonality and variability analysis [135] for finding
conceptual classes, and patterns as the parent-child pattern, collection pat-
tern, and sample pattern [81]. As we will see in chapter 2 and chapter 5
it is possible to give feedback on syntactic errors, meta-model errors (for
example inconsistencies and redundancy in the model), and the semantics
of the model (Does the model accurately reflect the part of reality it refers
to?). However, in a pen-and-paper situation at home, the student is left
with the question: ‘Is my diagram correct too?’

1.7 Summary

We have described what modeling means and discussed some categories of
models. Modeling is by nature constructive and a stepwise activity. For
some type of models, there exists a set of rules and a strategy that describes
the order in which the rules must be applied in order to reach a correct
model. For other types of models, there exits only some rules of thumb. In
the first case we are able to give feedback on the level of steps as well as
on the correctness of the final model. In the second case, only feedback on
the level of the correctness of the final model can be given. For feedback on

1.8. THIS THESIS 17

the final model, we need a standard model to compare with the student’s
model.

Important is the distinction between analysis and design models. As long
as a model is abstract, we are able to give feedback. In cases of concrete
models, design choices are made which often depend on the actual situation.

We have shown on the basis of two examples that, when a student is
developing a model, immediate feedback is needed to answer questions a
student has and to correct mistakes made by the student. In a classroom
situation, it is the lecturer who provides this immediate feedback. In the
current situation of distance education, immediate feedback is missed. For
each exercise, only one or a few example answers are available which do not
give answer on all questions a student could have.

What is needed is a system in which a student can develop a model
and then receive automatically generated feedback on the level of the steps
according to a strategy (if possible) and/or the resulting model.

1.8 This thesis

This thesis introduces a framework for automatic feedback generation during
modeling activities. In this thesis, we do not have the intention to develop
a complete system. Instead, subsequent chapters discuss some aspects.

Chapter 2 presents the functions and types of knowledge we need to
generating feedback for modeling activities. We will distinguish between
well-defined and ill-defined domains and tasks. After that, the framework
and its components are described. The framework uses a number of on-
tologies for specifying rules, strategies, rules of thumb and standard models
to compare with the student’s final model. The framework distinguishes
a student environment and an author environment. In the environment for
students, students do modeling and receive feedback. In the environment for
authors, authors specify exercises, feedback, and other learning materials.
After the framework is introduced, related work is discussed and the research
questions are formulated which will be treated in subsequent chapters.

Chapter 3 takes one type of models, namely solving linear equations.
Solving linear equations is an example of a well-defined domain, i.e. there
is a set of rewrite rules to rewrite terms into other terms, a strategy and a
well-defined goal. We show how we can give feedback about syntactic errors,
about several kinds of semantic errors, and about progression towards a
solution. The framework explicitly uses the structure in the data to produce
feedback.

18 CHAPTER 1. INTRODUCTION

Chapter 4 focuses on an aspect in the author environment. Course ma-
terial for electronic learning environments is often structured using ontology
and schema languages. During the specification and development of this
material, many mistakes and errors can be made. In this chapter, schema
analysis as a technique to analyze structured documents is introduced, and
to point out a number of possible mistakes introduced by an author during
authoring. With this technique, we are able to produce valuable feedback.
We show the technique at work using six categories of mistakes and two
types of schemata.

In chapter 5 we study a domain that is less structured, namely that of
developing data models. Often, students have to learn several data model
languages, for example a formal as well as an informal one. In this chapter,
mechanisms are described for producing feedback about syntactic as well
as semantic errors. Furthermore, the framework supports several model
languages.

Being able to produce feedback requires a standard model to compare
with, or preferably, a well-defined set of rules and a strategy describing in
which order the rules must be applied. In many educational settings, this
is not the situation. Some domains are inherently as unstructured as, for
example, modeling a domain model is. In other domains that are more
or less structured, the rules, strategy or rules of thumb are not described.
Modeling XML content models was an example of the last case. Recently, we
developed a general approach for modeling XML content models. To show
what this means, chapter 6 describes this approach. Thinking about the
goal to reach when modeling an XML content model, it turns out that there
are two types of content models. For one type, precise models, we can define
a set of rewrite rules and a strategy. For the other type, correct models, we
can define a set of rewrite rules, but we cannot define a strategy. Instead,
parts of the strategy are in the form of rules of thumb.

1.9 Origin of chapters

This thesis is largely based on a number of reviewed and published publi-
cations. Some parts of the papers have been revised and rewritten. The
chapters of this thesis are based on the following publications:

Chapter 2. Passier, H. and Jeuring, J. (2004). Ontology based feedback gen-
eration in design-oriented e-Learning systems. In P. Isaias, P. Kommers
and M. McPherson (editors), Proceedings of the 1ADIS International
conference, e- Society, volume II, pages 992-996 [123].

1.9. ORIGIN OF CHAPTERS 19

The candidate is the main author of this paper.

Chapter 3. Passier, H. and Jeuring, J. (2006). Feedback in an interactive
equation solver. In M. Seppiléd, S. Xambo, O. Caprotti, editors, Pro-
ceedings of the Web Advanced Learning Conference and Exhibition,
WebALT, pages 53-68, Oy WebALT Inc. [126].

The candidate has implemented the solver and analyzer of the feedback
engine. The user interface has been implemented by the co-author. The
paper is written in collaboration with the co-author.

Chapter 4. Passier, H. and Jeuring, J. (2005). Using Schema Analysis for
Feedback in Authoring Tools for Learning Environments. Short version
in Proceedings of the 12th International Conference on Artificial Intel-
ligence in Education, A1ED 2005 [124]. Extended version in A. Cristea,
R. Carro, and F. Garzotto, editors, Proceedings of the Third Interna-
tional Workshop on Authoring of Adaptive and Adaptable Educational
Hypermedia, A3EH 2005, pages 13-20 [125].

The candidate implemented Haskell functions himself and is the main
author of the paper.

Chapter 5. Passier, H. (2008). A framework for feedback in e-learning sys-
tems for data modeling. In Proceedings of the 1ADIS International Con-
ference, e-Society [119].

The candidate implemented Haskell functions himself and is the author
of the paper.

Chapter 6. Passier, H. and Heeren. B. (2011). Modeling XML content mod-
els explained. In P. Kommers and N. Bessis, and P. Isaias, editors,
Proceedings of the Internet Applications and Research 2011 [122].

The candidate started this research resulting in Notes on Modeling XML
Element Content Models [120]. The final paper is written in collabora-
tion with the co-author and available in an extended version [121].

20

CHAPTER 1. INTRODUCTION

Chapter 2

A framework for practicing
modeling

2.1 Introduction

This chapter introduces a framework for an intelligent tutoring system in
which a student can practice modeling and receives immediate feedback. The
feedback is automatically generated, concerns the syntax and semantics of
the model, and, if a strategy exists, is about the correctness of the steps
according to this strategy. The purpose of this framework is to contextualize
the research questions. We do not have the intention to fully implement this
framework as part of this thesis; only some aspects are implemented.

An intelligent tutoring system is a type of e-learning system. Today,
e-learning is widely applied in situations of distance eduation [56]. There
exist many definitions of what e-learning means [56, 110]. E-learning is
understood to mean all forms of internet enabled and /or computer supported
learning. The term refers to the use of computer and internet technologies
to create, deliver, manage and/or support learning content as well as the
learning processes including, for example, practicing. E-learning can involve
complete courses where almost all aspects of learning take place. On the
other end of the spectrum, the learning process can take place in a traditional
face to face class room situation where, for example, only practicing of what
has been learned is supported by an e-learning system.

In e-learning systems almost all aspects of learning can take place. One

This chapter is based on: Passier, H. and Jeuring, J. (2004). Ontology based feed-
back generation in design-oriented e-Learning systems. In P. Isaias, P. Kommers and
M. McPherson (editors), Proceedings of the 1ADIs International conference, e- Society,
volume II, pages 992-996. [123]

21

22 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

exception is immediate feedback. As E.H. Mory [113] observed, there is
a frequent lack of feedback in electronic learning environment courses in
higher education and almost all feedback is related to question-answer sit-
uations and is hard coded. Exceptions are the environments based on so-
cial constructivism and serious gaming. In environments based on social
constructivism, learners solve complex problems through social negotiations
between equal (human) peers in a contextual setting [42]. Feedback oc-
curs in the form of discussions among learners and through comparisons of
internally structured knowledge [113]. In serious games, such as a flight sim-
ulator for training pilots, feedback consists of what a pilot experiences and
is seamlessly integrated in the game context [29].

Intelligent tutoring systems are computer systems that aim to provide
immediate and customized instruction or feedback to learners [37]. In the
rest of this thesis, the term intelligent tutoring system (1Ts) is used. Dur-
ing the last two decades, many 1TSs are developed in well-defined domains
such as mathematics and programming [88]. 1TSs are almost all based on
the assumption that students have learned the declarative knowledge and
procedural knowledge from direct instruction, such as books and lectures.
After that, the 1TS is used for practicing skills [80]. As far as we know, ITSs
for modeling are scarce. In section 2.5 we will give an overview of relevant
ITss we know about.

Besides the 1Ts for practicing modeling, the framework consists of an
author environment in which a lecturer can specify modeling exercises. De-
signing and specifying course material have much in common with model-
ing [143]. For example, when an author develops his or her course, he/she
has to choose, develop and/or adapt task ontologies and domain ontologies
and related material like examples and definitions [106, 129]. Ontologies
are types of models and as such make use of some notations with a certain
syntax and semantics.

To define the framework, we have to declare in general terms the func-
tional components and the types of knowledge that play a role in determining
the information a student can use to improve or optimize his or her mod-
eling processes. As Bundy described in his book The computer modeling of
mathematical reasoning [27]: ‘Whatever aspect of intelligence you attempt
to model in a computer program the same needs arise over and over again:

e The need to have knowledge about the domain.
e The need to reason with that knowledge.

e The need for knowledge about how to direct or guide that reasoning.’

2.1. INTRODUCTION 23

We explore from different perspectives the knowledge types that play a role
in the context of modeling, namely from the definition of feedback, control
theory, problem solving, modeling, and education. After that, we describe
the framework, list related work, and list the research questions.

The example used. The different types of knowledge are introduced on
the basis of a simple example, namely solving a system of linear equations.
This is an example of secondary school mathematics. An example of a

{

A student has to rewrite these equations into a form with a variable to the
left of the equal symbols and a constant to the right of the equal symbols,
in this case * = 2 and y = 1. We call this the solution, or semantics, of
the system. Notice that this solution remains unchanged during rewriting,
otherwise a rewrite mistake has happened.

system of linear equations is:

=z—1
r =2-y

[N

The solving process could be, using the substitution method as strategy,
as follows:

=z—-1
o =2-—y

—
[N

=x-—1

x =2—(z—1) <

=L
|

=xz-—1

=<
I
8
|
—_

— —— —N —

[N

&

Il

[\

|

&

+

[

24 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

y =z—1

r =2

y =2-1
{az =2 <

Solving a system of linear equations is a stepwise activity. In each step,
the student applies one or more rewrite rules. We call a rule application a
rewrite step. An example of a rule is the substitution rule, which is applied
in the first step: variable y in the second equation is substituted by the value
of variable y in the first equation, namely = — 1. Another example of a rule
is the addition of two constants resulting in one new constant. This rule is
applied in the third step, where the constants 2 and 1 are added.

The substitution method is an example of a strategy. A strategy describes
which sequences of rule applications are allowed. The substitution method
prescribes to rewrite one equation in a foormof z = ...y...ory=...x...
and to substitute, by applying the substitution rule, the right hand side of
one of them in the other equation. In this case of solving a system of linear
equations, if there is a solution, the strategy guarantees the solution. Solving
a system of linear equations is discussed in more detail in the next chapter.

Rewriting a mathematical expression is a type of model transformation.
Through rewriting, we transform an expression into another form which
exhibits certain properties. In case of rewriting a system of linear equations,
we want to express the solution of the system. Rewriting a mathematical
expression assumes a start model, in our case a set of linear equations.
These equations could represent an operational problem, as for example a
stock problem. Using the model, optimal delivery periods and order sizes
could be determined.

2.2 Main concepts and functions

In the previous chapter, we have seen that feedback is information presented
in such a way that it allows comparison between an actual outcome (or
performance) and a desired outcome (or some set standard of performance).
From this definition we can identify two main concepts, namely:

e an actual outcome;

2.2. MAIN CONCEPTS AND FUNCTIONS 25

Desired outcome

Control & Comparison
= [ntervention —== Measurement

“ 5

Process C
Actual outcome

Figure 2.1: Symbolic representation of feedback

e 3 desired outcome;

From control theory, we know that we need three functions to generate
feedback, namely:

e a measurement function;
e a comparison function;
e a control function.

Figure 2.1 shows these concepts and functions and the relations between
them. The goal is to control a (central) process, measured by the actual
outcome. The actual outcome is compared to a desired outcome. If there is
a deviation with respect to the desired outcome, the unit of control performs
some intervention at the input side of the process or in the process itself [153].

In the next paragraphs, we will briefly describe these concepts and functions.

Actual outcome. Each rewrite step results in a new system of equations.
We call each of these systems an actual outcome. For example, after the
student has finished the first rewrite step in our example, the system of
equations is:
=z—1
{ x =2—(r—1)

[N

26 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

As can be seen, the student has not made a mistake, i.e. the sub-expression
2 — y is correctly rewritten into 2 — (z — 1).

Solving a system of linear equations is a stepwise activity according to
a strategy (in this case the substitution method). As a result, the solving
process consists of a sequence of systems of equations, where each system is
compared to a desired outcome. This is not always the case. For example,
for modeling a UML class diagram there is no strategy, only some rules of
thumb. As a result, a student often submits only a final UML class diagram
instead of a sequence of diagrams.

Measurement function. The measurement unit prepares an actual out-
come for comparison with the desired outcome. For example, the mea-
surement unit parses the system of equations for internal processing. The
measurement function takes always one model for comparison to the desired
outcome. In case of an 1TS, measurement takes place when a student submits
a model for evaluation.

The desired outcome. The desired outcome for a system of linear equa-
tions is described by three parts: (1) the system of equations is syntactically
correct, (2) the semantics of the actual system of equations equal the se-
mantics of the previous system of equations, and (3) the actual system of
equations can be obtained by applying a rewrite rule according to a strategy
for solving a system of linear equations.

If the strategy consists of one sequence of steps, there is only one desired
outcome for each actual outcome. This is, however, seldom the case. Looking
at the first system of equations, applying the substitution rule was obvious
but other rewritings are certainly possible. For example, the student could
multiply both sides of the second equation by 2, resulting in the system:

y =xz—1
{ r =4—-2-y

Both systems, i.e. both rewritings, are consistent with the substitution
method. As a result, in case of solving a system of linear equations, the
desired outcome often consists of a number of systems of equations, namely
all systems that can be obtained from the previous system by correctly ap-
plying a rewrite step according to the strategy. An exception is the final
system, i.e. the solution, which is unique. As a result, the desired outcome
for the final system consists of one member.

Generally, exactly one desired outcome is uncommon in modeling. Of-
ten, several outcomes are possible as is the case in modeling a UML class

2.2. MAIN CONCEPTS AND FUNCTIONS 27

diagram. Furthermore, for most model types there does not exist a fine
grained strategy. Often, only some rules of thumb are available.

The comparison function. The comparison unit compares the actual
outcome with the desired outcome. In case of solving a system of linear
equations, the output of the comparison unit could be one out of five options:

e If the actual system of equations is syntactically incorrect, then the
output of the comparison unit is a syntax error code.

o If the actual system of equations is syntactically correct and the se-
mantics do not equal the semantics of the previous system, then the
comparison unit analyses this situation and tries to detect which rule
the student has probably applied.

Suppose, the student has rewritten the first system of equations into

the following one:
Y =z—-1
% x =2—x-—1

The student has tried to apply the substitution rule, but has forgotten
to place the sub-expression x — 1 inside brackets.

The output is a semantic error code, including information about the
erroneously applied rule.

e [f the actual system of equations is syntactically correct, the semantics
equal the semantics of the previous system, and the system is in the
final form, i.e. x = ¢1, y = co, where ¢; and co are constants, then
the solving process is finished. The output of the comparison unit is
a ready-code.

o If the actual system of equations is syntactically correct, the semantics
equal the semantics of the previous system, the system is not in the
final form, and the actual system can be obtained by applying a rewrite
rule according to the strategy allowed, the output of the comparison
unit is a code representing that the step was correct, but the solving
process is not yet finished.

e [f the actual system of equations is syntactically correct, the semantics
equal the semantics of the previous system, the system is not in the
final form, and the actual system can not be obtained by applying a
rewrite rule according to the strategy allowed, the comparison unit
produces an error code indicating the deviation with respect to the
strategy.

28 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

The control function. Depending on the result of the comparison unit,
the control unit computes the content of the feedback message:

o In the first case the message could be a report about the syntax error,
for example: ‘You miss a bracket.’

e In the second case the message could report about the rule which is
probably erroneously applied. Continuing our example: ‘You have
made a mistake: Since variable y has disappeared from the equation
% -x = 2 —y we assume you have tried to apply the substitution

rule. Correctly applying the substitution rule for y results in % - =

2 — (x — 1). Is this what you meant?’

e In the third case, the message could be something like: ‘You have
solved the system. Congratulations!’

e In the fourth case, the message could say: ‘That was a correct rewrite
step. Proceed further.’

e In the last case, the message could be: ‘In itself, it was a correct step,
but you deviate from the strategy.’

Notice that the comparison as well as the control unit need knowledge about
the syntax of the expression language, the previous expression, the actual
expression, and the strategy.

From problem solving theory we know a problem consists of four compo-
nents, namely an initial state, a goal state, operators or rules that can be
used to reach the goal state, and a task environment that the solver is work-
ing in [43, 143].

The initial state. The initial state contains the problem description and
the constraints that must be satisfied. In our example, the initial state
consists of the exercise text: Solve the following system of linear equations:

Y =xz—1

An example of a constraint is that the substitution method must be used.

In our example, the initial state is well-defined, i.e. is not ambiguous.
There are many examples where this is not the case. In modeling tasks the
problem description in natural language is often ambiguous. As a known
example, the domain description ‘The hunter shoots the rabbit with his
gun’ could be interpreted in three ways.

2.2. MAIN CONCEPTS AND FUNCTIONS 29

The goal state The goal state is the state in which the problem is solved.
Sometimes the goal state is well-defined, as for example in solving a system of
linear equations: all equations are in a form with a variable to the left of the
equal symbols and a constant to the right of the equal symbols. Again, this
is not always the case. In for example modeling a UML class diagram, many
class diagrams may form a valid solution and there is often not one best
solution. In such cases, we can describe a set of properties (or constraints)
that must hold. These properties accept a number of final solutions.

Operators or rules. Generally, operators and rules are descriptions of
actions in terms of which state will be reached by carrying out the action in
a particular state.

An example of a rule is the substitution rule. This rule can be applied,
in case of two equations, if one equation has the form z = ...y... and
the other equation has both variables x and y. Substituting the rlght hand
side of the first equation into the second equation decreases the number of
variables in the second equation.

The substitution rule is an example of a very precise rule with clear
semantics, i.e. if the prerequisites are satisfied, the action results in a de-
sired state. Again, this is often not the case in modeling. Often, there are
only some rules of thumb, as for example ‘list all potential class-names’ for
modeling a UML class diagram. Applying such a rule will result in many
potential outcomes.

Task environment. The task environment consists of the features that
can either directly or indirectly constrain or suggest different ways of solv-
ing a problem. In our case, the environment could be at home, in a class
situation with or without a tutor, in an 1TS, and with or without supporting
material as a text book.

Problem and modeling types. Which types of problems or modeling
tasks can be distinguished? Problems are described as varying on a contin-
uum from well-defined to ill-defined, or well-structured to ill-structured [64,
76, 152]. It should be noticed that the terms ‘defined’ and ‘structured’ are
used interchangeably in the literature [88|.

Mitrovic and Weeransinghe [104] point out, in the context of modeling
activities in an 1TS, the importance of distinguishing between definedness of

30 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

the modeling language'? and definedness of the problem solving task. With
problem solving task they refer to the procedure or strategy of how to solve
the problem, including a description of the initial state, the goal state, and
how to evaluate the solution for correctness. They propose two orthogonal
dimensions, one for the degree of definedness of the model language and
one for the degree of definedness of the problem solving task. The two
dimensions are continuous, i.e. the spectra arranging languages and tasks
from ill- to well-defined ones. These two dimensions result into three classes
of problems (the fourth ‘ill-defined modeling language - well-defined task’
cannot occur):

e well-defined modeling language - well-defined problem solving task (for
example solving a system of linear equations),

e well-defined modeling language - ill-defined problem solving task (for
example conceptual database design expressed in ER-notation),

e ill-defined modeling language - ill-defined problem solving task (for
example writing an essay), and

In our opinion, the distinction between modeling language and problem
solving task (strategy, initial state, goal state, and evaluation procedure)
is not distinctive enough. There are examples of modeling tasks for which
there is a well-defined strategy, but the initial state can be ill-defined or
well-defined. If the initial state is well-defined, the strategy can be used.
If the initial state is ill-defined, the strategy can not be used without some
preparative work.

For example, consider modeling a precise XML content model. As we
have seen in the previous chapter, there is a well-defined strategy of how
to model such an XML content model. This strategy needs a well-defined
initial state: an example XML document. If we model a content model on
the basis of an example XML document, the initial state is well-defined and
the strategy can be used. On the other hand, if we have to model the XML
content model on the basis of an ambiguous description in natural language,
the initial state is ill-defined. Some preliminary work must be domne, i.e.
for every element we have to choose which sequences of child elements are

! Mitrovic and Weeransinghe use the term problem domain for model language. Because
the term problem domain has another meaning in for example 00-modeling, we prefer to
use the term model language.

2Tt should be noticed that the terms language and domain are used interchangeably.
In the context of modeling we will use the term language. In the context of mathematics,
we will use the term domain.

2.2. MAIN CONCEPTS AND FUNCTIONS 31

allowed. This preliminary work corresponds to ‘developing a first model’,
as stated in the previous chapter, and is less defined, due to the ill-defined
domain of interest and the choices which have to made.

To have the possibility to express this distinction, we add an extra di-
mension to the model, namely the definedness of the domain of interest.
The degree of definedness of the domain of interest, as is presented to the
problem solver, determines to a large extent the definedness of the initial
state of the problem to solve. In summary, we distinguish the following three
dimensions:

o Modeling language — The modeling language used.

e Domain of interest — A description of the domain of interest, including
the initial state of the problem so solve, as is presented to the problem
solver.

o Problem solving task — The strategy that should be used to solve the
problem, a description of the initial state as precondition to use the
strategy, the goal state to reach, and a procedure of how to evaluate
the solution for correctness.

Figure 2.2 shows these three dimensions, where we have replaced Domain
into Model language.

Remark. We make a distinction between the real domain of interest and the
domain of interest as is presented to a student. By doing some preparatory
work, an ill-defined domain of interest is transformed into a more well-defined
domain. This preparatory work is in fact a movement along the axis Domain
of interest from ill-defined to well-defined and is often an important first step
in many it-projects. This movement reflects the first activities as domain
analysis and requirements analysis. In an exercise environment, as modeling
in an ITS is, by presenting a description of the domain of interest in a more
stylized or formalized way, a modeling problem becomes less ill-defined and
more well-defined. This preparatory work is done by the lecturer. Additional
advantage is that by transforming an ill-defined domain into a well-defined
domain, we are able to give more relevant feedback about the semantics of
the model.

Remark. For some model transformations, namely if the semantics of the
model does not change, the axis domain of interest does not play a role.
For example, solving a system of equations assumes a start model, i.e. the

32 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

.
Modeling language ; aigonthm
well-defined i

Domain of interest:
well-defined

LML clags diagrdm
: Probleém solving task
ill-defined £ well-defined

ill-defined

l-defined

Figure 2.2: Problem types

first set of equations. This start model could represent a certain domain
of interest, for example a particular logistic process, but could be a pure
mathematical exercise in its own too. ‘Solving the set of equations’ is only
determined by the definedness of the model language (the mathematical lan-
guage of systems of equations) and the problem solving task (for example
the substitution method).

Remark. According to Jonassen [76], these three dimensions are relative
to the modeler or student, i.e. the familiarity with the task to solve, the
familiarity with the modeling language to use, and the familiarity with the
problem domain of interest.

We give some examples of relevant combinations:

o Well-defined modeling language, well-defined domain of interest, and
well-defined task — An example is modeling a precise XML content
model using the DTD content model language, based on one or more
example XML documents. The task is an algorithm, as we have seen
in the previous chapter. An algorithm is included in figure 2.2.

o Well-defined modeling language, well-defined domain of interest, and
ill-defined task — An example is modeling a UML class diagram on the
basis of a stylized textual description. Here we consider the UML-class

2.2. MAIN CONCEPTS AND FUNCTIONS 33

diagram notation as reasonably well-defined, i.e. the class diagram
language is positioned on the well-defined half of the axis. The UML-
language (UML 2), however, is not totally well-defined, but in some
way imprecise and ambiguous [23].

e Well-defined modeling language, ill-defined domain of interest, and ill-
defined task — An example is conceptual database modeling based on
an ambiguous text using the the ER-notation.

The problem solving process, schemata and strategies. In a situ-
ation of a well-defined domain of interest, a well-defined language, and a
well-defined task there often exists a well-defined strategy. Depending on
the student’s level of knowledge and skills, the student recognizes the situa-
tion, chooses the right strategy and performs this strategy. In a situation of
an ill-defined domain of interest, a well-defined language, and an ill-defined
task, there is no well-defined strategy. In that case, the student has to use
a heuristic to develop the model asked.

Gick described a simplified problem solving process consisting of two
sub-processes [52]:

1. generation of a problem representation or solution space (the problem
solvers view of the problem);

2. a solutions process that involves a search through the solution space.

During the construction of the problem representation, certain features of the
problem may activate knowledge in memory. The problem representation
contains the start state including the obstacles, a description of the goal
state including criteria for when the goal is reached, and a description of
prior declarative knowledge, rules, and strategies that will aid in solution.
A schema for that type of problem may then be activated.

A schema is defined as a cluster of knowledge related to a problem type.
It contains information about the typical problem goal, constraints, and the
strategy or strategies to solve the problem [52]. The strategy, or solution
procedure, is a generalizable series of steps initiated in response to a particu-
lar class of circumstances to reach a specific goal. Strategies are sometimes
strictly defined, i.e. all steps are included with no ambiguity in each step.
Such a strictly defined strategy is called an algorithm. Strategies can be
simple (a linear sequence of steps), or very complex (with many decision
points, at which a solver must determine which of two or more situations
exist and based on this determination which branch of the strategy will be
followed) [137].

34 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

Strategies can be often combined. One situation is where two or more
strategies exists for one and the same problem. An example is solving a
system of linear equations for which four strategies exist [114]. The substi-
tution and the combination method are strategies for solving a system of
linear equations and can be used in combination, i.e. one or more steps from
both strategies are applied alternately. Another situation is were strategies
are combined in a way more complex problems can be solved. For example,
the quadratic formula can be used for solving a quadratic equation. Factor-
ization is a strategy for finding roots of a polynomial of degree greater than
two. Both can be combined to solve a polynomial P(z) of degree three: first
search for a root r, then factorize P(x) such that p(x) = (x —r) - P'(x),
followed by applying the quadratic formula on P’(x). Notice that produc-
ing feedback in these situations is extra complicated by the fact we have to
detect which strategies are used and which part of which strategy is used
when.

If schema activation occurs, the solver can apply the solution strategies
contained in the schema. Schema driven strategies may be general or domain
specific. An example of a general strategy is decomposition of the problem.
An example of a domain specific strategy is modeling an XML content model.

If there is no appropriate schema activation, the problem solver proceeds
to the second step and a search strategy is invoked. People often use heuris-
tics for searching the problem space. A heuristic is a rule of thumb, also
called a weak method, that will generally get one at the correct solution,
does not guarantee the correct solution, and is independent of a particular
problem [43, 96]. Examples of heuristics are: randomly pick up a reachable
next state [43], Hill climbing [43], problem decomposition [43, 51|, Mean-
ends-analysis [43, 51|, and reason by analogy [43, 128].

In order to produce feedback on modeling activities, an 1TS must have
different types of knowledge. Based on the sources described above, it is clear
that the concepts schema, initial state, goal state, constraint, operator or
rule, strategy, procedure and heuristic all play an important role in problem
solving and modeling. The descriptions and relations between the concepts
mentioned so far vary per author (see also section 2.4). In the rest of this
thesis, we assume the following descriptions and relations:

o A schema is defined as a cluster of knowledge related to a problem type.
It describes, if existing, the typical initial state, goal state, constraints,
the operators or rules that may be applied, and the strategy to solve
the problem

o A strategy describes how a problem should be solved. A strategy could

2.2. MAIN CONCEPTS AND FUNCTIONS 35

be domain specific or generally applicable. Furthermore, a strategy
could be in the form of an algorithm, a procedure and a heuristic.
Sometimes, a number of algorithms, procedures and heuristics exists
which can be sometimes used in combination.

e A procedure is a description of steps or operator/rule applications that
transforms an input into an output.

e An algorithm is a special form of a procedure, namely a description of
steps or operator/rule applications that transforms a well-defined input
(described by a pre-condition) into an well-defined output (described
by a post condition). If the input satisfies the precondition, success of
the transformation is guaranteed.

e A heuristic is a rule of thumb that guides a solver into a certain direc-
tion, but does not guarantee the correct solution.

Notice that describing the knowledge needed for modeling in such a way con-
curs with Anderson’s first principle [4, 5|: if possible, the student’s compe-
tence should be represented as a production system. The production system
says which rules may be applied in which order. Only then an 1TS is able to
follow the student’s solving process, can detect erroneous rule applications
and missing rules, and can correct erroneous steps made. In cases the pro-
duction system consists only of high level or heuristic rules the model can
(only) test on these high level steps and the required qualities of the final
model or sub-models.

Educational issues. The goal of learning problem solving is the ability to
perform the solving schema as a whole. Often, these schemata are complex.
Therefore, it is helpful to first practice the components apart of each other
before moving to a complete schema. Some examples of practices for learning
schemata are [137]:

e learning to determine if a strategy is required,

e learning to complete the steps in a strategy,

e learning to list the steps in a strategy, and

e learning to check the appropriateness of a completed strategy.

For learning solving problems, different tutorial strategies can be needed [54].
For example, for learning declarative knowledge a bottom-up approach, or

36 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

inductive learning, can be used as an educational strategy rather than a top-
down approach or deductive learning. Specifically for solving complex prob-
lems, practice may nitially include instructional guidance such as detailed
hints, guiding questions, presentation of the rules, suggestions for strategies
and information about the efficiency of the solution process. For example,
after an erroneous rule application during solving a system of equations, the
system could present the rule application in the context of another exam-
ple. In later stages, if the student is more matured, hints could contain less
detailed information. During initial stages of practice, feedback should be
immediately available [137].

2.3 The framework

We imagine an environment for practicing modeling, in which:

e learners are able to develop models of certain domains using different
types of languages;

e authors are able to develop modeling exercises;

e learners as well as authors receive semantically rich feedback during
developing models and exercises based on different ontologies, i.e. a
domain, a task, an educational and a feedback ontology.

The framework consists of four main components: a player for the learner,
an authoring tool, a feedback engine and a set of ontologies as pluggable
components. The player consists of a modeling environment in which a
learner can develop models. The authoring tool consists of an authoring
environment where the author develops modeling exercises and course re-
lated materials such as a domain ontology, a task ontology and feedback
messages. The feedback engine automatically produces feedback to learners
as well as to authors. The ontologies represent the modeling language, task,
educational and feedback knowledge. Figure 2.3 gives an overview of the
functional components of the framework.

The framework corresponds to the main components an ITS often con-
sists of, namely a user interface (a layer in the student player and author
environment), a domain model (corresponding with the task - and domain
ontologies), a teaching model (corresponding with the educational and feed-
back ontologies), and a student model [116]. It should be noticed that the
framework does not contain a student model. Tracing the students’ progress
over several modeling exercises does not have our attention in this thesis.

2.3. THE FRAMEWORK 37

[Model language |
Player
| Task | Feed r_:uack
[Education | =EgIhe
[| Author tool
Feedback

Figure 2.3: Functional architecture

Ontologies. The system contains several types of knowledge to produce
semantically rich feedback. The knowledge is represented by ontologies.
Generally, an ontology is: (1) a vocabulary, i.e. an informal description of
the concepts, predicates, functions and constants of the domain of interest,
and (2) a formal encoding of general knowledge about a domain in terms of
axioms [131].

Declarative knowledge as conceptual and structural models can be rep-
resented by predicate calculus, conceptual graphs and even 00 domain
class notation, ER notation [141], and Resource Description Framework
(RDF) [154]. Specifying causal models and strategies, i.e. algorithms, proce-
dures and heuristics, can be represented by Petri nets, context free grammars
and full programming languages [70, 141]. By describing the domain pre-
cisely, we are able to construct inference procedures for automatic derivation
of consequences, 1.e. in our case to produce feedback.

With ontologies as arguments, the different types of knowledge are con-
sidered as reusable components of knowledge. This is important, because
the development of feedback mechanisms is time consuming and specialist
work [106]. For example, a description of a domain of interest used in an
exercise asking a student to make a UML class diagram, can be used is an
exercise asking a student to make an ER-diagram too.

Based on the survey in the previous section, we distinguish four types of
ontologies:

e Modeling language — The modeling language ontology describes the
model language used. Examples are the DTD language for specifying
XML content models and the UML class diagram language for specifying
class diagrams.

e Task — The task ontology describes a schema to solve a particular
problem. The schema describes in general terms how to approach the

38 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

problem, i.e., if existing, the initial state, constraints, operators or
rules that may be applied, one or more strategies, and the goal state
to reach. Fach exercise could be considered as an instance of such a
schema, i.e. each exercise describes the actual initial state, constraints,
operators or rules and/or strategy that may be applied. If the goal
state is well-defined, as for example is in solving a system of linear
equations, the goal state could be described by one model solution.
If the goal state is ill-defined, as for example is in modeling a UML
domain diagram, the goal state could be described by a number of
model solutions and/or a set of constraints that must be satisfied by
the student’s solution.

o Fducation — The education ontology describes educational issues such
as the grain size of modeling steps allowed, to which extent the student
should solve all the modeling steps himself, and which type of feedback
is appropriate depending on maturity of the student.

e Feedback — The feedback ontology describes different types of feed-
back and feedback patterns during dialogs. Examples of immediate
(corrective) feedback are a simple correct/incorrect or more complex
feedback messages describing the correctness and efficiency of a step
and to which extent the goal is reached. An example of delayed feed-
back is a report about the efficiency of the strategy the student has
followed. Furthermore, the roles of feedback are described, as for ex-
ample direct, inform, instructional, etcetera.

The author tool. In the author environment, an author develops and
maintains modeling exercises. For each exercise, the author chooses a model
language (for example the UML class diagram notation or the DTD content
model language), describes the task in terms of a domain of interest and a
problem description, chooses an appropriate schema consisting of for exam-
ple a strategy of how the model should be developed, defines the goal state
in terms of one or more models and/or a set of constrains, adjusts educa-
tional issues as for example the grain size of modeling steps allowed and the
types of feedback which should be used. If the components needed already
exist, they can be re-used. If necessary, these components can be adapted
and new components can be defined.

The system performs many functions in the background that check on
consistency, completeness, etcetera, of the various types of knowledge part of
the exercises. These mechanisms allow the author to be flexible, for example,
to enter what he/she wants in whatever order he/she wants.

2.3. THE FRAMEWORK 39

The player. In the player a student practices modeling. The environment
is designed as a complement to classroom teaching, i.e. it is assumed that
students are already familiar with the fundamentals of the type of modeling
to be practiced. Students work individually on a modeling exercise. The
player is a problem solving environment in which a student constructs a
model of a certain type that has to satisfy a given set of requirements.
These requirements are presented in the form of a textual description.

If necessary, the system assists students during modeling and guides
them towards the correct solution in the form of several types of feedback
messages and hints. In cases of well-defined domains and tasks, the system
can produce feedback after each step done by the student as well as after
the final model is submitted by the student. In cases of less defined tasks,
the system can produce feedback after the final model, or a part of the final
model, is submitted. Furthermore, depending on the strategy, feedback
about the steps according to the algorithm, procedure or heuristic can be
produced.

The feedback engine. The feedback engine analyses the actual outcome
of the student’s model after the student submits his or her final model or
partly finished model. If there exists for example an algorithm for solving
the modeling problem, the engine can analyze the modeling process on a
step-by-step basis.

The desired outcome is defined by the author. Depending on the de-
finedness of the task, the desired outcome could be specified in terms of one
or more final models, in terms of sequences of modeling steps, i.e. a strategy
reaching a final model, and/or as a set of constraints the final model must
satisfied.

The engine compares the actual outcome to the desired outcome in terms
of syntax of the notation used, the semantics of the model, and, if possible,
a strategy describing the modeling process in more or less detail. Each devi-
ation is reported to a control function which formulates feedback messages.
To construct feedback, the feedback engine uses the argument ontologies.
Since the ontologies are arguments, the feedback engine does not have to be
changed if an ontology is exchanged for another.

This framework, a general feedback engine and the use of ontologies as
arguments, supports the constant requirement for flexibility, adaptability
and reusability of knowledge structures in e-learning systems [116]. Authors
and knowledge engineers can concentrate on ontology engineering and au-
thoring of course material, while the general feedback engine remains the
same.

40 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

2.4 Additional concepts

In this section, we explore in more depth the concepts used in the previous
sections. This section provides some backgrounds and results mentioned in
the literature about modeling and problem solving.

Problem solving. There exist several definitions of what a problem is and
what problem solving means. One theory is based on the metaphor that how
humans solve problems is like a computer program [43, 143]. According to
this theory, a problem consists of four components, namely an initial state,
a goal state, operators or rules that can be used to reach the goal state,
and a task environment that the solver is working in. The task environment
consists of the features that can either directly or indirectly constrain or
suggest different ways of solving a problem. Problem solving then consists
of defining the solution space after which solution paths are searched from
the initial state to a goal state using the operators or rules [117, 143].

Problem types. Problems are described as varying on a continuum from
well-defined (well-structured) to ill-defined (ill-structured). For example,
Hicks [64] distinguishes between simple and complex problems (based on
the structure of the problem), well-defined and ill-defined problems (based
on whether problem solvers are confident about the direction of possible
solutions), and tame and wicked problems (based on, for example, whether
problems have a definitive problem description, the possibility of knowing the
best solution is reached, whether possible solutions are not true or false, but
somewhere between good and bad, they have a number of possible solutions,
etcetera). It should be noticed that the terms well-defined, well-structured,
ill-defined, and ill-structured are used interchangeably in the literature [88].

A well-defined domain is one in which there is a systematic way to deter-
mine when a proposed solution is acceptable; on the other hand ill-defined
domains lack such a procedure [88].

To be more precise to which extent problems are solvable, Jonassen de-
scribed a typology of problem solving [76]. Jonassen classifies problems along
three dimensions: problem type, problem representation, and individual dif-
ferences:

e The first dimension, the problem type, is a problem internal charac-
teristic and varies by structure, complexity, and abstractness. The
structure of a problem ranges from well-structured to ill-structured
problems. Well-structured problems present, for example, all elements

2.4.

ADDITIONAL CONCEPTS 41

of the problem, have a probable solution, engage the application of
a limited number of rules, principles or operators that are organized
in a predictive and prescriptive arrangement, and possess correct and
convergent answers. On the other hand, ill-structured problems are
in all of these characteristics the opposite. Complexity is especially
concerned with how many components are in the problem, how these
components interact, and how consistently they behave. Abstractness
makes differences between domain specific (or concrete) and domain
independent (or abstract) problems.

The second dimensions, problem representation, is about how the prob-
lem is presented to the problem solver.

The third dimension, individual differences, is about, for example, the
familiarity of the problem solver with the problem type, the solvers
level of domain knowledge, and domain specific thinking skills.

The range of problem solving types is described by a continuum from well-
structured to ill-structured, abstract to concrete, and simple to complex
problems: logical problem, algorithm, story problem, rule-using problem,
decision making, trouble shooting, diagnoses/solution, tactical-strategic per-
formance, situated case, design, and dilemmas. In the context of modeling
within computer science, the types algorithm, logical problem, and design
are of particular interest.

o Algorithmic problems can be solved using a finite and rigid set of pro-

cedures, with limited, predictive decisions. Examples are modeling a
precise XML content model and solving a linear system of n equations
with n variables. Solving these problems requires to select and apply
the correct sequence of operators or rules to the formula. These type
of problems are well-structured, often abstract, can be simple or very
complex, and can be solved correctly.

Logical problems tend to be abstract tests of logic that puzzle the stu-
dent. In this type of problems, there is a specific method of reasoning
that will yield the most efficient solution. Logical problems can be
complex. Examples of complex problems are the games Bridge and
chess, which employ more complex rules and constrains. Often, these
more complex forms of problems also require other forms of problem
solving, including diagnoses/solution, and perhaps design. An efficient
solution is often possible. These type of problems are between well-
and ill-structured, often abstract, and can vary from simple to very
complex.

42

CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

Design problems are at the other end of the continuum. Usually, most
design problems have multiple if not infinitely many solutions, the
criteria for the best solution are not always obvious, there exist no
ready-made procedures, and the constrains and start situation might
be partly unknown. These type of problems are often ill-structured,
domain dependent, and are often complex.

The typology of Jonassen corresponds with the taxonomy of problems de-
fined by Van Gundy [152]. This taxonomy consists of three types classified
on the extent to which they are structured:

o Well-structured problems — These problems are characterized by the

availability of all information needed to close the problem gap. These
type of problems can be often solved applying a schema or procedure.
The algorithmic problems in Jonassen’s typology are a type of well-
structured problems.

Semi-structured problems — These problems provide the solver with
some information, but it is not enough or there are some unclear points.
Uncertainty exists about the current state, the goal, and/or which
procedure to use. Here heuristics can be used. The logical problems
in Jonassen’s typology are a type of semi-structured problems.

Ill-structured problems — These problems provide the solver with little
or no information on the best way of developing a solution. Because
no clear procedure exists for how to solve the problem, the solver
should improvise and develop a custom made solution. In this class of
problems creativity plays an important role. The design problems in
Jonassen’s typology are a type of ill-structured problems.

In the survey so far, the degree of definedness (or structuredness) is par-

ticularly related to the problem domain. Mitrovic and Weeransinghe [104]
point out the importance of distinguishing between definedness of the prob-
lem domain and the problem solving task. They propose two orthogonal
dimensions, one of the degree of definedness of the problem domain and one
of the definedness of the task. The two dimensions represent four classes of
problem solving tasks:

o Well-defined domain - well-defined task: Instances of this class are

most covered by 1TSs. Examples of domains are areas of mathematics
and physics, such as systems of linear equations and fractions. Tasks

2.4.

To

ADDITIONAL CONCEPTS 43

in this domain are algorithmic in nature, for example solving a sys-
tem of n linear equations with n unknowns, and adding and reducing
fractions.

Another example is developing precise XML content models. The XML
content model language, i.e. the regular expression language, is well-
defined. The task is well-defined too, i.e. there exists an algorithm for
constructing such a model.

o Well-defined domain - ill-defined task: Instances of this class are less
covered by ITSs. An example is conceptual database design expressed
in terms of the ER data model. The ER data model language is well-
defined: it consists of a small number of components with a well-
defined syntax and semantics. However, the task conceptual database
modeling is ill-defined: the initial state is usually underspecified and
ambiguous, there exists no algorithm, and the goal state is underspec-
ified. Furthermore, the domain of interest modeled in an ER-diagram
could be ill-structured or ill-defined too.

Another example is developing a correct XML content model. The XML
content model language is well-defined. Furthermore, the start state is
well-defined. However, the task is ill-defined, i.e. there is no algorithm
to transform the start state into a desired goal state. Instead, as we
will see in chapter 6, there are rules of thumb for solving this problem.

o [ll-defined domain - ill-defined task: Instances of this class are rarely
covered by 1TSs. An examples is essay writing, for which there are only
some global rules for how to structure an essay and how to present
arguments.

o [ll-defined domain - well-defined task: There are no examples of this
class.

which class a problem solving task belongs, depends on the degree of

definedness of the initial state and the goal state, and the availability of a
problem solving procedure for that problem.

Lynch et al. [88] distinguish five characteristics, namely verifiability (to

which extent are there valid arguments for or against a solution), open-
textured concepts (to which extent are there abstract concepts that lack an
absolute definition), overlapping problems (to which extent are sub-problems
after decomposing independent and easier to solve), formal theory and task
structure. The last two characteristics correspond to the level of definedness
of the domain and the task in [104].

44 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

Problem solving processes and strategies. Schemata, procedures and
heuristics are types of problem-solving strategies [52|. Here, the word strat-
egy is used as umbrella term. A problem solving strategy is a technique that
may not guarantee a solution, but serves as a guide in the problem solving
process [91]. Gick described a simplified problem solving process consisting
of two sub-processes [52]:

1. generation of a problem representation or solution space (the problem
solvers view of the problem);

2. a solutions process that involves a search through the solution space.

During the construction of the problem representation, certain features of the
problem may activate knowledge in memory. The problem representation
contains for example the start state including the obstacles, the goal state
including criteria for when the goal is reached, and a description of prior
declarative knowledge, rules, and strategies that will aid in solution. A
schema for that type of problem may then be activated. Here Jonasson’s
typology plays an important role, i.e. the problem solver has to recognize
the type of the problem and chooses an appropriate schema.

A schema is defined as a cluster of knowledge related to a problem type.
It contains information about the typical problem goal, constraints, and
the solution procedures [52|. The solution procedure, also called procedural
rules, is a generalizable series of steps initiated in response to a particu-
lar class of circumstances to reach a specific goal. Procedures are often
strictly defined (i.e. all steps are included with no ambiguity in each step).
A procedure can be an algorithm, simple (a linear sequence of steps), or
very complex (with many decision points, at which a solver must determine
which of two or more situations exist and based on this determination which
branch of the procedure will be followed) [137]. We notice that according to
this definition a rule of thumb is a type of procedure too. In contrast with
an algorithm, a rule of thumb is loosely defined and there is often ambiguity
in a step.

If schema activation occurs, the solver can apply the solution strate-
gies, for example an algorithm and/or a heuristic, contained in the schema.
Schema driven strategies may be general or domain specific. An example of
a general strategy is decomposition of the problem. An example of a domain
specific strategy is modeling an XML content model.

If there is no appropriate schema activation, the problem solver proceeds
to the second step and a search strategy is invoked. People often use heuris-
tics for searching the problem space. A heuristic is a rule of thumb, also

2.4. ADDITIONAL CONCEPTS 45

called a weak method, that will generally get one at the correct solution,
does not guarantee the correct solution, and are independent of a particular
problem [43, 96]. Examples of heuristics are:

e Randomly pick up a reachable next state (used when we have no idea
how to reach the goal state) [43];

e Hill climbing (move repeatedly to the state that looks most like the
goal state) [43];

e Problem decomposition (breaking the problem into sub-problems) [43,
51];

e Mean-ends-analysis (where the difference between the current state
and the goal state is (recursively) decomposed) [43, 51],

e Reason by analogy (if the solver has solved a similar problem in the
past, the solver can go directly to the solution by mapping the solution
of the old problem onto the current problem) [43, 128].

Design and modeling. Jeffries et al. (1981) presented a theory of the
global process that experts use to control the development of a software de-
sign [69]. They stated that designing a software system is a complex task and
can not be solved by a single, well-understood schema. Instead, the major
task is a recursive reduction of the original, ill-structured problem into a col-
lection of more-or-less well-structured problems. The design task is directed
by a design-schema which consists of abstract knowledge about the structure
of a completed design and the procedures involved in the generation of that
design. The schema is assumed to include:

1. a collection of components that partition the given problem into a set
of meaningful tasks;

2. components that add elements to tasks in order to assure that they
will function properly (e.g. initialization of data structures);

3. a set of procedures that control the generation of designs;

4. evaluation and generation procedures that ensure effective utilization
of knowledge.

The major control processes of the design-schema are summarized into a
set of abstract production rules. These rules are an attempt to capture the
global control process only, i.e. many aspects are not addressed at all. Notice

46 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

that this description does not consist of one schema and one procedure.
Instead, this description consists of several (sub-) schemata and processes.

The design-schema allows several decomposition methods. The design-
schema is presented using the input-process-output strategy. Using this
strategy, the initial model is specified by a set of tasks and a control structure
that will solve the problem. Each ill-structured task is then recursively
expanded into a set of well-structured tasks or problems. The final solutions
of these sub-problems represent a solution to the original design problem.

Other decomposition approaches can be used. Examples are data-structure-
oriented approaches (Jacksons (1975), Warnier (1974)), the data-flow ori-
ented approaches (Myers (1975), Yourdan (1975)) and the more modern
object-oriented approaches using the UML-notation [85].

Educational considerations Merriénboer and Kirschner have presented
a four-component instructional design model for the learning of complex
constituent skills [96]. They argue that many constituent skills, as modeling
is, can only be performed if the learner has integrated declarative and proce-
dural knowledge related to the problem domain. These types of knowledge
are needed to solve a task, for example to study a case-study, to carry out
a project, to solve a problem, or to make a model of a certain situation.

They distinguish two types of constituent skills, namely schema-based
and rule-based skills. Schema-based or non-recurrent skills are controlled,
schema-based processes that are performed in a variable way from problem
situation to problem situation. These schema-based skills involve the dif-
ferent use of the same knowledge in new problem situations. Developing a
domain model is an example of a schema-based skill. A schema consists of
domain knowledge (in the form of mental models) and guiding knowledge
(in the form of cognitive strategies). For schema-based skills, supportive in-
formation is important. Supportive information provides learners with the
givens, the goals, and solutions that get them from the givens to the goals.
It explains how a domain is organized in terms of mental models (i.e. con-
ceptual, structural, and causal models) and how to approach problems using
these mental models (cognitive strategies in terms of systematic approach
to problem-solving (SAP)) in that domain.

On the other hand, rule-based or recurrent skills are processes that are
performed in a highly consistent way from problem situation to problem
situation. Developing an precise XML content model is an example of a
rule-based skill. For rule-based skills procedural information is important.
Procedural information describes how a problem is solved step-by-step.

Anderson (1993) has developed the Adaptive Control of Thought theory

2.4. ADDITIONAL CONCEPTS 47

(AcT) [3]. This theory is currently the most comprehensive theory describing
the learning processes responsible for the automation of rules, also called
production rules [96]. An example of a production rule in the context of
geometry proofs is:

IF the goal is to prove two triangles are congruent
THEN set as a sub-goal to prove that all six pairs of sides and angles
are congruent.

Based on the ACT theory, Anderson et al. have developed cognitive tutors
for practicing problem solving in LISP, geometry and algebra and extracted
eight principles [4, 5|. We briefly list the five principles for as they are
relevant for practicing modeling skills:

e The first principle is Represent student competence as a production set,
which means that the tutoring system should be informed by an accu-
rate model of the target skill and very precise about the instructional
objectives. The ACT theory says that the model should be cast as a
production system: which rules may be applied in which order. Only
then the system is able to follow the student’s problem solving pro-
cess, can detect erroneous rule applications and missing rules, and can
correct erroneous steps made by a student. In cases the production
system consists only of high level or heuristic rules the model can only
test on these high level steps and the required qualities of the final
model or sub-models.

e The second principle Communicate the goal structure underlying the
problem solving emphasizes the importance of knowing the goal struc-
ture as part of a problem solving process. Solving a problem means
decomposing the problem into a hierarchical structure of goals and
sub-goals. This principle says that exposing and communicating these
goals should be an instructional objective.

e The sixth principle is Provide immediate feedback on errors. Anderson
et al. argue that making errors can severely add to the amount of
time required for learning, can demotivate the learner, and that it is
difficult for learners to learn the correct production from an episode
involving applying the wrong productions. The ACT theory predicts
best learning if students are told immediately why they are wrong and
what the correct actions are.

e The seventh principle Adjust the grain size of instruction with learning
means that it should be possible to process the student’s problem

48 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

solving in larger units of analysis, i.e. it should be possible, if the
student’s experience increases, a student can increase the grain size
with which a problem is solved.

e The eighth principle Facilitate successive approzimations to the target
skill, means that in the initial stages of the learning process the student
can not solve all the solving steps. The tutor can fill in the missing
steps. During later stages in the learning process the student will be
providing more and more of the work until the tutor is completely in
the background.

The other principles are less important in our context, because they are
related to tutoring and less to practicing. These principles are: Provide
instructions in the problems-solving context, which means providing instruc-
tion between each new section, where a section begins where new produc-
tion rules are introduced, Promote an abstract understanding of the problem
solving knowledge, which means students should be prevented from develop-
ing only specific knowledge from particular problem-solving examples and
should be stimulated to develop more general applicable production rules,
Minimize working memory load, which means minimizing presentation and
processing of information that is not relevant to the target productions.

Beeson [16] has listed eight criteria that must be met if we are to pro-
vide successful computer support for education in algebra, trig, and calculus.
The first two are cognitive fidelity, which means that the software solves the
problem in the same way as the student should solve it, and the glass box
principle, which means that a student can see how the computer solves the
problem. The third one is the customised to the level of the user criterion,
which means that the system should be adaptable to the level of the stu-
dent. The fourth criterion is the correctness principle, which means that
a student cannot perform incorrect operations. The fifth criterion, user in
control, means that the student decides what steps should be taken and the
computer can help a student when he or she is stuck. The sixth criterion
is the computer can take over if the user is lost, which means that when a
student is stuck the system can produce a next step. The seventh criterion is
easy to use, which means for example that no unnecessary typing is required
and clear feedback is produced. The eight criterion is usable with a standard
curriculum which means that a standard curriculum in mathematics should
be supported.

Feedback. As stated in the previous chapter (section 1.4) there is still a
debate about the best timing of feedback, immediate versus delayed. The

2.4. ADDITIONAL CONCEPTS 49

same is true about the form and content of feedback messages, i.e. lessons and
learners vary so greatly that it may not be possible to specify a systematic
relation between feedback content and instructional performance prior to the
deliverance of the lessons itself [83]. That feedback has a positive effect is a
fact [83]. Furthermore, it seems there exists an agreement that immediate
feedback produces a better effect during initial stages of learning [58, 113].

Although the ultimate goal of learning problem solving is the ability to
perform the solving schema as a whole, it is helpful to firstly practice the
components separately before moving to a complete schema. Smith and
Ragan (1993) have described some practices for learning procedures [137]
and the type of feedback convenient for each type of practice:

e Learning to determine if the procedure is required. For this kind of
practice simple correct /incorrect feedback can be given eventually sup-
plemented with explanations about the (in)correctness.

e Learning to complete the steps in a procedure. For this type of prac-
tice, learners should be informed about the correctness of each step and
the correctness of the decisions made on each decision point in the pro-
cedure. Furthermore, the feedback message should contain qualitative
information as to whether the inputs into the operation were appro-
priately selected, whether the outputs of the operation reached any
prescribed criterion, and whether the step was completed with accept-
able precision and efficiency. For some procedures, as for example for
some mathematical operations, this may be fairly straightforward. For
other procedures, as for example heuristics, this is difficult.

e Learning to list the steps in a procedure. For this type of practice
information about whether all steps are executed in the correct order
may be included in the feedback in response to the entire procedure.

e Learning to check the appropriateness of a completed procedure. For
this type of practice, correct answer feedback is given followed by a de-
tailed explanation of whether and why the procedure was (in)correctly
completed.

Specifically for solving more complex problems, Smith and Ragan mention
that practice may initially include instructional guidance such as hints, guid-
ing questions, presentation of the rules, suggestions for strategies and infor-
mation about the efficiency of the solution process. During initial stages of
practice, feedback should be immediately available for intermediate stages.

Sales (1993) listed seven different roles of feedback in technology-assisted
instruction [132]. These roles are:

50

CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

Direct — provides information about an action to be taken (‘Apply left
factoring’).

Inform — acknowledge the accuracy of learner’s input (‘Correct’).

Instruct — supplemental information intended to improve the learner’s
understanding (‘Incorrect. You have tried to apply the left factor rule,
but a bracket is missing. Try again!’).

Motivate — provide a reward or incentive designed to create a motive
for continued effort (a score increased after each correct step).

Stimulate — arouse the learner to continue (after a period of inactivity,
a beep from the computer encourages the student for input).

Advise — alerts the learner to the status of his or her efforts in relation
to the required criteria (‘You must add attributes to the classes before
finishing the exercise’).

Summarize — a cumulative report of the learner’s performance (‘Three
out of four content models were correct’).

2.5 Related work on modeling 1TSs

As far as we know, 1TSs for practicing modeling which produce semantically
rich feedback are not wide spread. Other authors report this observation
too [13, 111, 116].

We will discuss a number of 1TSs for well-defined as well as for ill-

defined domain/task combinations. Generally, five 1TS-strategies can be
distinguished [88]:

o Model-based — The student’s solution is compared to an author’s so-

lution model. The author solution model can describe the final model
as well as the solution process.

e (Constraint-based — The student’s model is compared to a set of con-

straints. The constraints describe especially the final model.

o Discovery learning — A student learns domain knowledge or declarative

knowledge by discovery.

o (Clase analysis — A student learns by examination of past cases.

2.5. RELATED WORK ON MODELING ITSS o1

e (Collaboration — Students learn by solving problems in collaboration in
which negotiation plays an important role.

For this research about feedback during practicing modeling activities, the
first two strategies are of interest. Discovery learning concentrates especially
on learning declarative knowledge. Case analysis is not a model activity but,
in cases of modeling education, an evaluation of a created model (which could
be in some respect an interesting exercise). Collaboration does not have our
attention in this research. COLER is an example of a collaborative environ-
ment for entity relationship modeling [36]. A general review on related work
can be found in [111].

2.5.1 Model-based

In the model-based approach, a student’s solution model is compared with
one or more author’s solution models. These authors’ solution models rep-
resent one or more acceptable solution models to a given analysis or design
problem, or a general model of the domain as a whole. A solution model
describes the final model solution. The solution model can describe the strat-
egy to reach the final model as well. The model is used to check the student’s
actions, to provide help, as well as to test the student’s final model [88].

We can distinguish between strong model-based tutors and weak model-
based tutors [88]. Strong model-based tutors require strict adherence to their
contents. These tutors have been proven successful in well-defined domains
such as mathematics, but not in ill-defined domains as for example modeling
and design. Being successful in ill-defined domains requires a formalization
of the domain, i.e. a well-defined subset of the domain is created. On the
other hand, weak model-based tutors use the model as a guide but do not
require strict adherence to their contents.

Generally, the model-based approach has three problems, which are still
not solved [144]:

e generations of sample solutions may be too expensive, if there are many
different ways of solving the problem;

e checking the correctness of a correct student’s solution which does not
match one of the sample solutions completely is difficult, and

e generating feedback for a partly finished solution matching several
sample solutions is difficult.

52 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

These problems are the reason why the model-based approach is particu-
lar usable in well-defined domains. We will describe two model-based tu-
tors, namely ERM and DesignFirst-1T7s. Other examples of model-based ap-
proaches are described by Gross et al. [55], an 1TS based on clustering so-
lution spaces using machine learning techniques, and Schramm et al. [134],
who describe a system which uses an author’s solution and compares the
expert’s solution and the student’s solution based on the number of classes,
attributes, etcetera.

ERM-VLE. Entity Relationship Modeling (ERM) [57] is a text based envi-
ronment for learning Entity Relationship (ER) modeling. Students construct
an ER model from a written requirement description by moving through a
virtual space consisting of a number of rooms for creating entities, relations
between these entities and attributes. The modeling task depends on the
textual analysis of a given scenario, where nouns correspond to entity types
or attributes and verbs correspond to relationship types. The topological
organization of the virtual world corresponds to the task structure, i.e. first
entities are determined, then all relationships are determined, and finally
attributes are assigned to the entity types.

The environment provides immediate feedback on syntax, semantic as
well as on methodological errors. For feedback on the semantics of the model,
the solution for the scenario is embedded (hard coded) in the virtual world,
i.e. the correspondences between the phrases in the scenario and the entity
types, relationship types and attributes in the ER model are stored. Feedback
on the methodology is given on the basis of the topological organization of
the virtual space, which reflects the task structure.

Disadvantages of the environment are the hard coded implementation
of the solution to a certain requirement description and the hard coded
task structure which is only applicable to ER-modeling. Furthermore, the
student is only allowed to establish the system’s ideal correspondences, i.e.
the author’s solution. Often, there are more solutions possible.

A preliminary study has been performed, which suggests that the system
is easy to use and effective with learners.

DesignFirst-1Ts. In DesignFirst-1Ts [112], linguistic analysis is used as
the process for translating a problem description into an 00-class diagram.
An author enters a problem description. A solution generator automatically
generates class diagrams as potential solutions. An instructor tool displays
the potential solutions and the author can revise the solutions to his or her
preferences.

2.5. RELATED WORK ON MODELING ITSS 53

Students design classes, methods and attributes in a separate editor. For
matching a student’s component name to the names in the solution space,
a string-matching algorithm is used. Abbreviations and spelling errors are
considered by applying string similarity metrics. An expert evaluator eval-
uates each of the student’s steps by comparing it with the solution tem-
plate [111]. Each deviation from the standard solution leads to a feedback
message, which are authored by the author.

We have doubts about the effectiveness of the way alternative correct
solutions are matched to the standard solution and to which extent more
complex diagrams are correctly evaluated. The expert evaluator described
in [111] performs only a string matching algorithm and does not perform any
analysis on structural aspects as for example associations and multiplicities.

The authors report positive results, namely an overall accuracy rate of
87 percent. Teachers as well as students are positive about the 1Ts.

IDEAS. Another set of interesting tools are developed in the project IDEAS
(Interactive Domain Reasoners)? [63]. IDEAS is a framework for developing
domain reasoners that give intelligent feedback. In each domain reasoner,
the domain knowledge as well as the procedural knowledge are described in
great detail. Domain reasoners have been developed for example for solving
linear, quadratic as well as higher-degree equations, Gaussian elimination,
and rewriting logical formulas into disjunctive normal form. In these tools,
the domain knowledge is a mathematical language such as a system of linear
equations. The procedural knowledge is a fine-grained description of all valid
sequences in which a rewrite rule from a certain set of rewrite rules can be
applied. Notice that this level of detail corresponds to our examples about
modeling and rewriting precise XML content models in section 1.6.

For specifying these strategies for solving mathematical exercises, a spe-
cial language is developed. Using this language, worked-out examples can
be automatically generated, the progress of a student can be automatically
tracked by inspecting submitted intermediate answers, and suggestions can
be automatically reported back in case the student deviates from the proce-
dure. As a result, it becomes less labor-intensive and less ad-hoc to specify
new domains and exercises within that domain.

Another distinguishing feature of the tools is the detailed feedback that
they provide on several levels. Examples are a hint for the next step, an error
message, a message about a correct but suboptimal steps, and a worked-out
solution to an exercise.

3See for more information: http://ideas.cs.uu.nl/www/

54 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

2.5.2 Constraint-based

A constraint-based model (CBM) represents requirements as a set of con-
straints (rules or procedures). The constraints select, out of the set of all
possible solutions, all correct solutions [118]. A constraint is often modeled
as an ordered pair, namely a relevance condition and a satisfaction con-
dition. The relevance condition identifies the class of problem states for
which the constraint is relevant. The satisfaction condition identifies the
class of relevant states in which the constraint is satisfied. A constraint can
be interpreted as: if the properties of a certain relevance condition hold,
then the properties of the corresponding satisfaction condition have to hold
too, otherwise something is wrong [118]. Constraints can represent syntactic
properties as well as semantic properties. Furthermore, constraints can be
used to model problem states and are as such usable to define phases in a
solution process [118].

The constraints could specify a complete solution or a partial solution.
Constraints can be strong or weak. Strong constraints represents require-
ments that must be satisfied. Weak constraints represents preferences or
warnings [88].

The constraint-based model approach is particularly suitable for ill-defined
problems, where we are not able to represent all knowledge needed to solve
the problem, i.e. declarative as well as procedural knowledge. Instead, using
the constraint-based approach, only a set of constraints on the final solu-
tions have to defined. A correct model solution submitted by the student
can be recognized, even if that solution deviates from the ideal solution: if
no constraint is violated, then the solution is correct with respect to the
notion of correctness embodied in the constraint-base.

A disadvantage of constrained-based tutoring systems is that these tu-
tors do not follow the student step by step and do not give feedback after
each individual problem solving step [112]. In [101] the author claims the
tutor supports procedural skills, but the procedure described (database nor-
malization) is a sequential number of steps a student follows step by step.
Furthermore, this approach cannot easily provide feedback after each solu-
tion step or suggest a next step to a student who is stuck [112]. Feedback
is given after the student submits his or her (more or less) complete solu-
tion. Although this is appropriate for some problem domains, we consider
this as inconvenient in the general case of modeling. Furthermore, it is not
always a simple task to define all constraints needed. With an incomplete
constraint-base, some incorrect solutions might mistakenly classified as cor-
rect. Therefore, in some constraint-based tutors, supplementary techniques,

2.5. RELATED WORK ON MODELING ITSS 55

as comparison of the student’s solution to an ideal solution, are used.

The Intelligent Computer Tutoring Group from the University of Can-
terbury (New Zealand) has developed a number of constraint-based tutoring
systems. In the next two paragraphs we briefly describe two of these tutors.
Other tutors developed by the group are sQL-Tutor [102], NORMIT [101]
(a tutor for database normalization), and EER-Tutor [98, 161] (a tutor for
database design).

Other examples of constraint-based approaches are described by Striewe
and Goedicke [144], a rule-based approach for automated checks on UML
diagrams, design critics used in ArgouML*, and Fischer et al [46], who have
described an architecture for design environments as for example designing
a kitchen. They use the word critic in stead of constraint.

KERMIT. KERMIT is an ITS for learning Entity-Relationship (ER) model-
ing [145]. The system is designed as a complement to classroom teaching.
Students construct ER schemata that have to satisfy a given set of require-
ments. Each exercise is presented as a text describing the requirements
of the database that should be modeled. Once the student completes the
modeling task or requires support from the system, the system analyses the
student’s model and gives feedback.

The system requires the student to name each newly added construct by
selecting a word or phrase from the problem text. Typing a new name is
not possible. In this way, the task of finding correspondences between the
student’s model and the constraint-base is solved. Another technique used
is string-matching [112].

The knowledge base of KERMIT consists of syntactic as well as seman-
tic constraints. The syntactic constraints describe the syntactically valid
ER schemata. The semantic constraints compare the student’s solution to
the ideal one. Depending on the number of constructs that violated a con-
straint, a simple feedback messages or a more detailed one is presented to
the student.

The system gives feedback using an animated agent and text boxes. The
animated agent (Genie) presents instructional messages using animation.
The student can request for more detailed feedback messages. Feedback is
offered at five levels of detail, namely simple feedback (correct/incorrect), er-
ror flag (which type of construct contains the error), hint (a general feedback
message from the first violated constraint), detailed hint (a more detailed
feedback message), all errors (a list of all feedback messages according to vi-

“See: http://argouml.tigris.org.

56 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

olated constraints), and solution (the full ER diagram). As a student starts
with modeling, the feedback messages are set to simple. The level of feedback
is incremented with each submission until the level reaches the detailed hint
level. The system observes students’ actions and adapts to their knowledge
and learning abilities.

The system is evaluated in two evaluation studies. The system proved to
be successful, i.e. students showed significantly better results in comparison
to students who practiced ER modeling conventionally.

COLLECT-UML. COLLECT-UML |12, 13| is a client-server application in
which students can practice object-oriented analysis and design using UML.
This system too requires the student to name each newly added construct
by selecting a word or phrase from the problem text. The system observes
students’ actions and adapts to their knowledge and learning abilities.

Feedback is offered at five levels of detail, namely simple feedback (cor-
rect /incorrect), error flag (which type of construct contains the error), hint
(a feedback message from the first violated constraint), all hints (a list of all
feedback messages according to all violated constraints), and full solution
(the full UML class diagram).

The authors report a significant increase of students’ performance.

2.5.3 Authoring

1Tss still have not achieved a widespread effect on education due to their
high complexity and difficulty of development. The reason for this is that
composing the domain and task knowledge required for an ITS consumes
a large amount of labor. As such, most of the ITSs are prototypes, never
leave the laboratory stage, and/or are applied in other adjacent domains.
Authoring tools can play here a crucial role, because they can simplify the
task of composing the domain and task knowledge for an 1Ts [116].
Murray distinguishes two broad categories of authoring systems, namely
pedagogy-oriented and performance-oriented [115]. In the first category,
pedagogy-oriented systems, the focus is on how to sequence and teach rel-
atively canned content. Guidance and planning is at a more global level
looking at an optimal sequence of topics and prerequisite knowledge. In the
second category, performance-oriented systems, the focus is on providing rich
learning environments in which students can learn skills by practicing them
and receiving feedback. Here, special attention is payed to the representa-
tion of human problem solving skills. Performance-oriented systems focus
on feedback and guidance at the level of individual skills and procedural

2.5. RELATED WORK ON MODELING ITSS o7

steps. Domain knowledge and procedural descriptions are important parts
of these systems. 1TSs for practicing modeling fall in the second category.
Generally, authoring tools should support the following six goals [116]:

o decrease the effort for making an 1TS,

e decrease the skill threshold for building an 1TS,

e help the author to structure the domain and pedagogical knowledge,
e enable rapid prototyping,

e support good design principles, and

e cnable evaluation of alternate instructional methods.

Although there has been significant progress in the development of 1TS
authoring tools and the understanding of the underlying concepts, author-
ing tools for 1TSs are still at the laboratory stage. An overview of ac-
tual authoring systems, consisting of twenty-five applications, is presented
in [116]. None of these authoring systems are for constraint-based tutors.
For constraint-based tutors, two authoring systems have been recently de-
veloped. These are WETAS and ASPIRE [103].

Authoring tools which explicitly use ontologies are described by Aroyo
et al. [6], a tool based on ontologies supporting the development of domain
and task ontologies and performing (semi) automatic course ware authoring
activities, and Jin et al. [74]|, who describe an authoring system that uses
ontologies, both domain and task ontologies, to produce feedback (error,
warning and suggestion) for an author.

Murray lists several unanswered questions, which must be answered be-
fore authoring tools for ITSs are commercially available [116]. One of these
questions is to what extent the difficult task of modeling the domain and
task knowledge can be supported. Authoring systems make different com-
promises along the spectrum of free-form design to constrained design. Con-
strained design restricts authors in using a limit number of templates for ex-
pressing domain and task knowledge. These templates ensure consistency,
accuracy, etcetera, at the expense of flexibility. On the other hand, more
open-ended systems allow for more flexibility. This more added flexibility
provided to the author results in a higher probability of inconsistency, inac-
curacy, etcetera. One way to allow this flexibility while maintaining quality
is to allow the author to enter what she/he wants in the way that she/he
wants, but to include mechanisms that check the authored information for
consistency, accuracy, completeness, etcetera.

58 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING

2.6 Research questions

In this thesis we investigate a number of aspects of feedback generation
during modeling. We have the following research questions:

e How can we produce feedback in a well-defined domain and well-
defined task about syntactic mistakes, semantic mistakes, and the (lack
of) progress in the modeling process? This question is answered in
chapter 3 in which we describe a framework for manipulating mathe-
matical terms. The framework is demonstrated by solving a system of
linear equations.

e How can we analyze several properties of a domain ontology, such
as completeness and correctness, during the authoring process and
thereby allow more flexibility in authoring processes? In chapter 4 we
investigate this question by introducing schema analysis as a technique
by which we are able to detect a number of possible mistakes that can
appear during authoring.

e How can we support different data modeling languages in an 1TS with-
out re-developing important parts of the 17s for each new data mod-
eling language introduced? This question is treated in chapter 5.

e What is needed to specify a precise task description, i.e. to transform
an ill-defined task into a well-defined task? This question is answered
in chapter 6 by developing a precise task description for modeling XML
content models.

The goal of this research is to investigate and develop a number of aspects
of a general framework for producing feedback in an 1T for practicing mod-
eling. To test our ideas we have implemented prototypes of parts of the
framework.

2.7 Haskell preliminaries

In subsequent chapters, we use the functional programming language Haskell
for implementing our ideas. We briefly explain Haskell, for more information
see [77].

Haskell is a lazy, purely functional, and statically typed programming
language with a relatively small core based on the lambda calculus. Laziness
implies that Haskell defers the evaluation of expressions until their results
are needed. Arguments supplied to a function are only evaluated if their

2.7. HASKELL PRELIMINARIES 59

values are needed. In a functional language, a program is a function that
is defined in terms of other functions. It defines what a program should
accomplish, rather than describing how to accomplish it. In a functional
language, there are no assignments or mutable states. We briefly introduce
some constructs we will use in this thesis.

Tuples. The tuple data type (t1,t2,...,tn) is constructed from compo-
nent types. It consists of values (v1,v2,...,vn), in which vi::t1, etcetera
(where :: means ‘is of type’). Function fst selects the first element of a
pair, fst (x,y) = x, and function snd selects the second element.

Lists. We use the data type list extensively. The empty list is denoted by
[1, and the concatenation of two lists x and y is denoted by x++y. Prepend-
ing an element x to a list xs is denoted by x:xs. In a list comprehension [x
| x <- xs, test x], anew list is generated from the list xs. Each element
x of xs is tested, and, if the test succeeds, added to the new list. Function
map f takes a list and applies function £ to all elements in the list, so map
fxs=1[fx | x < xs]

Functions. Anonymous functions can be constructed using lambda no-
tation, so function \(x,y,z) -> (x,y) selects the first two components
of a triple. Function null tests if a list is empty: null [] = True. To
check if an element x is an element of list xs, we use the expression elem x
xs. Function zip takes two lists and returns a list of corresponding pairs:
zip [1,2] [3,4,5] = [(1,3),(2,4)], where extra elements in the longer
list are discarded. Functions head and tail extract the first and the re-
maining elements of a nonempty list, respectively. Function inits returns
the list of initial segments of its argument list: inits "abc" results in
(", "a","ab","abc"], and function tails returns the list of all tail seg-
ments of its argument list: tails "abc" results in ["abc","bc","c",""].

Function composition composes two functions: the output of the second
function (g) becomes the input of the first function (f): (f.g) x = £ (g
x). The type of a function f::t1 -> t2 -> t3 can be read as: function £
takes two arguments of types t1 and t2 and returns a value of type t3.

The result of a function can be a function. Suppose for example a func-
tion for adding up two numbers, i.e. add x y = x + y. Using function add,
we can define a function successor as successor = add 1. Function add
1 is partially parametrized and needs one more parameter.

Functions can be passed as parameters. For example, in map isEven
[1,2,3,4] the instantiated type of map is map::(Int -> Bool) -> [Int]

60 CHAPTER 2. A FRAMEWORK FOR PRACTICING MODELING
-> [Bool]. Choice between conditions is represented by a vertical bar |.
For example:

max x y | x >=y = x
| otherwise =y

means: if the guard x >= y is true then return x, otherwise return y.

Some functions can be defined in a simple and intuitive way using pattern
matching, in which a sequence of syntactic expressions called patterns is used
to choose between a sequence of results of some type. If the first pattern
matches, then the first result is chosen, if the second pattern matches, then
the second result is chosen, etcetera. For example, the binary function not
can be defined as follows:

not :: Bool -> Bool
not False = True
not True = False

Functions with more than one parameter can also be defined using pattern
matching. Furthermore, the wildcard pattern can be used for simplifying
function definitions. An example with two parameters and the use of wild-
cards is the following definition of the logical function and:

and :: Bool -> Bool
and True True = True
and = False

Pattern matching can be used for lists and tuples, for example:

fst :: (a,b) -> a
fst (x,_) = x

head :: [a] -> a
head (x:_) -> x

Chapter 3

Feedback 1in an ITS for solving
equations

3.1 Introduction

In this chapter, we start with a well-defined task, namely solving a system of
n linear equations with n variables. Solving a system of equations amounts
to rewrite the system in a certain form. Rewriting is a type of model trans-
formation and assumes a start model, in this case a system of equations
to solve. These equations could represent an operational problem (the do-
main of interest), as for example a stock problem as part of a supply chain
optimization.

Mathematics is constructive in nature: mathematics students learn to
construct solutions to mathematical problems. Solving mathematical prob-
lems is often done with pen and paper, but an ITS can offer great possibil-
ities. An interactive ITS that support learning mathematics should provide
the capability to give feedback to a student at each step. To illustrate our
approach, we have built an 1TS for solving a system of linear equations. We
call this tool the Equation Solver. Figure 3.1 shows a screen shot of the tool.

The Equation solver. The Equation Solver consists of three text fields.
The top text field is the working area, in which a student can edit a system

This chapter is based on: Passier, H. and Jeuring, J. (2006). Feedback in an in-
teractive equation solver. In M. Seppéld, S. Xambo, O. Caprotti, editors, Proceedings
of the Web Advanced Learning Conference and Exhibition, WebALT, pages 53-68, Oy
WebALT Inc. [126]

61

62 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

E a ﬂ Equation Sohsaer
Warking area
dry = 3424 3ry-z-5 “fubmit % Progress:

= J n-2-5 = — Number of solved variahles igoal: 3
E'z = 34y I:M 1]
|:: Hint 3 Mumber of occurrences of variables (goat3).
. 7
Size of left-hand side sxpressions (goal :3):
fl

History

27X = 3427y
o= Jhy-2-5
%2 = 3%
2°H o= 3424y
¥+ 5 = 3"-7
2'2 = 3%

Feedback

Errer Since variable v has disappeared from the equaton
2% = 3+2*3*n-z-5

we assume you have tried to apply the substitution rule.
Correctly applying the substitution rule for v gives

2% = 3+ 2% (3 *x-Z-5}

is this whar vou intended?

Welcome to Equation Solver

Figure 3.1: The Equation Solver

3.1. INTRODUCTION 63

of equations stepwise to a solution. The current system of equations is

2-x =3+2-3-x—2-—5
Y =3-z2—2—5
2z =3«

The second text field displays the history of equations. Apparently the
previous system of equations was

2.z =342y
Y =3-z—2—9
2.z =3z

and the student replaced y by 3 - x — z — 5, forgetting to parenthesize the
result. The third text field displays the feedback. In the figure it explains
why the last step is incorrect.
The Equation Solver presents a system of equations to a student, for

example

2-x =342y

y+5 =3-x—=2

2-2z =3z
and the student has to rewrite these equations into a form with a variable

to the left of the equals symbol, and a constant to the right of the equals
symbol, for example

r =7
y =11/2
z =21/2

The student presses the Submit button to submit an edited system of equa-
tions, and the Undo button to undo the last step (or any amount of steps).
If a student wants help, he or she presses the Hint button to get a sugges-
tion about how to proceed. Finally, the Equation Solver gives information
about progress towards a solution by showing how many variables have been
solved, and several other kinds of information.

Feedback in the Equation Solver. The Equation Solver gives feedback
about two kinds of mistakes:

e syntactic mistakes, for example when a student writes y +5 =3 - x—
instead of y+5=3-z — z,

e semantic mistakes, usually mistakes in applying a step towards a so-
lution, for example when a student rewrites y = 3+ 1 by y = 5,

64 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

and it gives feedback about (lack of) progress towards a solution.

The comparison function of the Equation Solver consists of a solver,
which performs symbolic calculations, an analyzer, which analyzes the sub-
mitted equations of a student based on a set of rewrite rules for the domain of
a system of equations, and several indicators, which indicate the progression
of a (series of) rewrite step(s).

Note that we try to mimic the pen-and-paper situation as closely as pos-
sible, by letting students enter and rewrite equations in a text field. Another
approach is to offer the possible rewrite steps to the student, and let the stu-
dent select a rewrite step, which is then applied to the system of equations
by the Equation Solver, as proposed by Beeson [16] in MathXpert. In such
a situation, it is impossible to make a syntactic mistake, or to rewrite an
equation incorrectly. The former approach has the advantage that a student
also learns to enter correct equations, and to choose and apply rewrite steps
correctly. Furthermore, it is closer to the pen-and-paper situation. The
latter approach has the advantage that a student can concentrate solely on
solving a system of equations. The only feedback that needs to be provided
in the latter approach is feedback about progress. Although we do not sup-
port the latter approach, it is orthogonal to our approach, and easily added
to our tool.

Contributions. In this chapter, we discuss the framework for providing
feedback, in which feedback about syntactic mistakes, semantic mistakes,
and (lack of) progress in the solving process is produced. The framework
assumes a well-defined or structured domain (like linear equations), for which
a set of rewrite rules (or transformations) is defined (like x+0 = x for all z),
a goal is specified (like rewrite all equations to a form where there is a single
variable to the left, and a constant to the right of the equality symbol), and
one or more measures can be defined with which we can (possibly partly)
determine the distance to the goal.
The main results of our work are:

o We show how results from Computer Science, in particular from the
term-rewriting and compiler technology (and in particular parsing)
fields, can be used to develop tools that provide semantically rich feed-
back to students.

e We show how using structural information in data for feedback im-
proves the feedback a tool can give.

We think our framework is useful for several purposes. Developing a tool
in our framework forces the developer (a lecturer) to be explicit about all

3.1. INTRODUCTION 65

aspects of a particular domain, and it helps developers of 1TSs to set up a
well-structured feedback component that gives better feedback than existing
tools.

In almost all electronic learning environments we know of, feedback is
hard coded and/or specified separately for each exercise. Including detailed
feedback for exercises is thus very labor intensive. Our framework produces
feedback for a whole class of problems. In case of the Equation Solver
feedback is automatically generated for all exercises belonging to the class
of solving linear equations. Another advantage of our framework is that
feedback is produced on the level of rewrite steps the student performs when
he/she solves an exercise, instead of feedback on the final result of the solving
process [59]. This is important in cases where different solving methods can
be used and solving methods consist of several rewrite steps.

Schemata. To solve a system of linear equations, secondary school stu-
dents often learn two strategies. In the first one, called the substitution
method, each variable is expressed in one or more other variables. For ex-
ample, in the system of equations:

T+y =4
2-z+y =9

the variable y in the second equation can be replaced by 4 — z resulting in

the system
y=4—z
2. 24+ 4—2)=

After a finite number of such steps the system can be solved. In the second
method, the combination method, one equation is subtracted from another
equation. If for example the first equation is subtracted from the second
one, we obtain the system:

Again, after a finite number of such steps the system can be solved.

A schema how to solve this type of problems, consists of a domain de-
scription, i.e. systems of linear equations, a set of rewrite rules and an strat-
egy, in this case an algorithm, in which the rules are applied in a certain
order to solve the problem.

Of course the schema used in the equation solver should correspond to the
schemata explained by the lecturer, so that feedback and hints correspond to

66 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

these schemata. The framework itself is independent of a solving strategy:
these strategies can be added to the Equation Solver. In the present Equa-
tion Solver, the rewrite rules of the substitution method are implemented
and feedback is given about the correct application of these rules. The order
in which a student applies the rewrite rules is not analyzed. This has been
implemented in later versions of the tool (see sections 3.7 and 3.8).

3.2 The feedback framework

Our framework for providing feedback assumes we have the following com-
ponents:

1. A domain with a semantics.
2. A set of rewrite rules for the domain.

3. A goal that can be reached by applying the rewrite rules in a certain
order.

4. A set of progress indicators to determine the distance between the goal
and the current situation.

Our framework provides feedback about syntactic errors, semantic errors
(incorrectly applied rewrite rules), and about progress, using the progress
indicators.

To illustrate our framework, we will use the Equation Solver introduced
in the introduction. Solving a system of n linear equations with n variables

x1,...,Ty amounts to finding constants ci, ..., c, such that
xr1 =C1
Tp = Cn

is a solution to the system of equations. We describe the components of our
framework for the Equation Solver.

Domain and semantics of the Equation Solver. The domain of the
Equation Solver consists of a system of linear equations. The top-level type
is a list of equations:

type Equations = [Equation]

3.2. THE FEEDBACK FRAMEWORK 67

Each equation consists of a left and a right hand expression separated by a
‘=" (in Haskell denoted by the infix constructor :=:) symbol.

data Equation = Expr :=: Expr

n expression is either nstan vari T two expression r
An expression is either a constant, a variable, or two expressions separated
by an operator ‘47, ‘', *’ or ¢/’

data Expr = Con Rational

| Var String

| Expr :+: Expr

| Expr :-: Expr

| Expr :*: Expr

| Expr :/: Expr

The semantics describe how the domain should be interpreted. For the Equa-
tion Solver, the semantics are the solution to the system of linear equations.

Rewrite rules for the Equation Solver. A domain has a set of rewrite
rules with which terms in the domain can be rewritten. A rewrite rule
rewrites a term of a particular domain to another term of that domain. For
example, we have the following rewrite rule for expressions: (a + b) - ¢ —
a-c+b-c which says that we can rewrite the expression (a + b) - ¢ to
the expression a - ¢ + b - ¢ (distribute multiplication over addition) in any
context in which this expression appears. For a general introduction to
rewrite systems, see Dershowitz et al. [40].

Using rewrite rules, we rewrite terms in the domain to some desired form.
For the Equation Solver, the goal is to rewrite the given system of equations
to a solution. We now informally present the rewrite rules for the domain
of the Equation Solver.

We follow the data representation of the domain and distinguish between
rules on the level of a system of linear equations, an equation, and an ex-
pression. In these rules a, b, and ¢ are rational numbers, =, y, and z are
variables, and e is an expression.

o System of linear equations. For a system of linear equations we have
a single rewrite rule: substitution. If we have an equation = = ey, we
may replace occurrences of x in another equation E; by e;. Informally:

r = e r = €1
E2 E2(61/$)
. % .

E, E,(e1/x)

68 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

e FEquation. For an equation we have four rewrite rules:
e1=ey — e PDe=eyPe
where @ may be any of 4+, —, *, or /.

e [Fxpression. For an expression we have a large number of rewrite rules.
First, constants may be added, multiplied, etc:

a®b —c,

where c is the rational number sum of a and b if @ is +, and similarly
for —, -, and /. Coefficients of the same variable are summed using
the inverse rule of distributing multiplication over addition.

axx+bxzr — (a+0b)*x

Furthermore, multiplication (division) distributes over addition (sub-
traction):

(e1@e2)®e3 — e1®e3 © ea®es,
where & may be 4+ or —, and ® may be - or /.

As argued by Beeson [16|, many mathematical operations cannot be ex-
pressed by rewrite rules, because they take an arbitrary number of arguments
and because other arguments can come in between. Moreover, associativity
and commutativity cause problems in rewrite rules. Hence, applying rewrite
rules or recognizing applications of rewrite rules in user-supplied equations is
not a trivial application of pattern matching, but requires more sophisticated
programs.

A normal form of a term in the domain of a term-rewriting system is a
term which cannot be rewritten anymore. The solution of a system of linear
equations is not a normal form of a system of linear equations, because, for
example, we can always add terms to a term and immediately subtract the
same terms. A term-rewriting system terminates if for every term ¢, we can
only rewrite ¢t a finite number of steps. Since we can distribute multiplica-
tion over addition and vice versa, our term-rewriting system is clearly not
terminating. A term t’ is reachable from a term ¢, if there exists a sequence
of term-rewriting steps with which we can rewrite ¢ into t’. Clearly, given a
solvable system of linear equations, the solution of this system is reachable.
In a situation in which terms have normal forms, and the rewriting system is
terminating it is much easier to give useful feedback, but for most domains
about which we want to give feedback these properties do not hold.

3.3. SYNTAX ANALYSIS 69

The goal of the Equation Solver. The goal of the Equation Solver is
to find constants cq, ..., ¢, such that 1 = ¢4, ...z, = ¢, is a solution to the
system of equations. We assume that all systems of equations set as exercises
by the Equation Solver are solvable, a property that is easily verified. The
goal is reachable by applying the rewrite rules to the system of equations in
a certain order.

Progress indicators for the Equation Solver. To inform a student
about the progress in solving a problem, we have defined indicators. An
indicator is a measure which (partly) describes the distance from the cur-
rent system of equations to the solution (the goal). There are several ways
to indicate the distance between the currents system of equations and the
solution. A possibility is to determine the minimum number of rewriting
steps needed to rewrite the current system of equations to the solution. In
this chapter we investigate indicators that follow the structure of the data.
Thus we can provide more specific feedback than just about the distance to
the final solution. We have indicators that indicate progress on the level of
a system of equations, on the level of a single equation, and on the level of
an expression.

In the next sections, we describe how we provide feedback about syntactic
errors, semantic errors, and about progress using this frame work.

3.3 Syntax analysis

A student enters an expression in a text field in the Equation Solver. We
have to parse this expression in order to analyze it. We use error recovery
parser combinators [146] to collect as many errors as possible (not just the
first), and to suggest possible solutions to the errors we encounter. For
example, when a student enters

2-x =3+2-y
y+o5 =3 -2—
2:-z =3-x

the tool reports an error, and says it expects a lower case identifier or an
integer in the equation y+5 = 3-z—. Furthermore, it proceeds with parsing
2.z = 3-x, assuming the expression y+5 = 3-x— (identifier) has been entered.
The parser combinators are very similar to the context-free grammar for the
domain of equations. We have tuned the parser such that common errors,
such as writing 2y for 2 - y, are automatically repaired (and reported).

70 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

After parsing we perform several syntactic checks, such that the set of
variables that occurs in the system of equations has not changed, and that all
equations are still linear equations, and not for example quadratic equations,
which would happen if the student would multiply both sides of the equation
2.z =3z by z. If such an error occurs, it is reported.

3.4 Rewriting terms

When a student submits a system of equations to the Equation Solver, the
analyzer checks if something has changed. If something has changed, the
solver checks that the submitted system of equations has the same solution
as the original system, and the analyzer tries to infer the rewrite rule applied
by the student. Because we do not analyze the order of rewrite steps it is
not necessary to determine the rewrite rule that has been applied in the case
the solution of the system has not changed, but it might still be useful for
the student to see the name of the applied rule. In the case the order of
the rewrite steps is analyzed, it is, of course, necessary to determine which
rule has been applied. This functionality of recognizing a strategy has been
implemented in a later version (see section related work).

If the solution has changed, the student has made an error, and it is
important to try to report the likely cause of the error.

An important assumption (restriction) we apply here is that we assume a
student applies only one rewrite rule per submitted system of equations. In
practice, this will not always be the case. This functionality of recognizing
multiple rewrite rules has been implemented in a later version (see section
related work). Furthermore, in this implementation of the tool we assume
a student does not go around in (small) circles, for example a repetition of
adding a term on both sides of an equation followed by a subtraction of the
same term on both sides. In itself, the detection of these small circles is
technologically quite simple.

In the rest of this section, we discuss the feedback produced by the
Equation Solver by means of examples on each of the three levels of our
domain. To determine which rule a student intended to apply, we follow a
hierarchical approach.

Determining a rewrite on the system of equations level. The an-
alyzer starts with trying to find out if the student intended to apply a rule
on the level of the system of equations: the substitution rule. The analyzer
can determine whether or not the substitution rule has been applied by col-
lecting the variables that appear in the different equations. If one variable

3.4. REWRITING TERMS 71

has disappeared from the set of variables that appear in an equation a sub-
stitution step has been applied. Here we assume that an expression such as
x — x is internally represented as 0, so that replacing x — = by 0 does not
lead to the false conclusion that substitution has been applied. The internal
representation is some normal form of the expressions and equations, where
occurrences of the same variable are combined. The normalized form of an
expression is an expression of the form aq - z1 + ... + ap, - T, + ¢, where each
variable occurs once, and all constants have been added in a single con-
stant ¢. The Equation Solver determines which variable has disappeared,
and checks that applying the substitution using that variable leads to the
submitted expression. If this is not the case, the Equation Solver reports
an error, and shows the correct equation that results from the substitution.
For example, if the system of equations:

2.z4+2-y =6
Y =4-2-z

1s rewritten to:

2-24+2-(442-2) =6
Y =4-2.z

the analyzer produces the following error message:

Error: Since variable y has disappeared from the equation
2%x+2% (4+2%x) = 6

we assume you have tried to apply the substitution rule.

Correctly applying the substitution rule for y results in
2%x+2%(4-2%x) = 6

Is this what you meant?

There are several things to note about this message: it is only about
the equation that contains an error, it tells why it thinks a certain rewrite
rule has been applied, and it shows how the correct application of that rule
looks.

Determining a rewrite on the equation level. If the analyzer has
detected a change in the system of equations and in no equation the set

72CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

of variables that occur has changed, the analyzer tries to find out if there
exists an equation that has been rewritten. An equation has been rewritten
if both the left-hand side and the right-hand side expression of an equation
have changed. On the level of an equation, four rewrite rules may be applied:

e1=ex —e1Pbe=eyPe

where @ may be any of +, —, -, or /. The analyzer determines whether or
not these rules have been applied by comparing the new equation with the
old equation. For example, if the previous system is:

2-z4+2-y =5
rT—y =2

and the submitted system is:

2-z4+2-y =5
z—y+y =2+y

the analyzer concludes that the rule: e; = e — e; + e = es + e has been
applied on the second equation of the system. In general, the analyzer
can infer an application of the addition (and subtraction) rule on the level
of an equation by calculating the value of the expression (I — ') — (r —
r’"), where | = r is the equation in the previous system, and I' = 1’ is
the submitted equation. If this value equals 0, then it is likely that the
student has performed an addition (or subtraction) step with value [— 1" on
both sides of the equation. If the value equals a constant unequal 0 or a
variable (possibly multiplied by a constant), then it is likely that a student
has performed an addition step, but has made an error in doing so. This error
is reported. Finally, if the value is not a constant or a variable, it is likely
that the student has performed a multiplication (or division). To determine
if a multiplication step has been performed, the analyzer calculates the value
of (1/U') — (r/r’). If this value equals 0, then it is likely that the student has
performed a multiplication (or division) step with value /I’ on both sides of
the equation. If the value equals a constant, then it is likely that a student
has performed a multiplication step, but has made an error in doing so. This
error is reported. Finally, if the value is not a constant, something serious
is wrong.

Determining a rewrite on the expression level. If no rewrite on the
level of a system of equations or on the level of an equation has taken place,
the analyzer tries to determine if a rewrite on the level of an expression

3.5. PROGRESSION AND INDICATORS 73

has taken place. It is easy to determine which expression in the system of
equations has been changed.
For example, suppose the previous system is:

2-2+y)+2-y =5
T =24y

and the submitted system:

2:242-y+2-y =5
T =24y

The analyzer infers that the left-hand side expression of the first equation has
changed. The analyzer checks that the normalized form of the new expres-
sion and the previous expression are the same. Furthermore, the analyzer
tries to infer which expression rewrite rule has been applied. It does this
by determining the expression difference between the old expression and the
new expression. The expression difference of two expressions counsists of the
sub-expressions that have disappeared from the old expression in the new ex-
pression, and the sub-expressions that have appeared in the new expression.
In the above example, the expression difference is 2 - (2 + y) (disappeared)
and 2 -2+ 2 -y (appeared). These expressions match the rewrite rule for
distributing multiplication over addition. If the normalized form of the new
expression and the old expression are different, an error is reported, and the
analyzer shows all possible correct rewrites of the sub-expression that has
disappeared from the expression.

The hierarchical approach to determining which rewrite rule has been
applied allows us to pinpoint precisely, in many cases, which mistake (likely)
has been made.

3.5 Progression and indicators

An indicator gives a distance from the current system of equations to the so-
lution (the goal). It is used to inform a student about the progress towards a
solution. Before calculating the value of the various indicators, the Equation
Solver detects whether or not a student has completed the problem. In that
case, the system of equations has the form of x1 = ¢1,...,x, = ¢,. This is
easily detected.

We have defined a number of indicators in the Equation Solver.

e The first indicator calculates the number of variables for which a stu-
dent has found a solution. If this number increases the student makes
progression.

74 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

e The second indicator calculates the number of occurrences of variables
in a system of equations. Progression is made if this number decreases.
For example, in the system:

4+2-y+2-2 =5
x =24y

there are four occurrences of variables. Substituting 2 + y for x in the
first equation reduces the value of this indicator by one. Sometimes
the value of this indicator increases due to a substitution, so we do not
enforce that the value of this indicator decreases or stays the same at
each step.

e The third indicator checks if the expression size of the left-hand side
expression of an equation has decreased. Since in our solution we want
the left-hand side expression of an equation to be a single variable, a
reduction in the size of the left-hand side expression (without removing
all variables, since in the end a single variable should remain) indicates
progression. For example, rewriting the expression y +3 — 1 to y +
2 reduces the size of the expression from 5 to 3 (where operators,
constants, and variables all count for 1).

The indicators are independent of the rewrite rules in the Equation
Solver. So if a student performs a transformation on the system of equations
that does not change the semantics of the system of equations, but for which
the analyzer cannot find a corresponding rewrite rule, the indicators can still
inform the student about his or her progress.

3.6 Hints

If a student is stuck, he or she can press the hint button. The Equation
Solver will then give a next step, or a hint to help the student to produce
a next step. The next step depends on the solving strategy used. We have
only implemented the Gaussian solving method in the Equation Solver. The
Equation Solver produces a next step or a hint based on the previous system
of equations submitted by the student, the set of rewrite rules and the solving
strategy. For example, if the previous system submitted by the student is:

44+2-y+2-¢ =5
T =24y

the system will suggest:

3.7 A GENERAL TOOL 75

Try to substitute 2+y for x in the first equation.

Various levels of help are possible depending on, for example, the solving
method, the tutorial strategy and the maturity of the student. In the above
situation, where substitution is used as the solving method, we can think of
the following, increasingly detailed, messages:

Try to apply the substitution rule.

Try to substitute 2+y for x in the first equation.
Substituting 2+y for x in the first equation results in
4 + 2%y + 2%(2+y) = 5

xX=2+y

Different tutorial strategies can be implemented. Besides the messages
showed, the system can present for example only the rule that has to be
applied and ask the student to apply this rule in the current system of linear
equations, or it presents the rule in the context of a simpler task. The
last strategy can be valuable in case of solving systems with more than two
equations.

3.7 A general tool

In this chapter, we have made a start with a problem from the category well-
defined domain and well-defined task. Although the main ideas behind the
analysis for feedback in the Equation Solver are reusable in other domains,
the implementation is not reusable. For each rewrite rule we have a separate
analysis function. All these functions operate on the domain of equations.
When a new rewrite rule is added to the system, a new analysis function
has to be implemented. When a new domain together with rewrite rules is
specified, we have to build a completely new solver and analyzer. This is
labor intensive and requires advanced knowledge and experience.

Therefore we want to implement a general tool (a feedback engine), which
takes the domain of interest together with rewrite rules as inputs and auto-
matically transforms the rewrite rules in analysis functions. These functions
determine which rewrite rule has been applied if an expression has changed.
Furthermore, if an error has been made, the analysis functions determine
which rewrite rule was probably applied and calculate the correct solution.

76 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

This general tool has been developed and is briefly described in sec-
tion 3.8.

3.8 Related work

At the time we wrote the underlying paper of this chapter (2006), we found
little literature on structured feedback in 1TSs, and the way feedback is
produced. Due to the IDEAS project, which project is briefly described at
the end of this paragraph, this situation has changed.

Most intelligent tutoring systems that have a feedback component use
techniques from artificial intelligence to report feedback. We think that using
the structure in the data and the rewrite rules, we can give more precise and
detailed feedback. Of course, there will still be situations where our feedback
is insufficient: the amount of possible errors a student can make, and the
misconceptions a student can have is close to infinite.

Within the Galois project [19, 20| a digital environment was created
in which secondary school students can practice mathematics and perform
tests. One of the goals of the project is to automatically provide intelligent
feedback. Intelligent feedback is detailed information given to a student,
based on an analysis of the students’ answer to a question. Feedback should
be based on expert knowledge of the mathematical subject, a model of fre-
quently made mistakes, and knowledge about learning strategies needed to
select a suitable feedback form. The authors observe that most of the feed-
back in electronic environments is primitive and only contains information
about the correctness of an answer. They describe how to produce feedback
for exercises with a numerical answer. The expected answers are categorized,
and provided with feedback. An example of such an exercise is: ‘A bicycle
tyre has a puncture. Every minute 6 percent of the air escapes from the tyre.
Which percentage of air has escaped after 9 minutes?” The expected answers
are for example (correct) ‘43’, feedback ’excellent’; ‘42’ feedback ’you are
close to the correct answer’; ‘64’, feedback ’apply rule . . . ’; ‘otherwise’
feedback ‘incorrect answer’. The expected answers are, besides the correct
answer, related to frequently made mistakes and listed by experienced teach-
ers. Feedback is updated automatically if the numbers in such an exercise
are changed. An advantage of this approach is the detailed feedback that is
given for a certain type of exercise. Disadvantages of the approach are in
our opinion the impossibility of reuse for other types of exercises and the
lack of feedback on a sequence of solving steps.

Other tools for solving systems of linear equations pay little or no at-
tention to feedback. For example, the Linear System Solver (using determi-

3.8. RELATED WORK 77

nant) [31] returns ‘ERROR in perl script on line 23: Illegal division by zero
at (eval 129) line 377, if an unsolvable system of equations is entered. Com-
mercial tools such as Algebrator [139] and MathXpert [16] do give feedback
on the syntactic level and hints about making progress, but do not use a
structural approach to providing feedback about rewriting steps entered by
the student.

Cohen et al. [33] have developed a tool for solving exercises about com-
puting the derivative of elementary functions. The tool uses rewrite rules
called domain rules and decomposes the original problem into sub-problems
obtaining a multistep exercise based on a solution graph. An interactive
exercise is then seen as a collection of problems together with the order in
which they are solved. According to the students’ answer and a predefined
strategy, a next step is selected. The correctness of a students’ answer is
evaluated by a computer algebra system. In this way, a student is guided in
solving the initial exercise. Our approach is not based on a solution graph,
but uses indicators to inform the student about progression of the solving
process and a rewrite analysis to determine which rewrite rule has been (cor-
rectly or incorrectly) applied. As a result, the steps a student can take are
not limited by a predefined set of rewrite rules or solving strategy, but can
be any combination of correct or erroneous rewrite steps. If a step is erro-
neous, the tool of course complains, but it also tries to give a helpful error
message to the student. If the tool cannot recover which rewrite rules have
been used, the indicators can still help a student in determining whether or
not he or she is on the right track.

Heck et al. [59] describe a system for diagnostic testing of mathematics
students. The system is based on Maple T.A., for automated assessments,
and Maple, for verification of the students answers. Classes of exercises
can be defined. In the given examples, feedback is just the correct answer
together with a short description of how the problem can be solved.

Marvrikis et al. [90] describe a web-based learning environment for study-
ing mathematics. The system contains a feedback mechanism that follows
an incremental hinting process that changes according to, for example, the
time passed, the current goal, and the amount of help a student requests.
A mechanism tracks the goals that the author of the activity sets and a
student has to reach. The goals involve, for example, selecting an answer
for a multiple choice question, putting objects into certain positions, and
giving numerical answers. The feedback mechanism comprises production
rules defined by an author. It is not completely clear to us how feedback is
generated and to which extent the mechanism is reusable.

7TSCHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

IDEAS. The Equation Solver was the first ITS in the project IDEAS!. After
the Equation Solver, a formalism is developed for specifying strategies for
solving exercises stepwise in the domain of well-defined problems. Examples
of such strategies are reducing a logical expression to disjunctive normal
form (dnf) by first pushing —’s over V’s and A’s using De Morgan’s rule,
until they are in front of literals, and then distributing A over V [87], and
solving a system of linear equations by subtracting equations from top to
bottom, and then substituting variables from bottom to top (this chapter).

To give an impression of this language, the following fragment (expressed
in Haskell) shows a strategy for reducing a logical expression to dnf [70]:

dnf = eliminateNots <*> moveOrToTop

eliminateNots = repeatExhausted
(basic DeMorganAnd <|> basic DeMorganOr <|> basic NotNot <[>
basic NotTrue <|> basic NotFalse)

moveOrToTop = repeatExhausted
(bottomUp (basic AndLeftOverOr <|> basic AndRightOverOr))

The symbols <*> and <|> are combinators. The first one (<*>) takes
two recognizers, and tries to recognize the first followed by the second. The
second one (<|>) takes two recognizers too, and tries to either recognize the
first or the second. The recognizers eliminateNots and moveOrToTop are
sub-strategies and are specified separately. The basic-combinator recog-
nizes a single transformation step. Examples of basic transformation steps,
as DeMorganAnd, NotTrue, and AndRightQOverQr, are:

DEMORGANAND : =(z Ay) = -z V -y
NOTTRUE : —true = false
ANDRIGHTOVEROR : (zVy)Az=(zA2)V(yAz)

The strategy language is a domain specific embedded language, with a
clear separation between context-free and non-context-free parts, in which
strategies are specified as context free grammars [63]. Domain specific means
specific for the domain of strategies The strategy language is embedded
(implemented) in the programming language Haskell. The combinators, as
for example <*> and <|> are context free and can be used in any domain.
The rule recognizers, as for example DeMorganAnd and NotTrue, are bound
to a domain as for example the domain of logical expressions.

'See: http://ideas.cs.uu.nl/www/

3.8. RELATED WORK 79

A strategy as dnf recognizes sentences consisting of rewrite steps. To
check whether or not a student follows a strategy means an 1TS should parse
the sequence of rewrite steps and check that the sequence of steps is a prefix
of a correct sentence from the strategy as context free grammar.

The strategy language can be used for any domain. The language can
be used to automatically calculate feedback on the level of strategies, given
an exercise, the strategy for solving the exercise, and the student’s input.
Furthermore, the specification of the strategy and the calculation of feedback
is separated. As a result, a strategy specification can be used to calculate
different kinds of feedback.

To calculate feedback automatically, information is needed about the
domain (for example the domain of logical expressions), the rewrite rules for
manipulation expressions in this domain, the strategy, and common bugs
made by students.

Several kinds of feedback can be given using the strategy language. Some
examples are:

e Feedback can be given after each step whether or not the step is valid
according to the strategy.

e Given an exercise and a strategy for solving the exercise, the minimum
number of steps necessary to solve the exercise can be determined.
This information can be used for showing the progress of solving the
exercise.

e A student can ask for a hint. Given an exercise, a strategy for solving
the exercise, and a submitted expression by the student, the best next
step can be calculated.

Views are used to describe and calculate canonical forms [60]. For exam-
ple, rewriting 1— 452 = 37— 32=1 {0 12— 4(42+2) = 362—3(5z—1) consists
of around 15 basic rewrite steps. Expanding all these steps in a derivation
would made this derivation lengthy. A canonical form of an expression is a
standard way of (re-)presenting that expression. Other examples are a — b
in stead of a + (—b) and 0 instead of —0. Using views, rewrite rules can be
described using a limited set of rules, only intuitive representations of expres-
sions can be shown, rewrite steps can be described of different granularity
to mimic the typical steps students take, and strategies can be recognized
even when a student performs a rewrite step including some basic rewrite
steps.

Depending on the maturity of a student, he or she skips one or more
basic steps in a derivation. On the other hand, lectures sometimes want

80 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

to enforce some level of basic steps. Generally, students and lectures often
have many wishes about customizing an 1TS. The domain reasoners within
the IDEAS framework are adaptable in a number of ways [61]. Examples
are the granularity of the steps, which number system should be used, and
the way a particular (set of) exercise(s) is solved (i.e. which strategy should
be used). Examples of the last category are to remove a specific part of a
strategy, to collapse a sub-strategy into a rule, to hide a rule (i.e. make the
rule implicit), and to mark a sub-strategy as must-use. Furthermore, strate-
gies can be combined into new strategies [62]. For example, two strategies
can be combined using a choice combinator, a sequence combinator, and a
interleaving combinator. The interleave combinator takes two strategies as
argument, and allows a student to take steps from either of the two strate-
gies, and finishes whenever both strategies are finished.

The main component of the IDEAS framework is the domain reasoner.
The domain reasoner generates hints, analyzes rewrite steps, shows worked-
out examples to an exercise, reports on common errors, decomposed an
exercise into sub-exercises, etcetera. There are a number of domain rea-
soners as for example for solving quadratic and linear equations, rewriting
logical expressions to disjunctive normal form, and to simplify and evaluate
fractions, expressions using powers and square roots. Furthermore, there is
a domain reasoner that supports developing small functional programs [50].

The main inputs for a domain reasoner are a domain description, the
rules for manipulating the domain, strategies for solving problems, functions
for testing on equality, predicates defining when a problem is solved, views
and canonical forms, and functions, as for example pretty print functions,
for presenting internal results to the user. The strategy language and the
framework for feedback services are used in 1TSs such as MathDox [32], the
Digital Mathematics Environment of the Freudenthal Institute [41], and the
ActiveMath system [93].

3.9 Conclusion

We have introduced a framework for providing feedback in an 1Ts for a well-
defined domain and a well-defined task. Using the structure in the domain,
we can provide detailed feedback. The framework consists of a domain with
a certain semantics, a set of rewrite rules for the domain, a goal that can be
reached by applying the rewrite rules in a certain order, and finally a set of
indicators to determine the distance between the desired solution and the
current situation. We have used our framework in a prototype ITS for solving
a system of linear equations. The framework is also used in a prototype ITS

3.9. CONCLUSION 81

for manipulating logical formulae [71, 87].

We think the framework will be useful for students, teachers, and 1TS
developers that build interactive tools in which students have to construct
solutions stepwise. It forces a teacher to be explicit about all terms and
the semantics of a particular domain, the goal that has to be reached, how
progression of the solving process can be measured, and which rewrite rules
may be used. It helps the (software) developer to build the feedback com-
ponent in a structural way. The steps a student can take in such a tool are
not limited by a predefined set of rewrite rules provided by the tool, but can
be any combination of correct or erroneous steps. The tool tries to recover
the rewrite steps taken by the student in order to provide detailed feedback
about possible errors. If the tool cannot recover the rewrite rules, the indi-
cators can still help a student in determining whether or not he or she is on
the right track. This is important because it is hard, if not impossible, to
always determine which sequence of rewrite rules a student has applied.

An advantage of our approach is that feedback is produced for a class
of problems. Furthermore, our ideas are reusable for many different classes
of problems. In case of the Equation Solver feedback is given for exercises
in the class of solving linear equations; instead of dedicated feedback for
each separate exercise, a mechanism is defined that produces feedback for
all exercises belonging to the class of solving linear equations. Most of the
feedback in electronic learning environments is hard coded and specified
separately for each exercise, for an example see the work by Bokhove et
al. [19] on providing feedback for exercises.

We have said little about the form and content of the feedback messages.
We have shown two messages: one error and one advice message. The error
message not only indicates that an error has been made, but also gives the
equation that contains the error, and additional information based on the
rewrite analysis. This additional information is important because informa-
tion about the nature of the error and the way it can be corrected is much
more effective for learning than simply being informed that an error has
been made without any further guidance [92]. This is especially important
when students are working in a pen-and-paper like environment, instead of
an environment where rewrite rules can be selected from a menu.

Our Equation Solver satisfies most of Beeson’s [16] eight criteria that
must be met if we are to provide successful computer support for education
in algebra, trig, and calculus. The first two are cognitive fidelity (the software
solves the problem in the same way as the student should solve it), and the
glass box principle (a student can see how the computer solves the problem).
To produce feedback and advice about which step to take next, the Equation

82 CHAPTER 3. FEEDBACK IN AN ITS FOR SOLVING EQUATIONS

Solver uses a well-known set of rewrite rules and a solving strategy. The
feedback and advice are based on the application of a single rule. Applying
multiple rules in a single rewrite step is not supported yet, in the sense that
it is allowed, but no feedback is given if an error is made, other than the fact
that an error has been made. It follows that our Equation Solver does not
completely meet the customized to the level of the user criterion. Indicators
still help advanced users that apply multiple rules in one step though. The
fourth criterion is the correctness principle (the system prevents a student
from performing an incorrect operation). The Equation Solver calculates
after each submission the solution of the system of linear equations. If the
solution is changed, the analyzer will inform the student and, if possible,
point out the erroneously applied rule. However, the student can still enter
an incorrect equation. We think this has an added advantage: the student
becomes aware of the syntax of systems of equations, and learns how to apply
rewrite rules. The fifth criterion is user in control (the student decides what
steps should be taken and the computer can help a student when he or she is
stuck). As mentioned in the introduction, we try to stay as close as possible
to the pen-and-paper situation. Instead of selecting rewrite steps from a
menu, a student rewrites equations in a text field. When a student is stuck he
or she presses the help button and a next step is produced. This also shows
that the computer can take over if the user is lost criterion is satisfied. We
think our Equation Solver is easy to use, no unnecessary typing is required,
an infinite Undo is provided, and no unnecessary distractions have been
added to the Equation Solver. Finally, the Equation Solver goes beyond
the answer-only approach and is thus usable with a standard curriculum: it
supports a standard curriculum in mathematics, which emphasizes step-by-
step solutions.

We have implemented the Equation Solver in Haskell using standard
tools from compiler technology, such as parser combinators, and pretty-
printing combinators, and using the standard compiler architecture, consist-
ing of a parsing phase, an analysis phase, and a code-generation phase. In
our case the code-generation phase is the feedback-generation phase.

Chapter 4

Feedback in authoring tools

4.1 Introduction

E-learning systems, comprising ITSs, are often complex tools. Since instances
of such systems, for example for a particular course, are often written by
non computer science experts, authoring tools have been developed to sup-
port the development of such courses. More open-ended authoring tools for
e-learning systems allow for more flexibility in both the form of the content
and the order of the steps to design an e-learning system [116]. This flex-
ibility implies a higher probability of mistakes such as inconsistencies and
inaccuracies. To improve the quality of e-learning systems, an authoring
tool should include mechanisms for checking the authored information on
for example accuracy and consistency. Murray [116] mentions several such
mechanisms. In this chapter we introduce schema analysis, with which we
are able to detect a number of the possible mistakes that can be introduced
by an author while authoring a course.

During authoring, different aspects of a course as for example declarative
knowledge, rules, and strategies will be authored. In this chapter, we focus
on course structure and declarative knowledge in the form of domain ontolo-
gies. Authoring these aspects falls inside the category of ill-defined tasks.
Much domain knowledge is ill-defined and there is no procedure for model-
ing such types of knowledge. Mechanisms that check, as far as possible, the
authored information for example for consistency and completeness can then

This chapter is based on: Passier, H. and Jeuring, J. (2005). Using Schema Anal-
ysis for Feedback in Authoring Tools for Learning Environments (extended version). In
A. Cristea, R. Carro, and F. Garzotto, editors, Proceedings of the Third International
Workshop on Authoring of Adaptive and Adaptable Educational Hypermedia, A3EH 2005,
pages 13-20. [125]

83

84 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

be useful to support the author and function as a type of constraints on the
knowledge structures developed [116]. Schema analysis is introduced as a
technique to support the author in defining course structure and declarative
knowledge. Using schema analysis, the course structure and domain ontolo-
gies can be checked on several properties. In this chapter, we represent the
course structure and domain ontology by 1MS Learning Design (1MS LD) [35]
and Resource Description Framework (RDF) [154]. These languages will be
briefly explained in this chapter.

Using IMS LD an author defines the structure of a course in a flexible
way. IMS LD supports a wide range of pedagogies in e-learning. Rather
than attempting to capture the specifics of many different pedagogies, it
does this by providing a generic and flexible language. With such a flex-
ible language, an author can easily make mistakes, for example an author
can accidentally define an incomplete course structure. These mistakes can
be partly prevented by using templates. Some drawbacks of templates are:
loss of flexibility, because an author must follow the steps prescribed by a
template, and problems with maintainability: it is hard to maintain doc-
uments produced by means of templates [116]. With schema analysis we
maintain flexibility, are able to produce feedback when an author makes a
mistake, and leave the author, as a didactic professional, free to accept or
not accept the feedback information [9, 116]. The freedom to accept or not
accept feedback is important. When a (possible) mistake is signaled, it is
the author’s decision to reject or accept the warning. Sometimes, it could
be the author’s intention to deviate from rules. What the system signals as
a possible mistake may be correct from the author’s point of view.

To determine the quality of a course, we want to detect whether or not
the following properties hold for a course. If such a property holds, this may
signal the absence of a potential mistake:

o Completeness — Are all concepts that are used in the course defined
somewhere? Ideally, every concept is introduced somewhere in the
course, unless stated otherwise already at the start of the course.

e Timely — Are all concepts used in a course defined on time? A con-
cept can be used before its definition. This might not be an error if the
author uses a bottom-up approach or inductive learning as an educa-
tional strategy rather than a top-down approach or deductive learning,
but issuing a warning is probably helpful. Furthermore, if there is a
large distance (measured for example in number of pages, characters
or concepts) between the use of a concept and its definition, this is
probably an error.

4.2. SCHEMATA AND SCHEMA REPRESENTATIONS 85

o Recursive concepts — Are there concepts defined in terms of them-
selves? Recursive concepts are often undesirable. If a concept is re-
cursive, there should be a base case that is not recursive.

e (Correctness — Does the definition of a concept used in the course cor-
respond to the definition of the concept in the domain ontology?

e Synonyms — Are there concepts with different names but exactly the
same definition?

e Homonyms — Are there concepts with multiple, different definitions?

Since a course and course related material are represented by means of
schema languages such as IMS LD and RDF, we can use schema analysis
techniques to answer the above questions, and to produce feedback about
possible mistakes for authors. We have implemented the mentioned analyses
as six distinct schema-analyses, which we show at work in a simple course
structure and domain ontology.

Schema analysis techniques are based, amongst others, on mathematical
results about fixed points [39]. Since these results are not widely known,
we will explicitly show how to use them in the context of schema analysis.
We will use Haskell, since this allows us to stay close to the mathematical
results we use.

4.2 Schemata and schema representations

Composite objects and schemata. An ontology specifies the objects in
a domain of interest together with their characteristics in terms of attributes,
roles and relations. A composite object contains objects related to other
objects using ‘has-part’ or ‘uses’ relations. Any object that consists of parts
is called a composite object. A composite object has structure: the parts
and their relations. Such a structure description is called a schema' [131].
In this chapter we focus on schemata.

Domain ontology. To represent a domain ontology we use RDF, which can
be used to represent meta-data as well as the semantics of information in a
machine accessible way. RDF is a universal language that describes resources.
The basic building block of RDF is a triple: <resource, property, value>,

!Not to be confused with the concept schema in chapter 2.

86 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

<rdf: Description rdf:ID="c1">
<do:ConceptName>Channel _capacity</do:ConceptName>
<do:ConceptDefinition>The channel capacity is
</do:ConceptDefinition>
<do:uses>
<rdf :Bag>
<rdf:1i resource="#c2"/>
<rdf:1i resource="#c3"/>
<rdf:1i resource="#c4"/>
</rdf :Bag>
</do:uses>
</rdf:Description>

<rdf:Description rdf:ID="c2">
<do:ConceptName>Bandwidth</do:ConceptName>
<do:ConceptDefinition>The Bandwidth is
</do:ConceptDefinition>
</rdf:Description>

Figure 4.1: Domain ontology represented in RDF

which defines concepts and related concepts. For example the concept ‘cycle-
wheel” consists of (has parts) the concepts ‘rim’ and ‘spoke’; i.e. <cycle-
wheel, has-part, rim> and <cycle-wheel, has-part, spoke>.

We show as an example the concept ‘channel capacity’ from the domain
communication technology. It defines how many bits (‘0’ or ‘1’) per second
can be transmitted. The channel capacity depends on (uses) three other
concepts: ‘bandwidth’; ‘signal power’ and ‘noise power’. A possible (incom-
plete) schema for channel capacity is shown in figure 4.1. The structure of
the concepts ‘signal power’ and ‘noise power’ is the same as for the concept
‘bandwidth’. The alias ‘do’ is the abbreviation of domain ontology; an own
specified namespace.

Most of the code in figure 4.1 is self-explanatory. The Bag-tag is used to
model a list in which order is not important. #c2 within the li-tag means a
reference to resource c2.

Course structure. XML is a language for structuring documents. A data
type definition (DTD) describes the type of a set of XML documents. IMS LD
is a DTD developed to represent structures of electronic courses. The content
of a course is presented in a structured way, and activities in an activity-
structure. For the examples in this paper we focus on the Activity-model,

4.3. SCHEMA ANALYSIS TO DETECT AUTHORING PROBLEMS 87
1. <!ELEMENT Activity %Activity-model;>
2. <!'ATTLIST Activity
3. e
4. Educational-strategy (Inductive | Deductive)>
5. <!ENTITY %Activity-model "(Meta-data?,
6. o
7. Activity-description)">
8. <!ELEMENT Activity-description (Introduction?, What, How?,
9. ., Feedback-description?)>
10. <!ELEMENT What %Extra-p; >
11. <!ENTITY %Extra-p "(... | Figure | Audio | Emphasis | List |
12. | Example| Definition)*">

Figure 4.2: Parts of the activity-model in 1MS LD definition

which consists of several elements: Meta-data, Objectives, Prerequisites,
Environment and an Activity-description. Figure 4.2 shows an example. An
activity-description consists of nine elements. One of them is the What-
element, which contains the instruction for the activity to be performed.
Possible instructions are grouped together by the parameter entity Extra-
p. To be able to add more specific annotations to content and structure
we introduce two new elements in the Extra-p element, namely Definition
and Example (see line 12 in figure 4.2). Furthermore, we introduce a new
attribute Educational-strategy of the element Activity with two possible
values: Inductive and Deductive (see line 4 in figure 4.2). Introducing such
elements will make it possible to structurally analyze educational material.
These elements serve as examples to illustrate the analysis techniques at
work. In practice many elements can be added, depending on the desired
analyses. Figure 4.2 shows only the relevant elements and attributes related
to the activity-model together with the newly defined elements example and
definition. The definitions of the new elements Definition and Example are
presented in figure 4.3.

4.3 Schema analysis to detect authoring problems

The schemata given in section 4.1 represent structural aspects, which can
be analyzed. In this section we give some examples of schema-analyses
that determine whether or not certain properties hold. The results of these
analyses form the basis of feedback to the author. The analyses take the
schemata as input.

88 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

<!ELEMENT Definition (Description, Concept, RelatedConcept+)>
<!ATTLIST Definition Id ID #REQUIRED
Name CDATA #REQUIRED>

<!ELEMENT Example (Description, Concept, RelatedConcept+)>
<!ATTLIST Example Id ID #REQUIRED

Name CDATA #REQUIRED

Belongs-to-definition IDREFS #REQUIRED>

<!ELEMENT Description (CDATA)>
<!ELEMENT Concept EMPTY>
<!'ATTLIST Concept Id ID #REQUIRED

Name CDATA #REQUIRED
<!ELEMENT RelatedConcept EMPTY>

Figure 4.3: Definition of the new elements

In this chapter we perform two types of analyses:

1. the analysis of structural properties of a schema, for example the re-
cursive property, and

2. the comparison of a schema with one or more other schemata, for
example to test the correctness of a definition.

Since a schema is very similar to a context-free grammar we can use
grammar analysis techniques [72] to analyze a schema for these structural
properties. For example, to find out whether or not a concept is recursive,
we have to calculate, for each concept, the concepts it depends on. How do
we calculate these dependencies for an arbitrary ontology? We describe an
answer to this question, together with examples of schema analysis, in the
following sections.

4.3.1 Data structures and definitions

We represent an (domain) ontology with a compositional view as a list of
concept definitions. A concept definition is a tuple consisting of a concept
identifier Id and a bag of related concepts, RelatedConcepts, in which the
concept identifiers may appear in any order. In this definition we abstract
for instance from concept name, attributes and cardinalities.

data Ontology = 0Ont [ConceptDef]

4.3. SCHEMA ANALYSIS TO DETECT AUTHORING PROBLEMS 89

type ConceptDef (Id, RelatedConcepts)

type RelatedConcepts = Bag
type Bag = [Id]
type Id = String

Note that a data type definition in Haskell introduces a constructor function
for the data (Ont in the case of Ontology), whereas type definitions use the
constructors of the types used.

The structure of the data type Course follows the 1MS LD definition (see
figure 4.2) and consists of an identifier and a list of activities. Extra-p is
limited to example and definition.

data Course = C(Id, [Activity])
type Activity = (Id,EducationalStrategy, [Extra_p]l)
data EducationalStrategy = Inductive | Deductive
data Extra_p = Ex (Id

, ConceptId

, RelatedConcepts

, DefRefs

)

| Def (Id

, Conceptld
, RelatedConcepts
)

type RelatedConcepts = Bag

type DefRefs = Bag

type Conceptld = Id

terminalConcepts are the set of concepts with no related concepts, non-
TerminalConcepts the set of concepts with at least one related concept, and
allConcepts the set of all concepts. Function reachable

reachable:: [ConceptDef] -> [ConceptDef] -> [ConceptDef]

takes nonTerminalConcepts and allConcepts as input and returns for each
concept the set of all concepts that are reachable, both directly and indi-
rectly. Function reachableTerminals

reachableTerminals: : [ConceptDef] -> [ConceptDef] -> [ConceptDef]

takes nonTerminalConcepts two times as argument and returns for each
concept the terminal concepts that are reachable. Suppose for example the
following ontology:

90 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

Ont [(a,[b,cl), (b, 1), (c,[d,el),(d,[1), (e, [1)]::0ntology
then:

e terminalConcepts is: [(b,[]),(d, [1),(e,[1)]

e nonTerminalConcepts is: [(a, [b,c]),(c,[d,e])]

e allConceptsis: [(a,[b,c]l),(b,[1),(c,[d,e]l),(d,[1),(e,[1)]

e reachable nonTerminalConcepts allConcepts =

[(a,[b,c,d,el), (b,[1),(c,[d,e]),(d,[1),(e,[])]

e reachableTerminals nonTerminalConcepts nonTerminalConcepts =

[(a,[b,d,el),(c,[d,el)].

Both functions, reachable and reachableTerminals, use a fixpoint cal-
culation implemented by function 1imitBy. Function reachable is defined
by:

reachable productions conceptdefinitions =
limitBy equalConceptDefs (expand productions) conceptDefinitions

Function expand expands the concept definitions using a set of productions:
if production (5, w) is used, all related concepts xs++[3]++ys are expanded to
xs++[[]++w++ys removing duplicates. Function 1imitBy repeatedly applies
function expand until a fixpoint is reached, after which conceptDefinitions
contains for every concept all reachable concepts. Function equalConcept-
Defs determines the fixpoint. A fixpoint is reached if two successive concept-
Definitions are equal.
Suppose for example ontology o and function call

reachable productions conceptDefinitions
where

productions = [(a,[b,cl),(c,[d,el)]}
conceptDefinitions = [(a,[b,c]),(b,[]),(c,[d,e]),(d,[]),(e,[1)].

After the first iteration conceptDefinitions equals [(a, [b,c,d,el), (b, [1),
(c,[d,el),(d,[1), (e, [1)]. After the second iteration conceptDefinitions
is unchanged, what means a fixpoint is reached, and contains for each con-
cept the set of all reachable concepts.

Function limitBy is defined as:

4.3. SCHEMA ANALYSIS TO DETECT AUTHORING PROBLEMS 91

limitBy::(a -> a -> Bool) -> (a -> a) -> a -> a
limitBy eq h s | eq s next = s

| otherwise = limitBy eq h next
where next = h s

Function 1imitBy only terminates if its argument function (a -> a) is con-
tinuous on a complete partial order or cPO [39], which informally means
that the argument function should be increasing on a restricted domain.

The determination of reachableTerminals is calculated in a similar way.
Instead of function expand function derivationStep is used. With produc-
tion (5,w), all related concepts xs++5++ys are changed to xs++w++ys. More
details about efficient algorithms can be found in [72].

4.3.2 Solving authoring problems with schema analysis

In this section we describe solutions to schema analysis problems, which can
detect the (possible) mistakes listed in the introduction of this chapter.

Completeness. We distinguish three kinds of (in)completeness:

e within a course,
e within a domain ontology, and

e between a course and a domain ontology.

If a concept is used in a course, for example in a question or an example, it
has to be defined elsewhere in the course. To determine this for all concepts,
we define the function completeCourse:

completeCourse :: Course -> Bool
completeCourse = null.undefinedConceptsCourse

The input parameter of completeCourse is of type Course, the output is a
boolean. Function completeCourse uses function undefinedConceptsCourse,
which lists the undefined concepts in a course. Function completeCourse
tests (by means of function null) the emptiness of this list: if the list is
empty, then the course is complete (null [1 = True).

Determining the undefined concepts in a course is calculated in three
steps:

92 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

1. Take the set of all concepts that appear in the right- and left hand
sides of concept definitions within all examples and all concepts that
appear in the right hand side of concept definitions within all defini-
tions (usedConcepts).

2. Take the concepts that appear in the left-hand site of the concept
definitions (definedConcepts).

3. check that each of the used concepts appears in the set of defined
concepts (function diffBag).

If all concepts used appear in the set of defined concepts the result of
undefined- ConceptsCourse is the empty set, otherwise the list of con-
cepts without a definition.

undefinedConceptsCourse ¢ =
let usedConcepts = extractUsedConceptsCourse ¢
definedConcepts = extractDefConceptsCourse ¢
in diffBag usedConcepts definedConcepts

Functions for determining the completeness property can also be applied
to an (domain) ontology (completeOntology, which uses an Ontology as
argument), and between a course and a domain ontology (completeCours-
Ontology, which uses a Course and an Ontology as arguments). Function
completeOntology checks if all used concepts in the ontology are defined
in the same ontology. Function completeCourseOntology checks if all used
concepts in a course are defined in the ontology. The same three steps are
performed in both functions.

Timely. A concept can be used before it is defined. This might not be
an error if the author uses an inductive instead of a deductive strategy to
teaching, but issuing a warning is probably helpful. Furthermore, there may
be a large distance (measured for example in number of pages, characters
or concepts) between the definition and the use of the concept, which is
probably an error. We define function timely to determine whether or not
concepts in a course are defined in time and a function out0f0rderConcepts
to list the concepts that are out of order.

timely :: Course -> Bool
timely = null.outOfOrderConcepts

In function out0f0rderConcepts, function extractActivities returns a
list activities with for each each activity in the course the tuple (Estrategy,

4.3. SCHEMA ANALYSIS TO DETECT AUTHORING PROBLEMS 93

[Extra_p]). Then, using functions inits and tails every [Extra_p] list
is split as follows: for every element x in the list [Extra_p] the list is
subdivided into a left part (epl), which contains all elements to the left
of element x, and a right part (epr), which contains element x as and all
elements to the right of x. For example, for the input list [e,d] we get
[(00,[e,d]1),([el,[d]),([e,d], [1)], where e is example and d is def-
inition. Finally, function intime tests the timely constrains for all tuples
(es, (epl,epr)): if the first element of epr is a definition and the educa-
tional strategy is deductive, then: (1) a related example appears after the
definition, and (2) no related example appears before the definition (tested
by elemBy eqConcept ¢ in the code below). In case of an inductive activ-
ity, a related example appears before the definition and no related example
appears after the definition. Function intime is always true if epr is empty
or the first element of epr is an example.

outO0f0rderConcepts :: Course -> [Extra_p]
out0f0OrderConcepts ¢ =
let activities = extractActivities ¢
split [(es,s) | (es,eps) <- activities
, 8 <- zip (inits eps) (tails eps)

]
in [head epr | (es,(epl ,epr)) <- split
, not (intime (es,epl,epr))

]
intime (_,_,[]1) = True
intime (_,_,Ex (j,c,cs,r):_) = True

intime (Deductive, epl, Def (j,c,cs):epr) =

elemBy eqConcept c¢ epr && not (elemBy eqConcept c epl)
intime (Inductive, epl, Def (j,c,cs):epr) =

elemBy eqConcept ¢ epl && not (elemBy eqConcept c epr)

False
id == ¢

eqConcept id (Def (i,c,cs))
eqConcept id (Ex (i,c,cs,r))

Recursive concepts. A concept can be defined in terms of itself. Recur-
sive concepts are often not desirable. If a concept is recursive, there should
be a base case that is not recursive. Recursive concepts may occur in a course
as well as in an ontology. We define two functions: recursiveOntology and
recursiveCourse which take an ontology respectively a course as argument.

94 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

Both first extract all concept definitions, and use function recursiveConcepts.
We show the definition of recursiveOntology.

recursiveOntology :: Ontology -> Bool
recursiveOntology = not.null.listRecursiveConceptsOntology

listRecursiveConceptsOntology :: Ontology -> [Id]
listRecursiveConceptsOntology =
recursiveConcepts.extractAllConceptsOnt

Function recursiveConcepts calculates for every concept all reachable con-
cepts, as explained in section 4.3.1. Every concept in reachables is checked
for recursiveness: a concept is recursive if the concept’s Id is a member of
the set of the reachable concepts. The recursive concepts are collected in a
list.

recursiveConcepts :: [(Id, RelatedConcepts)] -> [Id]
recursiveConcepts allConcepts =
let nonTerminalConcepts = filter (not.null.snd) allConcepts
reachables =

reachable nonTerminalConcepts allConcepts
in [x I(x, y) <- reachables, elem x y]

Correctness. Concept definitions in a course should correspond with the
same concept, definitions in the domain ontology. To solve this problem, for
every concept in a course all reachable terminal concepts are determined by
function reachableterminals. This characterisation is compared against
the reachable terminal concepts based on the domain ontology using function
verifyCorrectness. The definition of 1istIncorrectConcepts is:

listIncorrectConcepts ¢ o =
let allConceptsOnt
nonTerminalConceptsOnt
filter (not.null.snd) allConceptsOnt
reachableTerminalsOnt =
reachableTerminals nonTerminalConceptsOnt allConceptsOnt
allConceptsCourse = extractAllConceptsDefCourse ¢
reachableTerminalsCourse =
reachableTerminals nonTerminalConceptsOnt allConceptsCourse
in verifyCorrectness reachableTerminalsCourse
reachableTerminalsOnt

extractAllConceptDefsOnt o

4.3. SCHEMA ANALYSIS TO DETECT AUTHORING PROBLEMS 95

and function correct calls listIncorrectConcepts.

correct :: Course -> Ontology -> Bool
correct ¢ o = null (listIncorrectConcepts ¢ o)

Synonyms. Concepts with different names may have exactly the same
definition. For example, concept a with concept definition (a, [¢,d]) and
concept b with concept definition (b, [c,d]) are synonyms. Per definition,
as an example, we declare two concepts x and y as synonyms if their iden-
tifiers are different and (reachableTerminals nonTerminalConcepts x)
equals (reachableTerminals nonTerminalConcepts y). We define func-
tion synonyms to check for synonyms in an ontology, which uses function
listSynonyms to lists the synonyms. In 1istSynonyms, first nonTerminal-
Concepts is determined from all concept definitions. Secondly, for all con-
cepts in the ontology all reachable terminal concepts are determined by func-
tion reachableTerminals. In a last step the concept definitions with the
same right hand side and different left hand sides, using function equalRhs,
are collected in a list. The formal definition of 1listSynonyms is:

synonyms :: Ontology -> Bool
synonyms = not.null.listSynonyms

listSynonyms :: Ontology -> [([Id],RelatedConcepts)]
listSynonyms o =
let allConcepts
nonTerminalConcepts
reachableTerminalsConcepts
reachableTerminals nonTerminalConcepts nonTerminalConcepts
equalrhs = equalRhs reachableTerminalsConcepts
in [c | ¢ <- equalrhs, length (fst c) > 1]

extractAllConceptDefsOnt o
filter (not.null.snd) allConcepts

Homonyms. A concept may have multiple, different definitions. Suppose
for example concept a with concept definitions (a, [b,c]) and (a,[d,f]).
In this case there is a matter of homonym. To list the homonyms in a domain
ontology, we define:

listHomonyms = kpDups.extractDefConceptsOnt

which has an ontology as argument. Function extractDefConceptsOnt ex-
tracts all left hand sides of the concept definitions and returns a list of con-
cept identifiers [Id]. Function kpDups takes this list as input and returns

96 CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

a list with duplicated identifiers. The corresponding function homonyms is
defined as:

homonyms :: Ontology -> Bool
homonyms = not.null.listHomonyms

4.4 Related work

Although many authors underline the necessity of feedback in authoring sys-
tems |7, 9, 116], we have found little literature about feedback and feedback
generation in authoring systems.

Jin et al. [74] describe an authoring system that uses a domain as well
as a task ontology to produce feedback to an author. The ontologies are
enriched with axioms, and on the basis of the axioms the models developed
can be verified and messages of various kinds can be generated when authors
violate certain specified constraints. The details of the techniques used are
not given, and it is not clear to us how general the techniques are. Our
contribution is the introduction of schema analysis as a general technique to
produce messages about errors of structural aspects of course material.

Aroyo et al. [7, 8, 9] describe a common authoring framework. The
framework contains a domain as well as a task ontology and supports an
authoring process in terms of goals, and primitive and composite tasks.
Based on ontologies, the framework monitors and assesses the authoring
process, and prevents and solves inconsistencies and conflicting situations.
Their requirements for authoring support are:

1. help in consistently building courseware,

2. discovery of inconsistencies and conflicting situations,

3. production of feedback, hints and recommendations, and
4. modularisation of authoring systems (reusability).

We think that our framework satisfies all these requirements. Schema anal-
ysis as a technique could be positioned in 1, 2 and 4.

Stojanovic et al. [142]| present an approach for implementing e-learning
scenarios using the semantic web technologies XML and RDF, and make use
of ontology based descriptions of content, context and structure. A high
risk is observed that two authors express the same topic in different ways
(homonyms). This problem is solved by integrating a domain lexicon in the
ontology and defining mappings, expressed by the author itself, from terms

4.5. CONCLUSION 97

of the domain vocabulary to their meaning defined by the ontology. In our
approach these mappings are analyzed automatically.

In the Authoring Adaptive Hypermedia community the importance of
feedback mechanisms in authoring systems has been recognized [38]. Al-
though we have found an impressive amount of authoring tools for adaptive
hypermedia [26], we have not found descriptions of technologies used for
providing feedback to authors. We expect our results will be useful for au-
thoring adaptive hypermedia as well.

4.5 Conclusion

In this chapter, we described our framework towards the production of feed-
back based on schema analysis in an e-learning environment and treated
some analyses in detail. The framework supports the general requirements
described in the literature: reusability, flexibility and the production of se-
mantically rich feedback. Our approach make use of modern xML-based
languages as RDF and IMS LD. Six analyses on structural aspects of e-course
related material are described and specified using the functional language
Haskell.

98

CHAPTER 4. FEEDBACK IN AUTHORING TOOLS

Chapter 5

Supporting several model
languages

5.1 Introduction

As is described in chapter 1, models are represented using special languages.
There are many modeling languages. Examples are the Unified Modeling
Language (UML) [85], a language specifically for object oriented modeling,
the Entity-Relationship technique (ER) [30], and the Object Constraint Lan-
guage OCL [155]. Most modeling languages are graphically oriented. These
graphical languages are popular, because they are easy to use and appeal
intuitively. Examples of graphical languages are UML and ER. An example
of a textual language is OCL. In this chapter we focus on UML class diagram
as graphical model language.

Students in Computer science have to learn one or more modeling lan-
guages, for example one graphical and one textual language. Fach language
has its pros and cons and is suitable for certain situations or domains. For
example, graphical languages are suitable for communicating models to peo-
ple, whereas textual languages are suitable for computer analysis. Further-
more, students need to practice a lot in order to develop truthful models.
In modeling, a good solution is a schema that is syntactically correct and
expresses the right semantics. Examples of the syntax of a language and the
semantics of a model are given in section 5.2.2 and 5.2.3.

If a student is practicing modeling, he or she can make many errors.

This chapter is based on: Passier, H. (2008). A framework for feedback in e-learning
systems for data modeling. In Proceedings of the 1ADIS International Conference, e-
Society. [119]

99

100 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

Globally, we can distinguish three types of errors:

1. Errors concerning the syntax of the language used to represent a model.
2. Errors concerning the structure of a model, or meta-model errors.

3. Errors concerning the semantics the model should express.

Examples of both types of errors are given in section 5.2.4.

As is described in chapter 2, there are some 1TSs for practicing modeling.
All of these systems provide feedback on the syntax of a model. To provide
feedback on the semantics of a model, the 1TSs make use of a set of con-
straints or an author’s model to compare with. If feedback about semantics
is presented, it is often hard coded and part of the exercise. The development
and implementation of this type of exercises is labor intensive and requires
special knowledge and skills. The situation worsens in case students have
to practice several modeling languages. This implies that for every model
language a new set of exercises has to be implemented, where the feedback
part of each exercise must be implemented separately. To overcome this
problem, we present the outline of a framework that:

1. generates, besides feedback about syntactic errors of the language used,
feedback about the semantics of a model;

2. is able to generate feedback for several model languages.

In section 5.3 the ideas of this framework are presented and demonstrated
using a small example. In this chapter, we restrict ourselves to structural
models, models that represent the structure of the system or the data the
system processes. Examples are UML class diagrams, ER diagrams, and CC
diagrams. Simple UML class diagrams consisting of classes and associations
are used as example.

5.2 UML-Class diagrams

5.2.1 An example

The process of constructing a model is illustrated using a simple example: a
limited UML-class diagram consisting of classes, associations and multiplicity
constraints. In educational contexts, a student is usually given a description
like the following;:

5.2. UML-CLASS DIAGRAMS 101

Car Axle Wheel

has_axle has_wheel

Figure 5.1: A UML class diagram as student’s solution

“You should construct a model for an software application that processes
and stores data about cars in a car factory. A car consists of axles and
wheels. The database should store the axles connected to each car and the
wheels connected to each of the axles.” Etcetera.

The student’s task is to construct a model from this description. It is obvious
that car, axle and wheel are of importance, and the student may decide to
represent these concepts as classes. As can be seen in figure 5.1, the student
has assigned an attribute Id to each of the classes, which is not mentioned in
the description. The student also needs to identify the associations between
these three classes and the corresponding multiplicities. Information about
this is not given in the text, so the student has to make an own decision.
The student has decided to draw the associations ‘has axle’ and ‘has wheel’
with multiplicities as shown. The association between the classes car and
axle should be read as: every car has two axles and every axle is connected
with one car.

There are many things a student has to know and think about when
constructing a model. He or she has to understand the domain of inter-
est, the model language, the use of integrity constraints, etcetera. In real
educational situations, the text is mostly longer and often contains some
ambiguities. In a nutshell, modeling is not a well-defined process and the
task is open ended: there is no single best solution for a problem, and there
are often several correct solutions in relation to the same set of requirements.

5.2.2 Syntax

The syntax of a model language describes the possible configurations of the
model elements and how they are represented.

Classes. Classes categorize the objects that can exist in a system and
define their shared properties. Class diagrams show the classes in a system
and a variety of relationships between those classes. The basic notation of

102 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

classes could consist of three compartments. The top compartment, which
is obligatory, contains the class name. The second compartment is optional
and contains the attributes of the class. The third compartment contains
the operations of the class. This compartment is optional too and is not
used in the example.

Associations. Classes can be connected by means of associations. An as-
sociation between two classes implies a link between instances of the classes.
Associations can optionally be labeled with a name together with an ar-
rowhead indicating the direction in which the name should be understood.
Association-ends can optionally be labeled with multiplicities.

Multiplicities. Multiplicities are used to specify how many occurrences of
a model element are permitted in a context. Generally, a multiplicity specifi-
cation consists of an interval definition of the form lowerbound..upperbound.
The lower bound can be any non-negative integer, the upper bound can be
any non-negative integer or the symbol ‘x’, which denotes that the range is
unbounded. If the lower bound equals the upper bound, the range specifies
a single number and can be written as such.

5.2.3 Semantics

The semantics of a model imply the facts in the world the model refers to.
Without semantics, a model is just an arrangement of graphical elements on
a page. With semantics, each part of a model makes a claim about the world.
In case of figure 5.1, the semantics of the model say that there exist three
categories of objects: cars, axles and wheels and that every car has exactly
two axles and every axle has exactly two wheels. In terms of databases,
the semantics of a model say which information can be extracted from the
database using a query language. Following figure 5.1, we could ask the car
factory database which wheels are connected to which car for example.

5.2.4 Types of errors

We can distinguish three types of errors:
e Syntactic errors
e Meta-model errors

e Semantic errors

5.2. UML-CLASS DIAGRAMS 103

Syntactic errors. Syntactic errors occur when a student violates a syn-
tactic rule. In case of class diagrams, examples are two or more classes
having the same name, or an association with a dangling side.

Meta-model errors. FExamples of meta-model errors are inconsistency
and redundancy in a model.

Consistency is a property that must hold between related models and
within a model. An example of the first category is that if a sequence dia-
gram uses an object, the class of the object should be defined in the related
class diagram, otherwise there is an inconsistency between both diagrams.
An example of the second category is that every diagram should guarantee
a finite but not empty reality, i.e. there exist at least one instance of the
diagram.

Figure 5.2 shows two inconsistent UML class diagrams. The first one
(a) is inconsistent, because the model assumes an infinite binary tree of
objects of type Al. In the second one (b), showing an example for a library
system, there are two classes Member and Book and an association which
shows the relationship between members and books. FEwvery member can
borrow at most five books at the same time. Every teacher however, where
every teacher is a subtype of Member, can borrow at least six books. As a
consequence, the diagram is inconsistent.

Redundancy expresses itself by cycles in models from what associations
can be possibly removed without loss of information. Whether or not an
association can actually be removed, depends on the semantics of the as-
sociation. It is a human who has to decide about this. The candidate
removable associations can be derived and reported.

An example of redundancy is shown in figure 5.3: the cycle contains a
redundant association, because each car has two axles and each axle has two
wheels. So, one can derive that every car has four wheels and that every
wheel is connected to one car. This is exactly what the association ‘drives
on’ represents. One of the associations in figure 5.3 is redundant and can be
removed.

Semantic errors. A semantic error occurs when the model does not de-
termine those facts in the world the model refer to, that means the domain
of interest. Examples of semantic errors are wrong facts (for example a car

!Notice that to enforce infinity, an OCL constraint is needed specifying that no A-object
can be connected to itself.

104

(a)

Car

1

{b)

borrows 0.5

CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

1
A Member Book
2 6."
bormows
Teacher
1
Figure 5.2: Two inconsistent models
Axle Wheal
1 1 2
Id Id
has_axle has_wheel
4
drives_on

Figure 5.3: A redundant model

5.3. THE FRAMEWORK 105

has one wheel instead of four wheels), loss of information (for example the
class Wheels and the related association ‘has wheel’ are missed), and addi-
tion of undesirable information (for example a class called Factory has been
added to the model).

In the remainder of this chapter, we will focus on the last two types
of errors, i.e. meta-model and semantic errors. An exercise as described
in section 5.2.1 is assumed: a student is given the requirements in natural
language about a particular domain and he/she has to construct a class
diagram fulfilling the requirements.

5.3 The framework

To generate feedback on the level of meta-model and semantics for several
languages, the framework assumes we have the following main parts:

A central model. For each kind of exercise there exists a central model
(or author’s model) including all information needed to evaluate the stu-
dent’s model on the semantics the model should express. In cases of more
complex models with several possible solutions, ‘the central model’ may con-
sist of a number of solution models. Because the framework has to support
several model languages, the central model is represented using a model
language, mostly different from the student’s model, with enough expres-
sive power to include all models which can be represented by all languages
allowed. Furthermore, to obtain automatic feedback, the language must
be mathematically rigorous and processable by a computer. The concept
‘central model’ will be explained in section 5.3.1.

Translations. Students might practice modeling using several languages.
For each model language, there exists a function that translates a student’s
model into the language of the central model and vice versa. Due to the
differences in expressive power between model languages and the possibility
that the central model consists of several solution models, each student’s
model can be translated to at least one central solution model and each
central model can be translated into at least one model language used. The
student’s model translated and the central model are input for certain anal-
yses. The concept translation will be explained in section 5.3.2.

Analysis functions. There is a set of semantic analysis functions. Each
of these functions takes a (part of a) translated student’s model and a central

106 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

model as arguments and returns the result of certain semantic analyses.
Furthermore, there is a set of meta-model analysis functions. Each of these
functions only takes a (part of a) translated student’s model as argument
and returns the result of certain meta-model analyses. The results of both
analyses form the raw information for feedback to be presented to a student.
The concept analysis function will be explained in section 5.3.3.

5.3.1 The central model

For each exercise there exists a central model. Generally, such a model
includes all information needed to express the specific structures and con-
straints as part of the exercise. The central model is used to evaluate the
student’s model on semantic correctness and completeness (see section 5.3.3).
The language(s) used to expresses central models must fulfill some require-
ments. For example, the language must:

e have enough expressive power to express all specific structures and
constraints desired as part of the exercises;

e have enough expression power to include all structures and constraints
which can be modeled by all languages students might practice with;

e be relative easy in use and accessible for a large group of people, i.e.
lecturers and authors of the exercises;

e be rigorous enough to make precise reasoning by a computer possible.

To capture all requirements stated, we use theory of relations and predicate
calculus to represent models. It is widely accepted that these languages
can be considered as a complete and all encompassing framework [131, 149].
The difficulty of reading and writing predicate calculus is a disadvantage.
Alternatively, predicate sentences can be represented pictorially, as is used in
semantic network models [131, 149]. In this chapter, we will focus on simple
class diagrams only and these structures are implemented as concepts and
relations between concepts. A central model then is represented as a record
consisting of these two fields (figure 5.4). Relations as well as concepts are
implemented using the data type Set. The types Concepts and Relations
will be discussed in following paragraphs.

Concepts. Informally, a concept is a physical or an abstract thing of inter-
est. A concept is considered to be determined by its extent and its intents.
The extent consists of all objects belonging to the concept, while the intent

5.3. THE FRAMEWORK 107

data CModel = CM {concepts :: Concepts, relations :: Relations}

Figure 5.4: The central model

data Concept = Concept{ conceptname :: String
, category :: MLontology
X

type Category = MLontology
type Concepts = Set Concept

newConcept :: (ConceptName, Category) -> Concept
newConcept (n, c) = Concept {conceptname = n, category = c}

Figure 5.5: Representation of concept

is the collection of all attributes shared by the objects. In relation to simple
UML class diagrams, concepts are the classes and attributes belonging to the
classes. We represent a concept as a record with two fields: conceptname and
category (see figure 5.5). The first field represents the name of a concept
and functions as an identifier too. The second field categorizes the origin of
the concept in relation to the model language used. Assuming simple UML
class diagrams, possible values are Individual, Attribute and Relation.
Classes are categorized to Individual, whereas attributes and relations are
categorized to Attribute respectively Relation. We will discuss this mat-
ter further in section 5.3.2. As can be seen in figure 5.5, the type concepts
is defined as a set. To create a new set of concepts, we use function empty.

Relations. For two concepts A and B, any subset of A x B is a rela-
tion from A to B. We represent a relation as a record with six fields:
relationname, leftconcept, leftcard, rightconcept, rightcard and

category (see figure 5.7). The first field represents the name of the relation.
The second and fourth fields identify both concepts related. The third and
fifth fields express cardinalities. Figure 5.6 shows an example: a car has
exactly two axles (the minimal cardinality equals the maximal cardinality),
and each axle is connected to exactly one car. Again, the field category
categorizes the origin of the relation. In this case the value equals Relation.

108 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

leftcard rnghtcard
relation name
' &
has_axle

Figure 5.6: Relations

As can be seen in figure 5.7, the type Relations is defined as a set. Car-
dinality is implemented using a data type Cardinality, which is a record
with fields minimum and maximum cardinality. Possible values are positive
integers (C Int) or infinity (Infinite). An extra function is used to verify
the invariant: mincard < maxcard, which is not shown here.

Student’s model. In our case of simple class diagrams, the type of a
student’s class diagram looks like the type of the central model (figure 5.8).
Again, a class-diagram is represented as a record with two fields: classes and
associations. Every class has a class name which functions as an identifier
too. Furthermore, a class could have a set of attributes. In this example, we
will model an attribute as a string representing the name of the attribute and
abstract for example from typing. Cardinalities are slightly different too. In
case of UML models, we talk about multiplicity. The minimum value could
be any positive integer (M Int), the maximum value could be any positive
integer or has a unbounded range (star).

5.3.2 Translations

In case of UML class diagrams, a function transforms a class diagram into an
instantiation of the central model and vice versa. This transformation must
satisfy the property of invertibility. Suppose a function cd2cm that takes a
class diagram (cd) as argument and returns the corresponding central model
(cm). If there exists an inverse relation cm2cd in the opposite direction, with
the property that a round trip cd2cm.cm2cd from a certain class diagram
to an instantiation of the central model and back returns the same class
diagram in terms of syntax and semantics, then cd2cm is called invertible.
To be able to satisfy the property of invertibility, we make use of Chisholm’s

ontology [100]. Chisholm’s ontology is selected because this ontology tends
to have elements common to all of the modeling languages, such as defining

5.3. THE FRAMEWORK

109

data Relation = Rel {

-

data Card =C

relationname
leftconcept
leftcard
rightconcept
rightcard
category

data Cardinality = Card {mincard::
Int | Infinite
type Relations = Set Relation

: String
:: String
:: Cardinality
:: String

:: Cardinality
:: Category

newRel :: (RelName, LeftConcept, Cardinality,
RightConcept, Cardinality, Category) -> Relation
newRel (n,lcon,lcard,rcon,rcard,cat) = Rel {

2
B
>
>

s

}

Card, maxcard:: Card}

relationname
leftconcept
leftcard
rightconcept
rightcard
category

Figure 5.7: Representation of relations

n
lcon
lcard
rcon
rcard
cat

110 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

data ClassDiagram = CD { classes :: Set Class
, associations :: Set Association
X

data Class = Class { classname :: String

, attributes :: Set String

data Association = Assoc { assocname :: String
, leftclass :: String
, leftmul :: Multiplicity
, rightclass :: String
, rightmul :: Multiplicity
}

data Multiplicity = Mul {minmul :: Mult, maxmul :: Mult}
data Mult M Int | Star

Figure 5.8: umML-Class diagram

and describing objects, individuals, entities and their relations. In our case
of transforming simple class diagrams we only use the categories: Individu-
als, Attributes and Relations:

o Individuals — These are the objects of interest. Individuals come into
being (are created) and past away (are destroyed), so they are tran-
sient. Each individual possesses an attribute or several attributes that
uniquely identifies it. Individuals may have constituents and can have
thereby structure.

o Atiributes — Attributes are exhibited by individuals. Attributes are
enduring and are coupled with individuals.

e Relations — Individuals may be related. Specifically, relations are at-
tributes (an ordered pair) identifying the participating individuals re-
quired.

Figure 5.9 shows the representation of type MLOntology (Model Language
ontology) and the categories used. Using these categories we are able to
transform a class diagram into an instantiation of the central model satisfy-
ing the property of invertibility:

5.3. THE FRAMEWORK 111

data MLontology = Individual | Attribute | Relation

Figure 5.9: Categories used from Chisholm’s Ontology

Associations. Each association a is transformed by creating a new rela-
tion:

newRel(assocname a
, leftclass a
, mul2card (leftmul a)
, rightclass a
, mul2card (rightmul a)
, Relation

Function mul2card takes a Multiplicity and returns the corresponding
Cardinality. Furthermore, the field category is set to value Relation.

Classes. Each class can contain zero or more attributes. A class ¢ is trans-
formed by creating a new concept: newConcept (classname c, Individual),
where category is set to Individual.

Attributes. Each attribute a is transformed into a concept and a rela-
tion. The new concept equals newConcept (attributename, Attribute),
where category is set to Attribute. The new relation connects concept c
representing the class the attribute belongs to and concept ¢’ representing
the attribute itself:

newRel("attr"
, conceptname ¢

, Card { mincard = C 1, maxcard = C 1 }
, conceptname c’
, Card { mincard = C 1, maxcard = C 1 }

, Attribute

Remark that this relation is injective (a one-to-one function) and category
is set to Attribute.

112 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

5.3.3 Analysis functions

As said in section 5.2.4 we distinguish three type of errors, namely syntactic
errors, meta-model errors and semantic errors. We use the same classification
for analysis functions. The main interest in this chapter is on meta-model
errors and semantic errors. For both types of errors an example is given.

Syntactic errors. As said before, this type of error and analysis is not
of interest in this research. Many UML-editors are able to analyze class
diagrams on syntactic errors and transform the analysis results into feedback.

Meta-model errors. The analysis of meta-model errors is applicable on
all models. Examples are the presence of inconsistency and redundancy.
Here, we give an example of redundancy (see section 5.2.4). For searching
for redundancy, we are looking for cycles where one or more relations can
be removed without loss of information. To solve this process, three phases
are performed. Firstly, for every concept ¢* part of the UML-class diagram
all paths ¢* —r — ¢ —r — ... are determined, where ¢ is a concept and r
is a relation, with ¢* as starting point. For this, a depth first search (DFS)
algorithm is used. The search is stopped when a cycle is found, i.e. a visiting
concept is already part of the list of visited concepts. If a concept is reached
without any (outgoing) relation anymore and no cycle is determined the
path is removed. In a second phase, for all cycles is determined whether
there is a matter of redundancy. There is a matter of redundancy if two
paths between two concepts exist where the products of all minimum and
maximum cardinalities of both paths along the cycle are equal. Following our
example in figure 5.3, path ‘car-axle-wheel’ holds 2 %2 = 4 as minimum and
maximum cardinality which equal the minimum and maximum cardinality
of path ‘car-wheel’. Thus, one of these relations can be removed without
loss of information.

Semantic errors. A semantic error occurs when the model does not cor-
rectly represent the facts to represent. Now we need a reference model to
decide whether there is matter of a semantic error. Assume both models in
figure 5.10, where (a) is the reference model and (b) is the student’s model.
In model (a) we can determine a path: car - axle - wheel, with correspond-
ing cardinalities (2,2) and (4,4). Using this model, we are able to determine
which wheel is connected to which axle for example. In model (b), this de-
termination is not possible, so model (b) does not enclose all information
needed in relation to reference model (a). In other words, model (b) is not

5.4. RELATED WORK 113

car (1,1 (2.2) e (1,1) (22 Wheal
(a)
g r1 2
whealml‘” (1.1) €@ (1,1 (2.2) axle
(b)
r3 4

Figure 5.10: A semantic error

semantically isomorph with respect to the reference model (a). Again this
type of analysis is performed using a DFS algorithm.

So far, we have ignored the problem of which concept and relation as
part of the central model is related to which class, relation or attribute
in the student’s model. One possibility is asking the student to map each
class, relation and attribute as part of the student’s model to the concepts
and relations of the central model. Another solution will be mentioned in
section 95.4.

5.4 Related work

We have described the results of our literature study about related 1TSs in
chapter 2. As far as we know, there is no literature about 1TSs supporting
different modeling languages.

The framework described in this chapter assumes a model-based ap-
proach [88], i.e. the framework assumes a central model or author’s model.
We think that it is possible, and sometimes desirable, to add extra con-
straints to express additional semantics. In that case we have a mixed ap-
proach, i.e. model- and constraint-based.

Notice that by introducing the framework, we do not have solved the
problems mentioned in chapter 2.5, i.e. generations of sample solutions may
be too expensive (if there are many different ways of solving the prob-
lem), checking the correctness of a correct student’s solution which does
not match one of the sample solutions completely is difficult, and generat-
ing feedback for a partly finished solution matching several sample solutions
is difficult [144]. We think that by combining the strategies model-based
and constraint-based, these problems can be partly solved. Because many
types of modeling tasks are ill-defined, as for example modeling a UML class
diagram, we will probably never totally solve these problems. Ill-defined

114 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

modeling tasks can be made more well-defined by formalizing the domain of
interest, the task description, and the goal to reach. This could be a solu-
tion for simple modeling tasks, within a first course about modeling, but is
undesirable for more real modeling tasks.

In this chapter, we have restricted ourselves to simple UML class diagrams
consisting of classes, associations, multiplicities, and attributes. For example
association classes, aggregations, compositions, and generalizations did not
have our attention. How to translate these constructs into the central model
language is not discussed. These translations are possible [15, 53].

Meta-model errors. Analyzing meta-model errors is an active research
field in computer science. We describe some examples.

Egyed [44] reported about the use of abstraction rules for uML-class dia-
grams. These rules can be used for reverse engineering as well as for check-
ing on consistency. One mechanism called relation abstraction is described
which can be used to check on consistency of cardinalities. This mechanism
looks like the mechanisms discussed in section 5.3.3.

Moha et al. [107, 108] reported about a technique to automatically detect
and correct software architecture defects in object-oriented design. The
technique distinguishes:

e Anti patterns — which are literary forms describing commonly applied
solutions to design problems that generate decidedly negative conse-
quences.

e Design defects — which are errors in the design of the software that
come from the absence or the bad use of design patterns.

e (Code smells — which are structures in code that suggest the possibility
of refactoring.

The aim of the research is to formally describe these architectural defects
and to develop mechanisms to detect and correct them automatically. Sim-
ilar research has been done by Fradet et al. [47]. They have developed a
framework for the definition of multiple view architectures and techniques
for the automatic verification of their consistency. Other work has been
done by Backstrom et al. [11]. They state that guidelines for model struc-
ture, naming conventions and other model rules are often provided in practi-
cal contexts developing models. Meta-models can be used to describe these
guidelines and make it possible to automatically check whether a UML-model
satisfies the guidelines or not and produce correction suggestions.

5.4. RELATED WORK 115

Balaban et al. [14] have described correctness problems and the detection
of these problems in UML class diagrams. They distinguish between incon-
sistency, redundancy, and abstraction errors. They describe a pattern-based
approach for the detection of these problems within class diagrams, and for
providing explanations and repair advices. Another approach to detect in-
consistencies in UML class diagrams is described by Miloudi et al. [99]. In
this approach a UML class diagram is translated into a formal specification (zZ
notation) to uncover most of the UML inconsistencies published to date. A
similar approach based on first-order logic is described by Satoh et al. [133].

Semantic errors. While there is much literature about analyzing meta-
model errors, literature about analysing the semantics of a model is rare.
In chapter 2 we have reported about two main approaches, namely model-
and constraint-based. There, we have reported about the work of Mitrovic
et al. [101, 102, 118].

Striewe and Goedicke [144| describe a rule-based approach. In this ap-
proach, each rule represents a desirable or undesirable feature of a correct
solution and triggers feedback when this feature is not found or found, re-
spectively. This approach assumes that human tutors would check a stu-
dent’s solution by asking themselves questions like ‘Does the solution con-
tain an element representing X7’ or ‘Is there an association between the
elements representing X and Y?7’. Depending on the answers of these ques-
tions, the student’s solution is marked as right or wrong. The rules are
implemented by queries for checking on the existence of diagram elements
based on their type (for example a class or an association), the existence of
diagram elements based on the value on their attributes, and the existence
of tuples of elements based on the connections between them (for example,
a class having an operation that takes another class as parameter type).
These queries could be combined into more complex queries by using logical
operators. Two sets of rules are distinguished. One set contains the rules
specific for a particular task, for example using element names taken from
the task description. The other set contains generic rules that are concerned
with general features of correct UML, for example missing names and car-
dinalities. We remark that in fact this rule-based approach is equal to the
constraint-based approach [118].

Maoz et al. have described a tool called cDDiff for determining the
semantic difference between two UML class diagrams [89]. The semantics of
a class diagram are given in terms of object models, consisting of sets of
objects and the relationships between these objects. The input of the cddiff
operator consists of two class diagrams and the operator outputs a set of diff

116 CHAPTER 5. SUPPORTING SEVERAL MODEL LANGUAGES

witnesses. Each of these diff witnesses is an object model that is possible
in the first class diagram, but is not possible in the second class diagram.
As the output set may be infinite, a bounded version cddiff,, can be used
which only includes object models where the number of object instances
is not greater than k. Operator cddiff can be used to compare two class
diagrams and decide whether one class diagram semantics include the other
class diagram semantics (the latter is a refinement of the former), are they
semantically equivalent, or are they semantically incomparable (each allows
instantiations that the other does not allow). Maoz et al. use the tool to
analyze the semantic evolution of a class diagram in a project.

To overcome, for example, the problem of which nouns and verbs from
the text might be used, the students can highlight a word or phrase that
corresponds to a construct as they add them to the diagram [145]. The
highlights are color codes for marking classes, associations and attributes for
example. Using this approach, a student is free in naming entities, relations
and attributes.

5.5 Conclusions

In this chapter, we have introduced a framework for providing feedback in an
ITs for modeling that supports several modeling languages. The framework
consists of three main parts: a central model representing the ideal solution
of a certain exercise, a set of language transformers, which transforms a
model represented in a certain language into an instantiation of the language
used in the central model, and a set of analysis functions. The framework
distinguishes three types of analysis: syntactic, meta-model and semantic
analysis. The advantage of our framework is the reuse of the task description
and de central model for several model languages.

Chapter 6

From 1ll-defined to well-defined
tasks

6.1 Introduction

Generating valuable feedback during modeling activities implies a well-defined
domain of interest, a well-defined modeling language as well as a well-defined
task. An example of such an activity is rewriting a system of linear equa-
tions to a solution, for which a complete schema exists, i.e. the modeling
language, initial state, goal state, constraints, rules and algorithm are all
well known.

Within computer science however, this is often not the case. Some prob-
lems are intrinsically ill-defined, for example developing a design model for
a complex information system. For this category of problems, there is no
complete schema of how to develop such a model, i.e. the initial and goal
state are often ill-defined, the constraints are often unclear and there is no
algorithm of how to develop such a model (instead, only some rules of thumb
exist).

For other modeling activities, schemata are (partially) known, but these
are often hardly taught. Many of today’s computer science courses intro-
duce and explain their topics without mentioning their underlying formal
methods [84]. As a result, it remains unclear how to construct a program,
an algorithm, a data structure, a model, etcetera. For example, introductory
courses on data structures and algorithms are often limited to the common

This chapter is based on: Passier, H. and Heeren. B. (2011). Modeling XML content
models explained. Technical report, Department of Information and Computing Sciences,
Utrecht University, 2011. [121]

117

118 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

data structures and accompanying algorithms, and how to use these, but
how to develop algorithms on new data structures is not always explained.
Instead, teaching methods and engineering approaches are used that mainly
rely on inspiration and intuition, and this does not always work out well.
As a result, students are often not sufficiently aware of what to do and why:
they need and ask for more guidance in terms of ‘how to do’ a particular
task.

An example of this category is modeling an XML content model. Al-
though the similarities between schema languages and regular expressions
are well-understood, books and teaching material do not use this to their
advantage. Typically, a number of (small) examples is given, but without
an explanation of how the resulting content model was found. We are not
aware of books on XML that introduce regular expressions to provide a deeper
insight into content models, or a systematic way to model XML content.

For modeling XML content models, we have developed a complete schema
consisting of a domain, an initial state, a goal state, constraints, rules to ma-
nipulate expressions in the domain, and a strategy. The strategy consists of
two parts. For one category of XML content models, precise models (describ-
ing exactly the set of allowed sequences of XML elements, but nothing more),
we have developed an algorithm. For a second category of XML content mod-
els, correct models (describing at least the sequences of XML elements we
want to have), we have developed some rules of thumb.

In this chapter, we present a systematic approach based on rewriting
regular expressions [10] that helps students in constructing content models
as part of an XML schema. By establishing a link between XML schema
languages and regular expressions, it becomes much easier to reason about
content models, and to manipulate these models. Rewrite rules on regular
expressions pave the way for a stepwise derivation of a content model.

Developing a schema for solving a problem forces a teacher to be explicit
about all terms and the semantics of a particular domain, for example the
goal that has to be reached, how progression of the solving process can be
measured, and which rules may be used in which order. Such a schema is a
necessary condition for feedback generation.

Another advantage of such a schema is that students learn how to ap-
proach modeling tasks systematically. During lectures about XML content
modeling, we have made the following observations about students asked to
give a suitable XML content model for some XML instance document:

e They have difficulties to get started: they need assistance with the
first steps in constructing a complex content model, or the evaluation
of such a model;

6.2. DTDS AND REGULAR EXPRESSIONS 119

e The process of finding a model is not structured, and involves a lot of
trial-and-error;

e Resulting models are too liberal (the schema accepts too many XML
documents), or even incorrect (parts are missing in the schema);

e Resulting models are not deterministic;

e Students are unable to evaluate a generated model on correctness and
precision.

Similar observations can be made about learning material for other XML-
related languages, such as the navigation and selection language Xpath, and
the transformation languages xQuery and XStT. The use of a schema of how
to develop an XML content model helps students in learning to model com-
plex XML content models. We have tested our modeling approach on a group
of students. The test clearly shows that the approach can help students in
learning to model complex XML content models. Test and interview results
are given in the last part of this chapter.

The chapter is structured as follows. Section 6.2 gives an introduction to
DTDs and regular expressions, and presents rules to rewrite these expressions.
Section 6.3 then explains how to make a content model deterministic, a
requirement of the DTD language. Sections 6.4 and 6.5 define strategies for
precise and correct content models, respectively. We then discuss our small-
scale experiment (section 6.6). The last sections give related work, draw
conclusions, and give directions for future work.

6.2 DTDs and Regular Expressions

We start with a comparison of DTDs and regular expressions (REs), followed
by a formal definition of the language that is generated by a RE. In the final
part, we give some rewrite rules for manipulating expressions.

6.2.1 Syntax

A DTD lists all the elements that can be part of an XML document by means
of element declarations, such as:

<!ELEMENT book (title, author+, chapter+)>
The content model of an XML element specifies which child elements may

occur, and in which order. In our example, (title, author+, chapter+)
is the content model of element book. Each element book must have a

120 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

Construct DTD notation | RE notation
empty set 0
empty string EMPTY €
alphabet element names atoms
sequence R,S RS
choice R|S R|S
%€ro Or one R? R?

Zero or more Rx R*

one or more R+ R*

Figure 6.1: Syntax of DTDs versus REs

title element, followed by one or more author elements, and one or more
chapter elements. In the remainder of this chapter, we choose DTD as our
schema language, but our approach works for other languages as well (such
as XML-Schema).

The syntax of a content model differs slightly from standard RE nota-
tion: Figure 6.1 shows the correspondence between the notations. There is
no counterpart of the empty set construct in DTD notation. Furthermore,
e concisely denotes the empty string. Also observe how the commas are
dropped for sequences (since the atoms of an RE are generally assumed to
be single characters, unless otherwise noted). For reasons of presentation,
we adopt the RE syntax in this paper, without the () construct.

We use R, S, and T to represent arbitrary REs, and a,b,c, ... for the
atoms in our examples. The standard precedence levels apply: the unary
operators (7, *, and +) bind stronger than sequence, which binds stronger
than choice. Parentheses are used to group expressions. Hence, the expres-
sion ab* | ¢ is interpreted as (a(b*)) | ¢, and not a(b* | ¢) or (ab)* | c.

6.2.2 Language

An RE describes a possibly infinite set of sentences, which we call the lan-
guage generated by that expression, denoted by £(-). This can be defined

6.2. DTDS AND REGULAR EXPRESSIONS

RI(S|T) =
R|S =
R|R =

R(ST) =
eR =
Re =

R? =
R =
Rt =

RS|RT =
RT|ST =

R'R =
(RS)*R =

(R|S)|T
S|R

R

(RS)T

R

R

elR
€| RR*
RR*

R(S|T)
(R|S)T
RR

R(SR)"

Figure 6.2: Rewrite rules on REs

inductively as follows |73]:

Here, concatenation of two sets,

where:

= {g

{a}

= L(S)L(T)
L(S) U L(T)
L(e]S)
(L£(9))"

= L(85%)

121

written XY, is short-hand notation for
xzy |z € X,y € Y }. The star-closure of a set, X*, equals X°U X' U...,
Yy

X0 = {e}
Xn+1 — XXn

Similarly, R™ is used as shorthand notation for a sequence of n occurrences

of regular expression R.

These definitions provide the proper foundation to reason about and
manipulate REs. In forthcoming sections, we use this to evaluate content

models on correctness.

6.2.3 Rewrite rules

Figure 6.2 presents a list of rewrite rules that operate on REs. The first set
of rules (1a - 1f) expresses some basic properties of the choice and sequence

122 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

R = R* (if n.>0) (4a)
R = R* (if n>1) (4b)
R*S* = (R]|9)* (4c)

Figure 6.3: Directed rewrite rules

operators: choice is associative, commutative, and idempotent, whereas se-
quence is associative and has € as its unit. Soundness of these rules follows
straightforwardly from the language generated for both sides of the equation.
The rules for associativity (1a and 1d) are typically performed implicitly, and
parentheses are dropped accordingly.

The second set of rules (2a-2c) defines a translation for each of the
cardinality operators. These rules show that all occurrences of R? and R™
can be removed from an expression. On the other hand, R* can be expanded
one step.

The last set of rules is for making expressions deterministic, which is
discussed in the next section. We have rules for left factoring (3a), and
right factoring (3b). Rule 3d (and 3c as a special case) helps in rearranging
expressions involving R* (under the right circumstances these can be shifted
to the right). More rewrite rules can be added to the collection, for example
by combining existing ones. When modeling XML content with REs, it is
convenient to have a rich set of rules that covers common patterns. Note
that the rules in figure 6.2 can be applied in both directions (i.e., also from
right to left) because both sides are equal.

When modeling XML content, one typically uses the cardinality operators
to reduce the size of the model. For example, a | aa | aaa can be written as
a™, which is far more concise. The price we pay for this reduction in size is
a loss of precision: the latter expression now also accepts aaaa. Figure 6.3
shows two more rewrite rules for the introduction of cardinality operators.
These rules are directed from left to right.

Semantically, these directed rules extend the language that is generated.
To specify this property, we introduce a partial ordering between REs: R < .S
if and only if L(R) C L(5). A directed rewrite rule R = S must satisfy
R < S, and indeed, the rules of figure 6.3 have this property.

6.3 Removing non-determinism

XML is defined to be compatible with SGML, and as a consequence, content
models of DTDs have to be deterministic. A content model is deterministic if
an XML processor can check a document against a DTD without looking for-

6.3. REMOVING NON-DETERMINISM 123

ward in the document (i.e., inspecting only the current element). Generally,
there are exactly two situations in which non-determinism occurs [156]:

1.

6.3.1

A content model contains R | S and the sets of element names that
can start a sequence in £(R) and £(S) are not disjoint. For example,
ab | ac is not deterministic because the set of starters (known as the
first set [25]) is {a} for both alternatives.

A content model contains R?, R*, or R", and the set of element names
that can start a sequence in £(R) is not disjoint with the set of names
that can follow in this particular context (the follow set [25]). An
example of such a non-deterministic expression is (ab)*ac.

Strategy for removing non-determinism

We now present a strategy for the stepwise removal of non-determinism:
rewrite problematic sub-expressions (one of the two situations described
above) until we have reached a deterministic expression. We discuss the
two situations.

Situation 1.

Given is a sub-expression R | S with at least one element that is starter of
R and S. Let this element be a. The non-determinism can be removed in
three steps.

(a)

(b)

()

Rewrite R and S until element a is the first of a sequence. This involves
expanding cardinality operators (2a—2c), removing € in sequences (le),
and distributing sequence over choice (3b). Rules 1¢, 3¢, and 3d (and
variants for the other operators) can provide a shortcut.

If needed, rearrange alternatives (1b) so that the sequences starting
with a are adjacent.

Apply the factorization rule 3a. In some cases, an € has to be intro-
duced first (1f).

Example Applying the above strategy to the non-deterministic expression
(ab)™ | be | abe results in:

(ab)™ | be|abc = ab(ab)* | be | abe (2¢)
ab(ab)* | abe | be (1b)
= ab((ab)* | c) | bec (3a)

124 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

Example The top-level alternatives in the following example make the ex-
pression non-deterministic:

(a]b)ala = aalba|a (3b)
= aalalba (1b)
= aalaelba (1f)

= a(ale€)|ba (3a)

The last two steps are a good candidate for adding a new, derived rewrite
rule to the collection: RS | R = R(S |e).

Situation 2.

The second case is more complicated because some REs cannot be trans-
formed into a deterministic form [17, 24, 25]. Examples of such expres-
sions are (ab)*(ac)* and (ab)*a?. Note that deterministic REs should not be
confused with deterministic finite-state automata (DFA) [66], another well-
known formalism. Every RE can be transformed into an equivalent DFA,
and the other way around. An RE constructed from a DFA, however, is not
automatically deterministic.

Suppose we have some sub-expression R?, R*, or R", which has element
a as a starter. Furthermore, a is also in the follow set of the sub-expression
at hand. We proceed by case analysis on the operator used.

(a) For content model R?, we remove the operator by applying rule 2a,
resulting in the alternative e | R. Then, this alternative should be
combined with its context, for instance by using distribution (rule 3b,
from right to left). Eventually, we arrive at a situation 1 problem.
This case also covers non-deterministic expressions of the form €| R
(instead of R?) that have a non-disjoint follow set.

(b) At its best, removing non-determinism involving R* can be done with
rules 3c and 3d. In some cases, expression R or its context needs some
rewriting before these rules are applicable. If this does not work (e.g.
because it is impossible), then two possibilities remain to deal with
the situation:

— Make the expression less precise, and extend the language gener-
ated by the RE.

— Introduce an extra level in the XML tree, and circumvent the
ambiguity altogether.

6.3. REMOVING NON-DETERMINISM 125

(c) In case of RT, we use rule 2c. This reduces the problem to the case
for R*.

Example The following derivation illustrates the case for an optional part:

(ab)?a = (e|ab)a (2a)
= a|aba (3b and 1e)
= a(e|ba) (3a and 1f)

Example Consider the regular expression (ab)*(ac)*, for which there is no
equivalent deterministic RE. We can opt for a less precise (but deterministic)
model:

(ab)*(ac)* < (ab|ac)* (4c)

Alternatively, we can decide to introduce an extra level by defining new
elements. Suppose that the model (ab)*(ac)* belongs to an element abacs.
We can split the model into two parts, resulting in the following element
declarations:

<!ELEMENT abacs (abs, acs)>

<'ELEMENT abs (a,b)x*>
<!ELEMENT acs (a,c)*>

The new element names are abs and acs. Notice that introducing extra
levels is not related to rewriting REs.

6.3.2 Normal form for content models

Besides the requirement that content models have to be deterministic, an
€ should not be part of a composite content model according to the DTD
language specification. This means that in the end, €’s have to be removed,
which is fairly simple (e.g., with rules 2a, le, and 1f). This gives us a normal
form for content models.

Definition A content model M is in XML normal form (XNF) if and only if
M is deterministic, and no € is present in M (except when M itself is €).

Notice that an XML content model in XNF is not unique. For example, we
can always rewrite a(b|c) into a(c|b) applying rule 1b. Reaching XNF is not
a goal of its own, but rather a final step after the strategies presented next
(section 6.4 and section 6.5).

126 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

6.4 Precise content models

We now turn our attention to deriving a content model from some instance
document. A content model should not be made too liberal without careful
thought: after all, schema languages are used in the first place to reject doc-
uments and to spot inconsistencies. We start by considering precise content
models only: a precise content model contains exactly those sequences of
child elements that we want to have, and no others.

Definition Let M be a content model, and X a set of sequences of child
elements. Then M is a precise model for X if and only if £L(M) = X.

Obtaining a precise model for some XML content is rather easy. First,
we write down all sequences of child elements for some particular element
that appear in the instance document. These sequences are the choices of
the starting model. For example, suppose we have:

<recs>
<rec>
<a/>

</rec>
<rec/>
<rec>
<a/>

<a/>

</rec>
<rec>
<a/>

</rec>
</recs>

This instance document contains four sequences of child elements for element
rec. Hence, the starting model is ab | € | abab | ab. We call such a first
approximation of a precise content model the starting form (SF).

The next step is to rewrite the content model in starting form, and turn
the model into XNF without loosing precision. A strategy for this step is
discussed next.

6.4. PRECISE CONTENT MODELS 127

6.4.1 Strategy for precise content models

The strategy described in section 6.3 can turn any content model into XNF.
However, if we start with a model in SF and look for a precise model, a much
simpler strategy is sufficient. More specifically, cardinality operators are not
present in the starting model, nor are they introduced during rewriting (since
that would make the model no longer precise). The strategy for precise
content models is as follows:

Input: An XML content model in SF.
Output: A precise XML content model in XNF.

Step 1. Remove redundant choices of the form R | R by applying rule lc. If
the duplicate choices are not adjacent, then change the order (rule 1b).

Step 2. Remove situation 1 type of non-determinism (for sub-expressions of
the form R|S) by repeating the strategy of section 6.3.1 until the model
is deterministic.

Step 3. To reach XNF, we remove all occurrences of €. For this, we apply
rule 2a, from right to left.

The strategy for precise content models returns canonical models (up to
the order of choices). The order in which the rules are applied does not
influence the result. Removing duplicates early (step 1) helps to shorten the
derivations. Also note that the size of the final model is never larger than
the original model.

Example We continue with the starting form for element rec, introduced
earlier in this section. We rewrite its model into a precise model in XNF.

ab|e|abab|ab = ab|ab|e|abab (1b)

= ab|e|abab (1c)
= ¢|ab|abab (1b)
= €| abe|abadb (1f)
= ¢e|ab(e|ad) (3a)
= ¢€|ab(ab)? (2a)

(ab(ab)?)? (2a)

6.4.2 Using the strategy

The strategy for precise models should be used if the number of choices
in the SF is relatively small, and rewriting the model in a precise way is
still manageable. Also use the strategy if a precise model is needed, i.e.,
the context demands a content model representing exactly the sequences of
child elements in the SF and no other ones.

128 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

Precise models are not always desirable in practice, however, because
models quickly become too verbose. For example, if we assume that a book
record has exactly one ISBN but multiple authors and chapters, a content
model with cardinality operators (isbn, author™, chapter™) is more appro-
priate than a model without these operators.

The precision of a content model cannot be tested with a validating
parser. The only approach here is to manually generate the language of the
content model (see section 6.2.2) and check whether the sequences of child
elements we want to have are the same as the language of the content model.

6.5 Correct content models

A correct content model contains at least the sequences of child elements we
want to have, and possibly more.

Definition Let M be a content model, and X a set of sequences of child
elements. Then M is a correct model for X if and only if £(M) D X.

For instance, (ab)* is a correct content model for {e,ab,abab}, but not a
precise model since ababab € L((ab)*). Correct models are generally more
concise than precise models: the trade-off is that they can be more liberal
than needed.

Smaller models show the structure more clearly. For example, (a | b)*
is equal to (a*b*)*, but the first one is (arguably) simpler. Minimizing the
size of an expression should not be the only goal though. A model that
allows everything (e.g. (a1 |a2 | ... | an)* where ay...a, are all existing
elements, which can be abbreviated to ANY) is concise, but defeats the
purpose of writing content models. The challenge is to find the right balance
between conciseness and precision. For this, expert knowledge about the
domain being modeled is needed. For example, chapter™ is reasonable for a
book record, whereas isbn™ is questionable. Such decisions cannot be made
automatically by a strategy.

6.5.1 Strategy for correct content models

We now present a strategy for correct (but not necessarily precise) content
models. This strategy introduces cardinality operators during rewriting.
As a rule of thumb, cardinality operators should be introduced early on,
and before factorization, because the initial model in SF best exposes the

6.5. CORRECT CONTENT MODELS 129

replicated parts. The introduction of cardinality operators can lead to non-
deterministic models, for which we use the strategy described in section 6.3
to remove this non-determinism.

Input: An XML content model in SF.
Output: A correct XML content model in XNF.

Step 1. Remove redundant choices of the form R | R (rule 1c). Change the
order of alternatives if needed (rule 1b).

Step 2. Search for opportunities to introduce cardinality operators, and make
sure that this is appropriate in the underlying domain. Find all choices
that can be combined, and place these next to each other (rule 1b). If
the e alternative is not present, rewrite all choices to R (rule 4b); oth-
erwise, use rule 4a. Afterwards, duplicate alternatives can be removed
(rule 1c). Sometimes, parts have to be rewritten before the cardinality
operators can be introduced.

Step 3. If no more cardinality operators have to be introduced, bring the
expression into XNF by applying factorization and removing €’s. The
details of this procedure are discussed in section 6.3.

Example Consider the model ab | abab | abe | €, which is in SF. We iden-
tify three out of four alternatives as instances of (ab)*, i.e., zero or more
occurrences of ab. Rewriting the term then proceeds as follows:

ab | abab | abc | € €| ab | abab | abe
(ab)* | (ab)* | (ab)* | abe
(ab)* | abe

(1b)
(4a)
(Lc)
e | ab(ab)* | abe (2b)
(3a)
(2a)

Al

€| ab((ab)* |)
(ab((ad)* | ¢))?

The resulting model is in XNF. The step in which we give up precision
and introduce (ab)* is made explicit in the derivation, and this is where
domain knowledge is required. We could have decided to also rewrite the
sub-expression abc into (ab)*c, which would lead to the more concise (but
less precise) content model (ab)*c?.

6.5.2 Using the strategy

The strategy for correct models should be used if the number of choices in
the SF is large, and a precise content model would be too verbose. The cor-
rectness of a final content model can be tested using a validating parser: this

130 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

parser checks all sequences of child elements in the instance XML-document
against the content model, and it will complain if the model is incorrect.

Our strategies are also useful if we start with an informal description of
a content model, instead of a starting form. For example, in a chess game,
white and black alternate moves, and white has the opening move. These
requirements could be translated into the model (white,black)™, white?.
The strategy for removing non-determinism (situation 2, case b) suggests to
make the model less precise, or to introduce an extra level.

6.6 Experiment and validation

Five students have participated in a small experiment consisting of a pretest,
an online lecture of two hours, a posttest, and an interview. These students
have followed the regular bachelor course on XML. The course introduces
schema languages, but does not explain any method for modeling content
models. All students, except for one, have some basic knowledge about REs
or propositional logic.

During the lecture, the relation between content models and REs, the
syntax of REs, the language generated by an RE, the rules for rewriting
REs, non-determinism and how to remove this, and strategies for modeling
precise and correct models were discussed. Students were asked to practice
with some exercises. After the lecture, the students had access to the lecture
sheets (including examples and exercises).

The pre and posttest consisted of nine questions about modeling precise
and correct content models, and removing non-determinism by rewriting or
by introducing extra levels in the XML-tree. In the posttest, four questions
were repeated from the pretest. The pre and posttest were marked after the
students were interviewed: answers were either correct (1 point) or wrong
(no score).

6.6.1 Results

All students scored one or two points higher on the posttest with respect to
the pretest; the mean score increased from 4.6 to 6.0, where the maximum
score was nine points. Furthermore, we observed a shift in the kind of mis-
takes. In the pretest, students often produced models that are too liberal
for the XML instance document, or models that are not deterministic. Typi-
cally, only a final model was given. In the posttest, intermediate steps were
given by the students, although not always successfully. Typical mistakes
were the incorrect application of the distribution rule and the empty content

6.6. EXPERIMENT AND VALIDATION 131

missing in the starting form. In addition, we observed an over-carefulness
in introducing cardinality operators.

In the interview, the students were asked to what extent the strategies
helped in finding precise and correct models. The students reported that
the method was particularly useful to get started with complex models. In
the pretest, most used a trial-and-error approach.

One student is using the method in daily practice. The students also
stated that the approach provided a better understanding of precise versus
correct models. As a consequence, they think more carefully about intro-
ducing cardinality operators.

The participants did not find the method difficult to learn, but they
indicated that more practice is needed for applying the rewrite rules and
strategies without errors. The students also agreed with the claim that
formal methods are lacking in computer science education. They replied:
“formal methods help me in solving problems”, “I often miss a systematic
approach”, and “it helps me in how to begin’.

6.6.2 Discussion

We are careful not to draw strong conclusions based on the tests and the
interview. For this, an experiment on a larger scale is needed. We also
acknowledge that the students were encouraged to practice with modeling
XML content between the pre and posttest, and to study the new material,
which also contributes to the improved scores for the posttest. Nevertheless,
the students generally welcome the use of formal methods for a practical
purpose, and our approach has some clear advantages from an educational
point of view.

The first advantage is that it stimulates students to write down a step-
wise derivation, and not just a final answer. Once students become more
familiar with rewriting models, some trivial steps can be safely skipped. A
stepwise approach helps in decomposing a complex task, which is particu-
larly helpful to get started. We observed that many errors during rewriting
were not noticed, partly because the students are not accustomed to check
their answer. Such a sanity check deserves more attention in teaching the
method. We expect that an 1TS by which students can practice modeling
XML content models would be valuable here.

A second advantage is that students are much more aware of the strict-
ness of a content model, and the consequences of introducing cardinality
operators. This aspect of schema languages is often overlooked in teaching
material on XML.

132 CHAPTER 6. FROM ILL-DEFINED TO WELL-DEFINED TASKS

6.7 Related Work

Systematic approaches to problem solving play an important role in edu-
cation. These approaches are often based on three components: knowledge
about the domain, means to reason with that knowledge, and a strategy or
procedure to guide that reasoning [27, 96]. Our approach is based on making
the rewrite rules, and the stratgey for using these rules, explicit.

In computer science education, the incorporation of formal methods is
strongly suggested by scientific societies such as ACM/IEEE, and many
influential scientists [97]. Students employing formal methods during anal-
ysis and specification produce more correct, concise, and less complex mod-
els [138]. In many curricula, however, formal methods are treated solely as
a separate subject to study [84]. Wing et al. [159] advise to weave the use
of formal methods into existing courses, making it an additional problem
solving technique. We think that our approach is a good example of this
advice.

There is an extensive literature about the algorithmic inference of XML
content models, and about dealing with non-determinism [18]. These algo-
rithms often involve the construction of finite-state automata, which makes
them more difficult to carry out by hand. We are not aware of other ap-
proaches that aim at manually deriving models, at the level of an under-
graduate course.

6.8 Conclusions

We have described a complete schema for modeling XML content models. We
have shown that the rewrite rules and strategies for regular expressions, as
part of the schema, help students in understanding XML content models, and
guide in the stepwise construction of such a model. The approach makes a
sharp distinction between precise and correct models. The first results from
using the approach in practice are promising: students appreciate the use
of formal methods for solving practical problems. More importantly, they
produce better XMI content models.

Chapter 7

Epilogue and future work

7.1 Summary

In this thesis, we investigated a number of aspects of feedback generation
during modeling activities in Intelligent Tutoring Systems (1TSs).

In chapter 1, we described the research context and what we mean by
modeling and feedback. We presented some examples of modeling exercises
and described the lack of valuable feedback during practicing modeling. In
chapter 2, we discussed the main concepts and functions a feedback mecha-
nism consists of and we explored these concepts and functions in the context
of feedback in modeling education. After that, we presented the framework.
The framework is used to contextualize the research questions. We discussed
related work on 1TSs for modeling education and presented four research
questions.

In chapter 3, we answered the question of how we can produce feed-
back on a well-defined task, namely solving a system of n linear equations
with n variables. Feedback is produced about syntactic mistakes, semantic
mistakes, and the (lack of) progress towards a solution. This question is
answered by describing a framework for solving a system of linear equations
using the substitution method. Solving a system of linear equations is a
type of model transformation.

It is shown how structural information in data and term-rewriting can
be used to provide semantically rich feedback to a student. The frame-
work assumes a well-defined domain with semantics, a set of rewrite rules, a
well-defined goal to reach, and a set of progress indicators to determine the
distance between the goal and the current situation. The domain structure
consists of a system of linear equations, where each equation is built up of
expressions. Following the structure of the domain, rewrite rules are distin-

133

134 CHAPTER 7. EPILOGUE AND FUTURE WORK

guished on the level of a system of equations, on the level of an equation,
and on the level of an expression. We described how we can detect a rewrite
on the system of equations level, on the equation level, and on the expression
level. The hierarchical approach to determining which rewrite rule has been
applied, allows us to pinpoint precisely, in many cases, which mistake has
been made and to produce valuable feedback for a student. A set of progress
indicators informs a student about the progress towards a solution. These
indicators are independent of the rewrite rules. A next step or hint can be
produced based on the substitution method as solving method.

The main ideas behind the analysis for feedback are reusable in other
domains. The implementation of the Equation Solver is not reusable. For a
new domain with its own rewrite rules, we have to build a completely new
tool. This problem is solved in later projects part of the IDEAS project.

In chapter 4, we answered the question of how we can analyze several
properties of a domain ontology and course structure during the authoring
process and thereby allow for more flexibility in authoring processes. We
showed how schema analysis techniques can be used to detect if certain
properties hold for a course. These properties are completeness (Are all
concepts that are used in the course defined somewhere?), timeliness (Are
all concept used in the course defined on time?), recursive concepts (Are
there concepts defined in terms of itself?), correctness (Does the definition
of a concept used in the course correspond to the definition of the concept in
the domain ontology?), synonyms (Are there concepts with different names
but exactly the same definition?), and homonyms (Are there concepts with
the same name, but different definitions?).

In chapter 5, we made a start at answering the question of how we can
support different data modeling languages in an ITS without re-developing
important parts of the 1TS for each new data modeling language introduced.
To answer this question, the outline of a framework is presented that (1)
generates feedback about syntactic errors of the language used and the
model’s intended semantics, and (2) is able to generate feedback for sev-
eral model languages. The framework distinguishes between three types
of errors, namely syntactic errors, meta-model errors, and semantic errors.
The framework consists of a central model, or standard solution, mappings
for translating a student’s solution into the language of the central model
and vice versa, and analysis functions for analyzing the student’s solution
on meta-model errors and semantic errors. The translations between the
student’s solution and the central model must satisfy the property of in-
vertability. To be able to satisfy this property, we make use of Chisholm’s
ontology. The framework is implemented for simple UML class diagrams

7.2. PUTTING THINGS INTO PERSPECTIVE 135

consisting of classes, attributes and associations.

In chapter 6, we have answered the question of what is needed to specify
a precise task description, i.e. to transform an ill-defined task into a well-
defined task. We investigated this by developing a complete schema for
modeling XML content models. XML content models are described using the
regular expression notation. The schema consists of a syntax description,
a set of rewrite rules for manipulating XML content models, a description
of the semantics of an XML content model, a strategy of how to construct
such models, and descriptions of the start state and the goal state to reach.
Furthermore, the strategy distinguishes between two types of models. For
models of the first type, precise models, the strategy is an algorithm. For
models of the second type, correct models, the strategy consists of rules
of thumb. The schema is validated by a small experiment. The results
are promising: students appreciate the use of formal methods for solving
practical problems and produce better content models.

7.2 Putting things into perspective

Can we produce valuable feedback on all categories of models? The answer
is definitely no. To be able to produce valuable feedback on a model and the
modeling process followed, we need to have a well-defined modeling language,
a well-defined task, and a well-defined domain of interest (chapter 2). In
most modeling situations, this is not the case. What are the consequences
for modeling education and the design of learning technologies?

Recently, Le et al. [86] have described a classification of the degree of
ill-definedness of educational problems based on the existence of strategies,
the implementation variability for each strategy, and the verifiability of solu-
tions. This classification divides educational problems into five classes. We
briefly describe these classes:

1. One single strategy, one implementation, and solution correctness can
be verified automatically — Problems of this class can be solved with
only one single strategy which has only one implementation, and have
only one solution. An example of this class is: ‘Write a Java statement
to sum the numbers 4 and 5. Please fill in the missing operator: x =
4 _ 5’

2. One strategy with different implementation variants and solution cor-
rectness can be verified automatically — Problems of this class can be
solved with one strategy, but this strategy can be implemented in a

136

CHAPTER 7. EPILOGUE AND FUTURE WORK

number of different ways. Problems in this class can be specified pre-
cisely so that the space of solutions is narrowed down to a single strat-
egy, or the input is restricted by solution templates. An example of
this class is: ‘Write a function to compute the return R on investment
X after N years for a fixed interest of Y. Use a FOR-DO loop.’

Solving a system of linear equations following one particular strategy,
as for example the substitution method, and modeling a precise XML
content model are two other examples of this class, i.e. several se-
quences of rewrite steps (multiple implementation variants) for these
strategies exist.

. A known number of typical strategies and solution correctness can be

verified automatically — For this class of problems, the student is free
to choose among several known alternative strategies. Kach of these
strategies can be implemented in a number of different ways. An
example of this class is: ‘Write a function to compute the return R on
an investment X after NV years for a fixed interest of Y.

Another example is solving a system of linear equations where the
substitution as well as the combination method can be used, even in
combination.

A great variety of strategies beyond the anticipation of a teacher, where
solution correctness can be verified automatically — These problems
are so complex that it may not be possible to enumerate a priori all
possible strategies that may be used. In this class, it is often the
case that the number of strategies for any of the sub-problems is not
known. An example is: ‘Develop a calculator to calculate the return
on investment.” The space of combinations of design decisions is large.
However, the correctness of each solution can be verified using test
cases.

Another example is modeling a UML class diagram, where the domain
of interest is presented in a formalized way. There are many ways of
how to make such a model, i.e. classes, attributes and associations can
be added in several orders. By formalizing the domain of interest, the
solution’s correctness can be determined.

. Multiple strategies and solution correctness cannot be verified automat-

tcally — In this class, solutions to problems cannot be verified automat-
ically. This can occur, for instance, if a criterion for good solutions
should be considered such as ‘useful’ or ‘acceptable’ by a large number

7.2. PUTTING THINGS INTO PERSPECTIVE 137

of stakeholders. An example of such a problem is: ‘Develop the most
user-friendly calculator to calculate return on investment.” While the

calculation can be verified using test cases, aspects as ‘user-friendly’
are ill-defined.

Another example is modeling a UML class diagram, where the domain
of interest is ill-defined.

Then, Le et al. discuss for each class a number of approaches to build intel-
ligent educational systems producing (valuable) feedback. Feedback on the
first category is simple: to check correctness of a solution, the system sim-
ply needs to compare the student’s solution against a pre-specified value.
For the second class, model-based and constraint-based modeling (CBM)
techniques are successfully used, often supplemented with a set of buggy
rules. Producing feedback for the third class is much harder, but recently
some approaches have been developed. Examples are the 1TSs developed
in the IDEAS project, in which multiple strategies can be detected. Other
techniques mentioned are machine learning and (other) soft computing tech-
niques. Furthermore, the model- and ¢BM-based approaches from class two
can be used too, however developing these for problems from this class is
very labor intensive and error prone. Solutions for problems in class four
are rarely found. The authors report about three approaches based on data
mining techniques and knowledge discovery techniques. A disadvantage of
these techniques is that they are error prone. For class five problems, which
are very hard, no 17Ss are known. Instead, e-learning systems supporting
for example peer reviews by humans and collaborative argumentation are
reported. Disadvantage of these approaches are the asynchronous character,
which causes feedback to be delayed, and the costly peer reviews. In conclu-
sion, solving problems in the first three classes can often be supplied with
valuable feedback. For problems in classes four and five, this is often very
difficult or even impossible.

The classification of Le et al. corresponds with our classification in chap-
ter 2 (see figure 2.2). Solution verifiability corresponds with the degree of
definedness of the domain of interest. For a well-defined domain of interest,
as for example an XML-document, we are able to verify the correctness of
the model (the XML content model) against that domain. For an ill-defined
domain of interest, as for example an ambiguous textual description of a
certain business process, we are not able to verify the correctness of the
model (for example a UML class diagram) against that domain. Due to the
ambiguous domain description, many interpretations are possible.

The number of alternative strategies and the implementation variability

138 CHAPTER 7. EPILOGUE AND FUTURE WORK

of each strategy correspond with the degree of definedness of a task. For
tasks which are algorithmic, even when a number of algorithms can be ap-
plied in combination, valuable feedback can be generated about the steps a
student takes. Examples are solving a system of linear equations and mod-
eling a precise XML content model. For tasks for which only some rules of
thumb exist, we are not able to generate valuable feedback about the solving
process. Depending on the defindedness of the domain of interest, only the
final model can be verified on correctness.

In our classification, a third dimension definedness of the modeling lan-
guage is added. This is important, because only on models expressed in
a language with a clear semantics we can produce valuable feedback. On
models expressed in, for example, natural language, this is very difficult or
even impossible due to the ambiguity of the language.

In our opinion, there are two main directions to solve the problem of un-
definedness in 1TSs for practicing modeling and as a consequence the ability
to generate automatically valuable feedback:

1. Narrowing the solution space — For educational purposes, by doing
some preparatory work, we can transform an ill-defined domain of in-
terest into a more well-defined domain. This preparatory work is a
movement along the axis Domain of interest from ill-defined to well-
defined. In practice, this means presenting a description of the domain
of interest in a (more) formalized, and thus less ambiguous, way. An
example is the generation of a textual description of a domain of in-
terest based on an ontology. A sentence as ‘The hunter shoots the
rabbit with his gun’ becomes for example something like ‘A rabbit has
a gun. A hunter shoots the rabbit. The hunter shoots with the rabbit’s
gun’. Another example is the restriction on options for naming classes
and attributes in a UML class diagram. If only highlighted words in a
textual description can be used, the variability of the solution space
is considerably narrowed down. By doing this preparatory work, the
possibilities for verifying a student’s model solution increases at the
cost of the authenticity of the task and the complexity of the task. As
a consequence, modeling tasks with a formalized domain of interest
are especially usable in first year courses.

2. Narrowing the task space — For some modeling tasks, there exist a
schema of how to develop such a model. Unfortunately, most modeling
tasks are ill-defined. For these problems, there is no known algorithm
of how to develop such a model in a controlled and stepwise way.
Sometimes, only some rules of thumb exist.

7.3. FUTURE WORK 139

In some cases, the task space of a modeling problem can be narrowed
by developing a schema describing how such a model can be developed,
i.e. a description of the initial state as precondition, the goal state,
and a strategy in the form of an algorithm, procedure, or rules of
thumb. We have seen an example of this in chapter 6. Until recently,
modeling an XML content model was an ill-defined task. Now we have
a well-defined schema of how to develop such a model stepwise and in a
controlled manner. As a result, modeling a precise XML content model
is moved along the modeling task axis from ill-defined to well-defined.
This has two considerable advantages. First, modeling a precise XML
content model is moved from class four, where we consider a ‘trial-and-
error’ approach as ‘a great variety of strategies beyond the anticipation
of a teacher’, to class two in Le’s et al. classification. As a result, we
are able to generate automatic feedback on this modeling task. Second,
we can now teach students how to develop such a model in an efficient
and effective way.

7.3 Future work

We conclude with some suggestions for further work. We see two main
directions, namely narrowing the task space and the further development of
technology. Looking to figure 2.3, the first one focuses especially on the task
ontology, the second one on the feedback engine, the player, and the author
tool.

Narrowing the task space. The discussion so far makes clear that ‘no
schema’ means ‘no feedback’ and ‘the more defined a schema’, ‘the more
valuable the feedback can be’. In other words, a well-defined schema is
an important condition for producing valuable feedback, with or without an
ITs. We expect that in many cases rules of thumb, and sometimes procedures
or even algorithms, can be developed for certain types of models. In case
of a procedure or an algorithm, which are preferable, feedback is possible
on the steps taken as well as on the intermediary models and final model.
Otherwise, rules of thumb are often possible. We expect that rules of thumb
in the form of phase-by-phase prescriptions, i.e. what a student has to do and
in what order, are promising. Although feedback on the steps taken within
a phase cannot often be analyzed automatically, we expect nonetheless that
the intermediate models can often be analyzed by using model tracing and
CBM techniques.

140 CHAPTER 7. EPILOGUE AND FUTURE WORK

An example is, although in the domain of program design instead of
modeling, the design recipe Felleisen et al. use in their book How To Design
Programs (2001). This recipe for developing functions consists of seven
phases.

1. Define the signatures of a function name, the number and types of
input parameters, and the type of the output parameter.

Describe the purpose of the function shortly.

Define some examples as test cases using the signature.
Define a stub.

Develop a template for the function body.

Define the function body using the template and the examples.

I T i

Test the function.

Such a recipe provides some guidance for a process that can often appear to
be overwhelming for a student. For the teacher, intermediary products are
visible, which can be inspected so that immediate feedback can be given to
the student. Currently, we are developing a phase-by-phase description for
modeling thread based programs.

Development of technology. The prototypes described in the chapters
3, 4, and 5 can be further developed.

As is described in chapter 3, the technology developed in the IDEAS
project for generating feedback on well-defined tasks is in an advanced stage.
This technology can be applied in other domains than mathematics and
programming, which will probably bring new problems to solve.

The schema-analysis technique described in chapter 4 is in a prototype
stage and can be applied in real author environments. Furthermore, the
technique can be used to define constraints on other artifacts such as UML
class diagrams.

The framework for supporting different modeling languages can be fur-
ther developed. The UML class diagram notation can be implemented includ-
ing structures such as generalization, specialization, inheritance, etcetera,
with corresponding functions for analyzing meta-model errors and semantic
errors. Next, a second language for modeling structural aspects, as for ex-
ample ER-notation, can be implemented. The interesting question is then,
to which extent the central model can support a model expressed in these
two languages.

Bibliography

[1]

W. van der Aalst and C. Stahl. Business Process Modeling, A Petri
Net-oriented Approach. MIT Press, 2011. pages 1, 12

R.J. Abbott. Program design by informal english descriptions. Com-
mun. ACM, 26(11):882-894, November 1983. pages 16

J.R. Anderson. Rules of mind. Lawrence Erlbaaum Association, Hills-
dale, NJ, 1993. pages 47

J.R. Anderson, C.F. Boyle, R. Farrell, and B.J. Reisser. Cognitive
principles in the design of computer tutors. In P. Moris, editor, Mod-
eling cognition, pages 93-134. Wiley, New York, 1987. pages 35, 47

J.R. Anderson, A.T. Corbett, K.R. Koedinger, and R. Pelletier. Cog-
nitive Tutors: Lessons learned. The journal of learning sciences,
4(2):167-207, 1995. pages 35, 47

L. Aroyo and D. Dicheva. Courseware Authoring Tasks Ontology.
In Proceedings of the International Conference on Computers in Ed-
ucation, ICCE 02, pages 13-19, Washington, DC, USA, 2002. IEEE
Computer Society. pages 57

L. Aroyo and D. Dicheva. Authoring support in concept-based web
information systems for educational applications. J. Cont. Engineering
Education and Lifelong Learning, 14(3), 2004. pages 96

L. Aroyo and D. Dicheva. The new challenges for e-learning: The edu-
cational semantic web. Educational technology and Society, 7(4):59-69,
2004. pages 96

L. Aroyo and R. Mizoguchi. Towards Evolutional Authoring Support
Systems. Journal of interactive learning research, 15(4):365-387, 2004.
pages 84, 96

141

142

[10]

[11]

[15]

[18]

[19]

BIBLIOGRAPHY

F. Baader and T. Nipkow. Term rewriting and all that. Cambridge
university press, 1999. pages 118

F. Backstrom and A. Ivarsson. Meta-Model Guided Error Cor-
rection for UML Models. http://www.ep.liu.se/undergraduate/
abstract.xsql?dbid=8746, 2006. pages 114

N. Baghaei and A. Mitrovic. Evaluating a Collaborative Constraint-
based Tutor for UML Class Diagrams. In AIED, pages 533-535, 2007.
pages 56

N. Baghaei, A. Mitrovic, and W. Irwin. Problem-solving Support
in a Constraint-based Tutor for UML Class Diagrams. Technology,
Instruction, Cognition and Learning, 4, 2006. pages 50, 56

M. Balaban, A. Maraee, and A. Sturm. Management of Correct-
ness Problems in UML Class Diagrams Towards a Pattern-Based Ap-
proach. International Journal of Information System Modeling and
Design (IJISMD), 1(4):24-47, 2010. pages 115

B. Beckert, U. Keller, and P.H. Schmitt. Translating the Object Con-
straint Language into first-order predicate logic. In Proceedings, VER-
IFY, Workshop at Federated Logic Conferences (FLoC), Copenhagen,
Denmark, 2002. pages 114

M. Beeson. Design Principles of Mathpert: Software to support ed-
ucation in algebra and calculus. Kajler, N. (ed.) Computer-Human
Interaction in Symbolic Computation, pages 89-115, 1998. pages 48,
64, 68, 77, 81

G.J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning de-
terministic regular expressions for the inference of schemas from XML
data. In International Conference on World Wide Web, pages 825-834.
ACM, 2008. pages 124

G.J. Bex, W. Martens, W. Gelade, and F. Neven. Simplifying XML
Schema: Effortless Handling of Nondeterministic Regular Expressions.
In International Conference on Management of Data, pages 731-744.
ACM, 2009. pages 132

C. Bokhove, A. Heck, and G.J. Koolstra. Intelligent feedback to digital
assessments and exercises (in dutch). Euclides, pages 70-74, February
2005. pages 76, 81

BIBLIOGRAPHY 143

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

C. Bokhove, G.J. Koolstra, P. Boon, and A. Heck. Towards an in-
tegrated learning environment for mathematics. In E. Milkova and

P. Prazék, editors, 8th International Conference on Technology in
Mathematics Teaching (ICTMTS), 2007. pages 76

G. Booch, 1. Jacobson, and J. Rumbaugh. The UML specification
documents. Santa Clara, CA: Rational Software Corp. See documents
at www.rational.com, 1997. pages 1

P. Boradkar. Design as Problem Solving. In R. Frodeman, J. Thomp-
son Klein, and C. Mitcham, editors, The Ozxford Handbook of Interdis-
ciplinarity. Oxford University Press, Oxford, 2010. pages 10

M. Broyl, M. Crane, A. Dingel, J. Hartman, B. Rumpe, and B. Selic.
2nd UML 2 Semantics Symposium: Formal Semantics for UML. In
T. Kuhne, editor, MoDELS 2006 Workshops, pages 318-323. Springer-
Verlag, 2007. pages 33

A. Bruggemann-Klein. Regular expressions into finite automata. The-
oretical Computer Science, 120:87-98, 1993. pages 124

A. Bruggemann-Klein and D. Wood. One-unambiguous Regular Lan-
guages. Information and Computation, 140:229-253, 1998. pages 123,
124

P. Brusilovsky. Developing adaptive educational hypermedia systems:
From design models to authoring tools. In T. Murray, S. Blessing,
and S. Ainsworth, editors, Authoring Tools for Advanced Technology
Learning Environment, pages 377-409. Kluwer Academic Publishers,
2003. pages 97

A. Bundy. The Computer Modelling of Mathematical Reasoning. Aca-
demic Press, 1983. pages 22, 132

J. Carter. Instructional learner feedback: A literature review with
implications for software development. The Computing Teacher, pages
53-55, December 1984. pages 9

D. Charsky. From Edutainment to Serious Gaming: A change in the
use of game characteristics. Games and Culture, 5 (2):177-198, 2010.
pages 22

P. Chen. The Entity-Relationship Model: Toward a Unified View of
Data. ACM Transactions on Database Systems, 1:9-36, 1976. pages
1, 99

144

[31]

[32]

[33]

[34]

[37]

[38]

BIBLIOGRAPHY

I[. Chudov. Linear system solver (using determinant). http://www.
algebra.com/algebra/homework/coordinate/linear.solver, 2004.
pages 77

A. Cohen, H. Cuypers, E. Barreiro, and H. Sterk. Interactive mathe-
matical documents on the web. Algebra, Geometry and Software Sys-
tems, pages 289-306, 2003. pages 80

A.M. Cohen, H. Cuypers, D. Jibetean, and M. Spanbroek. Interac-
tive learning and mathematical calculus. In Mathematical Knowledge
Management, 2005. pages 77

V.B. Cohen. A reexamination of feedback in computer-based instruc-
tion: Implications for instructional design. FEducational Technology,
25(1):33-37, 1985. pages 9

IMS Global Learning Consortium. IMS LD Specification. "http:
//www.imsglobal.org/learningdesign/index.html", April 2013.
pages 84

M.A. Constantino-Gonzalez and D. Suthers. A Coached Collaborative
Learning Environment for Entity-Relationship Modeling. In C. Gauth-
ler, C. Frasson, and K. VanLehn, editors, Intelligent Tutoring Systems,
Proceedings of the 5th International Conference (ITS 2000), pages
324-333. Springer, 2000. pages 51

AT. Corbett and K.R. Koedinger. Intelligent Tutoring Systems. In
M. Helander, T.K. Landauer, and P. Prabhu, editors, Handbook of
Human-Computer Interaction, pages 849-874. Elsevier Science B.V.,
1997. pages 22

A. Cristea. Authoring of Adaptive Hypermedia: Adaptive Hyperme-
dia and Learning Environments. In S.Y. Chen and G.D. Magoulas,
editors, Advances in Web-based Education: Personalized Learning En-
vironments. IDEA Publishing group, 2004. pages 97

B. Davey and H. Priestly. Introduction to lattices and order, 2e edition.
Cambridge University Press, 2002. pages 85, 91

N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume
B: Formal Methods and Semantics, pages 243-320. North-Holland,
Amsterdam, 1990. pages 67

BIBLIOGRAPHY 145

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. Doorman, P. Drijvers, P. Boon, S. van Gisbergen, and K. Grave-
meijer. Design and implementation of a computer supported learning
environment for mathematics. In FEarli 2009 SIG20 invited Sympo-
stum Issues in designing and implementing computer supported inquiry
learning environments, 2009. pages 80

T. Duftfy and D. Cunningham. Constructivism: Implications for the
design and delivery of instruction. In D.H. Jonassen, editor, Handbook
of research for educational communications and technology. MacMil-
lian Library Reference, New York, USA, 1996. pages 22

K. Dunbar. Problem Solving. A Companion to Cognitive Science,
pages 289-298, 1998. pages 28, 34, 40, 45

A. Egyed. Semantic abstraction rules for class diagrams. In The fif-
teenth IEEE International Conference on Automated Software Engi-
neering, 2000. pages 114

I. Erev, A. Luria, and A. Erev. On the effect of immediate feedback.
http://goo.gl/eodze, 2006. pages 9

G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl, and T. Sumner. Embed-
ding critics in design environments. In Mark T. Maybury and Wolf-
gang Wabhlster, editors, Readings in intelligent user interfaces, pages
537-561. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1998. pages 55

P. Fradet, D. Le Metayer, and D. Perin. Consistency checking for
multiple view software architectures. In Proc. of the Joint European
Software Engineering Conference and Symp. on Foundations of Soft-
ware Engineering, ESEC/FSE’99, Software Engineering Notes 24 (6)
or LNCS Vol 1687, pages 410-428, 1999. pages 114

R.M. Gagne. The Conditions of Learning and Theory of Instruction.
New York: CBS College Publishing, 1985. pages 10

G. Genova, M. Valiente, and M. Marrero. On the difference between
analysis and design, and why it is relevant for the interpretation of
models in Model Driven Engineering. Journal of Object Technology,
8:107-127, 2009. pages 7, 11

A. Gerdes. Ask-Elle: a Haskell Tutor. Gildeprint drukkerijen BV,
FEnschede, 2012. Phd thesis. pages 80

146

[51]

[52]

[53]

[54]

[55]

BIBLIOGRAPHY

M.L. Gick. Problem solving strategies. Educational psychologist, 2 /
(1 and 2):99-120, 1986. pages 34, 45

M.L. Gick and Holyak. Schema induction and analogical transfer.
Coginitive Psychology, 15:1-38, 1983. pages 33, 44

M. Gogolla and M. Richters. Transformation Rules for UML Class
Diagrams. In J. Bézivin and A. Muller, editors, UML, pages 92-106.
Springer, 1999. pages 114

G. Goguadze, A.G. Palomo, and E. Melis. Interactivity of Exercises
in Activemath. In Proceedings of the 2005 conference on Towards Sus-
tainable and Scalable Educational Innovations Informed by the Learn-
ing Sciences: Sharing Good Practices of Research, Erperimentation
and Innovation, pages 109-115, Amsterdam, The Netherlands, 2005.
IOS Press. pages 35

S. Gross, X. Zhu, B. Hammer, and N. Pinkwart. Cluster-based feed-
back provision strategies in intelligent tutoring systems. In Pro-
ceedings of the 11th international conference on Intelligent Tutoring
Systems, 1TS’12, pages 699-700, Berlin, Heidelberg, 2012. Springer-
Verlag. pages 52

G. Guri-Rosenblit. Distance Education and E-Learning: Not the Same
Thing. Higher Education, 49 (4):467-493, 2005. pages 2, 21

L. Hall and A. Gordon. A virtual learning environment for entity rela-
tionship modeling. SIGCSE Bull., 30(1):345-349, March 1998. pages
52

J. Hattie and H. Timperley. The power of feedback. Review of Edu-
cational Research, 77 (1):81-112, 2007. pages 10, 49

A. Heck and L. van Gastel. Diagnostic testing with Maple T.A. In
Electronic Library of Mathematics of the European Mathematical So-
ciety, pages 37-52. Oy WebALT Inc, 2006. pages 65, 77

B. Heeren and J. Jeuring. Canonical Forms in Interactive Exercise
Assistants. In J. Carette, L. Dixon, C. Sacerdoti, and S. Watt, editors,
Proceedings Calculemus/Mathematical Knowledge Management, LNAI
5625, pages 325-340. Springer, 2009. pages 79

B. Heeren and J. Jeuring. Adapting mathematical domain reason-
ers. In Proceedings MKM 2010, the 9th International Conference on

BIBLIOGRAPHY 147

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Mathematical Knowledge Management, LNCS 6167, pages 315-330.
Springer, 2010. pages 80

B. Heeren and J. Jeuring. Interleaving strategies. In J.I. Davenport
et al, editor, Proceedings of Calculemus/MKM 2011, LNAI 6824, pages
196-211. Springer, 2011. pages 80

B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite strategies for
interactive exercises. Mathematics in Computer Science, 3(3):349-370,
2010. pages 93, 78

M.J. Hicks. Problem solving in business and management: hard, soft
and creative approaches. Chapman and Hall, 1991. pages 29, 40

H. Highland. A taxonomy of models. SIGSIM Simuletter. Dig.,
4(2):10-17, January 1973. pages 5, 6

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979. pages 1, 14, 124

G. Hoydalsvik and G. Sindre. On the purpose of Object-Oriented
Analysis. In OOPSLA Proceedings, 1993. pages 8

M. Jackson. Problem Frames. Analyzing and structuring software de-
velopment problems. Addison-Wesley, 2001. pages 7

R. Jeffries, A. Turner, P. Polson, and M. Atwood. The processes
involved in designing software. In J.R. Anderson, editor, Cognitive
skills and there acquisition, pages 255—-283. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc., 1981. pages 45

J. Jeuring and W. Pasman. Strategy Feedback in an E-Learning Tool
for Mathematical Exercises. Technical Report UU-CS-2007-007, De-
partment of Information and Computing Sciences, Utrecht University,
2007. pages 37, 78

J. Jeuring, H. Passier, and S. Stuurman. A Generic Framework for
Developing Exercise Assistants. In In Proceedings of the 8th Interna-
tional Conference on Information Technology Based Higher Education
and Training, ITHET, 2007. pages 81

J. Jeuring and D. Swierstra. Constructing functional programs for
grammar analysis problems. In Conference Record of FPCA 95,
SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming

148

[75]

BIBLIOGRAPHY

Languages and Computer Architecture, pages 259-269, 1995. pages 88,
91

J. Jeuring and D. Swierstra. Grammars and Parsing. Universiteit
Utrecht, 2001. Lecture notes - Not published. pages 121

L. Jin, W. Chen, Y. Hayashi, M. Tkeda, R. Mizoguchi, Y. Takaoka, and
M. Ohta. An ontology-aware authoring tool - Functional structure and
guidance generation. In Proc. of AI-ED 99, Le Mans, pages 85-92. [IOS
Press, 1999. pages 57, 96

D.W. Johnson and R.T. Johnson. Cooperative learning and feed-
back in technology-based instruction. In J.V. Dempsey and G.C.
Sales (Eds.), Interactive instruction and feedback, pages 133-157, 1993.
pages 9

D.H. Jonassen. Toward a meta-theory of problem solving. Educational
Technology: Research and Development, 48(4):63-85, 2000. pages 29,
32, 40

S.P. Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. http://haskell.org/, September 2002. pages 58

H. Kaindl. Difficulties in the transition from OO analysis to design.
IEEE Software, pages 94-102, September 1999. pages 7, 8

S. Kent. Model Driven Engineering. In Michael J. Butler, Luigia
Petre, and Kaisa Sere, editors, IFFM, volume 2335 of Lecture Notes in
Computer Science, pages 286-298. Springer, 2002. pages 11

K. Koedinger and J. Anderson. Intelligent Tutoring Goes To School
in the Big City. In AIED, pages 30-43, 1997. pages 22

A. Kok, H. Pootjes, and M. Sint. Object oriented analysis and design.
Open universiteit Nederland, 2009. Lecture notes (in Dutch). pages
1,3, 16

P. Kruchten. The 441 View Model of Architecture. IEEFE Software,
12(6):42-50, November 1995. pages 6

R.W. Kulhavy and W. Wager. Feedback in programmed instruction:
Historical context and implications for practice. In J.V. Dempsey and
G.C. Sales, editors, Interactive instruction and feedback, pages 3-20.
Englewood Cliffs, New Jersey, 1993. pages 49

BIBLIOGRAPHY 149

[84]

[85]

[36]

[87]

[38]

[89]

[90]

[91]

[92]

(93]

L. Lamport. The future of computing: logic or biology, 2003. Text of
a talk given at Christian Albrechts University, Kiel. pages 117, 132

C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edi-
tion). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2009. pages
1,4, 8,12, 13, 16, 46, 99

N.T Le, F. Loll, and N. Pinkwart. Operationalizing the Continuum be-
tween Well-defined and Ill-defined Problems for Educational Technol-

ogy. IEEE Transactions on Learning Technologies, 99:1, 2013. pages
135

J. Lodder, J. Jeuring, and H. Passier. An interactive tool for manip-
ulating logical formulae. In In M. Manzano, B. Perez Lancho and A.
Gil, editors, proceedings of the Second International Congress on Tools
for Teaching Logic, 2006. pages 78, 81

C. Lynch, K. Ashley, V. Aleven, and N. Pinkwart. Defining I1l-Defined
Domains: A literature survey. In Intelligent Tutoring Systems (ITS
2006): Workshop on Intelligent Tutoring Systems for Ill-Defined Do-
mains, 2006. pages 22, 29, 40, 43, 50, 51, 54, 113

S. Maoz, J.O. Ringert, and B. Rumpe. CDDiff: semantic differencing
for class diagrams. In Proceedings of the 25th FEuropean conference
on Object-oriented programming, ECOOP’11, pages 230-254, Berlin,
Heidelberg, 2011. Springer-Verlag. pages 115

M. Marvrikis, A. Macioncia, and J. Lee. Wallis: a web-based ILE for
science and engineering students studying mathematics. Electronic
Library of Mathematics of the European Mathematical Society, 2006.
http://www.emis.de/proceedings. pages 77

R. Mayer. Thinking, problem solving, cognition. New York: Freeman,
1983. pages 44

J. McKendree. Effective feedback content for tutoring complex skills.
Human Computer Interaction, 5(4):381-413, December 1990. pages 81

E. Melis and J. Siekmann. Activemath: An intelligent tutoring system
for mathematics. In Seventh International Conference ’Artificial Intel-
ligence and Soft Computing’ (ICAISC), volume 3070 of LNAI pages
91-101. Springer, 2004. pages 80

150

[94]

[95]

[99]

[100]

[101]

[102]

BIBLIOGRAPHY

J. Mendel. A taxonomy of models used in the design process. inter-
actions, 19(1):81-85, January 2012. pages 6

T. Mens, K. Czarnecki, and P. van Gorp. A taxonomy of model trans-
formation. In Proc. Dagstuhl Seminar on "Language Engineering for
Model-Driven Software Development”. Internationales Begegnungs-
und Forschungszentrum (IBFI), Schloss Dagstuhl. Electronic, 2005.
pages 8

J.G. Merriénboer and P.A. Kirschner. Ten Steps to Complex Learning.
Routledge, 2007. pages 10, 34, 45, 46, 47, 132

B. Meyer. Touch of Class: Learning to program well with objects and
contracts. Springer, 2009. pages 132

N. Milik, M. Marshall, and A. Mitrovic. Teaching Logical Database
Design in ERM-Tutor. In M. Ikeda, K. Ashley, and T. Chan,
editors, Proceedings of Intelligent Tutoring Systems 2006, volume
4053 of Lecture Notes in Computer Science, pages 707-709. Springer,
Berlin/Heidelberg, 2006. pages 55

K.E. Miloudi, Y.L. Amrani, and A. Ettouhami. An Automated
Translation of UML Class Diagrams into a Formal Specification to
Detect UML Inconsistencies. In L. Lavazza, L. Fernandez-Sanz,
0. Panchenko, and T. Kanstrén, editors, ICSEA 2011: The Sixzth In-
ternational Conference on Software Engineering Advances, pages 432—
438, 2011. pages 115

S.K. Milton, E. Kazmierczak, and C.D. Keen. On the Study of Data
Modelling Languages using Chisholm’s Ontology. In H. Kangassalo,
T. Welzer, H. Jaakkola, I. Rozman, and E. Kawaguchi, editors, Infor-
mation Modelling and Knowledge Bases XIII, pages 19-36, Amster-
dam, 2002. IOS Press. pages 108

A. Mitrovic. NORMIT, a Web-enabled tutor for database normaliza-
tion. In Proceedings of the International Conference on Computers in
Education ICCE, pages 1276-1280, 2002. pages 54, 55, 115

A. Mitrovic and K. Hausler. An Intelligent SQL Tutor on the Web.
In International Journal of Artificial Intelligence in Education, pages
3744, 2000. pages 55, 115

BIBLIOGRAPHY 151

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

A. Mitrovic, B. Martin, P. Suraweera, K. Zakharov, N. Milik, J. Hol-
land, and N. McGuigan. ASPIRE: An Authoring System and Deploy-
ment Environment for Constraint-Based Tutors. International Journal
on Artificial Intelligence in Education, 19(2):155-188, 2009. pages 57

A. Mitrovic and A. Weerasinghe. Revisiting ill-definedness and the
consequences for ITSs. In Proceeding of the 2009 conference on Arti-
ficial Intelligence in Education, pages 375-382. Press, 2009. pages 29,
4243

A. Mitroviv, S. Ohlsson, and D. Barrow. The Effect of Positive Feed-
back in a Constraint-based Intelligent Tutor System. Computers and
Education, 60(1):264-272, January 2013. pages 10

R. Mizoguchi, K. Sinitsa, and M. lkeda. Task Ontology Design for
Intelligent Educational /Training systems. Position paper for ITS ’96,
Workshop on architectures and methods for designing cost-effective
and reusable ITSs, Montreal, 1996. pages 22, 37

N. Moha and Y.G. Guéhéneuc. On the Automatic Detection and Cor-
rection of Software Architectural Defects in Object-Oriented Designs.
In Proceedings of the 6th International ECOOP Workshop on Object-
Oriented Reengineering, 2005. pages 114

N. Moha, Y.G. Guéhéneuc, L. Duchien, and A.F. Le Meur. Decor: A
method for the specification and detection of code and design smells.
IEEFE Transactions on Software Engineering, 36(1), 2010. pages 114

A. Moller and M. Schwartzback. An Introduction to XML and Web
Technologies. Addison-Wesley, 2006. 1st edition. pages 3

J. Moore, C. Dickson-Deane, and K. Galyen. E-learning, online learn-
ing, and distance learning environments: Are they the same? Internet
and Higher Education, 14:129-135, 2011. pages 21

S. Moritz. Generating and Evaluating Object-Oriented Designs in an
Intelligent Tutoring System. Lehigh University, 2008. Phd thesis. pages
50, 51, 53

S. Moritz and G. Blank. Generating and Evaluating Object-Oriented
Designs for Instructors and Novice Students. In 9th International Con-

ference on Intelligent Tutoring Systems, Workshop on Ill-Formed Do-
mains, 2008. pages 52, 54, 55

152

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

BIBLIOGRAPHY

E.H. Mory. Feedback Research Revisited. In D.H. Jonassen (ed.),
Handbook of research for educational communications and technology,
2003. pages 1, 9, 10, 22, 49

L. Motmans. Voorkennis Wiskunde (in dutch). https:
//www.uhasselt.be/Documents/UHasselt/brochures/2010/
GeheelInhaalWiskunde.pdf. pages 34

T. Murray. Expanding the Knowledge Acquisition Bottleneck for In-
telligent Tutoring Systems. International Journal of Artificial Intelli-
gence in Education, 8:222-232, 2003. pages 56

T. Murray. An Overview of Intelligent Tutoring System Authoring
Tools: Updated Analysis of the State of the Art. Authoring tools for
advanced technology learning, pages 493-546, 2003. pages 36, 39, 50,
56, 57, 83, 84, 96

A. Newell and H.A. Simon. Human problem solving. Englewood Cliffs,
N.J.: Prentice-Hall, 1972. pages 40

S. Ohlsson and A. Mitrovic. Constraint-based knowledge representa-
tion for individualized instruction. Computer Science and Information
Systems, 3:1-22, 2006. pages 54, 115

H. Passier. A framework for feedback in e-learning systems for data
modeling. In Proceedings of the IADIS International conference.
IADIS, 2008. pages 19, 99

H. Passier. Notes on modeling XML content models. Technical report,
Faculty of Informatics, Open Universiteit Nederland, 2010. pages 19

I. Passier and B. Heeren. Modeling XML Content Explained. Tech-
nical report, Department of Information and Computing Sciences,
Utrecht University, 2011. pages 19, 117

H. Passier and B. Heeren. Modeling XML content models explained.
In In proceedings of the MCCSIS. TADIS, 2011. pages 19

H. Passier and J. Jeuring. Ontology-based feedback generation in
design-oriented e-Learning systems. In Proceedings of the IADIS In-
ternational conference, pages 992-996. IADIS, 2004. pages 18, 21

H. Passier and J. Jeuring. Using Schema Analysis for Feedback in
Authoring Tools for Learning Environments. In Artificial Intelligence

BIBLIOGRAPHY 153

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]

[134]

i Fducation, AIED, volume 125, pages 911-914. 10S Press, 2005.
pages 19

H. Passier and J. Jeuring. Using Schema Analysis for Feedback in
Authoring Tools for Learning Environments (extended version). In
A. Cristea, R. Carro, and F. Garzotto, editors, Proceedings of the
Third International Workshop on Authoring of Adaptive and Adaptable
Educational Hypermedia, ASEH, pages 13-20, 2005. pages 19, 83

H. Passier and J. Jeuring. Feedback in an interactive equation solver.
In Proceedings of the Web Advanced Learning Conference and FEzhibi-
tion, WebALT 2006, pages 53-68. Oy WebALT Inc, 2006. pages 19,
61

C.A. Petri. Kummunikation mit Automaten. PhD thesis. Bonn, In-
stitut fiir instrumentelle Mathematik, 1962. pages 1

G. Polya. How to solve it. Penguin Mathematics, 1985. pages 34, 45

P. Rosmalen. Supporting the tutor in the design and support of adaptive
e-learning. Datawyse, Maastricht, 2008. Phd thesis Open universiteit
Nederland. pages 22

J. Rumbaugh, 1. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1999. pages 13

S. Russell and P. Norvig. Artificial intelligence. A modern approach.
Prentice Hall International, 1995. pages 37, 85, 106

G.C. Sales. Adapted and adaptive feedback in technology-based in-
struction. In J.V. Dempsey and G.C. Sales, editors, Interactive in-
struction and feedback, pages 159-175. Englewood Cliffs, New Jersey,
1993. pages 9, 49

K. Satoh, K. Kaneiwa, and T. Uno. Contradiction Finding and Min-
imal Recovery for UML Class Diagrams. In Proceedings of the 21st
IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 06, pages 277-280, Washington, DC, USA, 2006. IEEE
Computer Society. pages 115

J. Schramm, S. Strickroth, N. Le, and N. Pinkwart. Teaching UML
Skills to Novice Programmers Using a Sample Solution Based Intel-
ligent Tutoring System. In G. Michael Youngblood and Philip M.
McCarthy, editors, FLAIRS Conference. AAAT Press, 2012. pages 52

154

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

BIBLIOGRAPHY

A. Shalloway and J. Trott. Design patterns explained. Addison Wesley,
2002. pages 16

M. Sint, A. Herrewijn, A. Kok, and M. Witsiers. Object oriented
programming with Java 2. Open universiteit Nederland, 2009. Lecture
notes (in Dutch). pages 1, 3

P.L. Smith and T.J. Ragan. Designing instructional feedback for dif-
ferent learning outcomes. In J.V. Dempsey and G.C. Sales, editors,
Interactive instruction and feedback, pages 75-103. Englewood Cliffs,
New Jersey, 1993. pages 10, 33, 35, 36, 44, 49

M.R. Sobel, A.E.K.and Clarkson. Formal Methods Application: An
Empirical Tale of Software Development. IEEE Transactions on Soft-
ware Engineering, 28:308-320, 2002. pages 132

Softmath. Algebrator-algebra help software. http://www.softmath.
com, 2013. pages 77

I. Sommerville. Software Engineering. Addison-Wesley, Harlow, Eng-
land, 9th edition, 2010. pages 5, 6

J.F. Sowa. Knowledge representation: Logical, philosophical, and com-
putational foundations. Brooks/Cole, USA, 2000. pages 37

L. Stojanovic, S Staab, and R. Studer. eLearning based on the Se-
mantic Web. In WebNet2001 - World Conference on the WWW and
Internet, pages 23-27, 2001. pages 96

S. Stoyanov. Mapping in the educational and training design. Print
partners Ipskamp, Enschede, Nederland, 2001. Phd thesis university
of Twente, Enschede. pages 10, 22, 28, 40

M. Striewe and M. Goedicke. Automated checks on UML diagrams.
In Proceedings of the 16th annual joint conference on Innovation and

technology in computer science education, I'TiICSE ’11, pages 38-42,
New York, NY, USA, 2011. ACM. pages 51, 55, 113, 115

P. Suraweera and A. Mitrovic. KERMIT: A Constraint-based Tutor
for Database Modeling. In Proc. 6th Int. Conf on Intelligent Tutoring
Systems I'TS 2002, pages 377-387, 2002. pages 55, 116

S.D. Swierstra and L. Duponcheel. Deterministic, Error-Correcting
Combinator Parsers. In Advanced Functional Programming, pages
184-207. Springer-Verlag, 1996. pages 69

BIBLIOGRAPHY 155

[147] B. Tekinerdogan. Synthesis-based software architecture design. Print
partners Ipskamp, Enschede, Nederland, 2000. Phd thesis university
of Twente, Enschede. pages 10

[148] O.D. Temur. Analysis of Prospective Classroom Teachers’ Teaching
of Mathematical Modeling and Problem Solving. Furasia Journal of
Mathematics, Science and Technology Education, 8 (2):83-93, 2012.
pages 10

[149] D.C. Tsichritzis and F.H. Lochovsky. Data models. Prentice-Hall Soft-
ware Series, 1982. pages 106

[150] S.A. Tucker. Evaluation as feedback in instructional technology: The
role of feedback in program evaluation. In J.V. Dempsey and G.C.
Sales (Eds.), Interactive instruction and feedback, pages 301-342, 1993.
pages 9

[151] J. Ullman and A. Aho. Foundations of Computer Science. Out of print,
1992. http://infolab.stanford.edu/ ullman/focs.html. pages 10

[152] A Van Gundy. Techniques of structured problem solving. New York:
Van Nostrand, 1997. pages 29, 42

[153] J. in 't Veld. Analyse van organisatieproblemen. Elsevier, 1983. pages
25

[154] W3C. Resource Description Framework (RDF), 2004. pages 37, 84

[155] J. Warmer and A. Kleppe. The Object Constraint Language: Getting
Your Models Ready for MDA (2nd Edition). Addison Wesley, 2003.
pages 99

[156] D.A. Watt and D.F. Brown. Programming language processors in Java.
Prentice Hall, 2000. pages 123

[157] L. Wiegerink, J. Bijpost, M. de Groot, D. Oosten, and L. Hozeman.
Databases. Open universiteit Nederland, 2009. Lecture notes (in
Dutch). pages 1

[158] L. Wiegerink, H. Pootjes, and H. Passier. XML: Theory and applica-
tions. Open universiteit Nederland, 2008. Lecture notes (in Dutch).
pages 1, 3

156 BIBLIOGRAPHY

[159] J.M. Wing. Weaving Formal Methods into the Undergraduate Com-
puter Science Curriculum. In Proceedings of AMAST, pages 29, 2000.
pages 132

[160] J. van der Woude. Process modeling. Open universiteit Nederland,
2011. Lecture notes (in Dutch). pages 1

[161] K. Zakharov, A. Mitrovic, and S. Ohlsson. Feedback Micro-engineering
in EER-Tutor. In AIED, pages 718-725. Press, 2005. pages 55

Samenvatting

In deze samenvatting geef ik een overzicht van het onderzoek waaraan ik de
afgelopen jaren heb gewerkt. Tk veronderstel daarbij geen specifieke voor-
kennis. Het onderzoek gaat over het automatisch produceren van feedback
tijdens het maken van modellen. Deze modellen worden gebruikt voor het
ontwikkelen van computerprogramma’s. Ik zal eerst uitleggen wat met ‘mo-
dellen’ en ‘feedback’ wordt bedoeld. Daarna leg ik in het kort de probleem-
stelling uit. Hier zal duidelijk worden dat automatische feedback belangrijk
is. Vervolgens presenteer ik een raamwerk waarmee we feedback automatisch
kunnen produceren. In dit onderzoek is niet dit hele raamwerk ontwikkeld.
In plaats daarvan zijn vier aspecten van dit raamwerk onderzocht en uit-
gewerkt. In de rest van deze samenvatting wordt ingegaan op deze vier
aspecten.

Modellen

Laten we beginnen met een voorbeeld van een model. Stel, we willen een
computerspel maken. In het spel moet een politieagent een boef vangen.
Om ervoor te zorgen dat het spel levensecht wordt, interviewen we een poli-
tieagent. In het interviewverslag komt de volgende zin voor: ‘De agent schiet
de boef met zijn pistool neer’. Hiervan maken we een model dat later wordt
gebruikt om het computerprogramma mee te maken. Figuur 8.1 toont het
resultaat.

Figuur 8.1 is een klassendiagram. Een klassendiagram wordt gemaakt met
behulp van een modelleertaal. In deze taal beschrijven we de wereld in
termen van klassen en relaties tussen deze klassen. In figuur 8.1 zien we drie
klassen, namelijk Agent, Boef en Pistool. Elke klasse wordt gekarakteriseerd
door zijn attributen. Zo hebben een agent en een boef een naam en heeft
een pistool een kaliber. Verder zien we drie relaties, namelijk ‘schiet neer’,
‘eigenaar van’ en ‘schiet met’. Aan beide uiteinden van elke relatie staat

157

158 SAMENVATTING

Agent 1 schiet_neer 1 Boef
- naam: String - naam: String
1 1
eigenaar_van schiet met
1 1
Pistool
- kaliber; Getal

Figuur 8.1: Een voorbeeld model

een getal. Kijken we naar de relatie ‘schiet neer’, dan moeten we dit lezen
als: ‘Elke agent schiet één (de rechter één) boef neer’ en ‘Elke boef wordt
neergeschoten door één (de linker één) agent’. Het model zegt verder dat elke
agent eigenaar is van één pistool en dat een agent schiet met zijn pistool.

Modellen zijn belangrijk bij het ontwerpen van een computerprogramma.
Een computerprogramma bestaat al snel uit honderden, zo niet duizenden
regels programmacode en het is erg lastig om daar het overzicht in te houden.
In een model kunnen we ons gemakkelijker concentreren op de grote lijnen en
kunnen we allerlei details eenvoudig weglaten. Verder kan aan de hand van
een model als in figuur 8.1 beter gecommuniceerd worden met bijvoorbeeld
een inhoudsdeskundige dan aan de hand van programmacode die over het
algemeen moeilijk is te lezen door een niet-programimeur.

Er bestaan verschillende typen modellen. Zo zijn er modellen voor het
vastleggen van de structuur van een computerprogramma (figuur 8.1), het
gedrag van een computerprogramma en de context waarin een computerpro-
gramma wordt gebruikt. Een andere belangrijke indeling is het onderscheid
tussen analyse- en ontwerpmodellen. De eerste worden vooral gebruikt om
‘de wereld die we willen vastleggen in een computerprogramma’ beter te
begrijpen. Modellen van de tweede soort worden gebruikt om het compu-
terprogramma te ontwerpen. Er is een groot aantal modelleertalen, zowel

'!Om aan te geven dat de agent schiet met zijn of haar eigen pistool moeten we nog
een extra OCL constraint toevoegen. We laten dit nu buiten beschouwing

159

grafische talen als talen die meer wiskundig van aard zijn.

Elke taal kent zowel een syntaxis als een semantiek. De syntaxis geeft
aan wanneer een taal ‘netjes’ wordt gebruikt. Zo schrijven we in het Neder-
lands ‘hij loopt’ in plaats van ‘hij loop’. Ook elke modelleertaal heeft zo een
set aan regels die gevolgd moet worden. In het klagssendiagram in figuur 8.1
moet elke klasse bijvoorbeeld een naam hebben en moet elke relatie verbon-
den zijn met twee klassen. De semantiek geeft aan hoe we de taal moeten
interpreteren. Zo betekent een klasse in een klassendiagram een verzameling
objecten van eenzelfde soort (bijvoorbeeld de klasse Agent geeft aan dat er
agenten bestaan met elk een eigen naam).

Doordat elk taalelement een bepaalde betekenis heeft, heeft een model
als geheel ook een bepaalde betekenis. We hebben net gezien hoe we het
model in figuur 8.1 moeten interpreteren. Duidelijk zal zijn dat een model
als in figuur 8.1 meer eenduidig is dan een beschrijving in natuurlijke taal.
Bijvoorbeeld de zin ‘De agent schiet de boef met zijn pistool neer ’ kan op
drie manieren worden geinterpreteerd?! Het model in figuur 8.1 representeert
één van deze interpretaties.

Hiermee hebben we gelijk een probleem te pakken: Hoe weten we nu of
de semantiek van een model juist is? In ons geval is er maar één manier om
daar achter te komen en dat is teruggaan naar de agent die we hebben gein-
terviewd en vragen of onze interpretatie juist is. Een andere vraag is of het
model niet eenvoudiger kan, bijvoorbeeld door het aantal modelelementen
te verminderen.

Het maken van een goed model voor een computerprogramma is vaak
moeilijk. We kunnen vandaag de dag in veel gevallen niet precies aangeven
hoe een goed model voor een computerprogramma moet worden gemaakt.
Een voorbeeld daarvan is het maken van een klassendiagram zoals in fi-
guur 8.1. Het maken van zo’n model is vooral een creatieve activiteit. Er
zijn ook uitzonderingen. In dit proefschrift wordt daarvan in hoofdstuk 6
een voorbeeld gegeven. De uitkomst is een heel precies stappenplan (ook
wel een strategie genoemd) voor één bepaald soort model; zo precies dat
als we de eisen weten die we stellen aan het model, het model automatisch
gemaakt kan worden en we gegarandeerd over een goed model beschikken.

’De drie interpretaties zijn: (1) de agent schiet met zijn eigen pistool de boef neer, (2)
de agent schiet de boef neer met het pistool van de boef, en (3) de agent schiet (met een
pistool) de boef neer die ook een pistool heeft.

160 SAMENVATTING

Feedback

Feedback is cruciaal in het onderwijs. Het meeste leer je door te doen en
te horen wat goed is gegaan en wat beter kan. Bij complexe vaardigheden,
zoals het maken van modellen voor computerprogramma’s, is het meestal
goed om direct feedback te krijgen en niet pas achteraf. Tot nu toe kan dat
eigenlijk alleen maar wanneer een docent meekijkt terwijl een student een
model maakt.

Met feedback kunnen we een proces sturen. Een bekend voorbeeld is
de thermostaat van een cv-installatie. Om een feedbacksysteem te laten
werken, zijn drie functies nodig. Ten eerste moeten we de actuele toestand
meten (de temperatuur in de huiskamer). Ten tweede moeten we een doel
hebben waar naar wordt gestreefd (bijvoorbeeld een temperatuur van 20
graden Celsius). Ten derde moeten we een regelaar hebben die de actuele
toestand vergelijkt met het doel en maatregelen neemt zodat het doel wordt
bereikt (de regelaar laat de cv gedurende een aantal minuten branden als de
temperatuur lager is dan de gewenste temperatuur).

In de onderwijssituatie die wij bestuderen, het maken van modellen voor
computerprogramma’s, wordt de actuele toestand gevormd door het finale
model en eventuele tussentijdse modellen die een student oplevert. Het doel
is dat de student een goed model maakt. Een model is goed als het zowel
syntactisch als semantisch correct is. Dat eerste, de syntaxis, is eenvoudig te
controleren. Het tweede, de semantiek, zo hebben we net gezien, is vaak las-
tig te controleren, temeer omdat veelal meerdere modellen semantisch gezien
goed zijn. De regelaar die nodig is om feedback te produceren tijdens het
maken van modellen, is veel complexer dan de regelaar in een cv-installatie:
het goed of niet goed zijn van een model hangt van veel aspecten af en ook
kan een model op verschillende manieren worden gemaakt, waarbij de ene
manier handiger is dan de andere.

Figuur 8.2 geeft preciezer aan wanneer we feedback kunnen geven in het
geval van modelleeropgaven. Om zinvol feedback te kunnen geven op het
uiteindelijke model en de stappen die daartoe zijn gezet, moet aan de vol-
gende drie eisen zijn voldaan:

e De modelleertaal moet wel-gedefinieerd zijn. We hebben in het voor-
beeld, waarin de agent de boef neerschiet, gezien dat natuurlijke taal,
zoals Nederlands, niet altijd eenduidig is. De taal ‘klassendiagram’ is
wel eenduidig.

e De modelleertaak moet wel-gedefinieerd zijn. Hieronder verstaan we
de beginsituatie, het doel dat wordt nagestreefd en de strategie die

161

Modelleartaal
wel-gedefinieerd

Probleemgebied
wel-gedefinieerd

Modelleertaak

slecht-gedefinieerd wel-gedefinieerd

slecht-gedefinieerd

slecht-gedefinieerd

Figuur 8.2: Modelleertypen

wordt gevolgd. Als bijvoorbeeld het doel niet duidelijk is, kunnen we
ook niet aangeven of dit is bereikt. Als de strategie niet is gedefinieerd,
kunnen we niet aangeven in hoeverre de aanpak volgens de beoogde
strategie is geweest.

e Het probleemgebied moet wel-gedefinieerd zijn. Als het gebied waar-
van we een model maken niet wel-gedefinieerd is, is het moeilijk om
te bepalen of het model het probleemgebied goed weergeeft. Een
voorbeeld hiervan hebben we gezien: de interviewtekst als uitgangs-
punt voor het maken van het klassendiagram is onvoldoende wel-
gedefinieerd om te bepalen of het model semantisch correct is.

Waarom is automatische feedback belangrijk?

De Open Universiteit biedt afstandsonderwijs. Het studiemateriaal bestaat
uit leer- en werkboeken met daarin opgaven en uitwerkingen. Er worden
colleges gegeven, zowel in een collegezaal als via een elektronische klas. Het
aantal colleges is beperkt. Meestal ongeveer vijftien uur per vak verdeeld
over vijf tot tien bijeenkomsten. Verder is er bij elke cursus een discussie-
groep, waarin studenten vragen kunnen stellen. Medestudenten en docenten
reageren op de vragen die gesteld worden.

Probleem is dat het aantal opgaven dat door de student gemaakt moet
worden om voldoende vaardig te worden in modelleren groot is. Bij elke

162 SAMENVATTING

| Modelleertaal |
Studentomgeving
Taak
| | Feedback
z 7 engine
[Didaktiek I
Docentomgeving
| Feedback |

Figuur 8.3: Het raamwerk

opgave wordt een uitwerking gegeven, maar bij veel opgaven zijn meerdere
goede antwoorden mogelijk. Een student die een (net iets) ander antwoord
heeft, blijft met vragen zitten als: ‘Is mijn antwoord wel goed?’” en ‘Waar ben
ik in de fout gegaan?’. Het is ondoenlijk om alle alternatieve uitwerkingen
tijdens de colleges of in de discussiegroepen te bespreken.

Een oplossing

De wens is om een elektronische omgeving aan studenten aan te bieden,
waarin zij modellen kunnen maken en waarbij automatisch direct feedback
wordt gegeven op het eindresultaat en, als het mogelijk is, op de tussen-
stappen die zijn gezet. Zo'n elektronische leeromgeving die intelligente feed-
back geeft, wordt ook wel een Intelligent Tutor Systeem (1TS) genoemd. Er
bestaan al een aantal 1TSs, bijvoorbeeld voor het maken van wiskunde- en
natuurkundeopgaven. Er zijn weinig 1TSs voor het maken van modellen voor
computerprogramma’s. Kenmerkend voor al deze 1TSs is dat per opgave, in
ons geval per model, alle fouten in het 1TS moeten worden ingevoerd die door
een student kunnen worden gemaakt. Vervolgens moet per fout bijpassende
feedback worden opgenomen. In het geval van modelleeropgaven is dit een
haast onmogelijke zaak. Dit wordt nog eens verergerd doordat er meestal
meerdere goede modellen mogelijk zijn.

Om hier een oplossing voor te bieden, stellen we het volgende raamwerk
voor (zie ook figuur 2.3 in hoofdstuk 2):

Het raamwerk bevat een omgeving waarin een student modelleeropgaven
kan maken. Er wordt feedback gegeven op het eindresultaat en zo mogelijk
op tussenliggende resultaten en de strategie die is gevolgd. Het raamwerk
biedt ook een omgeving voor de docent, waarin hij/zij modelleeropgaven kan
ontwerpen en invoeren, inclusief de antwoorden en feedback.

163

In plaats van dat de docent per opgave alle mogelijk goede antwoorden
en fouten met bijbehorende feedback invoert, voert hij/zij nu zoveel mogelijk
algemene beschrijvingen in, ook wel ontologieén genoemd, die horen bij een
bepaalde klasse van modellen. Een voorbeeld is de klasse ‘klassendiagram-

men’. Met deze ontologieén kunnen we automatisch feedback produceren.
De volgende ontologieén onderkennen we:

e Modelleertaal — Deze ontologie beschrijft de modelleertaal die wordt
gebruikt en wanneer deze netjes wordt gebruikt. Een voorbeeld is de
taal voor klassendiagrammen.

e Taak — De taakontologie beschrijft in algemene termen de opdracht
en de strategie waarmee de opdracht kan worden uitgevoerd. Voor
sommige taken beschikken we over een heel precieze strategie, voor
andere is deze strategie in de vorm van vuistregels. Verder beschrijft
de taak ook het doel dat moet worden bereikt.

e Didactiek — Deze ontologie beschrijft allerlei didactische zaken, zoals
de stapgrootte die wordt toegelaten in relatie tot de strategie, of de
student het model moet maken volgens één bepaalde strategie of dat
hij/zij zelf een strategie kan kiezen, en welke vorm van feedback wordt
gebruikt.

e Feedback — Deze ontologie beschrijft de verschillende soorten feedback
die we kunnen onderscheiden, zoals directe feedback, uitgestelde feed-
back en positieve feedback.

De gedachte is dat de ontologieén verwisselbaar zijn. Voor een andere model-
leertaal hoeven we alleen de ontologie Modelleertaal te wisselen, enzovoorts.
De feedback engine (de regelaar) observeert het model dat de student aan
het maken is en produceert op basis van de ontologieén feedback. In het ge-
val de ontologieén heel precies zijn, oftewel wel-gedefinieerd, kan de feedback
ook heel precies zijn. Belangrijk is dus dat we over deze precieze ontologieén
beschikken.

Bij het ontwerpen van cursusmateriaal en opgaven spelen veel modelleer-
aspecten een rol. Het ligt dus voor de hand om ook de docent te voorzien van
feedback wanneer hij/zij cursusmateriaal en/of opgaven aan het ontwikkelen
is.

164 SAMENVATTING

Vier onderzoeksvragen

In dit onderzoek is niet het hele raamwerk ontwikkeld en geimplementeerd.
In plaats daarvan zijn vier aspecten bekeken die in afzonderlijke hoofdstuk-
ken zijn beschreven. De onderzoeksvragen zijn de volgende:

1. Hoe kunnen we automatisch feedback produceren voor een wel-gede-
finieerde taak, een wel-gedefinieerde taal en een wel-gedefinieerd pro-
bleemgebied?

2. Hoe kunnen we een docent ondersteunen bij het ontwikkelen van bij-
voorbeeld taakontologieén, met als randvoorwaarde dat het ontwikkel-
proces flexibel blijft?

3. Hoe kunnen we meerdere modelleertalen ondersteunen?

4. Wat moet er gebeuren om van een slecht gedefinieerde taak een goed
gedefinieerde taak te maken?

In de volgende paragrafen gaan we kort op elk van deze vragen in.

1. Het oplossen van lineaire vergelijkingen

Als wel-gedefinieerde taak is in hoofdstuk 3 gekozen voor het oplossen van
een stelsel lineaire vergelijkingen. Waarschijnlijk kent u dit nog uit uw mid-
delbare schoolperiode. Een voorbeeld hiervan is:

Y =z—1

Via een aantal stappen moet dit stelsel worden herschreven naar een oplos-
sing in de volgende vorm:
y =1
{ r =2

Het oplossen van een stelsel lineaire vergelijkingen is een vorm van model-
transformeren en dit is een vorm van modelleren.

De taal (de wiskunde taal van lineaire vergelijkingen) is wel-gedefinieerd.
Elk stelsel vergelijkingen bestaat uit een aantal vergelijkingen, waarbij elke
vergelijking weer bestaat uit een linker-expressie, gevolgd door een =-teken,
gevolgd door een rechter-expressie. Elke expressie is volgens een vast aantal
regels opgebouwd uit getallen, variabelen en rekenkundige operatoren (4,
—, x of /).

Voor elk van deze niveaus kunnen we herschrijfregels definiéren. Twee
voorbeelden zijn:

165

e Voor een expressie geldt dat we twee getallen (3 4+ 5) bij elkaar op
kunnen tellen tot een getal (8).

e Op het niveau van een vergelijking geldt dat we links en rechts een-
zelfde getal mogen optellen of aftrekken. Dus x 4+ 2 = 5 kunnen we
herschrijven tot x = 3.

Voor het oplossen van een stelsel lineaire vergelijkingen kunnen we alle regels
in kaart brengen. Verder kunnen we ook de strategie heel precies definiéren.
Bekende oplosmethoden zijn de substitutiemethode en de combinatieme-
thode.

Met behulp hiervan zijn we in staat om zowel de stappen die een student
uitvoert te volgen alsook het eindresultaat te beoordelen op correctheid.
Verder zijn we in staat om heel gedetailleerd feedback te geven, zowel op
stapniveau als over de correctheid van de oplossing. Een ander groot voor-
deel is dat we niet alleen feedback geven op slechts één opgave, maar op alle
opgaven die deel uitmaken van de klasse ‘het oplossen van lineaire vergelij-
kingen’.

2. Schema-analyse

Het ontwerpen en implementeren van cursusmateriaal in een elektronische
leeromgeving is ingewikkeld, tijdrovend en foutgevoelig. Om het aantal fou-
ten te verminderen en om een docent te helpen, zouden we gebruik kunnen
maken van templates. Via zo’n template wordt een docent gedwongen om
bepaalde velden in te vullen en hierbij een bepaalde volgorde aan te houden.
Nadeel van deze aanpak is dat het weinig flexibel is: een docent kan alleen
maar het template volgen en dus zijn alternatieve ontwerpen en implemen-
taties niet mogelijk. Verder moet bij een nieuwe vorm van onderwijs het
template flink worden aangepast.

In hoofdstuk 4 introduceren we schema-analyse als techniek om cursus-
materiaal te controleren op bepaalde eigenschappen. Als voorbeeld zijn een
aantal functies geimplementeerd die controleren of begrippen die in het cur-
susmateriaal worden gebruikt aan bepaalde eisen voldoen. Deze eisen zijn:
compleetheid (worden alle begrippen die worden gebruikt wel ergens gedefi-
nieerd), tijdigheid (worden de begrippen wel op tijd gedefinieerd), recursivi-
teit (zijn er begrippen die in termen van zichzelf zijn gedefinieerd), correct-
heid (zijn de termen de worden gebruikt in de cursus correct ten opzichte
van een domeinontologie), synoniemen (zijn er begrippen met verschillende
namen, maar met eenzelfde definitie) en homoniemen (zijn er begrippen met
eenzelfde naam, maar met verschillende definities).

166 SAMENVATTING

Het voordeel is dat een docent nu zijn/haar eigen cursusmateriaal kan
ontwikkelen en dat deze functies het uiteindelijke resultaat controleren op
algemene eigenschappen. Verder zijn deze functies eenvoudig aan te passen,
aan en uit te zetten en aan te vullen met andere functies.

3. Het ondersteunen van meerdere modelleertalen

Studenten moeten meestal meerdere modelleertalen leren, bijvoorbeeld een
grafische (zoals de taal voor klassendiagrammen) en een meer wiskundige
taal. Nu betekent het veranderen van modelleertaal het volledig opnieuw
implementeren van alle opgaven in een ITS, terwijl bijvoorbeeld de taak
hetzelfde blijft.

In hoofdstuk 5 introduceren we een raamwerk waarin meerdere model-
leertalen worden ondersteund en beschrijven we aan welke eisen moet wor-
den voldaan als dit raamwerk wordt gebruikt. In het raamwerk wordt onder-
scheid gemaakt tussen syntaxisfouten, semantiekfouten en metamodelfouten.
De eerste twee zijn eerder besproken. Een voorbeeld van een metamodelfout
is inconsistentie, bijvoorbeeld als een model enerzijds aangeeft dat een auto
drie wielen heeft en anderzijds minstens vier.

Het raamwerk gaat ervan uit dat we per taak één referentiemodel als
modeluitwerking hebben, dat door de docent wordt gemaakt. Dit referen-
tiemodel is gemaakt in een taal die genoeg uitdrukkingskracht heeft om alle
talen waarin studenten moeten modelleren te kunnen ondersteunen. Verder
zijn er functies die een model, gemaakt door een student, vertalen naar de
taal waarin het referentiemodel is gemaakt. Na deze vertaling kan het mo-
del, gemaakt door de student, worden vergeleken met het referentiemodel,
waarmee de semantiek wordt gecontroleerd en worden geanalyseerd op me-
tamodelfouten. Voordelen zijn dat er nu slechts één set aan analysefuncties
nodig is en dat er per taak maar één referentiemodel nodig is. Nadeel is dat
als er een modelleertaal bijkomt waarmee studenten moeten oefenen, er voor
deze taal eigen vertaalfuncties moeten worden toegevoegd die het model, ge-
maakt door een student, vertalen naar de taal waarin het referentiemodel is
gemaakt.

Van het raamwerk is alleen een eerste prototype geimplementeerd, na-
melijk het klassendiagram.

4. Van slecht - naar goed gedefinieerde taken

In hoofdstuk 6 laten we zien wat het betekent om van een slecht-gedefinieerde
taak een goed-gedefinieerde taak te maken. Als voorbeeld is het modelleren

167

van XML content modellen genomen. We gaan hier verder niet in op wat
voor modellen dit zijn.

Bekend was al dat dit soort modellen beschreven worden in een wiskun-
dige taal, namelijk de reguliere-expressie taal. In bijna alle boeken over XML
wordt hiervan geen gebruik gemaakt. Ook wordt in de boeken over XML
geen strategie gegeven om deze modellen te maken. Studenten moeten dus
op creatieve wijze deze modellen maken. De praktijk heeft uitgewezen dat
nogal wat van deze modellen semantisch niet correct zijn.

Omdat XML content modellen worden uitgedrukt in de reguliere-expressie
taal, is de modelleertaal wel-gedefinieerd. Vervolgens zijn alle nodige regels
geinventariseerd om zo’n content model te herschrijven naar een bepaalde
eindvorm (het doel waarnaar we streven). Daarnaast worden er twee eind-
vormen onderkend en is er voor elk van deze eindvormen een eigen strategie
ontwikkeld.

Hiermee is het modelleren van XML content modellen een voorbeeld dat
in figuur 8.2 is verschoven langs de as Modelleertaak van slecht- naar wel-
gedefinieerd. Dit heeft twee belangrijke voordelen. Ten eerste kunnen we
nu gedetailleerd feedback geven, zowel op het uiteindelijke resultaat als ook
op de tussenstappen. Ten tweede kunnen we studenten leren hoe op een
efficiénte en effectieve manier dit soort modellen gemaakt kunnen worden.

168 SAMENVATTING

Dankwoord

Als eerste dank ik mijn promotor Lex Bijlsma. Ik ben zeer vereerd onder
zijn begeleiding dit proefschrift te hebben mogen schrijven. Het was Lex
die aangaf dat ik een proefschrift kon schrijven op basis van de artikelen die
ik de afgelopen jaren heb geschreven. Hiermee was het mogelijk om binnen
afzienbare tijd dit proefschrift af te ronden.

Ik dank Johan Jeuring en Bastiaan Heeren. Zij zijn mede-auteur van
enkele artikelen. Beiden hebben mij geintroduceerd in het Informatica-
onderzoek en hebben mij veel geleerd, onder andere op het gebied van func-
tioneel programmeren en het schrijven van artikelen.

Een aantal mensen heeft op dit proefschrift of delen hiervan commen-
taar gegeven. Sylvia Stuurman en Lex Bijlsma hebben het hele proefschrift
minutieus doorgenomen, Lloyd Rutledge heeft hoofdstuk één becommenta-
rieerd, en Bert Eldering, Nynke Kooistra en Diede Passier hebben de Neder-
landstalige samenvatting gelezen. De artikelen die ten grondslag liggen aan
dit proefschrift zijn becommentarieerd door Lex Bijlsma, Bastiaan Heeren,
Johan Jeuring, Josje Lodder en Frans Mofers. Mijn dank hiervoor. QOok
dank ik de leden van de promotiecommisie, te weten Erik Barendsen, Marko
van Eekelen, Bastiaan Heeren, Stef Joosten en Ruurd Kuiper. Zij hebben in
korte tijd het proefschrift gelezen en waardevolle commentaren gegeven.

Ik dank Harold Pootjes voor de vele inspirerende discussies die we de
afgelopen jaren hebben gevoerd. Naast dat deze discussies invloed hebben
gehad op de inhoud van dit proefschrift, hebben ze ook tot een aantal lees-
groepen binnen ons domein Softwaretechnologie geleid en vormen ze mede
een basis voor het vervolgonderzoek waar we nu aan werken (Vakdidac-
tiek Informatica). Speciale herinneringen heb ik daarbij aan onze weken in
Frankrijk samen met Paula en Diede.

Dit proefschrift is geschreven in een periode dat Diede ziek was, veel in
het ziekenhuis heeft gelegen en zorg nodig had. Zonder iedereen bij naam te
noemen, realiseer ik me dat het schrijven van dit proefschrift en tegelijkertijd
te zorgen voor Diede mogelijk was door de hulp van collegae, familie en

169

170 DANKWOORD

vrienden. Mijn dank hiervoor.

Frank Wester dank ik voor de manier waarop hij een oogje in het zeil
hield en mij de ruimte gaf om dit proefschrift te schrijven. Ik voelde me
hierdoor gesteund. Annnemiek Herrewijn en Arjan Kok dank ik omdat ze
steeds klaar stonden om bijeenkomsten over te nemen en dat ook een aantal
keren hebben gedaan.

Tenslotte dank ik Sylvia Stuurman en Eric Mollee omdat zij mijn para-
nimfen willen zijn.

Curriculum Vitae

Harrie Passier

18 augustus 1962 Geboren te Hilversum

1975 - 1980
1980 - 1984
1984 - 1986
1984 - 1987
1986 - 1987
1987 - 1989
1987 - 1992
1989 - 1995
1993 - 2002
1995 - 1999
1999 - 2002
2001 - 2002
2002 - heden

MAVO-4, St. Aloysiusschool te Hilversum

Opleiding A-Verpleegkunde, Streekziekenhuis Gooi-Noord
Militaire dienst

VWO exacte vakken, PBNA

Opleiding ccu-verpleegkunde, St. Antonius ziekenhuis

te Nieuwegein

ccu-Verpleegkundige, St. Antonius Ziekenhuis te Nieuwegein
HTS Elektrotechniek/Technische Computerkunde (cum laude),
Hogeschool Utrecht

Projectleider, KPN Telecom te Utrecht

wO Informatica, Open Universiteit

Wetenschappelijk medewerker, projectleider en werkveld-
codrdinator, KPN Research te Leidschendam

Projectmanager en consultant, KPN Softwarehuis te Groningen
Docent Human Computer Interaction, Hanzehogeschool

te Groningen

Universitair docent Informatica, Open Universiteit

171

