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1. General Introduction

In today’s society there seems to be a globally widespread notion that students must 
learn via collaboration (Graesser et al., 2018; Hesse, Care, Buder, Sassenberg, & Griffin, 
2015; OECD, 2017; Partnership for 21st Century Learning, 2019). However, not all 
scientific evidence supports the assumption that collaborative learning is beneficial 
for student learning and, at best, the results of research on collaborative learning are 
inconsistent (Kester & Paas, 2005; F. Kirschner, Paas, & Kirschner, 2009a; P. A. 
Kirschner, Sweller, Kirschner, & Zambrano R., 2018; Kreijns, Kirschner, & Jochems, 
2003; Retnowati, Ayres, & Sweller, 2016; Slavin, 2014). These inconsistent results have 
led to the conclusion that grouping students together to learn does not mean that they 
will work properly as a group and that they will take advantage of their interactions 
to learn effectively or efficiently. Inconclusive results have motivated researchers to 
investigate what factors should be taken into account to design and promote 
productive collaborative learning environments from different perspectives (Hmelo-
Silver & Chinn, 2015). A crucial aspect that may contribute to understanding why and 
when collaboration is favorable or detrimental for learning is taking into account the 
features of human cognitive architecture (Sweller, 2012; Sweller, Van Merriënboer, & 
Paas, 1998). It involves taking into account the multiple factors that affect the cognitive 
load associated with group information processing (i.e., transactional activities) and 
schema acquisition (F. Kirschner et al., 2009a; F. Kirschner, Paas, & Kirschner, 2011; P. 
A. Kirschner et al., 2018).

Research Questions 
The goal of the research contained in this thesis was to explore the consequences of 
decreasing the cognitive load associated with group interactions in order to improve 
collaborative learning in carrying out highly complex learning tasks. In this research, 
collaborative learning groups are considered as information processing systems 
(Hinsz, Tindale, & Vollrath, 1997; Tindale & Sheffey, 2002) that can simultaneously 
process more information elements due to the combination of the working memories 
of its members (i.e., collective working memory; F. Kirschner, et al, 2011) and its 
transactional activities (i.e., communication and coordination processes). Inter-
individual information processing can be affected by the interaction of several 
variables related to individual learners (e.g., prior knowledge with respect to the task), 
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groups as a whole (e.g., group-member experience in similar tasks or distribution of 
information among members), or learning tasks (e.g., level of element interactivity). 
Investigating these variables in controlled learning situations may help to understand 
how to enhance group information processing and its cognitive load. By optimizing 
inter-individual processing during collaborative learning, group members may invest 
more resources from their working memories to acquire better task schemas in long-
term memory. 

The primary research question of this thesis was: 

How do experienced groups differ from non-experienced groups in terms of 
performance, mental effort, and efficiency in the learning process and 
outcomes? 

Based on this question, the goal was to determine if group experience allows peers to 
appropriately use their transactional activities to learn better, invest lower cognitive 
load, and be more efficient than members of groups without this collaborative 
experience (i.e., non-experienced groups). It was assumed that a way to optimize 
transactional activities and their related cognitive load is to provide groups with 
collaborative experience based on relatively similar tasks (i.e., task-based experienced 
groups) before learning new problems. Prior collaborative experience in relevant tasks 
(i.e., similar, analog or transferable) may be a type of generalizable structure of shared 
knowledge that guides inter-individual processing activities (i.e., learning process) of 
domain-specific problems, optimizes intra-group working memory load, and 
promotes the construction of better long-term memory schemes. 

Underlying the primary research question were four specific goals/questions. One 
specific goal/question was to examine the types of transactional activities that 
experienced and non-experienced groups carry out during learning and that may be 
associated with performance and cognitive load. Because the cognitive load of 
transactional activities may depend on how group members work with the interactive 
information elements of the learning task, a second specific goal/question was to 
examine how the distribution of information among group members (i.e., high-
density information vs. low-density information) affect group and individual learning 
of experienced and non-experienced groups. A third specific goal/question was to 
determine how prior knowledge of the task (i.e., novice versus advanced learners) 
impacts the group learning process and learning outcomes at the individual level. The 
final specific research goal/question was to determine how prior knowledge of the 
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task (i.e., novice versus advanced learners) impacts the experienced and non-
experienced group learning process and learning outcomes at an individual level. 

Overview of the Dissertation 
Chapter 2 explore the state of the art of cognitive load theory regarding collaborative 
learning. Specifically, the principles of human cognitive architecture, knowledge 
acquired through this cognitive architecture, and the types of cognitive load involved 
in acquiring new knowledge are discussed. It is suggested that the essential theoretical 
assumptions of cognitive load theory, although they have been built mostly through 
individual learning research and for domain-specific problems, may apply to 
understand when and why collaborative learning may be an effective and efficient 
instructional method. One way to improve this understanding is to examine the 
cognitive load factors related to intra-group processing of complex tasks. It is 
suggested that mutual cognitive interdependence may be a principle that explains the 
evolution of human cognitive architecture (P. A. Kirschner et al., 2018; Zambrano R., 
Kirschner, & Kirschner, 2020). However, it does not follow, from an instructional 
perspective, that collaborating to acquire domain-specific knowledge will always be 
appropriate because carrying out learning tasks in groups may impose an 
unnecessary cognitive load associated with the transactional activities in addition to 
the 'normal' load of the task (Paas & Sweller, 2012). For this reason, it is proposed to 
consider the role of generalized domain knowledge (Kalyuga, 2013; Kalyuga & 
Hanham, 2011) with respect to group work and prior task knowledge to optimize the 
working memory cognitive load associated with intra-group processing to acquire 
better schemas in long-term memory. The chapter concludes by suggesting research 
hypotheses derived from this discussion concerning information distribution, team 
size, group familiarity, group experience, task-group experience, and task expertise. 

Chapter 3 examines whether prior collaborative experience based on having carried 
out similar tasks increases performance, decreases cognitive load and, therefore, 
increases efficiency in the learning, short-term retention, and delayed retention phases 
(Zambrano R., Kirschner, & Kirschner, 2018). It was found that having task-based 
group experience improves the learning outcomes. That is, members of the groups 
that had taken part in a preparation session designed to provide them with experience 
in collaborating to carrying out relatively similar tasks performed better, experienced 
less mental effort, and were more efficient than non-experienced groups on the 
retention and delayed tests. In addition, this study examined the differences between 
experienced and non-experienced groups concerning socio-cognitive, socio-
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regulatory, and socio-emotional and task unrelated transactional activities. Based on 
similar investigations (e.g., Näykki, Isohätälä, Järvelä, Pöysä-Tarhonen, & Häkkinen, 
2017), analyses of verbal interactions were conducted with five experienced and five 
non-experienced groups. The results showed that experienced groups spent more 
time solving the learning task problems, had more socio-cognitive interactions and 
fewer socio-regulatory as well as fewer task unrelated interactions. The number of 
socio-emotional interactions did not differ between the conditions. These results 
suggest that collaborative work schemas acquired in the preparation phase may guide 
collaborative learning and optimize the working memory cognitive load devoted by 
group members to inter-individual information processing of learning tasks. 

Chapter 4 examines whether the distribution of information across learners affects the 
effectiveness and efficiency of groups with and without collaborative experience. 
Previous research has shown that the way information is distributed among 
individuals affects performance (Brodbeck, Kerschreiter, Mojzisch, & Schulz-Hardt, 
2007; Deiglmayr & Spada, 2010), but it has not been investigated whether this occurs 
when groups learn when carrying out complex learning tasks. Based on the essential 
concept of element interactivity (Paas, Renkl, & Sweller, 2004; Sweller, 2010), it was 
assumed transactional activities are a type of group-based information element that 
imposes cognitive load, and that this may result in different levels of information 
density. Results suggest that experienced groups optimized their working memory 
resources and were more efficient in executing complex learning tasks (i.e., learning 
tasks with a high level of element interactivity) with a high level of information 
density (i.e., group-based element interactivity) than complex tasks with a low level 
of information density. Also, as expected, no significant differences were found 
between experienced and non-experienced groups in performance, mental effort, and 
efficiency in all phases on tasks with lower information density. It seems that groups 
that previously worked on similar tasks acquired relevant schemas of group work and 
transferred them to learn highly complex tasks. Results suggest that experienced 
groups can optimize their collective working memory resources (F. Kirschner, Paas, 
& Kirschner, 2011) to deal with the high cognitive demand of inter-individual 
processing and task information elements. 

Chapter 5 examines the effect of task-specific prior knowledge level (i.e., novices vs. 
advanced learners) on experienced groups and individual learners (Zhang, Kalyuga, 
Lee, & Lei, 2016; Zhang, Kalyuga, Lee, Lei, & Jiao, 2015). For this study, the same 
design was used as the one reported in the previous chapter with the distribution of 
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information that produced a high level of interactivity among students (i.e., a high 
level of information density). Advanced learners received an additional session that 
had the purpose of providing specific undeveloped schemas of the new learning tasks. 
Regarding the learning condition, it was found that when students learn individually, 
advanced learners outperform novice learners in retention and delayed tests. This was 
expected. However, experienced groups invested more mental effort in the retention 
test and an equivalent amount of mental effort in the delayed test. As was expected, 
when students learn in experienced groups, more knowledgeable learners outperform 
novices and invest an equivalent amount of mental effort in the retention and delayed 
tests. Concerning prior knowledge, when learners are novices, groups outperform 
individuals in retention and delayed tests as expected. However, experienced groups 
invested more mental effort in the retention test and an equivalent mental effort in the 
delayed test. As expected, no difference between experienced groups and individuals 
when students had prior knowledge was found in all tests, except that in the retention 
test knowledgeable groups outperformed the individual learning condition. These 
results revealed that knowledge structures considerably define the advantage and 
disadvantage of collaborative learning. It appears that task-based prior collaborative 
experience (i.e., team expertise) and task-specific schemas (i.e., task expertise) make 
up structures in long-term memory that optimize group information processing to 
learn highly complex learning problems. 
 
The dissertation ends (Chapter 6) with a systematic discussion of the results found. It 
addresses theoretical implications for collaborative learning and cognitive load 
theory, as well as instructional recommendations for those who design or implement 
collaborative learning environments. Moreover, future investigations are proposed. 
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2. Collaborative Cognitive Load Theory1

It has been said that “[W]ithout an understanding of human cognitive architecture, 
instruction is blind” (Sweller, 2017). In this respect, collaborative learning as an 
instructional approach is at best sight-impaired and at worst stone-blind. While 
collaborative learning is increasingly used in school and lifelong learning for 
acquiring work-life skills, there is little evidence-informed theory based on human 
cognitive architecture to guide its implementation. Cognitive load theory, an 
instructional design theory based on human cognitive architecture, has traditionally 
been associated with individual learning. Based on evolutionary educational
psychology and our knowledge of human cognition, in this chapter we indicate that 
the theory can be used directly to explain and optimize collaborative learning. 
Additions to the theory are needed to account for the particulars of collaboration, but 
those additions also require the basic concepts used by the theory. The major additions 
are the concept of a collective working memory and generalized domain group 
knowledge. We suggest that cognitive load theory, with these additions, can clarify 
collaborative learning, generate novel hypotheses, and help design collaborative 
learning both face-to-face and computer-supported.

1 This chapter is based on:
Zambrano R., J., Kirschner, P. A., & Kirschner, F. (2020). How cognitive load theory can be applied to 

collaborative learning: Collaborative cognitive load theory. In J. Sweller, S. Tindall-Ford, & S. 
Agostinho (Eds.), Advances in cognitive load theory: Rethinking teaching (pp. 30-40). London, UK: 
Routledge.

Kirschner, P. A., Sweller, J., Kirschner, F., & Zambrano R., J. (2018). From cognitive load theory to 
collaborative cognitive load theory. International Journal of Computer-Supported Collaborative 
Learning, 13, 213-233. doi:10.1007/s11412-018-9277-y 
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Modern learning is increasingly moving from individual learning to learning in teams 
(i.e., collaborative learning) for acquiring lifelong learning and working skills (Care, 
Scoular, & Griffin, 2016; Graesser et al., 2018; Hmelo-Silver & Chinn, 2015). The 
problem is that, in contrast to individual learning, there is limited well-researched, 
evidence-informed theory to guide designing, developing, and implementing 
collaborative learning. One consequence of this void is poor implementation and, 
thus, ineffective, inefficient, and unsatisfying use of collaborative learning both for the 
teacher and for the learner. Another consequence is that, due to this poor 
implementation, teachers, and learners waste precious resources (i.e., time, effort, 
money) on ineffective and inefficient learning and teaching inside and outside of the 
classroom (i.e., computer-supported collaborative learning; CSCL). This represents a 
severely missed chance for learners to acquire necessary work-life skills. 

Cognitive load theory lies at the base of the design and implementation of effective 
and efficient individual instruction (Sweller, Ayres, & Kalyuga, 2011). In essence, 
cognitive load theory holds that our cognitive architecture and how we acquire 
information is limited by the capacity and duration of our working memory processes, 
directly affecting learning and performance. Learning tasks cause learners to expend 
working memory resources (i.e., cognitive load associated with cognitive processes) 
due to a learning task’s inherent complexity (i.e., interacting information elements 
related to the task and the additional elements related to the instructional approach), 
and long-term memory schemas. In order to contribute to the design and 
implementation of beneficial collaborative settings, which consist of individual 
learners effortfully working together to attain a common learning goal, a review of 
cognitive load theory is presented. This theoretical review aspires to expand the 
cognitive load theory assumptions and propose some lines of research to understand 
the advantages and limitations of collaborative learning from a cognitive load 
perspective. 

State of the Art: Cognitive Load Theory 
Knowledge can be categorized in many different ways (e.g., a priori, posteriori, 
explicit, implicit/tacit, declarative, procedural, propositional, etc.). In the context of 
this chapter, a choice has been made to use a categorization that has a more or less 
direct effect on learning and instruction: Geary’s (2012) distinction between 
biologically primary and secondary knowledge. Cognitive load theory sees this 
distinction as a useful categorization schema for educational purposes that can lead 
to different instructional procedures. We have, as a species, evolved to acquire 
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biologically primary knowledge almost effortlessly and without explicit instruction due 
to group support of the members of a community. Generally, because it is more or less 
effortlessly acquired, biologically primary knowledge does not need to be formally 
taught. Examples of such primary skills are hearing, listening, and joint attention 
(Callaghan et al., 2011; Tomasello & Rakoczy, 2003), and their respective derived 
primary knowledge is planning, generalizing, speaking in one’s native language 
(Sweller, 2015; Tricot & Sweller, 2014). Collaboration is also a biologically primary 
skill that we have evolved to acquire (Paas & Sweller, 2012). We have, however, not 
evolved to acquire specific examples of biologically secondary knowledge. To acquire 
such knowledge we require intentionally designed, effective learning environments 
(e.g., schools, colleges and universities, professional and company trainings, etc.). 
Substantial effort and therefore proper support and guidance is required (i.e., 
instruction) (P. A. Kirschner, Sweller, & Clark, 2006; Sweller, Kirschner, & Clark, 
2007). Without explicit instruction and appropriate biologically primary skills, 
carrying out the domain-specific tasks that characteristically constitute biologically 
secondary information is severely compromised. Some examples of secondary skills 
and domains are: reading and writing our native language as well as one or more non-
native languages, computer programming, solving engineering and science problems, 
analyzing philosophical theories, or other learning tasks for which guided instruction 
is required and we, therefore, learn in an instructional context. 

All our knowledge and learning is shaped and limited by our cognitive system and 
how it functions. The way in which biologically secondary knowledge is constructed 
by the human cognitive system is analogous to the way in which evolution by natural 
selection processes information (Sweller & Sweller, 2006). This architecture is 
described in five principles which are summarized in Table 1. 
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Table 1. 
Natural Information Processing System Principles 
Principle Function 
Information store Primary and secondary knowledge and skills are stored in 

long-term memory. 
Borrowing and 

reorganizing 
Knowledge is mostly borrowed from other’s knowledge 

and is reorganized depending on previous 
knowledge. 

Randomness as genesis In the absence of relevant knowledge, required new/novel 
knowledge is created by random generate-and-test 
processes. 

Narrow limits of change Limited capacity and duration of working memory 
processing prevent rapid random changes of the store. 

Environmental 
organizing and linking 

Interacting with the environment or problems requires 
environmental signals that allow organized 
information to be transferred from long-term to 
working memory to perform actions appropriate to 
that environment. 

Cognitive load theory is based on the assumption that when presented with novel 
information, there are two additive sources of cognitive load imposed on working 
memory (Sweller, 2010) which combined should not exceed its limits: Intrinsic and 
extraneous cognitive load. Intrinsic load deals with the inherent complexity of the 
information in a learning task. It is defined in terms of the amount of novel interacting 
information elements in a task; the higher the number of novel interacting elements, 
the more complex the task, especially when time is an issue. Time is almost always an 
issue, since learning to successfully solve a problem demands the rapid processing of 
many interconnected elements (Ricker & Cowan, 2018). For example, learning to 
remove the brackets in the expression 5(3 − 4𝑥𝑥𝑥𝑥) seems to be similar to removing the 
brackets in −7(−4 + 2𝑥𝑥𝑥𝑥). However, the second problem is more complex (thus 
causing more cognitive load) because it requires considering the negative sign before 
7 which generates more connections between elements and potentially more errors of 
multiplication (Ayres, 2006).  

In addition, there may be interacting elements unrelated to the intrinsic complexity of 
the task that impose an extraneous load on working memory. This load is therefore 
unproductive and hampers learning. It can be controlled by instructors and be varied 
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by using different instructional procedures. Some procedures (e.g., discovery or 
inquiry learning) impose more extraneous or unproductive load on working memory 
than others (e.g., worked examples, process worksheets) (Atkinson, Derry, Renkl, & 
Wortham, 2000) and demand more time on the task. 

Germane load, which is sometimes treated as a third type of load, “is purely a function 
of the working memory resources devoted to the interacting elements that determine 
intrinsic cognitive load” (Sweller, 2010, p. 126). Furthermore, according to Kalyuga 
(2011, p. 1), “germane load is essentially indistinguishable from intrinsic load, and 
therefore this concept may be redundant … the dual intrinsic/extraneous framework 
is sufficient and non-redundant and makes boundaries of the theory transparent”. As 
such, germane load is not treated as an additive source of load here. 

Both types of cognitive load interact with each other as well as with the learner’s level 
of expertise (O. Chen, Kalyuga, & Sweller, 2016). If the task has a high level of intrinsic 
interacting elements, a learner who has relevant knowledge in long-term memory (i.e., 
an advanced learner) will experience a lower cognitive load and achieve better 
learning results than a novice with little relevant knowledge in long-term memory. If 
extraneous interacting elements are added (e.g., if the learner must apply a discovery 
strategy), the task may overwhelm the learner and impede her/his learning. Learning 
will also be hindered when an advanced learner (i.e., a learner with considerable prior 
knowledge or experience in the learning task) receives instruction that combines new 
with redundant information (e.g., diagrams with integrated text) (Kalyuga, Chandler, 
& Sweller, 1998). The embedded texts interfere with the information already available 
in long-term memory, increase the cognitive load, and, thus, reduce the performance 
(i.e., expertise reversal effect; O. Chen et al., 2016). Research and application of 
cognitive load theory has led to the development of a broad range of instructional 
procedures to reduce extraneous load and increase working memory resources 
devoted to intrinsic load to facilitate learning (see Sweller et al., 2011). 

Beyond the State of the Art: Collaborative Cognitive Load Theory 
Cognitive load theory allows for the design of effective and efficient individual 
learning and informs good instructional design for individuals (e.g., Paas, Renkl, & 
Sweller, 2003; Van Merriënboer & Kirschner, 2018) as well as for the design of 
multimedia learning (Mayer, 2014). What has not yet been attempted, and what the 
field sorely needs, is a cognitive theory for collaborative learning: Collaborative 
Cognitive Load Theory. Learning collaboratively involves two or more learners who 
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actively contribute to attaining a mutual learning goal and who share the effort 
needed to reach this goal (Teasley & Roschelle, 1993). As an instructional method, 
collaborative learning uniquely affects cognitive load as learners must interact with 
their teammates to communicate with each other and coordinate their actions on a 
task. The collaborative cognitive load represents an extra and inevitable cost. 
However, working together also provides the possibility to share some of the load 
imposed by a task because collaboration can make use of other people’s processing 
capacity which can lower the experienced cognitive load. Approaching collaboration 
from a cognitive load perspective, specifically from the principles of cognitive 
architecture and the evolutionary knowledge categories, may imply the expansion of 
some assumptions in order to consider the interactional dimension of the cognitive 
load. 

Cognitive Architecture and Evolutionary Categories of Knowledge 
Considering the advances of developmental comparative psychology, namely 
evolutionary dynamics (Rand & Nowak, 2013; Tomasello & Gonzalez-Cabrera, 2017), 
a crucial, new principle for human cognition specific to the processes of collaborative 
learning, namely the mutual cognitive interdependence principle (P. A. Kirschner et al., 
2018) is proposed. It is suggested that collaboration is the decisive organizing 
principle for the development and functioning of human cognitive architecture. When 
determining cognitive principles under collaborative conditions, it is decisively 
important to include the effects of interaction between natural information processing 
systems. Environmental variations are a crucial factor for genetic evolution, and 
mutations must be stored in a reservoir of information in order to be transmitted 
through reproduction. Something similar happens in human cognition with respect 
to cultural knowledge (Sweller & Sweller, 2006). Changes in the information store are 
produced and reproduced through learning and instruction processes. However, for 
natural and cultural selection to work, mutual collaboration between individuals and 
groups is required (Geary & Huffman, 2002; Sterelny, 2012; Tomasello & Rakoczy, 
2003). Genetic and cognitive evolution depends on the mutual interdependence of 
group members, where expert and more advance individuals (i.e., fittest) collaborate 
by modelling and transmitting relevant information (e.g., skills, knowledge, artifacts 
and so forth) to the group (Rummel & Spada, 2005; Rummel, Spada, & Hauser, 2006; 
Sterelny, 2012). 

The borrowing and reorganizing principle answers the question of how we learn and the 
environmental organizing and linking principle indicates why we learn (Sweller et al., 

Collaborative Cognitive Load Theory 

19 

2011). However, these and other principles must be considered not only at the level of 
individual learning but at the interactional level (Alexander, Schallert, & Reynolds, 
2009) in a broader evolutionary framework: “create culture - a system of shared 
ideologies and rules for social behavior that enable the formation of large cooperative 
groups” (Geary, 2012, p. 615). Geary has suggested that schools were created (i.e., 
cultural adaptation) to formalize the cross-generational transfer of secondary 
knowledge needed in modern societies. However, this does not mean that in the past 
human groups have not had other cultural ways (formally or informally) to transfer 
knowledge, for example, from parents to children, from experts to novices or from 
groups to individuals (Dukas, 2017; Sterelny, 2012). Nor does it mean that in modern 
societies schools are the only means of transferring secondary knowledge. There is 
evidence that school success is also related to the learning opportunities provided by 
parents, the influence of the home environment, the socioeconomic level of the family, 
the electronic media and the community (Schunk, 2016). The principle of mutual 
cognitive interdependence aims to consider the relations involved in cultural 
reproduction (i.e., learning materials, scientific research, technological innovations), 
which affect the evolution of human cognitive architecture (Tomasello, 1999) and even 
give a functional idea of purpose (i.e., the “why” of learning). Concerning the latter, 
Geary (2009) has suggested that “In modern societies, the why of learning is more 
strongly related to historically recent cultural changes and technological and scientific 
innovations than to our evolutionary history” (p. 200). From this perspective, the 
inter-individual activities that characterize collaborative learning should not only be 
considered as part of an instructional technique but also as a dynamic factor that may 
significantly affect human learning in school and non-school contexts. 

In school settings, when the focus lies on learning secondary knowledge, the benefit 
of collaborating depends for a large part on the cognitive costs associated with 
transactional activities (Geary, 2012; Geary & Huffman, 2002; Hinsz et al., 1997; P. A. 
Kirschner et al., 2018). These activities refer to inter-individual communication and 
coordination cognitive operations whose purpose is to allow group members to learn 
to solve highly complex problems (F. Kirschner et al., 2009a; Van Merriënboer, 2016). 
In cultural reproduction, experts (e.g., instructors) invest cognitive resources in novice 
learners by collaborating with them to provide tailored instructional environments as 
is the case, for example, in the cognitive apprenticeship approach (Collins, Brown, & 
Newman, 1987). Similarly, in groups of learners with heterogeneous knowledge, 
advanced learners invest transactional resources that benefit novices, and novices in 
turn pay the cognitive cost of learning from/with experts, other learners, or designed 
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(i.e., by instructors) learning materials. Advanced learners may also take advantage 
of collaborative instructional contexts with highly complex tasks for consolidating 
undeveloped schemas and transferring their knowledge to relatively novel problems 
(Zambrano R., Kirschner, Sweller, & Kirschner, 2019b). Domain-specific experts and 
advanced learners borrow/collaborate providing their knowledge and skills to others, 
and novices reorganize their previous schemas. Thus, the interaction between 
collaboration, learning environments, and expertise may appropriately explain the 
principles and evolution of human cognitive architecture (Coolidge, Wynn, & 
Overmann, 2013). This suggests that the key to genetic and cultural evolution is not 
only individual cognitive fitness but mutual cognitive interdependence (Allen & 
Nowak, 2016). 

The mutual cognitive interdependence principle also gives sense to the claim that 
humans have evolved to work together in mutualistic contexts (Rand & Nowak, 2013). 
People learn and develop in multigroup contexts, constantly sharing, receiving, and 
retrieving information from their cognitive schemas (i.e., long-term memory 
structures) and environments (i.e., learning, socialization, and working contexts) by 
means of their common biologically primary ability to process information (i.e., 
working memory operation) (Camos & Barrouillet, 2018; Cowan, 2014). In fact, it has 
been suggested that interacting and collaborating in complex and competitive 
environments may have been crucial factors for the evolutionary development of 
communication and survival of the species (Knofe, Engelmann, Tomasello, & 
Herrmann, 2019; Nowak, 2006, 2012; Tomasello, 2008). If we have evolved to acquire 
joint knowledge, then collaboration may be biologically primary or a general skill and 
may place little strain on working memory (Paas & Sweller, 2012). This low cognitive 
load could be due to the fact that humans have natural mechanisms to acquire 
culturally general knowledge such as language. Emitting and receiving information 
(i.e., primary skills) using the native language (i.e., secondary cultural knowledge) are 
relatively easy to perform cognitive skills in typical humans due to biologically 
inherited and culturally enhanced natural mechanisms. Therefore, general 
collaborative skills and their derived artifacts (e.g., learning modules, multimedia, 
schools) could be the essential means of cultural reproduction. 

Accordingly, the mutual cognitive interdependence principle considers collaborative 
learning both as an interactive learning context that includes individual learning 
settings as well as a specific instructional technique (i.e., learning groups) whose 
advantage depends on the environment in which it is carried out (i.e., the subject 
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area/domain context) (Könings, van Zundert, & van Merriënboer, 2019). One piece of 
evidence supporting the mutual cognitive interdependence principle may be what is 
known as biologically primary general skills. Most school learning tasks are more 
complex cultural processes than simple intuitive/counterintuitive or general 
knowledge (Anders, 2004; Geary & Berch, 2016; Kapon, 2017; Sherin, 2006; Tricot & 
Sweller, 2014). General skills are the foundation of any form of knowledge 
construction. People seem to have certain intuitive physics knowledge (e.g., intuitive 
physics knowledge; Sherin, 2006) which they acquire without the need for conscious 
reasoning and which is the basis for the acquisition of more complex knowledge 
through systematic instruction (Fischbein, 1987). Intuitive or primary knowledge (and 
counterintuitive because it violates intuitive assumptions; Barrett & Gregory, 2009) is 
easy to remember and spread because it represents cross-culturally prevalent classes 
of concepts (e.g., space, time, speed) that people expect to find and have evolved to 
find. However, complex, domain-specific knowledge cannot be learned only through 
primary skills such as random and trial-and-error search (Simon & Newell, 1972) or 
applying primary intuitive schemas (e.g., horizontal and vertical motion dimensions; 
Hast & Howe, 2013). Learners need explicit guidance to acquire secondary knowledge 
(P. A. Kirschner et al., 2006). 

Similarly, people also have intuitive skills about how to work together (folk-
psychology; Geary, 2012). Michael Tomasello and his colleagues present important 
results about these primary collaborative abilities. For example, Melis and Tomasello 
(2019) suggest that chimpanzees have the indispensable socio-cognitive skills to 
naturally develop a simple communicative strategy to ensure coordination in a 
collaborative task. When compared chimpanzees with children, they found that dyads 
of 5-year-old children overwhelmingly selected a mutually profitable approach that 
allowed both children to solve turn-taking problems. The authors concluded that 
while chimpanzees mostly collaborate in the context of long-term cooperative 
relationships, it seems that humans have developed unique socio-cognitive 
cooperative skills for dealing with complex coordination activities (Knofe et al., 2019). 
Nevertheless, primary collaborative skills performed in an instructional context may 
have higher cognitive costs and result in inefficient learning (if any) than individual 
learning (F. Kirschner, Paas, & Kirschner, 2011; Sweller et al., 2011). Primary 
collaborative cognitive activities (i.e., transactional activities) may produce better 
domain-specific schemas when students receives guided instruction on how to 
collaborate (i.e., through observation, imitation, explicit integration with knowledge) 
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(P. A. Kirschner et al., 2006; Rummel & Spada, 2005; Rummel et al., 2006; Zambrano 
R. et al., 2018; Zambrano R. et al., 2019b).

Consequently, it is essential to take into account that collaborative learning, used as 
an instructional technique (i.e., forming learning groups in schools), does not always 
result in a better and more efficient learning (F. Kirschner, Paas, & Kirschner, 2009b, 
2011; Retnowati, Ayres, & Sweller, 2010; Retnowati et al., 2016). Learning complex 
domain-specific knowledge implies that students know how to collaborate (i.e., have 
minimal collaboration schemas; Rummel & Spada, 2005; Rummel et al., 2006) 
according to the demands of the learning task (P. A. Kirschner et al., 2018; Rummel & 
Spada, 2005; Zambrano R. et al., 2018; Zambrano R. et al., 2019b). For this reason, 
acquiring task-specific knowledge requires learners to obtain appropriate support and 
guidance to work together  for particular domains (e.g., solving a math problem vs. 
writing a prose text) (Zambrano R. et al., 2018). Effective and efficient collaboration 
depends on the quality of the communication and coordination (i.e., transactional 
activities) related to the specific characteristics of the learning task (P. A. Kirschner et 
al., 2018). Since learning in school-domains requires primary knowledge (e.g., 
communicating with each other, sharing attention), it can be argued that humans have 
evolved also to acquire biologically secondary knowledge through collaboration 
(Zambrano R. et al., 2018; Zhang et al., 2016; Zhang et al., 2015). Consequently, 
learning teammates can and should develop task-based generalized domain skills 
(Kalyuga, 2015) at the group level. 

Collaborative Learning and Categories of Cognitive Load 
Cognitive load theory has been developed mainly through investigations of 
individual learning conditions. However, the incorporation of evolutionary 
educational psychology, specifically the distinction between primary and secondary 
knowledge (Sweller, 2004, 2008, 2011, 2016) allows us to propose new hypotheses and 
explanations that could improve our understanding of learning and the cognitive load 
related to the processing of individual and collective information. 

By definition, intrinsic cognitive load is imposed by “the intrinsic nature of the 
information… that the learner needs to acquire for achieving learning goals 
irrespective of the instructional procedures used”(Sweller et al., 2011, p. 57). Whereas 
extraneous cognitive load is imposed by “the manner in which the information is 
presented or the activities in which learners must engage…This load is imposed solely 
because of the instructional procedures being used” (Sweller et al., 2011, p. 57). 

Collaborative Cognitive Load Theory 

23 

Collaborative learning as an instructional technique is based on active communication 
among learners to learn within a specific domain. These communication activities are 
possible thanks to an accumulation of biologically primary skills such as observation, 
shared attention, imitation, or listening, and therefore impose a low cognitive load 
(Paas & Sweller, 2012). However, according to the definitions of cognitive load types, 
the activities related to collaborative learning would be a type of extraneous cognitive 
load because it's used as an instructional technique and therefore not part of the 
intrinsic nature of the task information. For this reason, although communication 
depends on primary skills which require little effort investment, by definition 
collaborative learning can impose an extraneous cognitive load. 

Transactional Activities and Prior Knowledge 
Cognitive load associated with collaborative learning is productive when the inter-
individual activities facilitate better and more efficient knowledge than individual 
learning. There are theoretical grounds to hypothesize that group learning may 
reduce element interactivity while fostering better task schemas at the individual 
level. Good collaborative learning induces collective working memory (F. Kirschner, et 
al., 2011) that otherwise does not exist. In collaborative tasks, the various 
interconnected elements of the task can be distributed among multiple working 
memories (i.e., the group members) reducing the cognitive load on a single working 
memory. Under individual learning, a single working memory must process all task 
information elements. Multiple working memories constitute a collective memory 
larger than a single one. Collaboration as an instructional procedure thereby may 
change the total cognitive load at the individual level when the elements of the task 
are distributed among the multiple working memories of the learners (F. Kirschner, 
et al., 2011). During collaborative learning information can come from collaborators 
based on the borrowing and reorganizing principle and, thereby, is likely to become 
available exactly when needed resulting in decreased load and increased learning 
(Gupta & Hollingshead, 2010). 

Communication and coordination during collaborative learning bring transaction 
costs (F. Kirschner et al., 2009b; Yamane, 1996) in terms of cognitive load. These are 
the costs “of setting up, enforcing, and maintaining the reciprocal obligations, or 
contracts that keep the members of a team together [and]…represent the “overhead” 
of the team…to allow a work team to produce more than the sum of its parts” (Ciborra 
& Olson, 1988, p. 95). In collaborative learning, the communication and coordination 
costs are the cognitive load that have to be taken into account caused by the acts 
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(Kalyuga, 2015) at the group level. 
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Cognitive load theory has been developed mainly through investigations of 
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educational psychology, specifically the distinction between primary and secondary 
knowledge (Sweller, 2004, 2008, 2011, 2016) allows us to propose new hypotheses and 
explanations that could improve our understanding of learning and the cognitive load 
related to the processing of individual and collective information. 

By definition, intrinsic cognitive load is imposed by “the intrinsic nature of the 
information… that the learner needs to acquire for achieving learning goals 
irrespective of the instructional procedures used”(Sweller et al., 2011, p. 57). Whereas 
extraneous cognitive load is imposed by “the manner in which the information is 
presented or the activities in which learners must engage…This load is imposed solely 
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Collaborative learning as an instructional technique is based on active communication 
among learners to learn within a specific domain. These communication activities are 
possible thanks to an accumulation of biologically primary skills such as observation, 
shared attention, imitation, or listening, and therefore impose a low cognitive load 
(Paas & Sweller, 2012). However, according to the definitions of cognitive load types, 
the activities related to collaborative learning would be a type of extraneous cognitive 
load because it's used as an instructional technique and therefore not part of the 
intrinsic nature of the task information. For this reason, although communication 
depends on primary skills which require little effort investment, by definition 
collaborative learning can impose an extraneous cognitive load. 

Transactional Activities and Prior Knowledge 
Cognitive load associated with collaborative learning is productive when the inter-
individual activities facilitate better and more efficient knowledge than individual 
learning. There are theoretical grounds to hypothesize that group learning may 
reduce element interactivity while fostering better task schemas at the individual 
level. Good collaborative learning induces collective working memory (F. Kirschner, et 
al., 2011) that otherwise does not exist. In collaborative tasks, the various 
interconnected elements of the task can be distributed among multiple working 
memories (i.e., the group members) reducing the cognitive load on a single working 
memory. Under individual learning, a single working memory must process all task 
information elements. Multiple working memories constitute a collective memory 
larger than a single one. Collaboration as an instructional procedure thereby may 
change the total cognitive load at the individual level when the elements of the task 
are distributed among the multiple working memories of the learners (F. Kirschner, 
et al., 2011). During collaborative learning information can come from collaborators 
based on the borrowing and reorganizing principle and, thereby, is likely to become 
available exactly when needed resulting in decreased load and increased learning 
(Gupta & Hollingshead, 2010). 

Communication and coordination during collaborative learning bring transaction 
costs (F. Kirschner et al., 2009b; Yamane, 1996) in terms of cognitive load. These are 
the costs “of setting up, enforcing, and maintaining the reciprocal obligations, or 
contracts that keep the members of a team together [and]…represent the “overhead” 
of the team…to allow a work team to produce more than the sum of its parts” (Ciborra 
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learners must carry out when studying, communicating with each other and 
coordinating both their own learning and that of others (Janssen, Kirschner, Erkens, 
Kirschner, & Paas, 2010; F. Kirschner et al., 2009b). 

As transactive activities impose additional costs in terms of cognitive load, these 
activities can either impede or improve learning. Collective working memory is 
effective when a group takes advantage of its larger collective capacity (e.g., when the 
task is extremely complex) and also exchanges productive transactive activities (F. 
Kirschner, Paas, & Kirschner, 2011; Wegner, 1995; Zambrano R. et al., 2019b). To 
obtain maximum benefit from the collective working memory effect, the effects of the 
distribution of the task elements among multiple working memories must be 
examined. Assuming stable motivation and prior knowledge, the way information 
items and the processes to carry out a learning task are distributed can generate 
different transactional activities. For example, the collaboration between three 
students to solve quadratic equations may vary depending on how the constants and 
variables have been distributed, what the position of the values is in relation to the 
equal sign (e.g., to perform calculations the values −2x2 + 5x = must be moved to the 
right side of the equation), and which mathematical operations must be carried out 
(e.g., does it include fractions, or is it necessary to use a formula or factoring). 
Depending on the distribution of the elements, a member would have to perform 
some operations individually (i.e., homogeneous distribution), with another member, 
or between all (i.e., heterogeneous distribution) to solve each step of the problem. 
Additionally, transactional activities can vary substantially, affecting learning when 
the same task elements are distributed among four or five group members. It can be 
expected that the collaborative cognitive load will be lower if the distribution is 
homogeneous and if groups have an appropriate number of members. Distribution 
and size of the team are determined based on the types and number of transactional 
activities required solve a complex problem. 

Transactive activities also can be enhanced by providing different group schemas. 
These schemas can be understood as including familiarity between the members of a 
group (e.g., classroom norms; Janssen, Erkens, Kirschner, & Kanselaar, 2009) and 
sharing knowledge about how to collaborate for specific tasks (Fransen, Weinberger, 
& Kirschner, 2013). From this spectrum of alternatives (see Table 2), knowledge 
specialization may reduce the extraneous cognitive load among group members by 
avoiding the overlap in individual knowledge and providing the group with access 
to a larger reservoir of information across domains (Gupta & Hollingshead, 2010; 
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Tindale & Sheffey, 2002). Currently, we know that learners with low levels of previous 
knowledge benefit from collaborative learning when they form heterogeneous groups 
instead of homogeneous groups (Zhang et al., 2016; Zhang et al., 2015). In line with 
this, we can expect that when one or more group members have relevant knowledge 
needed to carry out the task, collaborative learning becomes more effective and 
efficient especially under high cognitive load (i.e., via a temporal restriction) 
conditions (Prichard & Ashleigh, 2007). 

Generalized domain knowledge (Kalyuga, 2013) at the group level may also reduce 
the unproductive cognitive load when group members have acquired appropriate 
schemas of collaborative work. We assume that all learners have general knowledge 
(i.e., generalized schemas) about how to collaborate with others. For example, they 
should know whom to work with, the general rules of collaboration, the general rules 
of courtesy, interpersonal expectations, and so on. However, these previously 
acquired schemas can interfere with the specific demands of the collaborative learning 
task at hand (e.g., when a task requires shared calculation or involves argumentative 
writing). When members of a group do not have appropriate prior knowledge to 
collaborate with each other, they may expend working memory resources on 
communication unrelated to the learning tasks or interactions related to the task such 
as organizing and coordinating work-processes among each other (i.e., socially shared 
regulatory activities; Järvelä & Hadwin, 2013; Zambrano R., Kirschner, Sweller, & 
Kirschner, 2019a) that could be reduced if group members have experience working 
together in analog or transferable tasks (Kalyuga, 2013; D. J. Peterson & Wissman, 
2018). Group learners must receive instructional guidance and support (e.g., task-
based scripts or training) until they appropriate a socially shared domain schema. 
These group schemas allow learners to reduce their cognitive load and focus their 
working memory resources on transactional activities that enable the acquisition of 
better/more appropriate specific knowledge schemas (Zambrano R. et al., 2019a). 

The advantage of having a greater working memory capacity and either generalized 
or specific shared domain knowledge has important implications for collaborative 
learning. Bringing together learners in a group is no guarantee that they will work 
and learn properly both as a group and as individuals within the group. They must 
develop a shared mental model or collective schema of cognitive interdependence on 
how to effectively communicate and coordinate their transactional activities. Groups 
must form adequate processes of and procedures for working together (Fransen et al., 
2013; Prichard & Ashleigh, 2007) that allow them to experience and further develop 
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of courtesy, interpersonal expectations, and so on. However, these previously 
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the expertise that they have, share group knowledge, appropriately distribute 
available task information amongst themselves, and exploit the quality of 
participation of each group member in carrying out the task at hand. Consequently, 
one could state that for complex tasks/problems, collaboration becomes a scaffold (just 
like worked examples) for the individuals’ knowledge acquisition processes. 
Collaboration will be effective if it becomes a scaffold in this sense. If it does not, or if 
it, in itself adds too much extraneous load, it will be harmful (P. A. Kirschner et al., 
2018). 
 
Table 2. 
Collaborative Cognitive Load Effects and their Hypotheses 
Effects Description 
Information 

distribution 
The more heterogeneously the information is distributed 

among team members working on a learning task, the 
higher the extraneous load caused by transactive 
activities (communication and coordination). 

Team size The more members that a team working on a learning task, 
the higher the extraneous load caused by transactive 
activities (communication and coordination). 

Familiarity The better team members know each other well (i.e., are 
familiar with each other), but have not had experience 
working with each other on a learning task, the lower 
extraneous load caused by communication. 

Experience The more experience team members have working with 
each other on unrelated learning tasks, the lower the 
extraneous load caused by transactive activities 
(communication and coordination). 

Task-group 
experience  

The more experience team members have coordinating 
their actions on specific tasks relatively related to the 
learning task at hand (i.e., they know what to expect 
from each other in terms of task execution), the lower 
extraneous load caused by coordination. 

Task expertise The greater the expertise of team members in the task 
domain, the lower the extraneous load caused by 
transactive activities (communication and 
coordination). 
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Conclusion: Educational Implications 
The execution of a collaborative learning task is an interaction between the 
characteristics of the task, the individual learners, and the team. Thus, the general 
framework used by cognitive load theory is directly applicable to collaborative 
learning but needs specific additions to account for collaboration. The major additions 
required when dealing with collaborative learning are the a) mutual cognitive 
interdependence principle for human cognitive architecture, and b) concepts of the 
collective working memory and generalized domain group knowledge along with the 
effects, due to the transactional activities, associated with the multiple individual 
working memories that constitute the collective working memory. These additions 
provide novel hypotheses associated with the effects of differential domain-specific 
knowledge on collaborative effectiveness. This leads to a number of hypotheses (i.e., 
implications) as to the effects mentioned for future research, summarized in Table 2. 

Using collaborative cognitive load theory to conduct research on collaborative 
learning means that we can go beyond determining whether the effects found in 
individual learning conditions and measurement methods work in collaborative 
conditions, and test new hypotheses and measurements that explain the specific 
complex interactions between students and multiple information resources. 
Furthermore, the specialized focus on collaborative learning provides teachers with 
clear and to-the-point instructional guidelines (i.e., the collaborative cognitive load 
theory effect) for designing effective collaborative learning environments. The 
instructional guidelines support teachers to think about the cognitive properties of 
their students and the effect that a specific task and a specific group composition will 
have on the cognitive process that will take place. Using collaborative cognitive load 
theory, the choice for collaborative learning as an instructional tool, will always be an 
informed one. 
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3. Benefits of Task-Based Prior Group Experience on Collaborative
Learning2

Preparing group-members with relevant experience on how to solve complex, 
analogous problems may improve collaborative learning at both group and individual 
levels. We tested this hypothesis with a 2-phase explanatory sequential design. In 
Phase 1 of this report, 15 triads that received guidance on how to work collaboratively 
and 45 other individual learners worked on high-complexity mathematics tasks for 
four sessions. Subsequently, the 15 experienced triads and the 45 students who then 
formed 15 non-experienced triads received new, analogous, high-complexity 
economics tasks. The experienced groups outperformed, invested less mental effort, 
and were more efficient than non-experienced groups in both a retention test and a 
delayed test. In Phase 2, an analysis of the transactional activities performed during 
group learning was conducted. Audio recordings of five experienced and five non-
experienced groups were coded, categorized, and quantified to examine the types of 
group interaction exhibited. The results showed that experienced groups exhibited 
more socio-cognitive interactions, fewer socio-regulatory interactions, an equal 
number of socio-emotional interactions, and fewer task unrelated interactions than 
the non-experienced groups. Groups with collaborative experience appear to transfer 
their group work-schemas to relatively new, analogous tasks, and their transactional 
activities focus more on task information leading to more effective and efficient 
learning. 

Keywords: collaborative learning, cognitive load theory, prior collaborative
experience, transactional activities

2 This chapter has been submitted for publication as:
Zambrano R., J., Kirschner, F., Sweller, J., & Kirschner, P. A. (2019). The benefits of task-based prior 

group experience on collaborative learning: An exploration of the effects of transactional activities. 
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Collaborative learning (including cooperative learning) is an instructional practice in 
which students learn while they solve academic problems or carry out academic tasks 
in small groups (Slavin, 2014). As an approach to learning, it has been broadly used 
across many different subject areas at all educational levels and has been studied from 
multiple theoretical perspectives (Hmelo-Silver, Chinn, Chan, & O'Donnell, 2013; 
Slavin, 2014) using both quantitative and qualitative methods. Many meta-analyses 
offer convincing evidence of its profound benefits (see Gillies, 2016), though the effects 
are sometimes mixed (Kuhn, 2015). A problem with collaborative learning is that the 
situations under which collaborative learning is effective and efficient (i.e., the factors 
that affect its success) are insufficiently understood (Kester & Paas, 2005; F. Kirschner 
et al., 2009a; Kreijns et al., 2003). Studying collaborative learning from a cognitive load 
perspective can provide more understanding, insight, and guidelines for designing 
effective and efficient collaborative settings (P. A. Kirschner et al., 2018), most 
importantly the positive and negative effects of transactive activities within the 
collaborative learning environment. 

Processes for Successful Collaboration 
Placing learners together to learn from each other does not necessarily produce better 
learning, even if all of them have advanced knowledge (Lou et al., 1996). Literature on 
this subject is replete with strategies for designing learning environments based on 
collaboration (D. W. Johnson & Johnson, 2009; Slavin, 2012) such as structured 
academic controversy (D. W. Johnson & Johnson, 1988), jigsaw (Aronson & Patnoe, 
2011), reciprocal teaching (Palincsar & Brown, 1985) and division of student teams 
based on achievement (Slavin, 1978). Although, many factors affect group 
performance and/or individual learning in a group, one crucial factor is the 
availability of task-based group schemas (i.e., internal cognitive representations of 
how a group should work to solve a task) (Delise, Allen Gorman, Brooks, Rentsch, & 
Steele-Johnson, 2010; Fransen et al., 2013; D. W. Johnson & Johnson, 2009; Jordan & 
Métais, 1997; Lou et al., 1996; Yamarik, 2007).  

Most collaborative learning environments strategies mentioned presuppose that 
groups receive proper guidance for their collaboration and acquire knowledge 
schemas on how to collaborate (Gillies, in press; Gillies & Ashman, 1996). Research 
has shown that presenting group members with a few sessions to acquire and practice 
proper collaboration can have long-lasting benefits. Prichard, Stratford, and Bizo 
(2006), for example, trained groups of learners with two 45-min sessions delivered one 
week apart. Groups that received training and remained intact performed better than 
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groups composed of reassigned members and untrained groups. As to long-term 
benefits, Prichard, Bizo, and Stratford (2006) examined the benefits of collaboration 
experience for two semesters comparing three cohorts of learners. In cohort 1, learners 
worked in groups during semester 1 without guidance, and in semester 2 were 
reassigned to new groups. In cohort 2, groups received instruction on how to 
collaborate in semester 1 and in semester 2 group members were reassigned to new 
groups. Cohort 3 received guidance and their groups remained intact during both 
semesters. The researchers found that groups that were instructed on how to 
collaborate (cohort 2) outperformed untrained groups. However, the guidance 
advantage of cohort 2 decreased significantly in semester 2 while cohort 3 maintained 
its performance in both semesters. They concluded that the benefits of collaboration 
guidance might be lost if group members are separated. There are also situations in 
which collaboration training may not work (e.g., Salas, DiazGranados, Weaver, & 
King, 2008). The proposed rationale for these benefits was that the trained groups had 
acquired shared, internal representations of working together (i.e., a shared mental 
model of collaboration). That is, once groups have developed an appropriate task-
based collective schema, they can transfer it to relatively novel learning tasks as long 
as the group remains intact. 

A Shared Mental Model for Collaboration 
A shared mental model for collaboration is a construct which holds that team 
performance improves if team members have "a shared understanding of the task that 
is to be performed and of the involved teamwork" (Jonker, van Riemsdijk, & 
Vermeulen, 2011, p. 132). When group members have built collective schemas, the 
group will function as an integrated whole (Tindale, Meisenhelder, & Dykema-
Engblade, 2001). Cannon-Bowers and Bowers (2010) describe four types of mental 
models that can improve a group’s performance, namely a task model that includes the 
overall goals and demands of the task, a team interaction model comprising individual 
and group’s understanding of interaction demands, a team model that involves group 
members' understanding of one another's knowledge, skills, abilities, strengths, and 
weaknesses, and an equipment model that refers to the use of available tools. In the 
context of collaborative learning, the primary goal is to construct task-mental models 
(Fransen et al., 2013) with the other models being subsidiary depending on nature of 
the task and the instructional environment (e.g., devices used during computer-
supported collaborative learning). In this context, task-based group schemas refer to 
knowledge and experiences shared among group members on how to work with each 
other within a domain-specific task (e.g., math, sciences, economics). Group members 
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with these skills may exhibit positively interdependent behaviors, share relevant 
group-internal representations that allow them to make better decisions, distribute 
resources and information load amongst themselves, provide support and feedback 
to each other, and provide elaborated explanations (Gupta & Hollingshead, 2010; 
Tindale & Kameda, 2000). 

A missing or implicit element in these shared mental models and one that is crucial 
for collaborative learning is a socially shared regulation schema or script (Fischer, 
Kollar, Stegmann, & Wecker, 2013; King, 2007; Winne, 2001). This element refers to 
behaviors intentionally directed to a learning goal, metacognitive processes (i.e., 
planning, monitoring, and control), and the regulation of behavior, cognition, and/or 
motivation/emotions when learning collaboratively (Järvelä & Hadwin, 2013; Tindale 
& Kameda, 2000). Emerging empirical evidence indicates that groups whose members 
display appropriate metacognitive interactions achieve higher performance levels 
(Kolloffel, Eysink, & de Jong, 2011; Manlove, Lazonder, & de Jong, 2009; Näykki, 
Järvenoja, Järvelä, & Kirschner, 2015). Self-regulation during learning implies that 
learners have some freedom to control and decide on the process and outcome of the 
tasks and that they know how to employ appropriate metacognitive strategies during 
learning (Zimmerman & Moylan, 2009). This supposes that group members would 
have to have minimal schemas for adequately performing on a similar-specific 
domain (Cleary & Zimmerman, 2001; Raes, Schellens, De Wever, & Vanderhoven, 
2012); that is, they are fairly advanced in the domain of the task. However, learning 
groups not always are composed of advanced learners, and not all regulatory 
mechanisms are transferable across domains because they depend on task 
characteristics (Nugteren, Jarodzka, Kester, & Van Merriënboer, 2018b; Raaijmakers, 
Baars, Paas, van Merriënboer, & van Gog, 2018). 

Analogical transfer processing is considered a foundation of human cognition 
(Gentner, Holyoak, & Kokinov, 2001; Novick, 1988). Studies in which collaborative 
work is modelled, for example through the use of worked examples and scripted 
collaboration, may provide evidence of the advantages of analogical transfer in 
instructional conditions. Rummel and Spada (2005) developed and tested two 
instructional approaches to improve collaboration for computer-mediated settings: 
worked-out collaboration examples (modeling learning) and scripted collaborative 
problem-solving. Observing a worked-out collaboration example and collaborating 
with the aid of a script showed positive effects on both the processes and the outcomes 
in what they called the application phase as compared to unscripted collaborative 
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problem-solving and a control condition in which dyads had no opportunity to gain 
experience in collaborating on the task during a learning phase. In a subsequent study, 
Rummel, Spada, and Hauser (2009) compared five learning conditions: modeling, 
modeling with elaboration, scripting, scripting with elaboration, and a control. They 
found that observing a collaboration model with elaboration produced the best results 
in terms of the quality of collaborative process and outcome variables. This proved 
even to be the case for complex social skills. From these and others studies (Vogel, 
Wecker, Kollar, & Fischer, 2016; Westermann & Rummel, 2012) it can be assumed that 
a group can acquire shared task-based schemas and transfer them to related tasks and 
perform better than groups without these shared mental representations. 
 
Guiding a team’s collaborative work is associated with fewer and more productive 
regulatory interactions, especially under high cognitive load (Raaijmakers et al., 2018; 
Rummel et al., 2009). Also, groups that have built and shared schemas around analog 
or similar collaborative tasks may perform better and experience less cognitive load 
(P. A. Kirschner et al., 2018), as those schemas function as socio-metacognitive internal 
guides that regulate inter-individual activities during the resolution of high-
complexity learning problems (Fischer et al., 2013). Further, these internal 
representations/scripts may also help group members regulate their emotional and 
non-task related interactions avoiding interference to group learning. There is some 
evidence that suggests that group members can regulate (i.e., monitor) their cognitive 
and emotional interactions during collaboration (Järvenoja, Järvelä, & Malmberg, 
2017; Näykki et al., 2017), and that scripts differentially affect their exchanges in the 
group (Näykki et al., 2017; Vuopala, Näykki, Isohätälä, & Järvelä, 2019). In addition, 
Rummel and her colleagues (Rummel & Spada, 2005; Rummel et al., 2009) found that 
collaborative modeling can help groups optimize their regulatory and emotional 
interactions. From these findings it is possible to assume that task-based collaborative 
schemas may result in fewer regulatory and emotional interactions because group 
members focus their activities on the task and not on regulating activities. 
 
In sum, it can be argued that groups with collaborative experience based on relevant 
tasks may have better schemas that allow them to benefit from their intra-group 
activities for carrying out and learn from relatively new learning tasks, as the costs 
incurred in communicating and coordinating activities are optimized. However, most 
research endeavors do not consider these incurred costs during group learning and 
their outcomes. Cognitive load theory provides a robust framework that can inform 
the design of effective individual or collaborative instructional environments based 

Jimmy Zambrano inhoud tabs v3.indd   32 14-10-2019   12:33:10



Ch
ap

te
r 

3

Chapter 3 

32 

with these skills may exhibit positively interdependent behaviors, share relevant 
group-internal representations that allow them to make better decisions, distribute 
resources and information load amongst themselves, provide support and feedback 
to each other, and provide elaborated explanations (Gupta & Hollingshead, 2010; 
Tindale & Kameda, 2000). 

A missing or implicit element in these shared mental models and one that is crucial 
for collaborative learning is a socially shared regulation schema or script (Fischer, 
Kollar, Stegmann, & Wecker, 2013; King, 2007; Winne, 2001). This element refers to 
behaviors intentionally directed to a learning goal, metacognitive processes (i.e., 
planning, monitoring, and control), and the regulation of behavior, cognition, and/or 
motivation/emotions when learning collaboratively (Järvelä & Hadwin, 2013; Tindale 
& Kameda, 2000). Emerging empirical evidence indicates that groups whose members 
display appropriate metacognitive interactions achieve higher performance levels 
(Kolloffel, Eysink, & de Jong, 2011; Manlove, Lazonder, & de Jong, 2009; Näykki, 
Järvenoja, Järvelä, & Kirschner, 2015). Self-regulation during learning implies that 
learners have some freedom to control and decide on the process and outcome of the 
tasks and that they know how to employ appropriate metacognitive strategies during 
learning (Zimmerman & Moylan, 2009). This supposes that group members would 
have to have minimal schemas for adequately performing on a similar-specific 
domain (Cleary & Zimmerman, 2001; Raes, Schellens, De Wever, & Vanderhoven, 
2012); that is, they are fairly advanced in the domain of the task. However, learning 
groups not always are composed of advanced learners, and not all regulatory 
mechanisms are transferable across domains because they depend on task 
characteristics (Nugteren, Jarodzka, Kester, & Van Merriënboer, 2018b; Raaijmakers, 
Baars, Paas, van Merriënboer, & van Gog, 2018). 

Analogical transfer processing is considered a foundation of human cognition 
(Gentner, Holyoak, & Kokinov, 2001; Novick, 1988). Studies in which collaborative 
work is modelled, for example through the use of worked examples and scripted 
collaboration, may provide evidence of the advantages of analogical transfer in 
instructional conditions. Rummel and Spada (2005) developed and tested two 
instructional approaches to improve collaboration for computer-mediated settings: 
worked-out collaboration examples (modeling learning) and scripted collaborative 
problem-solving. Observing a worked-out collaboration example and collaborating 
with the aid of a script showed positive effects on both the processes and the outcomes 
in what they called the application phase as compared to unscripted collaborative 

Benefits of Task-Based Prior Group Experience on Collaborative Learning 

33 

problem-solving and a control condition in which dyads had no opportunity to gain 
experience in collaborating on the task during a learning phase. In a subsequent study, 
Rummel, Spada, and Hauser (2009) compared five learning conditions: modeling, 
modeling with elaboration, scripting, scripting with elaboration, and a control. They 
found that observing a collaboration model with elaboration produced the best results 
in terms of the quality of collaborative process and outcome variables. This proved 
even to be the case for complex social skills. From these and others studies (Vogel, 
Wecker, Kollar, & Fischer, 2016; Westermann & Rummel, 2012) it can be assumed that 
a group can acquire shared task-based schemas and transfer them to related tasks and 
perform better than groups without these shared mental representations. 
 
Guiding a team’s collaborative work is associated with fewer and more productive 
regulatory interactions, especially under high cognitive load (Raaijmakers et al., 2018; 
Rummel et al., 2009). Also, groups that have built and shared schemas around analog 
or similar collaborative tasks may perform better and experience less cognitive load 
(P. A. Kirschner et al., 2018), as those schemas function as socio-metacognitive internal 
guides that regulate inter-individual activities during the resolution of high-
complexity learning problems (Fischer et al., 2013). Further, these internal 
representations/scripts may also help group members regulate their emotional and 
non-task related interactions avoiding interference to group learning. There is some 
evidence that suggests that group members can regulate (i.e., monitor) their cognitive 
and emotional interactions during collaboration (Järvenoja, Järvelä, & Malmberg, 
2017; Näykki et al., 2017), and that scripts differentially affect their exchanges in the 
group (Näykki et al., 2017; Vuopala, Näykki, Isohätälä, & Järvelä, 2019). In addition, 
Rummel and her colleagues (Rummel & Spada, 2005; Rummel et al., 2009) found that 
collaborative modeling can help groups optimize their regulatory and emotional 
interactions. From these findings it is possible to assume that task-based collaborative 
schemas may result in fewer regulatory and emotional interactions because group 
members focus their activities on the task and not on regulating activities. 
 
In sum, it can be argued that groups with collaborative experience based on relevant 
tasks may have better schemas that allow them to benefit from their intra-group 
activities for carrying out and learn from relatively new learning tasks, as the costs 
incurred in communicating and coordinating activities are optimized. However, most 
research endeavors do not consider these incurred costs during group learning and 
their outcomes. Cognitive load theory provides a robust framework that can inform 
the design of effective individual or collaborative instructional environments based 

Jimmy Zambrano inhoud tabs v3.indd   33 14-10-2019   12:33:10



Chapter 3 

34 

on the main characteristics of the human cognitive architecture (Sweller et al., 2011). 
It can help to clarify which group interactions facilitate or inhibit collaborative 
learning, taking into account the cognitive cost or load they impose during 
collaborative learning and its outcomes in subsequent individual tests (P. A. Kirschner 
et al., 2018). 

Cognitive Load Theory 
Cognitive load is a phenomenon related to the temporal demands of information 
processing in working memory (Cowan, 2001; L. R. Peterson & Peterson, 1959) during 
the (re)construction of relevant schemas in the long-term memory (Kalyuga & Singh, 
2016; Sweller et al., 2011). The intensity or complexity of these demands varies 
depending on factors such as the amount of information or operations on the learning 
task or environment (i.e., external inputs) and the previously acquired knowledge 
(i.e., internal inputs). The first factor is usually related to controlled and conscious 
learning processes. It is associated with high cognitive load when learning tasks have 
a high level of element interactivity, which demand a significant amount of working 
memory resources (Sweller, 2010) and especially under time constraints (Puma, 
Matton, Paubel, & Tricot, 2018). The second factor is related to unconscious processes 
with previously learned information that is retrieved from long-term memory and 
imposes a low cognitive load (Evans & Stanovich, 2013). 

Cognitive load is classified as intrinsic when it is related to strictly essential 
information and/or operations of the learning task, or as extraneous load when they 
are not. The latter is generally related to a poorly designed instructional environment. 
The germane cognitive load has been recently associated with the intrinsic load 
(Kalyuga, 2011), as this construct implies working memory activities involved in task 
information processing and storing in long-term memory. Task unrelated working 
memory operations may hinder learning when processing them demands almost all 
of the available working memory resources, exceeding the working memory resources 
available to learn. From this classification, unless the instructional goal is explicitly to 
learn how to carry out tasks that are essentially collaborative in nature (e.g., certain 
medical procedures in an operating room, sports, or military operations), the 
interactions amongst groups members can be considered as extraneous load. In any 
case, group interactions must be reduced/optimized in order to construct better 
schemas of the task. Learning conditions often are characterized by: highly complex 
tasks; the implementation of group work / collaboration; little time available to carry 
out the task; and learners who have little relevant prior knowledge. Therefore, 
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designing appropriate environments involves managing the cognitive demands of 
tasks and adjusting them to prior knowledge through tailored instructional 
procedures that focus the working memory temporal operation on productive load. 

In working memory, external and internal inputs dynamically interact in a continuum 
between automaticity and controllability (i.e., top-down processing and botton-up 
processing respectively; Kriz & Hegarty, 2007). Due to the emphasis placed on the 
construction of domain-specific knowledge and/or task schemas and the limitations 
of working memory (Sweller, 1994), most cognitive load theory studies have focused 
on bottom-up processing, an approach that is related to cognitively demanding and 
conscious operations which often produce substantial cognitive load and require 
explicit guidance (Evans & Stanovich, 2013; P. A. Kirschner et al., 2006). This 
processing considers the crucial role of prior knowledge for designing tailored 
instruction, as more advanced learners who have prior knowledge have to reconcile 
externally provided redundant information with existing long-term memory 
knowledge. Conciliating similarities between external and internal inputs usually 
results in low performance and high cognitive load; the so-called expertise reversal 
effect (Kalyuga, Ayres, Chandler, & Sweller, 2003). This effect occurs when learners 
are required to acquire already known domain-specific information instead of having 
them use this knowledge to learn or solve relatively new or more complex tasks (i.e., 
transfer) (Tricot & Sweller, 2014). Consequently, this effect might be evidence for the 
argument that prior schemas can and should be transferred to learn relatively new 
tasks either on the same domain or other structurally comparable tasks (e.g., applying 
systems of linear equations in Mathematics to break-even point tasks in Economics). 

Notwithstanding, there is an emerging construct that aims to combine the specific-
domain knowledge and general knowledge from cognitive load theory: generalized 
domain knowledge structures (Kalyuga, 2013; Kalyuga & Hanham, 2011). The research 
on using existing generalized domain knowledge for acquiring domain-specific 
knowledge shows positive results (i.e., combining automaticity and controllability) 
although it is still in progress under individual learning conditions. Nevertheless, this 
type of knowledge may also be relevant for the development of task-based, collective 
schemas previously introduced. Generalizable domain knowledge can be composed 
of schematic structures on how to work in groups on specific domain tasks. 
Accordingly, groups that receive explicit guidance to acquire these structures may 
perform better than groups that have not had this guidance or previous collaborative 
experience (Raes et al., 2012). 
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processing respectively; Kriz & Hegarty, 2007). Due to the emphasis placed on the 
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explicit guidance (Evans & Stanovich, 2013; P. A. Kirschner et al., 2006). This 
processing considers the crucial role of prior knowledge for designing tailored 
instruction, as more advanced learners who have prior knowledge have to reconcile 
externally provided redundant information with existing long-term memory 
knowledge. Conciliating similarities between external and internal inputs usually 
results in low performance and high cognitive load; the so-called expertise reversal 
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Notwithstanding, there is an emerging construct that aims to combine the specific-
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on using existing generalized domain knowledge for acquiring domain-specific 
knowledge shows positive results (i.e., combining automaticity and controllability) 
although it is still in progress under individual learning conditions. Nevertheless, this 
type of knowledge may also be relevant for the development of task-based, collective 
schemas previously introduced. Generalizable domain knowledge can be composed 
of schematic structures on how to work in groups on specific domain tasks. 
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experience (Raes et al., 2012). 

Jimmy Zambrano inhoud tabs v3.indd   35 14-10-2019   12:33:10



Chapter 3 

36 

Group learning activities include regulatory and emotional interactions (see the 
section ‘A Shared Mental Model for Collaboration’). However, there is still debate 
about the relationship between cognitive load, regulated learning (de Bruin & van 
Merriënboer, 2017; Sweller & Paas, 2017), and emotions (Plass & Kalyuga, 2019). It can 
be expected that collaborative work structures in long-term memory guide 
transactional activities during group work (Rummel & Spada, 2005). This guide could 
reduce the number of regulatory interactions due to the transfer of these schemas to 
the new tasks. In contrast, groups without appropriate collaborative schemas may 
invest more working memory resources in organizing themselves to carry out the 
learning task. With respect to emotions, there are different ways of understanding 
their relationship with cognitive load. However, because emotions during 
collaborative learning can be partially expressed in learner interactions (Isohätälä, 
Näykki, Järvelä, & Baker, 2017; Järvenoja et al., 2017), it is possible to expect 
experienced groups to engage in fewer emotional interactions which interfere with 
learning (Khawaja, Chen, & Marcus, 2012, 2013). Thus, experienced groups with these 
collaborative schemas may optimize their transactional activities, which although 
they represent informational elements not essential for the task (i.e., impose 
extraneous load), may work as a scaffold for constructing better domain-specific 
schemas (Kollar, Wecker, & Fischer, 2018). Also, these knowledge structures may 
explain the differences between groups with higher and lower performance 
concerning their transaction activities and learning outcomes in (P. A. Kirschner et al., 
2018). 

This Study 
The goal of the present study was twofold. First, it aimed to determine the effect of 
prior task-based group experience on the collaborative learning process and its 
outcomes (i.e., retention test and delayed test). Second, it aimed to determine what 
type of transaction activities explain the difference between experienced groups and 
non-experienced groups. For this, a two-phase explanatory sequential research design 
was used with both a randomized, controlled, experimental phase and an interaction 
analysis phase (Ivankova, Creswell, & Stick, 2016). For the first phase, we expected 
that experienced groups (i.e., groups of learners with prior experience working 
together on a similar task or problem) will outperform (h1), expend less mental effort 
(h2) and be more efficient (h3) than non-experienced groups (i.e., groups of learners 
that have not previously worked together) in the learning stage, as well as in the 
retention and delayed tests (i.e., its outcomes). For the second phase, we expected that 
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experienced groups would produce more socio-cognitive interactions (h4), and fewer 
socio-regulatory (h5), socio-emotional (h6), and non-task interactions (h7) than non-
experienced groups.  
 

Experimental Phase 
Method 
Participants. 
The study was conducted with 90 students (average age 13.80 years, SD = 0.70; 48.89% 
female), from a private school in Sangolquí, Ecuador, and was mandatory because it 
was part of their mathematics class. This research received ethical approval from the 
School Ethical Committee. Students were randomly allocated to two learning 
conditions: experienced group and non-experienced group. While they had not 
received instruction about the learning task which involved calculating the break-
even point (BEP) in economics, they all were administered a prior knowledge test. It 
revealed that no learner knew how to solve the economics tasks. Students were 
informed of the study and that they would receive academic compensation of 10 
points for their participation. 
 
Design and procedure. 
The independent variable was learning condition, operationalized as being in an 
experienced or a non-experienced group. The dependent variables were performance, 
mental effort, and efficiency. 
 
The study was conducted in four stages: preparation, learning, retention testing, and 
delayed testing. Each stage consisted of sessions of 45 min. Three instructors and the 
experimenter guided participants throughout all stages. Instructors were previously 
informed about the procedure and were supervised by the experimenter to guarantee 
intervention fidelity. All instructions were read aloud. 
 
Preparation stage. 
The preparation stage began in the second week of the new school period, after a 2-
month vacation, to ensure that the learners had neither previous classroom familiarity 
with each other nor prior task-based collaboration experience. This stage consisted of 
four 45-min sessions (180 min) over one week and was intended to allow the groups 
to acquire collaborative experience with each other – and thus task-based schemas – 
based on domain-specific tasks (i.e., solving quadratic equations) which are analogous 
to the actual learning tasks in the next phase. Students were randomly assigned to two 
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groups: 45 were assigned to 15 triads (i.e., groups that would gain relevant 
collaborative experience) and 45 worked individually (i.e., students who would later 
form triads without collaborative experience). The tasks consisted of solving quadratic 
equations and are described in the following materials section. There were no time 
restrictions on the first tasks; 10 min was assigned to the two final tasks of the second 
session onwards (a digital clock was placed up front). Instructors encouraged group 
members to practice the collaboration rules that they had previously received (see 
Materials section), share their information which was available in the task, and 
maintain in their working memory their calculations to find the correct answer. 
Writing was not permitted when carrying out the task (i.e., all relevant information 
and calculations had to be maintained in working memory) but was allowed for the 
ultimate solution. At the end of each session, learners were given the correct answers 
to their tasks. The triads were asked to reflect on how they could collaborate better on 
the subsequent tasks for 5 min after the third and fourth session. 

Learning stage. 
The learning stage consisted of one session, a day or two after the preparation stage, 
depending upon the class schedules of the students. First, all learners were given 
8 min to individually solve three simplified BEP problems to assess their prior 
knowledge of the subject. Then, the individual learners from the previous stage were 
randomly assigned to 15 triads (i.e., groups without prior collaborative experience) 
while the groups that were formed in the previous stage remained intact. Third, all 
students were asked to study a booklet for 10 min, and then answer cognitive group 
prompt questions during a 5 min period. Fourth, each student was asked to save the 
booklet, attach a voice recorder to the pocket of his/her shirt, and leave it turned on 
until all tasks were finished. Finally, the groups solved three tasks in 21 min (i.e., 7 
min for each task). If a group finished the task before the end of the allotted time, the 
group was required to wait before starting on the next problem. Because it was 
essential that learners did not cognitively offload their working memory (Van 
Bruggen, Kirschner, & Jochems, 2002), pencil use was only permitted when writing 
the final answer and to indicate the mental effort invested after each task. The 
instructors made sure groups would keep to this rule. 

Retention and delayed test stages. 
These stages aimed to evaluate individual learning outcomes of the previous two 
stages regarding efficiency and effectiveness. The retention test was administered one 
day after the learning stage and the delayed test after seven days. In each stage, 
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learners individually solved three BEP conventional problems in one session (10 min 
per task). To determine the quality of their knowledge schemas, learners were asked 
to record each step of the solution process and the mental effort invested after each 
problem. 

Materials. 
Materials were developed for carrying out tasks in the domains of mathematics 
(preparation stage) and its analog domain economy (the remaining stages). The tasks 
involved solving quadratic equations in the former and calculating BEP tasks for the 
latter. All materials were paper-based. 

Preparation stage. 
Domain-generalized group knowledge was provided using a whole-task scaffolding 
approach (Van Merriënboer, Kirschner, & Kester, 2003) plus five rules on how to 
collaboratively solve the equations. Both the group condition (i.e., experienced group 
in the learning stage) and the individual condition (i.e., non-experienced group in the 
learning stage) were instructed to learn the rules and apply them when working in 
groups. Examples of the rules are: When it is possible to perform the calculations 
without the help of others, do it alone; Carry out the calculations sharing your 
information with your peers without writing them; Continually rehearse the results 
to avoid forgetting them. In the first session, all participants received an introduction 
to quadratic equations with two worked examples using the factoring method to 
activate the students’ prior knowledge. 

In the group condition, each member received two values of the equation and a table 
in which they could write down the intermediate calculations. The individual 
participants received the same values but did not work in teams (see Appendix A). In 
the second session, both group and individual conditions received the collaborative 
rules, two conventional problems with the correct answer and a conventional problem 
without the correct answer. In the third and fourth sessions, the rules were removed, 
and groups and individuals received three conventional problems without a correct 
answer and with an increased number of values (from six to nine). All values were 
relevant for but insufficient to solve each problem. 

Learning stage. 
BEP tasks have similar features to quadratic equations, such as combining multiple 
numerical values, using basic mathematical operations, and calculating intermediate 
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learning stage) were instructed to learn the rules and apply them when working in 
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to avoid forgetting them. In the first session, all participants received an introduction 
to quadratic equations with two worked examples using the factoring method to 
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steps. Likewise, learners had to hold partial answers in their working memory and 
then combine them to find a unique correct answer. In this way, the rules of 
collaboration also applied to the BEP tasks. 

Each participant received a booklet with the relevant concepts, two worked examples, 
cognitive prompt questions, three conventional problems, a piece of paper with 
examples of fixed and variable costs and the BEP in units’ formula, and a voice 
recorder. The worked examples had seven steps (see Table 1). Some of the prompt 
questions were: a) What is the BEP? b) What are the seven steps to calculate the BEP? 
c) What is the difference between the BEP in units and sales? d) How do you calculate
the contribution? and so forth. No task-step could be performed without each member
communicating his/her items to the others and coordinating their actions. The
information on the piece of paper was given to avoid confusion.

An approximate high level of complexity was determined computing the number of 
elements and assuming that processing these elements demand other mental 
operations in working memory (Sweller & Chandler, 1994). Each problem had seven 
steps with nine items (Table 1) that had to be interconnected to obtain a correct 
answer. Each step varied in the number of elements and type of mental operations 
required (Column 2 and 3 of Table 1). If only mathematical elements are considered, 
there are a total of 45 interacting elements (including signs). Additionally, for each 
step, an intermediate temporal answer had to be calculated and held in working 
memory (Column 4 of Table 1) that needed to be integrated with another number. 
Based upon this computation and the fact that the learners lacked relevant prior 
knowledge and were not permitted to write down their answers, it was assumed that 
the tasks were of high complexity. 
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Table 1 
Steps to Calculate the BEP 

Steps to solve the 
problem 

Example of calculations 
Interacting 

elements 

Temporal 
results to 

maintain in 
working 
memory 

1. Recognize cost items Nine items of the problem
155, 63, 82, 50, 41, 108, 71, 
119, 52 9 

2. Total variable cost V1 +V2 + V3 = TV 
155 + 63 + 82 = 300 7 300 

3. Variable cost per
unit

TV ÷ amount produced = CU 
300 ÷ 50 = 6 5 300, 6 

4. Contribution Price – CU = C 
41 – 6 = 35 5 6, 35 

5. Total fixed cost F1 + F2 + F3 + profit 
margin = TF 
108 + 71 + 119 + 52 = 350 9 35, 350 

6. BEP in units TF ÷ C = BU 
350 ÷ 35 = 10 5 35, 350, 10 

7. BEP in sales BU × price = BS 
10 × 41 = 410 5 10, 410 

Note. V = variable cost; F = fixed cost; TV = total variable cost; CU = variable cost per unit; 
C = contribution; TF = total fixed cost; BU = BEP in units; BS = BEP in sales. 

Retention and delayed test stages. 
Six high-complexity BEP situations with different cost values were used. Participants 
received worksheets with three conventional problems constituting the retention test, 
one day after the learning stage, and another three problems after seven days 
constituting the delayed test. Each problem included a table with seven numbered 
rows to write down the calculations for each solution step. 

Measurement. 
Cognitive Load. 
Cognitive load was measured after each consecutive task during learning with the 
subjective 9-point mental effort rating scale Paas (1992). Mental effort refers to the 
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elements and assuming that processing these elements demand other mental 
operations in working memory (Sweller & Chandler, 1994). Each problem had seven 
steps with nine items (Table 1) that had to be interconnected to obtain a correct 
answer. Each step varied in the number of elements and type of mental operations 
required (Column 2 and 3 of Table 1). If only mathematical elements are considered, 
there are a total of 45 interacting elements (including signs). Additionally, for each 
step, an intermediate temporal answer had to be calculated and held in working 
memory (Column 4 of Table 1) that needed to be integrated with another number. 
Based upon this computation and the fact that the learners lacked relevant prior 
knowledge and were not permitted to write down their answers, it was assumed that 
the tasks were of high complexity. 
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Table 1 
Steps to Calculate the BEP 

Steps to solve the 
problem 

Example of calculations 
Interacting 

elements 

Temporal 
results to 

maintain in 
working 
memory 

1. Recognize cost items Nine items of the problem
155, 63, 82, 50, 41, 108, 71, 
119, 52 9 

2. Total variable cost V1 +V2 + V3 = TV 
155 + 63 + 82 = 300 7 300 

3. Variable cost per
unit

TV ÷ amount produced = CU 
300 ÷ 50 = 6 5 300, 6 

4. Contribution Price – CU = C 
41 – 6 = 35 5 6, 35 

5. Total fixed cost F1 + F2 + F3 + profit 
margin = TF 
108 + 71 + 119 + 52 = 350 9 35, 350 

6. BEP in units TF ÷ C = BU 
350 ÷ 35 = 10 5 35, 350, 10 

7. BEP in sales BU × price = BS 
10 × 41 = 410 5 10, 410 

Note. V = variable cost; F = fixed cost; TV = total variable cost; CU = variable cost per unit; 
C = contribution; TF = total fixed cost; BU = BEP in units; BS = BEP in sales. 

Retention and delayed test stages. 
Six high-complexity BEP situations with different cost values were used. Participants 
received worksheets with three conventional problems constituting the retention test, 
one day after the learning stage, and another three problems after seven days 
constituting the delayed test. Each problem included a table with seven numbered 
rows to write down the calculations for each solution step. 

Measurement. 
Cognitive Load. 
Cognitive load was measured after each consecutive task during learning with the 
subjective 9-point mental effort rating scale Paas (1992). Mental effort refers to the 
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aspect of cognitive load that refers to the cognitive capacity that is actually allocated 
to accommodate the demands imposed by the task (Paas, Tuovinen, Tabbers, & Van 
Gerven, 2003). This scale has been found to be sensitive to changes in task complexity 
and is non-intrusive (Van Gog & Paas, 2008). Each participant rated how much effort 
it took for them to solve the problems. This measurement provided an indirect overall 
indication of the cognitive load experienced by the learners. 

Performance. 
Performance was measured in the learning, retention test, and delayed test stages. The 
total number of scorable points for the three learning tasks was 3 points: 1 for each if 
the answer was correct or 0 if it was incorrect. This rating scheme did not take into 
account the learning process because group members were asked to make the steps 
required to solve the problem verbally. However, for each of the three retention and 
delayed test tasks, 7 points could be awarded based on the seven steps to calculate the 
BEP (i.e., the learning process). Each step was scored individually considering 
whether correct values and correct mathematical operations were used. A correct 
step’s calculation received 1 point and an incorrect step’s calculation 0, resulting in a 
maximum score of 21 points and a minimum of 0. If a step was partially correct (e.g., 
if only two of the three variables were recognized in step 2), a proportional score was 
given. The scores were then transformed into proportions. 

Efficiency. 
It refers to the combination of performance and cognitive load measures to estimate 
the efficiency of the instructional method and learning outcomes. High efficiency 
indicates relatively high performance in combination with relatively low mental 
effort. Conversely, low efficiency means relatively low performance in combination 
with relatively high mental effort (Paas, Tuovinen, et al., 2003). Efficiency for learning 
retention and delayed test stages were calculated. Z-scores for performance (P) and 
mental effort (R) were computed with the formula E = [(P – R)/21/2] (Paas & Van 
Merriënboer, 1993). 

Results 
Data were analyzed with one-way ANOVAs using a significance level of .05 and a 
partial eta-squared to indicate the effect size, with values of .01, .06 and .14, 
corresponding to small, medium, and large effects respectively (Cohen, 1988). Further, 
the intraclass correlation coefficient (ICC) was calculated for the retention and delayed 
measures to estimate the degree of non-independence (Kenny, Mannetti, Pierro, Livi, 
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& Kashy, 2002). No student could solve the problems on the prior knowledge test. 
Figure 1 shows the descriptive results of the measures of the dependent variables (i.e., 
performance, mental effort, and efficiency) during study stages. 

a) Performance b) Mental Effort

c) Efficiency

Figure 1. Scores of the dependent variable for learning, retention test, and delayed test stages. 

For performance, the difference between experienced and non-experienced groups in 
the learning stage was not significant, F(1, 27) = .008, MSE = .779, ns. However, 
significant differences were found in the retention, F(1, 84) = 6.754, MSE = .035, 
p = .011, ηp2 = .074, ICC = .23, and delayed tests, F(1, 83) = 4.557, MSE = .039, p = .036, 
ηp2 = .052, ICC = .35. For mental effort, ANOVA also did not reveal a significant 
difference in the learning stage, F(1, 27) = .336, MSE = 1.793, ns, but there were 
significant differences in retention, F(1, 84) = 12.890, MSE = 2.587, p = .001, ηp2 = .133, 
ICC = .31, and delayed tests, F(1, 83) = 4.095, MSE = 2.330, p = .046, ηp2 = .047, ICC = .18. 
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Gerven, 2003). This scale has been found to be sensitive to changes in task complexity 
and is non-intrusive (Van Gog & Paas, 2008). Each participant rated how much effort 
it took for them to solve the problems. This measurement provided an indirect overall 
indication of the cognitive load experienced by the learners. 

Performance. 
Performance was measured in the learning, retention test, and delayed test stages. The 
total number of scorable points for the three learning tasks was 3 points: 1 for each if 
the answer was correct or 0 if it was incorrect. This rating scheme did not take into 
account the learning process because group members were asked to make the steps 
required to solve the problem verbally. However, for each of the three retention and 
delayed test tasks, 7 points could be awarded based on the seven steps to calculate the 
BEP (i.e., the learning process). Each step was scored individually considering 
whether correct values and correct mathematical operations were used. A correct 
step’s calculation received 1 point and an incorrect step’s calculation 0, resulting in a 
maximum score of 21 points and a minimum of 0. If a step was partially correct (e.g., 
if only two of the three variables were recognized in step 2), a proportional score was 
given. The scores were then transformed into proportions. 

Efficiency. 
It refers to the combination of performance and cognitive load measures to estimate 
the efficiency of the instructional method and learning outcomes. High efficiency 
indicates relatively high performance in combination with relatively low mental 
effort. Conversely, low efficiency means relatively low performance in combination 
with relatively high mental effort (Paas, Tuovinen, et al., 2003). Efficiency for learning 
retention and delayed test stages were calculated. Z-scores for performance (P) and 
mental effort (R) were computed with the formula E = [(P – R)/21/2] (Paas & Van 
Merriënboer, 1993). 

Results 
Data were analyzed with one-way ANOVAs using a significance level of .05 and a 
partial eta-squared to indicate the effect size, with values of .01, .06 and .14, 
corresponding to small, medium, and large effects respectively (Cohen, 1988). Further, 
the intraclass correlation coefficient (ICC) was calculated for the retention and delayed 
measures to estimate the degree of non-independence (Kenny, Mannetti, Pierro, Livi, 
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& Kashy, 2002). No student could solve the problems on the prior knowledge test. 
Figure 1 shows the descriptive results of the measures of the dependent variables (i.e., 
performance, mental effort, and efficiency) during study stages.

a) Performance b) Mental Effort

c) Efficiency

Figure 1. Scores of the dependent variable for learning, retention test, and delayed test stages.

For performance, the difference between experienced and non-experienced groups in 
the learning stage was not significant, F(1, 27) = .008, MSE = .779, ns. However, 
significant differences were found in the retention, F(1, 84) = 6.754, MSE = .035, 
p = .011, ηp2 = .074, ICC = .23, and delayed tests, F(1, 83) = 4.557, MSE = .039, p = .036, 
ηp2 = .052, ICC = .35. For mental effort, ANOVA also did not reveal a significant 
difference in the learning stage, F(1, 27) = .336, MSE = 1.793, ns, but there were 
significant differences in retention, F(1, 84) = 12.890, MSE = 2.587, p = .001, ηp2 = .133, 
ICC = .31, and delayed tests, F(1, 83) = 4.095, MSE = 2.330, p = .046, ηp2 = .047, ICC = .18. 
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For efficiency, consequently, there was no significant difference in the learning stage, 
F(1, 27) = .162, MSE = 1.407, ns, but there was a significant difference on retention, 
F(1, 84) = 12.479, MSE = 1.391, p = .001, ηp2 = .129, ICC = .31, and delayed tests, 
F(1, 83) = 6.176, MSE = 1.297, p = .015, ηp2 = . 069, ICC = .40. As expected, learning by 
experienced groups resulted in higher performance, less mental effort, and higher 
efficiency than learning in non-experienced groups. However, it is necessary to 
examine the transactional activities to explain why these differences were not 
observed in the learning stage (see below). 

Discussion 
This first phase of the study aimed to determine the effect of the prior relevant, task-
based group experience in the collaborative learning process and its outcomes. The 
results present evidence for our hypotheses that groups provided instruction in 
collaborative learning outperformed, expended less mental effort, and were more 
efficient in retention and delayed tests but did not differ in the learning stage. It seems, 
these experienced groups invested substantial working memory resources in 
transactional activities when learning to solve the learning problems. 

The results on performance, mental effort and efficiency in the retention and delayed 
tests suggest that learners that worked in experienced groups constructed and took 
advantage of better-generalized knowledge structures to learn relatively new, highly 
demanding tasks (P. A. Kirschner et al., 2018; Van Gog, Paas, & Van Merriënboer, 
2005). The joint-work mental model (i.e., the collaboration model) acquired through 
explicit guidance in the preparation stage positively affected the results of the 
collaboration. The higher performance with less mental effort and more cognitive 
efficiency of learners in experienced groups suggest that the socially shared schemas 
of task-based collaborative learning may have functioned as internal cognitive and 
metacognitive scripts that guided inter-individual activities during group learning 
(Fischer et al., 2013; P. A. Kirschner et al., 2018). That is, when groups have group 
knowledge structures of a generalizable domain, this substantially improves the 
results of collaborative learning although this benefit is not immediately observed in 
the collaborative learning stage. Furthermore, the results of posttests may be a good 
indicator of long-term retention (Soderstrom & Bjork, 2015) because they were applied 
one and seven days after the learning stage. Given that the benefit of collaborative 
learning must be seen in individual post-tests (F. Kirschner et al., 2009a), the 
performance results of the retention stage were considered as representative for both 
conditions. 

Benefits of Task-Based Prior Group Experience on Collaborative Learning 

45 

The lack of evidence of the benefit of having task-based collaborative knowledge 
structures in the learning stage can be explained by the type of measurement used and 
the task complexity. In our study, the performance of the collaboration process in this 
phase was only determined by the accuracy of the final answer. This criterion did not 
allow an in-depth understanding of the performance during the collaborative process, 
which in turn suggests that collaborative learning performance does not always reflect 
the benefits of collaboration (Kester & Paas, 2005). Regarding mental effort, the 
equivalent scores were probably because the mental effort rating took into account the 
cognitive load produced by both essential elements of the task (i.e., intrinsic load) and 
by the transactional activities (i.e., extraneous load). As was the case when measuring 
group performance, the perception of mental effort included all working memory 
cognitive activities imposed by the tasks without being able to discriminate their 
possible temporal fluctuations of cognitive load during collaboration (Van Gog, 
Kirschner, Kester, & Paas, 2012). It would be interesting to examine the consistency of 
the subjective measures of cognitive load in each step of each collaborative task using 
protocol analysis of verbalized thoughts (Ericsson, 2018). 

Due to the fact that this study did not obtain differential results in the learning stage 
and that, to our knowledge, there is no research that examines transactional activities 
from a cognitive load perspective (Janssen, Kirschner, et al., 2010), a more in-depth 
analysis of the intra-group interactions was carried out to reveal the cognitive 
activities between individuals that were associated with collaboration in this study. 

Interaction Analysis Phase 
Selection of Learning Groups 
This phase was carried out to examine the type and number of transactional activities 
of the learning process that characterized the groups with and without previous 
collaborative experience. The experimental phase found that the experienced groups 
did not perform better than the non-experienced groups in the learning stage. Given 
that group interactions are considered to be extraneous load because the instructional 
goal was learning to solve BEP tasks, it is important to examine the differences in 
transactional activities between experienced and non-experienced groups during the 
learning stage to understand the advantage of experienced groups in later stages. 
Accordingly, ten groups whose average performance in the retention stage was close 
to the average of their respective learning condition were selected. The five groups 
with collaborative experience selected had an average performance of .57 (SD = .07) 
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For efficiency, consequently, there was no significant difference in the learning stage, 
F(1, 27) = .162, MSE = 1.407, ns, but there was a significant difference on retention, 
F(1, 84) = 12.479, MSE = 1.391, p = .001, ηp2 = .129, ICC = .31, and delayed tests, 
F(1, 83) = 6.176, MSE = 1.297, p = .015, ηp2 = . 069, ICC = .40. As expected, learning by 
experienced groups resulted in higher performance, less mental effort, and higher 
efficiency than learning in non-experienced groups. However, it is necessary to 
examine the transactional activities to explain why these differences were not 
observed in the learning stage (see below). 

Discussion 
This first phase of the study aimed to determine the effect of the prior relevant, task-
based group experience in the collaborative learning process and its outcomes. The 
results present evidence for our hypotheses that groups provided instruction in 
collaborative learning outperformed, expended less mental effort, and were more 
efficient in retention and delayed tests but did not differ in the learning stage. It seems, 
these experienced groups invested substantial working memory resources in 
transactional activities when learning to solve the learning problems. 

The results on performance, mental effort and efficiency in the retention and delayed 
tests suggest that learners that worked in experienced groups constructed and took 
advantage of better-generalized knowledge structures to learn relatively new, highly 
demanding tasks (P. A. Kirschner et al., 2018; Van Gog, Paas, & Van Merriënboer, 
2005). The joint-work mental model (i.e., the collaboration model) acquired through 
explicit guidance in the preparation stage positively affected the results of the 
collaboration. The higher performance with less mental effort and more cognitive 
efficiency of learners in experienced groups suggest that the socially shared schemas 
of task-based collaborative learning may have functioned as internal cognitive and 
metacognitive scripts that guided inter-individual activities during group learning 
(Fischer et al., 2013; P. A. Kirschner et al., 2018). That is, when groups have group 
knowledge structures of a generalizable domain, this substantially improves the 
results of collaborative learning although this benefit is not immediately observed in 
the collaborative learning stage. Furthermore, the results of posttests may be a good 
indicator of long-term retention (Soderstrom & Bjork, 2015) because they were applied 
one and seven days after the learning stage. Given that the benefit of collaborative 
learning must be seen in individual post-tests (F. Kirschner et al., 2009a), the 
performance results of the retention stage were considered as representative for both 
conditions. 
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The lack of evidence of the benefit of having task-based collaborative knowledge 
structures in the learning stage can be explained by the type of measurement used and 
the task complexity. In our study, the performance of the collaboration process in this 
phase was only determined by the accuracy of the final answer. This criterion did not 
allow an in-depth understanding of the performance during the collaborative process, 
which in turn suggests that collaborative learning performance does not always reflect 
the benefits of collaboration (Kester & Paas, 2005). Regarding mental effort, the 
equivalent scores were probably because the mental effort rating took into account the 
cognitive load produced by both essential elements of the task (i.e., intrinsic load) and 
by the transactional activities (i.e., extraneous load). As was the case when measuring 
group performance, the perception of mental effort included all working memory 
cognitive activities imposed by the tasks without being able to discriminate their 
possible temporal fluctuations of cognitive load during collaboration (Van Gog, 
Kirschner, Kester, & Paas, 2012). It would be interesting to examine the consistency of 
the subjective measures of cognitive load in each step of each collaborative task using 
protocol analysis of verbalized thoughts (Ericsson, 2018). 

Due to the fact that this study did not obtain differential results in the learning stage 
and that, to our knowledge, there is no research that examines transactional activities 
from a cognitive load perspective (Janssen, Kirschner, et al., 2010), a more in-depth 
analysis of the intra-group interactions was carried out to reveal the cognitive 
activities between individuals that were associated with collaboration in this study. 

Interaction Analysis Phase 
Selection of Learning Groups 
This phase was carried out to examine the type and number of transactional activities 
of the learning process that characterized the groups with and without previous 
collaborative experience. The experimental phase found that the experienced groups 
did not perform better than the non-experienced groups in the learning stage. Given 
that group interactions are considered to be extraneous load because the instructional 
goal was learning to solve BEP tasks, it is important to examine the differences in 
transactional activities between experienced and non-experienced groups during the 
learning stage to understand the advantage of experienced groups in later stages. 
Accordingly, ten groups whose average performance in the retention stage was close 
to the average of their respective learning condition were selected. The five groups 
with collaborative experience selected had an average performance of .57 (SD = .07) 
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and the five without previous collaborative experience .48 (SD = .05). The ANOVA 
analysis revealed no significant difference in performance between both types of 
groups, F(1, 8) = 5.06, MSE = .004, ns, and, thus, any differences in main and specific 
interactions can be safely attributed to prior group-experience. 
 
Data Collection and Data Analysis Procedure 
A total of 208 min and 28 sec (M = 21.19 min per group, SD = .51) of group interactions 
were transcribed into 10 documents, one per group. Data were encoded, 
conceptualized and processed using traditional quantitative methods. A substantive 
open coding approach was carried out to develop a category system to identify 
recurrent transactional activities in the selected groups. Once the conceptualization of 
the data related to a group activity pattern was reached, it was related to a system of 
more abstract, previously elaborated categories from the cognitive and emotional 
aspects of self-regulated learning (Järvelä, 2011). For a detailed overview of the 
categories see Table 2 (and Appendix B). 
 
There are many schemas to analyze the group discussions associated with different 
theoretical backgrounds (De Wever, Schellens, Valcke, & Van Keer, 2006). For this 
research, the selection of the unit of analysis for the coding process required taking 
into account what is known about cognitive processes in working memory (Kalyuga 
& Plass, 2018). In collaborative learning, working memory cognitive activity can be 
partially revealed through transactional activities. These activities, although not 
equivalent to all internal cognitive processes, can indicate the intensity of cognitive 
load (i.e., the interaction between previous knowledge and learning-task 
characteristics) at the individual and inter-individual levels (Hinsz et al., 1997; Tindale 
& Sheffey, 2002). A group-member interaction can result from multiple and varied 
individual cognitive processes which in turn trigger other multiple mental and 
behavioral operations in other members that may be explicit during collaboration. The 
level of cognitive load associated with these activities may be different, and its 
intensity on a temporal scale can contribute differentially to the acquisition and 
consolidation of knowledge structures in long-term memory. However, the 
relationship between transactional activities and cognitive load under conditions of 
collaboration is still poorly understood (Janssen, Kirschner, et al., 2010). For example, 
some linguistic features associated with cognitive load in non-school environments 
have been identified (Khawaja et al., 2012, 2013). Khawaja and colleagues found an 
association between the number and type of words (e.g., emotional, cognitive, or 
personal pronoun type) with different perceived intensity of working memory 
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operations (i.e., cognitive load). Given that cognitive load has been studied 
considering words, pauses and grammatical features (see F. Chen et al., 2013), it seems 
reasonable to relate cognitive load to the quantity and type of interactions during 
collaborative problem-solving. 

Thus, for this study, the unit of analysis was an individual interaction, or part of an 
individual interaction that can be regarded as meaningful in itself (Strijbos, Martens, 
Prins, & Jochems, 2006). A learner interaction can have one or more codes. For 
example: 

• Juan: [“Ahhh! I don’t remember”: Task-related negative emotions], [“what did we
do first, fixed or variable?”: Specific questions on an item/step].

• María: [“Let’s start with variable costs” Specific answer on an item/step]. [“The
only variable I have is: writing material 15 dollars”: Sharing task items].

• Paúl: [“I have refreshment”: Sharing task items].

Documents were processed using the MAXQDA program (Woolf & Silver, 2017), 
version 2018, following four steps. First, two experienced groups and two non-
experienced groups were randomly selected to identify the more frequent types of 
interactions (i.e., codes). A researcher (first author) analyzed these four documents 
(i.e., one per group) and created a preliminary coding system with the goal of 
developing a coding schema. The unit of analysis was a member interaction, and each 
was coded with one or more codes (Strijbos et al., 2006) (see examples in Appendix B). 
Second, an independent rater who was completely unaware of the details and purpose 
of the study was trained to code the four already coded documents using the same 
code system. The number of interactions that were coded and discussed for the four 
documents by both raters was 4,114 (2,053 by the researcher and 2,061 by the 
independent rater). Third, the raters discussed and reached agreement about their 
discrepancies resulting in an improved coding system (see Table 2). Lastly, the 
researcher coded the remaining six documents, and the codes were regrouped into 
four main categories associated with the socially shared regulative learning schema 
(Järvelä, 2011; Näykki et al., 2017): socio-cognitive, socio-regulatory, socio-emotional 
and task-unrelated interactions. The total number of interactions coded by the 
researcher for the ten documents was 4,583 (see Appendix C). 

Concerning the categories of interactions, the Kappa coefficient for intercoder 
agreement was calculated. Before discussing disagreements with the independent 
rater, the intercoder agreement was k = .73, meaning a substantial strength of 
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research, the selection of the unit of analysis for the coding process required taking 
into account what is known about cognitive processes in working memory (Kalyuga 
& Plass, 2018). In collaborative learning, working memory cognitive activity can be 
partially revealed through transactional activities. These activities, although not 
equivalent to all internal cognitive processes, can indicate the intensity of cognitive 
load (i.e., the interaction between previous knowledge and learning-task 
characteristics) at the individual and inter-individual levels (Hinsz et al., 1997; Tindale 
& Sheffey, 2002). A group-member interaction can result from multiple and varied 
individual cognitive processes which in turn trigger other multiple mental and 
behavioral operations in other members that may be explicit during collaboration. The 
level of cognitive load associated with these activities may be different, and its 
intensity on a temporal scale can contribute differentially to the acquisition and 
consolidation of knowledge structures in long-term memory. However, the 
relationship between transactional activities and cognitive load under conditions of 
collaboration is still poorly understood (Janssen, Kirschner, et al., 2010). For example, 
some linguistic features associated with cognitive load in non-school environments 
have been identified (Khawaja et al., 2012, 2013). Khawaja and colleagues found an 
association between the number and type of words (e.g., emotional, cognitive, or 
personal pronoun type) with different perceived intensity of working memory 
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operations (i.e., cognitive load). Given that cognitive load has been studied 
considering words, pauses and grammatical features (see F. Chen et al., 2013), it seems 
reasonable to relate cognitive load to the quantity and type of interactions during 
collaborative problem-solving. 

Thus, for this study, the unit of analysis was an individual interaction, or part of an 
individual interaction that can be regarded as meaningful in itself (Strijbos, Martens, 
Prins, & Jochems, 2006). A learner interaction can have one or more codes. For 
example: 

• Juan: [“Ahhh! I don’t remember”: Task-related negative emotions], [“what did we
do first, fixed or variable?”: Specific questions on an item/step].

• María: [“Let’s start with variable costs” Specific answer on an item/step]. [“The
only variable I have is: writing material 15 dollars”: Sharing task items].

• Paúl: [“I have refreshment”: Sharing task items].

Documents were processed using the MAXQDA program (Woolf & Silver, 2017), 
version 2018, following four steps. First, two experienced groups and two non-
experienced groups were randomly selected to identify the more frequent types of 
interactions (i.e., codes). A researcher (first author) analyzed these four documents 
(i.e., one per group) and created a preliminary coding system with the goal of 
developing a coding schema. The unit of analysis was a member interaction, and each 
was coded with one or more codes (Strijbos et al., 2006) (see examples in Appendix B). 
Second, an independent rater who was completely unaware of the details and purpose 
of the study was trained to code the four already coded documents using the same 
code system. The number of interactions that were coded and discussed for the four 
documents by both raters was 4,114 (2,053 by the researcher and 2,061 by the 
independent rater). Third, the raters discussed and reached agreement about their 
discrepancies resulting in an improved coding system (see Table 2). Lastly, the 
researcher coded the remaining six documents, and the codes were regrouped into 
four main categories associated with the socially shared regulative learning schema 
(Järvelä, 2011; Näykki et al., 2017): socio-cognitive, socio-regulatory, socio-emotional 
and task-unrelated interactions. The total number of interactions coded by the 
researcher for the ten documents was 4,583 (see Appendix C). 

Concerning the categories of interactions, the Kappa coefficient for intercoder 
agreement was calculated. Before discussing disagreements with the independent 
rater, the intercoder agreement was k = .73, meaning a substantial strength of 
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agreement (Landis & Koch, 1977). After discussing the disagreements, the intercoder 
agreement improved to k = .91.  

Table 2 
Code System 

Category Sub-categories 
Socio-cognitive interactions Interpreting the problem 

Sharing task items 
Specific questions on an item or step 
Specific answers on an item/step 
Implicit answer to an item/step 
Discussion for agreement 
Self-correction 
Affirmative confirmation 
Negative refutation 
Correction to others 
Question for clarification 
Individual calculation 
Shared calculation 
Individual overload 

Socio-regulatory interactions Organization interaction 
Coordination interaction 
Explicit offloading information 
Time control 

Socio-emotional interactions Task-unrelated positive emotions 
Task-related positive emotions 
Task-related negative emotions 

Task unrelated interaction Expletives 
Task-unrelated talks 

Results 
Data of the main categories were explored, and all meet the assumptions of 
homogeneity of variances and had an acceptable normal distribution. The ANOVA 
analysis found that experienced groups spent significantly more time on task 
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(M = 21.21 min, SD = .24) than non-experienced groups (M = 20.46, SD = .51), 
F(1, 8) = 6.711, MSE = .158, p = .032, ηp2 = .456. ANOVA analyses also revealed 
differences between experienced groups and non-experienced groups for the main 
categories of interactions that may be related to the time spent on learning tasks. 
Experienced groups (M = 412.0, SD = 37.86) invested more socio-cognitive activities, 
F(1, 8) = 5.442, MSE = 3210.40, p = .048, ηp2 = .405, than non-experienced groups 
(M = 328.4, SD = 70.62). Experienced groups (M= 30.2, SD = 11.17) invested less socio-
regulatory interactions, F(1, 8) = 5.796, MSE = 91.95, p = .043, ηp2 = .420, than non-
experienced groups (M = 44.8, SD = 7.69). No significant difference was found 
between experienced (M = 24.8, SD = 18.93) and non-experienced groups (M = 27.8, 
SD = 16.60) concerning socio-emotional interactions, F(1, 8) = .071, MSE = 316.95, ns. 
Finally, experienced groups (M = 7.0, SD = 2.24) invested less task unrelated 
interactions, F(1, 8), MSE = 479.65 p = .037, ηp2 = .438, than non-experienced groups 
(M = 41.6, SD = 30.89). 

Data of specific socio-cognitive interactions (see the number of interactions in 
Appendix C) did not meet the assumptions of parametric analyses. For this reason 
Mann-Whitney analyses were employed which revealed that interactions of self-
correction, U = 1.00, z =  2.44, p = .02, r = −.24, and shared calculation, U = 2.00, 
z = −2.19, p = .03, r = −.22, were significantly higher in experienced groups than in non-
experienced groups. However, interactions for interpreting the problem, U = 22.00, 
z = 2.11, p = .03, r = .21, and individual calculation U = 25.00, z = 2.62, p = .01, r = .26, 
were lower for experienced groups than non-experienced groups. Regarding the 
specific task-unrelated interactions, experienced groups’ members had less expletives 
U = 25.00, z = 2.64, p = .01, r = .26, and task-unrelated talk U = 25.00, z = 2.63, p = .01, 
r = .26, than non-experienced groups members. 

Discussion 
The goal of this second phase was to examine the transaction activities that may 
explain the differences between experienced groups and non-experienced groups. We 
expected that experienced groups would have more socio-cognitive interactions, and 
fewer socio-regulatory, socio-emotional and non-task interactions. The quantitative 
data analysis shows evidence for our hypotheses excepting socio-emotional 
interactions. Results suggest that groups with previous collaborative experience in 
relevant tasks acquired shared schemas to work collaboratively in an appropriate 
manner. Specifically, experienced groups may have taken advantage of their 
previously shared schemas to carry out cognitive and regulatory group activities 
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Socio-regulatory interactions Organization interaction 
Coordination interaction 
Explicit offloading information 
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Socio-emotional interactions Task-unrelated positive emotions 
Task-related positive emotions 
Task-related negative emotions 

Task unrelated interaction Expletives 
Task-unrelated talks 

Results 
Data of the main categories were explored, and all meet the assumptions of 
homogeneity of variances and had an acceptable normal distribution. The ANOVA 
analysis found that experienced groups spent significantly more time on task 
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(M = 21.21 min, SD = .24) than non-experienced groups (M = 20.46, SD = .51), 
F(1, 8) = 6.711, MSE = .158, p = .032, ηp2 = .456. ANOVA analyses also revealed 
differences between experienced groups and non-experienced groups for the main 
categories of interactions that may be related to the time spent on learning tasks. 
Experienced groups (M = 412.0, SD = 37.86) invested more socio-cognitive activities, 
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between experienced (M = 24.8, SD = 18.93) and non-experienced groups (M = 27.8, 
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Finally, experienced groups (M = 7.0, SD = 2.24) invested less task unrelated 
interactions, F(1, 8), MSE = 479.65 p = .037, ηp2 = .438, than non-experienced groups 
(M = 41.6, SD = 30.89). 

Data of specific socio-cognitive interactions (see the number of interactions in 
Appendix C) did not meet the assumptions of parametric analyses. For this reason 
Mann-Whitney analyses were employed which revealed that interactions of self-
correction, U = 1.00, z =  2.44, p = .02, r = −.24, and shared calculation, U = 2.00, 
z = −2.19, p = .03, r = −.22, were significantly higher in experienced groups than in non-
experienced groups. However, interactions for interpreting the problem, U = 22.00, 
z = 2.11, p = .03, r = .21, and individual calculation U = 25.00, z = 2.62, p = .01, r = .26, 
were lower for experienced groups than non-experienced groups. Regarding the 
specific task-unrelated interactions, experienced groups’ members had less expletives 
U = 25.00, z = 2.64, p = .01, r = .26, and task-unrelated talk U = 25.00, z = 2.63, p = .01, 
r = .26, than non-experienced groups members. 

Discussion 
The goal of this second phase was to examine the transaction activities that may 
explain the differences between experienced groups and non-experienced groups. We 
expected that experienced groups would have more socio-cognitive interactions, and 
fewer socio-regulatory, socio-emotional and non-task interactions. The quantitative 
data analysis shows evidence for our hypotheses excepting socio-emotional 
interactions. Results suggest that groups with previous collaborative experience in 
relevant tasks acquired shared schemas to work collaboratively in an appropriate 
manner. Specifically, experienced groups may have taken advantage of their 
previously shared schemas to carry out cognitive and regulatory group activities 
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focused on relevant aspects of the tasks, optimizing cognitive load related to 
interactions. 

Both experienced and non-experienced groups invested substantial working memory 
resources compared to the other type of interactions. However, it seems that 
experienced groups invested more cognitive load in productive interactions. 
Assuming that the number and type of interactions are related to the cognitive load, 
it can be suggested that experienced groups spent fewer cognitive resources on 
interpreting the problem. Although the learning tasks were of a relatively different 
domain, experienced groups probably associated the characteristics of the new tasks 
with those already learned in groups (e.g., distribution of numerical values between 
group members or shared calculation) by means of cognitive cues or analogical 
transfer (de Bruin & van Merriënboer, 2017; Gick & Holyoak, 1980). This allowed them 
to concentrate their cognitive resources on acquiring schemas of the learning tasks. In 
contrast, non-experienced groups invested more cognitive resources in interactions to 
understand the problem due to their lack of generalizable group schemas related to 
the specific task. The higher number of self-corrections during learning performed by 
the experienced groups suggests that the previous collaborative experience in 
mathematics tasks probably provided them with cognitive monitoring mechanisms to 
evaluate their on-task self-efficacy judgments (Ramdass & Zimmerman, 2008). In 
contrast, non-experienced groups may not be able to adequately evaluate the accuracy 
of their cognitive activities, which may have negatively affected their performance. 

The learning tasks required a large number of mathematical calculations 
incorporating intermediate results in the working memory. Our analyses showed that 
the experienced groups expended more cognitive resources on shared calculations 
and less on individual calculations than non-experienced groups. Perhaps performing 
shared mathematical calculations reduced the intrinsic cognitive load of the task by 
off-loading some of the essential task steps to other members of the group but 
increased the extraneous load related to the collaboration. Learning to solve BEP tasks 
required the acquisition of many concepts and a complex procedure. The large 
number of numerical calculations with their high level of interactive elements 
imposed a high intrinsic cognitive load that might be expected to impair the 
construction of schemas in long-term memory in non-experienced groups. However, 
although group interactions induce an extraneous load because they are not an 
essential part of the task, it seems experienced groups were better able to take 
advantage of sharing working memory resources. Sharing calculations may have 
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reduced the intrinsic load associated with the numerical calculations and promoted 
better schemas of the task in long-term memory. As an example, it is possible to 
assume that experienced group members coordinated their cognitive activities better 
by elaborating mental calculations based on the other members’ calculations (Webb, 
Troper, & Fall, 1995) which probably allowed them to construct better long-term 
memory structures of the new tasks (F. Kirschner, et al., 2011). Experienced groups, 
unlike non-experienced ones, also invested less working memory resources on 
interactions unrelated to the task (i.e., expletives and irrelevant talk). Although both 
experienced and non-experienced groups used the same amount of time in the 
learning stage, the time analysis indicated that experienced groups took more time to 
learn to solve the task. Considering that non-experienced groups invested more 
working memory resources on non-task related interactions, it might be the case that 
the transactional activities were optimized due to the previous experience in similar 
tasks. 

The results on regulatory interactions showed, as expected, that experienced groups 
showed fewer regulatory transaction activities, which in turn suggested their 
acquisition of prior schematic structures of how to work appropriately in groups. Self-
directed learning requires some freedom to decide on appropriate schemas to avoid 
additional working memory resources that harm learning. Recent literature suggests 
that learners have difficulty regulating themselves when domain knowledge is very 
different (Raaijmakers et al., 2018). However, our data support the hypothesis that 
regulation works best when learners already have task-based representations in their 
long-term memory that are similar to the specific task to be learned (Kalyuga, 2013; 
Raes et al., 2012). We suggest that all these advantages may explain why experienced 
groups had better learning outcomes in the posttests. 

Interestingly, both conditions had equivalent levels of emotional interaction, which 
supports the general idea that emotions and feelings are an integral part of learning 
and problem solving (Isohätälä et al., 2017; Polo, Lund, Plantin, & Niccolai, 2016) and 
are not affected by prior experience. However, it is necessary to examine in more detail 
the type of emotions related to tasks since there is suggestive evidence that emotions 
can indicate different levels of cognitive load that differentially affect performance (F. 
Chen et al., 2013). For example, Khawaja, et. al (2013) who studied linguistic features 
with groups of emergency fire management personnel found a significant interaction 
between the use of emotion word types (positive and negative emotion words) and 
cognitive load levels (low load and high load). Participants expressed more positive 
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The learning tasks required a large number of mathematical calculations 
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the experienced groups expended more cognitive resources on shared calculations 
and less on individual calculations than non-experienced groups. Perhaps performing 
shared mathematical calculations reduced the intrinsic cognitive load of the task by 
off-loading some of the essential task steps to other members of the group but 
increased the extraneous load related to the collaboration. Learning to solve BEP tasks 
required the acquisition of many concepts and a complex procedure. The large 
number of numerical calculations with their high level of interactive elements 
imposed a high intrinsic cognitive load that might be expected to impair the 
construction of schemas in long-term memory in non-experienced groups. However, 
although group interactions induce an extraneous load because they are not an 
essential part of the task, it seems experienced groups were better able to take 
advantage of sharing working memory resources. Sharing calculations may have 
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assume that experienced group members coordinated their cognitive activities better 
by elaborating mental calculations based on the other members’ calculations (Webb, 
Troper, & Fall, 1995) which probably allowed them to construct better long-term 
memory structures of the new tasks (F. Kirschner, et al., 2011). Experienced groups, 
unlike non-experienced ones, also invested less working memory resources on 
interactions unrelated to the task (i.e., expletives and irrelevant talk). Although both 
experienced and non-experienced groups used the same amount of time in the 
learning stage, the time analysis indicated that experienced groups took more time to 
learn to solve the task. Considering that non-experienced groups invested more 
working memory resources on non-task related interactions, it might be the case that 
the transactional activities were optimized due to the previous experience in similar 
tasks. 

The results on regulatory interactions showed, as expected, that experienced groups 
showed fewer regulatory transaction activities, which in turn suggested their 
acquisition of prior schematic structures of how to work appropriately in groups. Self-
directed learning requires some freedom to decide on appropriate schemas to avoid 
additional working memory resources that harm learning. Recent literature suggests 
that learners have difficulty regulating themselves when domain knowledge is very 
different (Raaijmakers et al., 2018). However, our data support the hypothesis that 
regulation works best when learners already have task-based representations in their 
long-term memory that are similar to the specific task to be learned (Kalyuga, 2013; 
Raes et al., 2012). We suggest that all these advantages may explain why experienced 
groups had better learning outcomes in the posttests. 

Interestingly, both conditions had equivalent levels of emotional interaction, which 
supports the general idea that emotions and feelings are an integral part of learning 
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are not affected by prior experience. However, it is necessary to examine in more detail 
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emotion words than negative emotion words under low-load conditions and more 
negative emotion words than positive emotion words under high-load conditions (see 
a recent discussion in Plass & Kalyuga, 2019). Overall, our results suggest that the 
resources of collective work memory (F. Kirschner, et al., 2011) can be optimized by 
providing groups with task-based collaborative work schemas whose aspects can be 
transferred to relatively new learning tasks (P. A. Kirschner et al., 2018). 
 

General Discussion 
The purpose of this study was to determine the effect of prior task-based group 
experience on the collaborative learning process and its outcomes and examine what 
type of transaction activities may explain the difference between experienced groups 
and non-experienced groups. The results of the experimental phase showed support 
for our premise that experienced groups may transfer their group work schemas 
based on relevant tasks to analogous, relatively new learning tasks. It seems, a shared 
mental model of collaboration (i.e., generalizable, domain-specific, collaborative task) 
appropriately guided transactional activities of the experienced groups and optimized 
the working memory resources of group members (P. A. Kirschner et al., 2018). All 
groups experienced a high cognitive load during learning, which indicates that 
collaboration is an effortful task (Webb & Mastergeorge, 2003). However, it seems that 
explicitly guided, task-based, intergroup activities allowed better, and longer-lasting 
learning compared to the absence of such guidance. 
 
The analysis of transactional activities allowed a better understanding of the 
collaborative learning processes. Experienced groups showed more cognitively 
productive intergroup activities such as shared calculations, and self-correction. We 
suggest that these group activities may be considered as collective mechanisms of 
information processing associated with the construction of shared mental 
representations in long-term memory. The evidence suggests that socio-regulatory 
activities require more group interactions which in turn may increase cognitive load 
during learning (Janssen, Erkens, Kirschner, & Kanselaar, 2010; Khawaja et al., 2013). 
However, the use of guidance materials based on similar tasks allowed experienced 
groups to reduce the number of regulatory interactions because they already had 
shared knowledge on how to solve this type of problem. In other words, the 
assimilation of collective group work structures reduced the need to perform 
coregulatory activities such as organization, coordination and cognitive control 
during collaborative learning. These internal scripts may also have decreased the 
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number of redundant or non-task related interactions leaving more working memory 
resources for learning (Fischer et al., 2013). 

The results of this study can be interpreted from theoretical frameworks other than 
cognitive load theory. However, the design was conceived from this theory, and 
mental effort measures were used. Accordingly, this research may contribute to 
expanding the implications of cognitive load theory. Being an instructional theory, its 
implications should guide the design of individual and collaborative learning 
environments. However, most of the effects of cognitive load theory have been 
developed for and are almost exclusively applied to individual learning conditions. 
Empirical studies of the variables that explain the advantages and disadvantages of 
collaborative learning from a cognitive load perspective are scarce. This study may 
lead to more specific investigations that examine the interactions associated with 
group learning processes (Janssen, Kirschner, et al., 2010; Kalyuga & Singh, 2016; P. 
A. Kirschner et al., 2018). Inter-group activities are a fruitful field of study that may
allow a better understanding of the multiple factors that interact at the group level
and its effects at the individual learning level. We suggest carrying out more research
about the types of transactional activities in tasks of high and low complexity, with
experienced and non-experienced groups, and with different levels of domain-specific
knowledge.

A limitation of this research is that there was not a large enough number of groups to 
perform multilevel analyses (Janssen, Erkens, Kirschner, & Kanselaar, 2013). The 
results of this study should, therefore, be treated with some caution. We suggest 
replicating the research with more groups before analyzing the data with multilevel 
analyses. This study was designed to stimulate and capture group interactions 
verbally. Because of this, learners were not allowed to write the steps to solve the 
problem during the learning stage. Future research should improve ecological validity 
using other technologies (e.g., Martinez-Maldonado et al., 2017). 

Instructional Implications 
This research of the collaborative experience based on task analogs has clear 
implications for instruction. From a cognitive load perspective, learning complex 
collaborative problems demands substantial resources from working memory due to 
the interacting information elements of the tasks and individual as well as intergroup 
cognitive activities. To avoid overload working memory and maximizing learning, we 
suggested designing a sequence of analogous collaborative tasks (i.e., from the same 
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learning compared to the absence of such guidance. 
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collaborative learning processes. Experienced groups showed more cognitively 
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suggest that these group activities may be considered as collective mechanisms of 
information processing associated with the construction of shared mental 
representations in long-term memory. The evidence suggests that socio-regulatory 
activities require more group interactions which in turn may increase cognitive load 
during learning (Janssen, Erkens, Kirschner, & Kanselaar, 2010; Khawaja et al., 2013). 
However, the use of guidance materials based on similar tasks allowed experienced 
groups to reduce the number of regulatory interactions because they already had 
shared knowledge on how to solve this type of problem. In other words, the 
assimilation of collective group work structures reduced the need to perform 
coregulatory activities such as organization, coordination and cognitive control 
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number of redundant or non-task related interactions leaving more working memory 
resources for learning (Fischer et al., 2013). 

The results of this study can be interpreted from theoretical frameworks other than 
cognitive load theory. However, the design was conceived from this theory, and 
mental effort measures were used. Accordingly, this research may contribute to 
expanding the implications of cognitive load theory. Being an instructional theory, its 
implications should guide the design of individual and collaborative learning 
environments. However, most of the effects of cognitive load theory have been 
developed for and are almost exclusively applied to individual learning conditions. 
Empirical studies of the variables that explain the advantages and disadvantages of 
collaborative learning from a cognitive load perspective are scarce. This study may 
lead to more specific investigations that examine the interactions associated with 
group learning processes (Janssen, Kirschner, et al., 2010; Kalyuga & Singh, 2016; P. 
A. Kirschner et al., 2018). Inter-group activities are a fruitful field of study that may
allow a better understanding of the multiple factors that interact at the group level
and its effects at the individual learning level. We suggest carrying out more research
about the types of transactional activities in tasks of high and low complexity, with
experienced and non-experienced groups, and with different levels of domain-specific
knowledge.

A limitation of this research is that there was not a large enough number of groups to 
perform multilevel analyses (Janssen, Erkens, Kirschner, & Kanselaar, 2013). The 
results of this study should, therefore, be treated with some caution. We suggest 
replicating the research with more groups before analyzing the data with multilevel 
analyses. This study was designed to stimulate and capture group interactions 
verbally. Because of this, learners were not allowed to write the steps to solve the 
problem during the learning stage. Future research should improve ecological validity 
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Instructional Implications 
This research of the collaborative experience based on task analogs has clear 
implications for instruction. From a cognitive load perspective, learning complex 
collaborative problems demands substantial resources from working memory due to 
the interacting information elements of the tasks and individual as well as intergroup 
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suggested designing a sequence of analogous collaborative tasks (i.e., from the same 
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domain or with similar structural characteristics to the learning problems) that 
provide appropriate group work schemas. Experienced groups can transfer their 
collaboration schemas to new domain-specific analogous tasks. The schemas will 
function as internal regulatory scripts that guide group work focusing learners’ 
working memory collective resources on more productive cognitive activities such as 
task information, which in turn, should promote the construction of better task 
knowledge at group and individual level. This research may bring teachers and 
instructors one step closer to the effective use of collaborative learning in education. 
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Appendix A 
Table A1 
Example of Material used by Individuals in Preparation Stage 

STEPS TO THE GROUP WORK MEMBER 1 MEMBER 2 MEMBER 3 
You should identify whether the values of the 
equation are on the left side or right side of the equal

 sign. 
−10𝑥𝑥𝑥𝑥2 + 13 = 20𝑥𝑥𝑥𝑥 𝑥 14𝑥𝑥𝑥𝑥2 = = −7 + 3𝑥𝑥𝑥𝑥 

You should communicate with the other members in 
order to identify other similar values. Then, pass the 
values to the left side, changing the sign, and keep 
the result in mind. 
Perform quickly and without error, all of the 
operations that are possible and maintain the result 
in your mind. 
Everyone must share their values with the others and 
sort them. Keep in mind the results. 
Factor the trinomial with your other partners. 
Remember to carry out these calculations mentally. 
To avoid forgetting a partial result, each member 
must have part of the information in his/her mind. 

When Equal to Zero, resolve the equations mentally. 

Write down the results on the worksheet: 

𝑥𝑥𝑥𝑥1 = −
5
8

𝑥𝑥𝑥𝑥2 =
4
3
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Factor the trinomial with your other partners. 
Remember to carry out these calculations mentally. 
To avoid forgetting a partial result, each member 
must have part of the information in his/her mind.

When Equal to Zero, resolve the equations mentally.

Write down the results on the worksheet:

𝑥𝑥𝑥𝑥1 = −
5
8

𝑥𝑥𝑥𝑥2 =
4
3
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Appendix B 
Table B1 
Code System with Examples 

Category Sub-categories and examples 
Socio-
cognitive 
interactions 

Interpreting the problem: 
Juan: Okay, let’s read task 1. In a tutoring program for children of working 
mothers, calculate the break-even point in units with profit. 

Sharing task items: 
María: Mine says tutor’s salary $56, snack for students $25, tuition fee for each 
student $48. 
Paúl: I have student writing material $15, students enrolled $10, electricity and 
telephone services $12. 

Specific questions on an item or step: 
María: Which is the variable? 
Juan: The tutor’s salary is a fixed cost? 
Paúl: What was the result of the division? 

Specific answers on an item/step refers to answers for the codes ‘Specific 
questions on an item/step’ and ‘Question for clarification’. 

Implicit answer to an item/step: 
Juan: I have the salary of the painter [sharing task items]. 

María: That is variable [Implicit answer to an item/step]. 
Discussion for agreement: 

Juan: Writing material is variable [Specific answer on an item/step]. 
Paúl: No, it’s fixed. 
María: No, because…Paúl: You're right, it is variable because it depends on how 
many students are enrolled. 

Self-correction: 
Juan: The contribution is subtracted from... No, no, the total fixed cost is divided 
by contribution. 

Affirmative confirmation: 
Paúl: The material is a variable cost, isn’t it? [Specific questions on an 
item/step]. 

María: Yes, because it depends on... [Specific answers on an item/step] 
Juan: That’s true [Affirmative confirmation]. 
Negative refutation: 

Juan: Refreshments is variable [Specific answer on an item/step]. 
Paúl: No. 
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Correction to others: 
Juan: Price 50 dollars is fixed [Specific answer on an item/step]. 
María: No, that isn’t a cost. 

Question for clarification: 
Juan: Total fixed cost would be 247 [Individual calculation]. 

María: Why so much? [Question for clarification]. 
Juan: Because the painter’s salary is 120 plus renting 127 [Specific answers on 
an item/step]. 

Individual calculation: 
Juan: 15... 15 for 9, 45 carrying 4... It’s 135. 

María: You have 62 and you have 12 and 56… is 68. 
Shared calculation: 

María: It is 12 and how much more? 
Juan: 62 and profit. 
María: 74 plus 30. 
Paúl: 104. 

Individual overload: 
Paúl: No, wait, wait. Wow much was it? 156, … no 186. 

Juan: 18 plus 47 plus 155 is two thousand…, two thousand… my brain doesn’t 
work. 

Socio-
regulatory 
interactions 

Organization interaction: 
Juan: First let’s add the variables. 

Paúl: First the contribution, and it’s obtained by calculating the fixed costs. 
María: First, let’s see which the variable are and then the fixed costs. 

Coordination interaction: 
Juan: Let’s add the variables. 
Paúl: Let’s calculate the contribution. 

Explicit offloading information: 
María: Okay, let’s remember, the contribution is 40. 

Juan: Paúl, keep in mind 132. 
Paúl: It’s 350 [Individual calculation], I remember it [Explicit offloading 
information]. 

Time control: 
Juan: We’re running out of time. 
María: Let’s see how long we take? 
Paúl: We’ve 3 minutes left! 
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Table B1 
Code System with Examples 

Category Sub-categories and examples 
Socio-
cognitive 
interactions 

Interpreting the problem: 
Juan: Okay, let’s read task 1. In a tutoring program for children of working 
mothers, calculate the break-even point in units with profit. 

Sharing task items: 
María: Mine says tutor’s salary $56, snack for students $25, tuition fee for each 
student $48. 
Paúl: I have student writing material $15, students enrolled $10, electricity and 
telephone services $12. 

Specific questions on an item or step: 
María: Which is the variable? 
Juan: The tutor’s salary is a fixed cost? 
Paúl: What was the result of the division? 

Specific answers on an item/step refers to answers for the codes ‘Specific 
questions on an item/step’ and ‘Question for clarification’. 

Implicit answer to an item/step: 
Juan: I have the salary of the painter [sharing task items]. 

María: That is variable [Implicit answer to an item/step]. 
Discussion for agreement: 

Juan: Writing material is variable [Specific answer on an item/step]. 
Paúl: No, it’s fixed. 
María: No, because…Paúl: You're right, it is variable because it depends on how 
many students are enrolled. 

Self-correction: 
Juan: The contribution is subtracted from... No, no, the total fixed cost is divided 
by contribution. 

Affirmative confirmation: 
Paúl: The material is a variable cost, isn’t it? [Specific questions on an 
item/step]. 

María: Yes, because it depends on... [Specific answers on an item/step] 
Juan: That’s true [Affirmative confirmation]. 
Negative refutation: 

Juan: Refreshments is variable [Specific answer on an item/step]. 
Paúl: No. 
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Correction to others: 
Juan: Price 50 dollars is fixed [Specific answer on an item/step]. 
María: No, that isn’t a cost. 

Question for clarification: 
Juan: Total fixed cost would be 247 [Individual calculation]. 

María: Why so much? [Question for clarification]. 
Juan: Because the painter’s salary is 120 plus renting 127 [Specific answers on 
an item/step]. 

Individual calculation: 
Juan: 15... 15 for 9, 45 carrying 4... It’s 135. 

María: You have 62 and you have 12 and 56… is 68. 
Shared calculation: 

María: It is 12 and how much more? 
Juan: 62 and profit. 
María: 74 plus 30. 
Paúl: 104. 

Individual overload: 
Paúl: No, wait, wait. Wow much was it? 156, … no 186. 

Juan: 18 plus 47 plus 155 is two thousand…, two thousand… my brain doesn’t 
work. 

Socio-
regulatory 
interactions 

Organization interaction: 
Juan: First let’s add the variables. 

Paúl: First the contribution, and it’s obtained by calculating the fixed costs. 
María: First, let’s see which the variable are and then the fixed costs. 

Coordination interaction: 
Juan: Let’s add the variables. 
Paúl: Let’s calculate the contribution. 

Explicit offloading information: 
María: Okay, let’s remember, the contribution is 40. 

Juan: Paúl, keep in mind 132. 
Paúl: It’s 350 [Individual calculation], I remember it [Explicit offloading 
information]. 

Time control: 
Juan: We’re running out of time. 
María: Let’s see how long we take? 
Paúl: We’ve 3 minutes left! 
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Socio-
emotional 
interactions 

Task-unrelated positive emotions: 
Juan: with the Melanie [Task-unrelated interactions], hahaha ((laughing 
softly)). 

Paúl: Uhh there is when you are gonna get a hit on your ass [Task-unrelated 
interactions] hahaha. 

Task-related positive emotions: 
Juan: 80 by 10, it’s 10 [individual calculation]. 

María: Hahaha ((laughter)). 
Juan: Yes, yes, I know. It’s 8 [individual calculation]. 
Task-related negative emotions: 

Juan: Ahhh! ((complaining)), enrollment of each student is variable, or not? 
[Specific questions on an item/step] 
María: No ahhh ((frustration)), what did we do first, fixed or variable? [Specific 
questions on an item/step] 
Paúl: Ahhh! I don’t know ((Complaining)). Didn’t you memorize it? [Specific 
questions on an item/step] 

Task 
unrelated 
interaction 

Expletives: Expressions such whore or shit. 
Task-unrelated talks: 

Juan: 56? Poor he doesn’t even reach the basic salary. 
Paúl: Yes, because on Monday you can go with Sandra Michelena. 
Juan: Aha, you loved her. 
María: Only because there is Erik. 
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Socio-
emotional 
interactions 

Task-unrelated positive emotions: 
Juan: with the Melanie [Task-unrelated interactions], hahaha ((laughing 
softly)). 

Paúl: Uhh there is when you are gonna get a hit on your ass [Task-unrelated 
interactions] hahaha. 

Task-related positive emotions: 
Juan: 80 by 10, it’s 10 [individual calculation]. 

María: Hahaha ((laughter)). 
Juan: Yes, yes, I know. It’s 8 [individual calculation]. 
Task-related negative emotions: 

Juan: Ahhh! ((complaining)), enrollment of each student is variable, or not? 
[Specific questions on an item/step] 
María: No ahhh ((frustration)), what did we do first, fixed or variable? [Specific 
questions on an item/step] 
Paúl: Ahhh! I don’t know ((Complaining)). Didn’t you memorize it? [Specific 
questions on an item/step] 

Task 
unrelated 
interaction 

Expletives: Expressions such whore or shit. 
Task-unrelated talks: 

Juan: 56? Poor he doesn’t even reach the basic salary. 
Paúl: Yes, because on Monday you can go with Sandra Michelena. 
Juan: Aha, you loved her. 
María: Only because there is Erik. 
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4. Effects of Group Experience and Information Distribution on
Collaborative Learning3

While teachers are increasingly using collaborative learning, they often do not pay 
attention to either prior group experience and task collaborative intensity caused by 
the distribution of information amongst group members. This study examined the 
interaction effects of prior collaborative experience (i.e., experienced versus 
inexperienced groups), and distribution of information amongst collaborators (i.e., 
high-intensity distribution versus low-intensity distribution), on the efficiency of 
solving highly complex tasks. The results obtained with 240 secondary school 
students showed that experienced groups outperformed and were more efficient than 
inexperienced groups, and low-intensity distribution increased performance during 
the learning process. Also, when tasks required high-intensity group processing, 
experienced groups were more efficient than inexperienced groups. For tasks with 
low intensity of group processing, no difference was found. These results provide 
instructional implications for designing efficient collaborative learning environments.

Keywords: collaborative learning, cognitive load theory, group experience,
information distribution. 

3 This chapter was published as:
Zambrano R., J., Kirschner, F., Sweller, J., & Kirschner, P. A. (2019). Effects of group experience and 

information distribution on collaborative learning. Instructional Science. doi:10.1007/s11251-019-
09495-0

Jimmy Zambrano inhoud tabs v3.indd   60 14-10-2019   12:33:13



Tr
an

sa
ct

io
na

l a
ct

iv
iti

es
 

Ex
pe

rie
nc

ed
 G

ro
up

s 
N

on
-E

xp
er

ie
nc

ed
 G

ro
up

s 
To

ta
l 

1 
2 

3 
4 

5 
1 

2 
3 

4 
5 

10
 

So
ci

o-
em

ot
io

na
l i

nt
er

ac
tio

ns
 

Ta
sk

-r
el

at
ed

 p
os

iti
ve

 e
m

ot
io

ns
 

16
 

3 
12

 
3 

34
 

20
 

19
 

17
 

3 
13

 
14

0 
Ta

sk
-r

el
at

ed
 n

eg
at

iv
e 

em
ot

io
ns

 
11

 
8 

9 
3 

13
 

3 
12

 
5 

4 
6 

74
 

Ta
sk

-u
nr

el
at

ed
 p

os
iti

ve
 e

m
ot

io
ns

 
1 

0 
2 

1 
8 

2 
25

 
4 

6 
0 

49
 

Ta
sk

 u
nr

el
at

ed
 in

te
ra

ct
io

ns
 

Ex
pl

et
iv

es
 

2 
1 

3 
1 

1 
5 

13
 

7 
21

 
4 

58
 

Ta
sk

-u
nr

el
at

ed
 ta

lk
s 

5 
5 

7 
3 

7 
18

 
47

 
17

 
66

 
10

 
18

5 
Su

m
 

50
4 

43
0 

53
4 

43
9 

46
3 

38
1 

51
8 

50
2 

51
3 

29
9 

45
83

 

Chapter 3 

60 61 

4. Effects of Group Experience and Information Distribution on
Collaborative Learning3

While teachers are increasingly using collaborative learning, they often do not pay 
attention to either prior group experience and task collaborative intensity caused by 
the distribution of information amongst group members. This study examined the 
interaction effects of prior collaborative experience (i.e., experienced versus 
inexperienced groups), and distribution of information amongst collaborators (i.e., 
high-intensity distribution versus low-intensity distribution), on the efficiency of 
solving highly complex tasks. The results obtained with 240 secondary school 
students showed that experienced groups outperformed and were more efficient than 
inexperienced groups, and low-intensity distribution increased performance during 
the learning process. Also, when tasks required high-intensity group processing, 
experienced groups were more efficient than inexperienced groups. For tasks with 
low intensity of group processing, no difference was found. These results provide 
instructional implications for designing efficient collaborative learning environments.

Keywords: collaborative learning, cognitive load theory, group experience,
information distribution. 

3 This chapter was published as:
Zambrano R., J., Kirschner, F., Sweller, J., & Kirschner, P. A. (2019). Effects of group experience and 

information distribution on collaborative learning. Instructional Science. doi:10.1007/s11251-019-
09495-0
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Collaborative learning is a promising instructional technique for learning to solve 
complex problems (Hesse et al., 2015). However, research shows that its benefits are 
not always consistent (Kester & Paas, 2005; Slavin, 2014). Discrepancies may be due to 
a lack of knowledge about the many different interacting variables involved in inter-
individual activities (Hogg & Gaffney, 2018). To reduce this gap, this paper first 
discusses the advantage of preparing groups to collaborate effectively and shows 
some existing knowledge gaps in the research. Second, cognitive load theory is used 
to suggest the advantages of preparing groups to collaborate because this would 
optimize the collaborative cognitive load, taking into account the effect of the 
distribution of task information among group members. Third, these theoretical 
considerations are followed by a report on an experiment that investigated the effect 
of prior collaborative experience and information distribution on collaborative 
learning and its outcomes (i.e., in short-term retention and delayed retention tests) (P. 
A. Kirschner et al., 2018; Sweller et al., 2011).

Collaborative Learning 
Collaborative learning has increasingly become important in schools and 
organizations. It is the process by which learners interact in small groups to learn 
(Slavin, 2014). This instructional technique has been broadly studied from different 
disciplines and theoretical perspectives (Hmelo-Silver et al., 2013). Consequently, 
there are many strategies for designing learning environments based on group work 
such as structured academic controversy (D. W. Johnson & Johnson, 1988), jigsaw 
(Aronson & Patnoe, 2011), reciprocal teaching (Palincsar & Brown, 1985), and division 
of student teams based on achievement (Slavin, 1978). These techniques have been 
categorized as cooperative when group interactions are highly structured to achieve 
specific learning goals, and each learner is responsible for a part of the task. 
Cooperative learning strategies are mostly conceived from psychological or 
sociological accounts. This approach is often strictly governed by rules to aid group 
members in their interaction and, as such, is more directive than collaborative learning 
and is usually strictly controlled by the teacher (Panitz, 1999). In contrast, 
collaborative strategies derive mostly from philosophical and political accounts that 
suppose that knowledge is a social construction. Here, group members are expected 
to share authority and responsibility amongst group members for group actions 
(Panitz, 1999). These perspectives advocate that learners work in small groups and 
knowledge communities to share, dialogue, and create meaning around their 
knowledge and experiences (Oxford, 1997). In this research, although collaborative 
learning is used, we have not distinguished between cooperative and collaborative 
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learning because there are more commonalities than differences between them in 
terms of fostering deep learning. For example, learning happens in an active mode, 
the teacher plays the role of facilitator, teachers and learners share knowledge, 
students work in small-group activities, students must take responsibility for 
learning, and learners should develop team skills (P. A. Kirschner, 2001). 

There is considerable evidence that shows the benefits and limitations of collaborative 
learning. For example, the meta-analysis conducted by D. W. Johnson, Maruyama, 
Johnson, Nelson, and Skon (1981) indicated that collaboration resulted in significantly 
higher test performance than interpersonal competition and individualistic efforts. It 
also shows that collaboration with intergroup competition is better than interpersonal 
competition and individualistic efforts. Furthermore, it was found that task 
productivity (i.e., group product) and task interdependence were associated with 
better results, whereas for rote decoding and correcting tasks, collaboration was less 
effective. In another meta-analysis, Qin, Johnson, and Johnson (1995) concluded that 
group members outperformed individuals competing on different problem-solving 
tasks. Pai, Sears, and Maeda’s (2015) meta-analysis found that small-group learning 
can promote transfer; however, they admit that additional research is needed to clarify 
how the structure and complexity of the task affect transfer. 

In contrast, Thanh, Gillies, and Renshaw (2008) found that groups sometimes did not 
work as expected if their learners have a strong culture of competition and dedicate 
much time engaged in individualistic learning. They concluded that a collaborative 
group would be difficult to implement in these social contexts. Another meta-analysis 
(Kyndt et al., 2013) concurs with this conclusion as it found that individualistic 
cultures often were less likely to obtain high effects under collaborative conditions. 
Other authors have found negative factors at individual and group level that hinder 
collaborative learning such as social loafing, social pressure, group conformity, the 
free-rider effect, and the sucker effect (see Kreijns et al., 2003; Rajaram & Pereira-
Pasarin, 2010). To untangle the inconclusive results about the advantages of 
collaborative learning, some researchers have suggested preparing groups for 
learning collaboratively (Cortez, Nussbaum, Woywood, & Aravena, 2009; Jurkowski 
& Hänzea, 2016; Van den Bossche, Gijselaers, Segers, Woltjer, & Kirschner, 2011). 

Preparing Groups for Collaboration 
Grouping learners to learn from each other does not mean that they will work 
appropriately or that they will learn better (Lou et al., 1996). There are data that 
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Collaborative learning is a promising instructional technique for learning to solve 
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of student teams based on achievement (Slavin, 1978). These techniques have been 
categorized as cooperative when group interactions are highly structured to achieve 
specific learning goals, and each learner is responsible for a part of the task. 
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sociological accounts. This approach is often strictly governed by rules to aid group 
members in their interaction and, as such, is more directive than collaborative learning 
and is usually strictly controlled by the teacher (Panitz, 1999). In contrast, 
collaborative strategies derive mostly from philosophical and political accounts that 
suppose that knowledge is a social construction. Here, group members are expected 
to share authority and responsibility amongst group members for group actions 
(Panitz, 1999). These perspectives advocate that learners work in small groups and 
knowledge communities to share, dialogue, and create meaning around their 
knowledge and experiences (Oxford, 1997). In this research, although collaborative 
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learning because there are more commonalities than differences between them in 
terms of fostering deep learning. For example, learning happens in an active mode, 
the teacher plays the role of facilitator, teachers and learners share knowledge, 
students work in small-group activities, students must take responsibility for 
learning, and learners should develop team skills (P. A. Kirschner, 2001). 

There is considerable evidence that shows the benefits and limitations of collaborative 
learning. For example, the meta-analysis conducted by D. W. Johnson, Maruyama, 
Johnson, Nelson, and Skon (1981) indicated that collaboration resulted in significantly 
higher test performance than interpersonal competition and individualistic efforts. It 
also shows that collaboration with intergroup competition is better than interpersonal 
competition and individualistic efforts. Furthermore, it was found that task 
productivity (i.e., group product) and task interdependence were associated with 
better results, whereas for rote decoding and correcting tasks, collaboration was less 
effective. In another meta-analysis, Qin, Johnson, and Johnson (1995) concluded that 
group members outperformed individuals competing on different problem-solving 
tasks. Pai, Sears, and Maeda’s (2015) meta-analysis found that small-group learning 
can promote transfer; however, they admit that additional research is needed to clarify 
how the structure and complexity of the task affect transfer. 

In contrast, Thanh, Gillies, and Renshaw (2008) found that groups sometimes did not 
work as expected if their learners have a strong culture of competition and dedicate 
much time engaged in individualistic learning. They concluded that a collaborative 
group would be difficult to implement in these social contexts. Another meta-analysis 
(Kyndt et al., 2013) concurs with this conclusion as it found that individualistic 
cultures often were less likely to obtain high effects under collaborative conditions. 
Other authors have found negative factors at individual and group level that hinder 
collaborative learning such as social loafing, social pressure, group conformity, the 
free-rider effect, and the sucker effect (see Kreijns et al., 2003; Rajaram & Pereira-
Pasarin, 2010). To untangle the inconclusive results about the advantages of 
collaborative learning, some researchers have suggested preparing groups for 
learning collaboratively (Cortez, Nussbaum, Woywood, & Aravena, 2009; Jurkowski 
& Hänzea, 2016; Van den Bossche, Gijselaers, Segers, Woltjer, & Kirschner, 2011). 
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support the assumption that preparing learners to work together may be a way to 
improve collaborative learning results (Baines, Blatchford, & Chowne, 2007; Bischoff, 
Springer, Reisbig, Lyons, & Likcani, 2012; Buchs, Gilles, Antonietti, & Butera, 2015; 
Gillies & Ashman, 1996; Jurkowski & Hänze, 2015). For example, Prichard, Bizo, et al. 
(2006) examined the benefits of preparing learners on how to work in groups with 
different cohorts. They found that a cohort that received instructions on how to 
collaborate outperformed a cohort that was not prepared, and that the benefits of 
preparing for collaboration were lost when the group members split up into new 
groups. Buchs et al. (2015) also prepared learners by providing them with instruction 
on why and how to collaborate. They found that learning in dyads after 10 minutes of 
instruction on working together resulted in better learning results compared to 
learning individually or collaboratively without such instruction. Similarly, 
Jurkowski and Hänze (2015) used a 100-min session for training students about 
transactive communication to enhance group communication and knowledge 
acquisition during collaborative learning. Their results showed that trained groups 
outperformed and displayed more transactive communication than untrained groups. 

Others investigations show that learners with prior group preparation can allocate 
effective communication patterns to efficiently complete a task (Jurkowski & Hänzea, 
2016), exchange elaborated explanations and constructive activities (Webb et al., 1995), 
and effectively distribute high task demands amongst themselves and monitor their 
contributions (Fransen, Kirschner, & Erkens, 2011). Once groups have acquired task 
and team schemas (i.e., a shared mental model; Van den Bossche et al., 2011), they 
may better focus their interactions on learning tasks and obtain better learning. 
Conversely, a group without such prior experience may perform interactions that may 
be irrelevant to the task. These data suggest that groups may obtain higher test scores 
and be more efficient when receiving guidance on how to collaborate on relevant tasks 
(Jurkowski & Hänze, 2015; P. A. Kirschner & Erkens, 2013; Stevens, Slavin, & Farnish, 
1991). 

Among the limitations of the perspective that advocates preparing groups for 
collaboration is the lack of attention to the factors that may affect the quality of the 
interactions and whether effects are long-lasting (e.g., on delayed retention tests after 
one week) (Soderstrom & Bjork, 2015). Inter-individual processes may result in 
different outcomes depending on the test timing, characteristics of the group members 
(e.g., learners with prior collaborative experience) and the demands of the task. 

Effects of Group Experience and Information Distribution on Collaborative Learning 

65 

Cognitive load theory may help to understand how task complexity affects the 
performance and mental effort of collaborative learning. 

Cognitive Load Theory and Collaborative Learning 
Cognitive load theory is an instructional theory based on the human cognitive 
architecture that underlies inter-individual activities (Sweller et al., 2011). According 
to the theory, acquiring new domain-specific knowledge depends on working 
memory limitations that may not allow processing of more than about two elements 
at once (i.e., processing around two elements at once; Cowan, 2010). If the tasks 
require processing many highly interacting elements in a limited amount of time, 
learners will need to execute many cognitive operations which increases cognitive 
load. Cognitive load refers to the working memory load intensity when performing 
cognitive activities to achieve a specific learning goal (Kalyuga & Singh, 2016). This 
load is intrinsic if it refers to processing essential information of learning tasks or 
extraneous if it is caused by instructional procedures. Germane cognitive load refers 
to working memory resources available to deal with intrinsic cognitive load (Sweller, 
2010). Optimal instruction for novices should reduce extraneous load and maintain 
intrinsic load without exceeding working memory capacity. If intrinsic cognitive load 
is low, extraneous cognitive load differences may have less effect because working 
memory limits may not have been exceeded. Once a learner has stored task 
information elements in long-term memory, they can be recovered as an encapsulated 
element, freeing up working memory resources for processing new information 
(Sweller, 2010). 

Cognitive load theory findings mostly apply to individual learning conditions. 
However, collaborative learning is gaining attention from cognitive load researchers 
(Kester & Paas, 2005). In group learning settings, one factor that may influence 
cognitive load, in addition to the interacting information elements of the task, is 
transactional activities consisting of communication and coordination activities 
among group members that are specific to collaborative learning. Working together is 
necessary when performing a group task and, as such, transactional activities play a 
critical role in determining the advantages and the limitations of collaborative 
learning (P. A. Kirschner et al., 2018). 

Collaborative learning seems to work better when learning tasks are cognitively 
demanding. Studies conducted by F. Kirschner and her colleagues (F. Kirschner, Paas, 
& Kirschner, 2011; F. Kirschner, Paas, Kirschner, & Janssen, 2011) suggest that group 
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instruction on working together resulted in better learning results compared to 
learning individually or collaboratively without such instruction. Similarly, 
Jurkowski and Hänze (2015) used a 100-min session for training students about 
transactive communication to enhance group communication and knowledge 
acquisition during collaborative learning. Their results showed that trained groups 
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and team schemas (i.e., a shared mental model; Van den Bossche et al., 2011), they 
may better focus their interactions on learning tasks and obtain better learning. 
Conversely, a group without such prior experience may perform interactions that may 
be irrelevant to the task. These data suggest that groups may obtain higher test scores 
and be more efficient when receiving guidance on how to collaborate on relevant tasks 
(Jurkowski & Hänze, 2015; P. A. Kirschner & Erkens, 2013; Stevens, Slavin, & Farnish, 
1991). 

Among the limitations of the perspective that advocates preparing groups for 
collaboration is the lack of attention to the factors that may affect the quality of the 
interactions and whether effects are long-lasting (e.g., on delayed retention tests after 
one week) (Soderstrom & Bjork, 2015). Inter-individual processes may result in 
different outcomes depending on the test timing, characteristics of the group members 
(e.g., learners with prior collaborative experience) and the demands of the task. 
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Cognitive load theory may help to understand how task complexity affects the 
performance and mental effort of collaborative learning. 

Cognitive Load Theory and Collaborative Learning 
Cognitive load theory is an instructional theory based on the human cognitive 
architecture that underlies inter-individual activities (Sweller et al., 2011). According 
to the theory, acquiring new domain-specific knowledge depends on working 
memory limitations that may not allow processing of more than about two elements 
at once (i.e., processing around two elements at once; Cowan, 2010). If the tasks 
require processing many highly interacting elements in a limited amount of time, 
learners will need to execute many cognitive operations which increases cognitive 
load. Cognitive load refers to the working memory load intensity when performing 
cognitive activities to achieve a specific learning goal (Kalyuga & Singh, 2016). This 
load is intrinsic if it refers to processing essential information of learning tasks or 
extraneous if it is caused by instructional procedures. Germane cognitive load refers 
to working memory resources available to deal with intrinsic cognitive load (Sweller, 
2010). Optimal instruction for novices should reduce extraneous load and maintain 
intrinsic load without exceeding working memory capacity. If intrinsic cognitive load 
is low, extraneous cognitive load differences may have less effect because working 
memory limits may not have been exceeded. Once a learner has stored task 
information elements in long-term memory, they can be recovered as an encapsulated 
element, freeing up working memory resources for processing new information 
(Sweller, 2010). 

Cognitive load theory findings mostly apply to individual learning conditions. 
However, collaborative learning is gaining attention from cognitive load researchers 
(Kester & Paas, 2005). In group learning settings, one factor that may influence 
cognitive load, in addition to the interacting information elements of the task, is 
transactional activities consisting of communication and coordination activities 
among group members that are specific to collaborative learning. Working together is 
necessary when performing a group task and, as such, transactional activities play a 
critical role in determining the advantages and the limitations of collaborative 
learning (P. A. Kirschner et al., 2018). 

Collaborative learning seems to work better when learning tasks are cognitively 
demanding. Studies conducted by F. Kirschner and her colleagues (F. Kirschner, Paas, 
& Kirschner, 2011; F. Kirschner, Paas, Kirschner, & Janssen, 2011) suggest that group 
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learning is more efficient when tasks are highly complex. F. Kirschner et al.’s studies 
found that the task should be complex enough to justify investing working memory 
resources on transactional activities. However, if tasks had a low level of complexity, 
transactional activities are unnecessary and even detrimental compared to individual 
learning. These investigations suggest that distributing information-elements of high-
complexity tasks amongst learners may increase test scores and cognitive efficiency 
because information elements are processed by more working memories (the 
collective working memory effect; F. Kirschner, Paas, & Kirschner, 2011). Further, 
cognitive load imposed by transactional activities may be lower compared to the load 
associated with processing all information elements by one learner. 

Other studies conducted by Retnowati et al. (2010, 2016) suggest that collaboration 
may not improve learning in high-complexity tasks compared with individual 
learning depending on the instructional procedure being followed. They investigated 
the effect of conventional problems and worked-out examples on individual and 
collaborative learning and found that in some high-complexity tasks, individuals 
performed better than groups. They also found that collaborative learning was more 
beneficial than individual learning in solving problems but not in studying worked 
examples. 

Optimizing Transactional Activities 
In tasks that should be performed individually (i.e., that do not require collaboration), 
transactional activities impose an extraneous cognitive load because communication 
and coordination activities are not essential components. If the task is collaborative in 
nature, transactional activities are a type of intrinsic cognitive load. In either case, 
collaborative load should be optimized through instructional procedures to achieve 
the learning goals (P. A. Kirschner et al., 2018). 

Prior collaborative experience as generalized domain knowledge. 
Literature about preparing learners for collaboration suggests that learning in groups 
may be more beneficial when the members of the group receive explicit guidance on 
how to work together (see section Preparing Groups for Collaboration). Providing 
collaborative experiences with high-complexity tasks may help learners acquire 
shared mental models of joint work (Van den Bossche et al., 2011) that can guide their 
transactional activities during collaborative learning. This does not mean that 
collaborative learning is a kind of general knowledge that can be applied to any 
domain of knowledge indiscriminately. This general knowledge perspective fails to 
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take into account that the characteristics of the multiple types of learning tasks can 
result in different forms of joint work and that there are many ways to learn 
collaboratively. This premise suggests that it is better to prepare learners to collaborate 
according to particular characteristics of a task or domain. Task- or domain-based 
collaborative experience may help learners to generalize those skills that are unique 
to that learning environment (Bischoff et al., 2012). 

Prior collaborative experience is a factor that has not yet been explored using cognitive 
load theory. However, the emerging construct of generalized domain knowledge may 
imply this experience. While domain-specific knowledge applies to a narrow range of 
specific tasks in the domain, “generalized domain knowledge applies to a wider class 
of different tasks in this domain [and] it remains a part of domain-specific knowledge” 
(Kalyuga, 2013, p. 1479). Thus, it is plausible to assume that when group members 
solve together domain-specific tasks, they also construct relevant shared schemas of 
collaborative processes that can be transferred to other similar tasks (Gick & Holyoak, 
1983). This group experience may be a domain group schema (i.e., a generalized 
domain skill at group level) that is stored in long-term memory to solve similar 
learning problems (Zambrano R. et al., 2019b). Furthermore, as is the case for any 
relevant knowledge structure, group experience may work as an internalized 
guidance that regulates transactional activities, optimizes collaborative cognitive 
load, and leads to better learning outcomes (Hagemann & Kluge, 2017; Jurkowski & 
Hänze, 2015; Van den Bossche et al., 2011; Zambrano R. et al., 2018). 

Element interactivity and information distribution. 
The number of interacting elements to be temporally processed in working memory 
is the major source of cognitive load (Sweller, 2010). An element can be considered as 
a schema that needs to be learned (e.g., a number or a set of steps to solve a mathematic 
problem). Any change in the elements, either in the task or in the long-term memory 
structure, alters the cognitive activity of working memory (Sweller et al., 2011). 
Consequently, variations in element interactivity may explain all cognitive load 
theory effects. 

When learning new tasks, different ways of distributing information amongst group 
members may affect transactional activities and in turn collaborative learning 
outcomes (P. A. Kirschner et al., 2018). Mostly, investigations address the effect of 
information distribution from the hidden profile paradigm. From this perspective, 
relevant items are distributed in a way that group members are led to prefer a 
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take into account that the characteristics of the multiple types of learning tasks can 
result in different forms of joint work and that there are many ways to learn 
collaboratively. This premise suggests that it is better to prepare learners to collaborate 
according to particular characteristics of a task or domain. Task- or domain-based 
collaborative experience may help learners to generalize those skills that are unique 
to that learning environment (Bischoff et al., 2012). 

Prior collaborative experience is a factor that has not yet been explored using cognitive 
load theory. However, the emerging construct of generalized domain knowledge may 
imply this experience. While domain-specific knowledge applies to a narrow range of 
specific tasks in the domain, “generalized domain knowledge applies to a wider class 
of different tasks in this domain [and] it remains a part of domain-specific knowledge” 
(Kalyuga, 2013, p. 1479). Thus, it is plausible to assume that when group members 
solve together domain-specific tasks, they also construct relevant shared schemas of 
collaborative processes that can be transferred to other similar tasks (Gick & Holyoak, 
1983). This group experience may be a domain group schema (i.e., a generalized 
domain skill at group level) that is stored in long-term memory to solve similar 
learning problems (Zambrano R. et al., 2019b). Furthermore, as is the case for any 
relevant knowledge structure, group experience may work as an internalized 
guidance that regulates transactional activities, optimizes collaborative cognitive 
load, and leads to better learning outcomes (Hagemann & Kluge, 2017; Jurkowski & 
Hänze, 2015; Van den Bossche et al., 2011; Zambrano R. et al., 2018). 

Element interactivity and information distribution. 
The number of interacting elements to be temporally processed in working memory 
is the major source of cognitive load (Sweller, 2010). An element can be considered as 
a schema that needs to be learned (e.g., a number or a set of steps to solve a mathematic 
problem). Any change in the elements, either in the task or in the long-term memory 
structure, alters the cognitive activity of working memory (Sweller et al., 2011). 
Consequently, variations in element interactivity may explain all cognitive load 
theory effects. 
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suboptimal solution alternative, while only the combined information uncovers the 
best solution (Deiglmayr & Spada, 2010; Stasser & Titus, 2003). However, information 
distribution has not been experimentally studied with learning problems from a 
cognitive load theory perspective. Despite this gap of knowledge, it is possible to 
anticipate specific results based on element interactivity. 

Groups are viewed as information processing systems with more cognitive capacity 
than individual learners (Hinsz et al., 1997). This increased working memory-
advantage is especially crucial when tasks are highly complex (F. Kirschner, et al., 
2011a). However, having a larger cognitive reservoir may have no effect when the way 
of distributing task information amongst members increases unnecessarily 
transactional activities harming learning (Deiglmayr & Spada, 2010). If the 
information of a learning task is distributed so that one group member can solve one 
step of the problem, but then s/he communicates his/her partial result with others to 
solve the whole task collaboratively, the intensity of the cognitive load may decrease. 
Reducing the number of inter-individual activities and the associated cognitive load 
may free working memory resources for creating a better mental representation of the 
task. As a result, test scores and cognitive efficiency of collaborative learning may 
increase. Conversely, if no step of the problem can be performed without all members 
sharing and discussing each of their information elements, group processing intensity 
may increase which may impose an additional cognitive load and impair learning. 

The Present Study 
Based upon the aforementioned, this study examined the effects of prior collaborative 
experience on relevant tasks (experienced groups vs. inexperienced groups), and 
information distribution (low vs. high information density) on the performance of 
collaborative learning and its outcomes on short-term retention and delayed retention 
tests. We expected that experienced groups would focus their cognitive resources on 
better transactional activities, thus increasing test scores (Hypothesis 1) and reducing 
cognitive load leading to increased efficiency (Hypothesis 2) than inexperienced 
groups. Lower information density should decrease cognitive load because learners 
require fewer transactional activities amongst themselves, leading to higher test scores 
(Hypothesis 3) and lower cognitive load with increased efficiency (Hypothesis 4) than 
higher information density. Therefore, it can be expected that for a task with higher 
information density, prior collaborative experience allows groups to increase test 
scores (Hypothesis 5) and decrease cognitive load leading to increased efficiency 
(Hypothesis 6) than inexperienced groups. However, in tasks with lower information 
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density, the advantage of having prior collaborative experience is redundant leading 
to a reduction in the difference in similar test scores (Hypothesis 7) and a reduction in 
the difference in efficiency (Hypothesis 8) between experienced and inexperienced 
groups. 

Method 
Participants 
The study was conducted with 240 high-school Ecuadorian students from a large 
public school in Quito as part of the mathematics classes. The gender distribution was 
59 female and 181 male, and the average age was 15.58 years (SD = .84). No difference 
in prior knowledge was expected because the learning phase tasks are not included in 
the content of the very strict Ecuadorian national curriculum which explicitly 
prohibits the teaching of non-prescribed topics. Further, teachers confirmed that they 
had not previously taught the included content and that all participants came from 
the same school. The use of random assignment to all conditions excluded any 
systematic prior knowledge differences. Despite curricular restrictions, this research 
received approval from the School Ethical Committee (official communication 007-
VCEM/15-16) as part of their program of learning improvement. Learners were 
notified of the study, that their participation is voluntary and that they would receive 
an academic compensation of 10 points for participation. 

Design and Procedure 
A 2 (group experience: experienced vs. inexperienced group) x 2 (information 
distribution: low information density vs. high information density) factorial design 
was used. The study was conducted in four phases with 45-minute sessions: 
preparation, learning, short-term retention test, and delayed retention test. Three 
instructors and an experimenter carried out the study. Instructors were previously 
informed about the procedure and were supervised by the experimenter to ensure 
condition fidelity. Guidelines were read aloud, and a digital clock was used to show 
the number of minutes allotted to each task. Time for each task of the phases was 
established through a pilot study showing the amount of time needed to solve a task 
without high time pressure. Because data from the learning, short-term retention and 
delayed retention phases were analyzed independently, if a learner who participated 
in the learning phase did not participate in the short-term retention test, they were 
allowed to participate in the delayed retention test. 
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suboptimal solution alternative, while only the combined information uncovers the 
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Preparation. 
This phase aimed to prepare groups to undertake high-complexity collaborative tasks 
using quadratic equations (i.e., ax2 + bx + c = 0, where a, b, and c represent constants 
and a ≠ 0). It began in the second week of the new school year after a two-month 
vacation. It was ensured that participants had no previous classroom familiarity with 
each other nor prior collaboration experience within the last two months. Participants 
were randomly assigned to two conditions: one half worked in 3-person groups 
(experienced group condition), and the other half worked individually forming the 
inexperienced group condition in the next phase (i.e., the learning phase). All worked 
in four sessions, one session per day over one week. Both conditions worked on the 
same tasks. The first tasks had no time constraints. The last two tasks of the second 
session onward had to be solved within 10 min. While performing the tasks, each team 
member was required to interact with other members in order to share their items and 
maintaining partial results in working memory. At the end of each session, 
participants received the correct answers and were required to spend 5 min on 
planning how they could work better on subsequent tasks. 

Learning. 
This collaborative learning phase was conducted in one session after the preparation 
phase. Groups that had not completed all preparation phase sessions were excluded. 
Random absences were caused by the school administration asking students to 
perform activities related to the beginning of the school year. These absences 
unbalanced the number of planned groups per condition. However, as participants 
had learned to solve quadratic equations in the previous year and all dropouts 
occurred before the learning phase, it was not necessary to analyze whether there was 
a difference between the excluded learners and those who remained. Further, an a 
priori analysis with a power of .8 and a medium-size effect (i.e., .06; Cohen, 1988) 
revealed that the study needed 31 participants (11 triadic groups) per condition 
indicating that the remaining participants were sufficient to reliably test the 
hypotheses. 

Learners who had worked individually were randomly distributed into 26 groups of 
3-persons (i.e., inexperienced group condition), while 39 experienced groups
remained intact. All groups were randomly assigned to two conditions of information
distribution (i.e., low information density and high information density). For the
experienced group condition, 18 groups received low information density and 21 the
high information density materials. For the inexperienced group condition, 15 groups
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received the low information density and 11 the high information density materials. 
All groups worked on three tasks for 27 min, 9 min per task. Instructors encouraged 
groups to focus on the task and avoiding unnecessary conversations. Writing in this 
phase when performing calculations was not permitted to prevent cognitive off-
loading through external representations (Van Bruggen et al., 2002). Only one group 
member was allowed to write down the answer for each task. If a group solved the 
problem before the allotted time, that group had to wait to start the next problem. 

Short-term and Delayed Retention Tests. 
Short-term and delayed retention tests were conducted one and seven days after the 
learning phase respectively. Participants individually were required to solve three 
similar problems with 10 min for each problem. The number of participants is shown 
in Table 1. In both phases, participants recorded the mental effort after each problem. 
Unlike in the learning phase, writing down calculations was permitted. 

Table 1 
Participants of the Short-term Retention and the Delayed Retention Tests 
Learning Conditions N 

Short-term Retention Test Phase 
Experienced Groups 

Low information density 
High information density 

102 
51 
51 

Inexperienced Groups 
Low information density 
High information density 

76 
45 
31 

Delayed Retention Test Phase 
Experienced Groups 

Low information density 
High information density 

105 
54 
51 

Inexperienced Groups 
Low information density 
High information density 

76 
45 
31 
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Materials 
Learning materials were in the domain of mathematics and the comparable domain 
of economics. Quadratic equations were used in the preparation phase and break-even 
point problems in commercial transactions (the point at which a transaction resulted 
in neither a profit nor a loss) in the learning phase, as well as in short-term and delayed 
retention test phases. All materials were paper-based. 

Preparation. 
Quadratic equations are compulsory in the national curriculum, and all students had 
already learned to solve them the previous year. In the first session, participants 
received a booklet whose first part introduced quadratic equations with two worked 
examples using the factoring method. The second part presented rules on how to solve 
the equations collaboratively, followed by a worked example demonstrating how each 
member should apply the rules and a conventional task with the correct answer 
(Appendix A). Examples of the rules are: When it is possible to perform the 
calculations without the help of others, do it alone and continually rehearse the results 
to avoid forgetting them and Solving an equation will require many partial answers 
in your mind; decide who will have which partial result in your group; it is better that 
everyone has a result to avoid forgetting them or making a mistake in solving the 
equation.  

Quadratic equation values were manipulated to provide group experience on the 
information distribution for the learning phase tasks. Equation values were unpacked 
to distribute them among learners (e.g., for −15x2, each member would receive −5x2). 
It required group members to depend on others’ information to solve the problem. 
Individual participants (who were members of inexperienced groups in the learning 
phase) received the same values to solve the equations individually. 

In the second session, groups and individuals again received the collaborative 
learning rules, two conventional problems with the correct answer and a conventional 
problem without the correct answer. In the third and fourth session, groups and 
individuals received three problems without correct answers. The values provided 
were relevant but were insufficient to solve the problem. 
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Learning. 
Calculating a break-even point is considered to be an analog task to solving quadratic 
equations because it displays similar characteristics such as combining multiple 
numerical values, calculating partial step answers, holding them in working memory, 
and finding a unique correct answer. Participants received a booklet introducing the 
relevant concepts with two worked examples, questions to prompt them, three 
learning tasks, and a piece of paper with examples of costs and the break-even point 
in the units’ formula. One worked example showed the students how to calculate the 
break-even point in units and sales with a profit margin. The other worked example 
was similar but without a profit margin. The worked examples had a 7-step procedure 
(see Table 2). Examples of the prompt questions were: a) What were the break-even 
points? b) What were the seven steps to calculate the break-even points? c) What was 
the difference between the break-even points in units and sales? d) How did you 
calculate the contribution? 

Table 2 
Steps and Information Elements to Calculate the Break-Even Points 

Steps to Solve the Problem Calculations 
Information 

Elements 

Partial 
Results in 

the working 
memory 

1. Identify Cost Values 155, 63, 82, 50, 41, 108, 71, 119, 52 9 
2. Total Variable Cost VC1 +VC2 + VC3 = TVC 

155 + 63 + 82 = 300 7 300 
3. Variable Cost per Unit TVC ÷ Amount Produced = CU

300 ÷ 50 = 6 5 300, 6 
4. Contribution Margin Price – CU = CM 

41 – 6 = 35 5 6, 35 
5. Total Fixed Cost FC1 + FC2 + FC3 + Profit 

Margin = TFC 
108 + 71 + 119 + 52 = 350 9 35, 350 

6. Break-Even Point in
Units

TFC ÷ CM = BPU 
350 ÷ 35 = 10 5 35, 350, 10 

7. Break-Even Point in
Sales

BPU × Price = BPS 
10 × 41 = 410 5 10, 410 

Note: VC = Variable Cost; FC = Fixed Cost; TVC = Total Variable Cost; CU = Variable Cost per Unit; 
CM = Contribution Margin; TFC = Total Fixed Cost; BPU = Break-Even Point in Units; BPS = Break-
Even Point in Sales. 
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Task complexity was first checked by presenting the tasks to two Economics teachers 
and then questioning them as to the complexity. These teachers confirmed that the 
tasks were complex enough for novices. Also, the Sweller and Chandler method (1994) 
to determine complexity was used, which consisted of counting the approximate 
number of interacting elements. As can be seen in Table 2, problem-solving had seven 
steps and nine items. The items were three fixed costs, three variable costs, price, profit 
margin, and produced articles. Each step varied in the number of interacting items 
(Column 3 of Table 2). This amounted to a total of 45 items (including mathematical 
signs). For each step, a partial answer had to be calculated and held in working 
memory (Column 4 of Table 2) to be integrated with another partial answer. Writing 
was not permitted. The high complexity of the tasks was confirmed by the mean for 
mental effort in the learning phase tasks which was 7.38 on the 9-point scale (see 
Measurement section). 

All groups received the same tasks, but with different information distributions. For 
the low information density groups, steps 2 and 5 could be solved without 
communication or coordination between peers. A group member only needed to share 
the partial answer to calculate the other steps and find the final answer. The items 
were balanced so that all group members had all task information during the learning 
phase. For example, for the first task, member 1 received three variable costs, for the 
second task three fixed costs and the profit margin, and for the third task, price and 
the produced number of things. For the high information density groups, no step 
could be performed without each member communicating his/her items to others and 
coordinating their calculations. To avoid confusion during the learning processes, 
members were given different examples of fixed and variable costs with the formula 
for the break-even point in units (see Step 6 of Table 2). 

Short-term and Delayed Retention Tests. 
Six high-complexity problems were used for testing. The problems were similar to the 
learning tasks, but the business situation and cost names were varied. Participants 
received three tasks a day after the learning tasks (i.e., short-term retention test), and 
the other three seven days after the learning tasks (i.e., delayed retention test). Each 
problem included a table with seven rows to write down the calculations for each step 
of the task’s solution. 
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Measurement 
Performance. 
Performance was measured in the learning, short-term retention test, and delayed 
retention test phases. The total number of points that could be scored for all the three 
learning tasks was 3, 1 per task, if an answer was correct. If an answer was incorrect, 
the task scored was 0. For each of the three short-term retention test tasks, 7 points 
could be awarded. These points were based upon the 7 calculations required to 
determine the break-even point. Each calculation was scored individually when 
considering whether correct values and mathematical operations were used. A correct 
step’s calculation received 1 point and an incorrect step’s calculation 0. This resulted 
in a maximum score of 21 points and a minimum of 0. If a step was partially correct, 
a proportional score was given. The same scores were applied to the delayed retention 
test’s tasks. The scores were transformed into proportions. 

Cognitive Load. 
Cognitive load was measured after the third task of the learning phase and after each 
task in the short-term and delayed retention test phases using a subjective 9-point 
mental effort scale (Paas, 1992). The collaborative cognitive load of the learning phase 
was calculated averaging the mental effort scores of the members. Individual scores 
for mental effort were used in the other phases. 

Efficiency. 
Efficiency (E) refers to the quality of learning as result of combining performance and 
mental effort (Paas & Van Merriënboer, 1993). A high efficiency denotes relatively 
high performance in combination with relatively low mental effort. By contrast, low 
efficiency means relatively low performance with relatively high mental effort. 
Efficiency was computed by standardizing each of the participant’s scores for task 
performance and the mental effort. For each participant, z-scores were calculated for 
effort (R) and performance (P) using the formula E = [(P – R)/21/2]. 

Results 
Data was analyzed with 2 (group experienced: experienced vs. inexperienced group) 
x 2 (information distribution: high information density vs. low information density) 
multivariate analyses of variance (MANOVA) and analyses of variance (ANOVA). 
Dependent variables were performance, mental effort, and efficiency, which were 
measured and independently analyzed for the learning, short-term retention, and 
delayed retention phases. Descriptive statistics are shown in Table 3. Partial eta-
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x 2 (information distribution: high information density vs. low information density) 
multivariate analyses of variance (MANOVA) and analyses of variance (ANOVA). 
Dependent variables were performance, mental effort, and efficiency, which were 
measured and independently analyzed for the learning, short-term retention, and 
delayed retention phases. Descriptive statistics are shown in Table 3. Partial eta-
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squared was used to determine the effect size with values of .01, .06 and .14, 
corresponding to small, medium and large effects respectively (Cohen, 1988). 

Learning Phase 
MANOVA revealed significant main effects for group experience, F(2, 60) = 10.40, 
Wilks' Λ = .74, p < .001, ηp2 = .26, and information distribution, F(2, 60) = 3.33, Wilks' 
Λ = .90, p = .04, ηp2 = .10, which indicate that these variables affect a combination of 
performance, mental effort, and efficiency scores. The interaction between these 
effects was nonsignificant, F(2, 60) = .67, Wilks' Λ = .98, p = .52, ηp2 = .02. 

Two-way ANOVAs were conducted to examine the variables separately (see Table 4). 
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squared was used to determine the effect size with values of .01, .06 and .14, 
corresponding to small, medium and large effects respectively (Cohen, 1988). 

Learning Phase 
MANOVA revealed significant main effects for group experience, F(2, 60) = 10.40, 
Wilks' Λ = .74, p < .001, ηp2 = .26, and information distribution, F(2, 60) = 3.33, Wilks' 
Λ = .90, p = .04, ηp2 = .10, which indicate that these variables affect a combination of 
performance, mental effort, and efficiency scores. The interaction between these 
effects was nonsignificant, F(2, 60) = .67, Wilks' Λ = .98, p = .52, ηp2 = .02. 

Two-way ANOVAs were conducted to examine the variables separately (see Table 4). 
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Concerning performance, ANOVA revealed that experienced groups (M = .52, 
SD = .42) outperformed inexperienced groups (M = .13, SD = .21). For mental effort, 
groups with low information density (M = 6.80, SD = 1.80) perceived lower mental 
effort than groups with high information density (M = 7.89, SD = 1.68). For efficiency, 
experienced groups (M = 0.32, SD = 1.26) were more efficient than inexperienced 
groups (M = -0.48, SD = 0.65) and low information density (M = 0.29, SD = 1.09) was 
more efficient than high information density (M = -0.30, SD = 1.11). 

Short-term Retention Test Phase 
MANOVA revealed a significant main effect for group experience, F(2, 173) = 9.07, 
Wilks' Λ = .91, p < .001, ηp2 = .10, and information distribution, F(2, 173) = 3.60, p =  .03, 
Wilks' Λ = .96, ηp2 = .04. This suggests that both independent variables affect 
performance, mental effort, and efficiency simultaneously. The interaction between 
these effects was nonsignificant, F(2, 173) = 2.69, Wilks' Λ = .97, p = .07, ηp2 = .03. 

For performance, ANOVA (see Table 4) revealed that experienced groups 
significantly outperformed (M = .45, SD = .22) inexperienced groups (M = .31, 
SD = .29). It also showed that groups with low information density (M = .42, SD = .25) 
outperformed high information density (M = .36, SD = .27). Concerning mental effort, 
experienced groups (M = 6.47, SD = 2.51) reported more mental effort than 
inexperienced groups (M = 5.53, SD = 2.58). Regarding instructional efficiency, the 
significant interaction between main effects indicated that for the task with high 
information density, experienced groups are more efficient than inexperienced 
groups, (p = .02, ηp2 = .03). However, for the task with low information density, 
experienced groups and inexperienced groups are not significantly different (p = .37, 
ηp2 = .01). 

Delayed Retention Test Phase 
MANOVA yielded a significant main effect for group experience, indicating that this 
variable affects performance, mental effort, and efficiency, F(2, 176) = 8.64, Wilks' 
Λ = .91, p < .001, ηp2 = .09. The main effects for information distribution, 
F(2, 176) = 1.07, Wilks' Λ = .99, p = .35, ηp2 = .01, and the interaction between these 
effects, F(2, 176) = 2.34, Wilks' Λ = .97, p = .10, ηp2 = .03, were nonsignificant. 

For performance (Table 4), the analysis revealed that experienced groups (M = .46, 
SD = .30) outperformed inexperienced groups (M = .29, SD = .26). For instructional 
efficiency, experienced groups (M = 0.09, SD = 0.83) were more efficient than 
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squared was used to determine the effect size with values of .01, .06 and .14, 
corresponding to small, medium and large effects respectively (Cohen, 1988). 

Learning Phase 
MANOVA revealed significant main effects for group experience, F(2, 60) = 10.40, 
Wilks' Λ = .74, p < .001, ηp2 = .26, and information distribution, F(2, 60) = 3.33, Wilks' 
Λ = .90, p = .04, ηp2 = .10, which indicate that these variables affect a combination of 
performance, mental effort, and efficiency scores. The interaction between these 
effects was nonsignificant, F(2, 60) = .67, Wilks' Λ = .98, p = .52, ηp2 = .02. 

Two-way ANOVAs were conducted to examine the variables separately (see Table 4). 
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Concerning performance, ANOVA revealed that experienced groups (M = .52, 
SD = .42) outperformed inexperienced groups (M = .13, SD = .21). For mental effort, 
groups with low information density (M = 6.80, SD = 1.80) perceived lower mental 
effort than groups with high information density (M = 7.89, SD = 1.68). For efficiency, 
experienced groups (M = 0.32, SD = 1.26) were more efficient than inexperienced 
groups (M = -0.48, SD = 0.65) and low information density (M = 0.29, SD = 1.09) was 
more efficient than high information density (M = -0.30, SD = 1.11). 

Short-term Retention Test Phase 
MANOVA revealed a significant main effect for group experience, F(2, 173) = 9.07, 
Wilks' Λ = .91, p < .001, ηp2 = .10, and information distribution, F(2, 173) = 3.60, p =  .03, 
Wilks' Λ = .96, ηp2 = .04. This suggests that both independent variables affect 
performance, mental effort, and efficiency simultaneously. The interaction between 
these effects was nonsignificant, F(2, 173) = 2.69, Wilks' Λ = .97, p = .07, ηp2 = .03. 

For performance, ANOVA (see Table 4) revealed that experienced groups 
significantly outperformed (M = .45, SD = .22) inexperienced groups (M = .31, 
SD = .29). It also showed that groups with low information density (M = .42, SD = .25) 
outperformed high information density (M = .36, SD = .27). Concerning mental effort, 
experienced groups (M = 6.47, SD = 2.51) reported more mental effort than 
inexperienced groups (M = 5.53, SD = 2.58). Regarding instructional efficiency, the 
significant interaction between main effects indicated that for the task with high 
information density, experienced groups are more efficient than inexperienced 
groups, (p = .02, ηp2 = .03). However, for the task with low information density, 
experienced groups and inexperienced groups are not significantly different (p = .37, 
ηp2 = .01). 

Delayed Retention Test Phase 
MANOVA yielded a significant main effect for group experience, indicating that this 
variable affects performance, mental effort, and efficiency, F(2, 176) = 8.64, Wilks' 
Λ = .91, p < .001, ηp2 = .09. The main effects for information distribution, 
F(2, 176) = 1.07, Wilks' Λ = .99, p = .35, ηp2 = .01, and the interaction between these 
effects, F(2, 176) = 2.34, Wilks' Λ = .97, p = .10, ηp2 = .03, were nonsignificant. 

For performance (Table 4), the analysis revealed that experienced groups (M = .46, 
SD = .30) outperformed inexperienced groups (M = .29, SD = .26). For instructional 
efficiency, experienced groups (M = 0.09, SD = 0.83) were more efficient than 
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squared was used to determine the effect size with values of .01, .06 and .14, 
corresponding to small, medium and large effects respectively (Cohen, 1988). 

Learning Phase 
MANOVA revealed significant main effects for group experience, F(2, 60) = 10.40, 
Wilks' Λ = .74, p < .001, ηp2 = .26, and information distribution, F(2, 60) = 3.33, Wilks' 
Λ = .90, p = .04, ηp2 = .10, which indicate that these variables affect a combination of 
performance, mental effort, and efficiency scores. The interaction between these 
effects was nonsignificant, F(2, 60) = .67, Wilks' Λ = .98, p = .52, ηp2 = .02. 

Two-way ANOVAs were conducted to examine the variables separately (see Table 4). 
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inexperienced groups (M = -0.12, SD = 0.75). The significant interaction between main 
effects indicated that for the task with high information density, experienced groups 
are more efficient than inexperienced groups, (p = .01, ηp2 = .04). However, for low 
information density, experienced and inexperienced groups are not significantly 
different (p = .90, ηp2 = .00). 

Discussion 
The goal of this study was to examine the effect of prior collaborative experience (i.e., 
experienced vs. inexperienced groups) and collaborative intensity related to task 
information distribution (i.e., high information density vs. low information density) 
on test scores and cognitive load during collaborative learning. We discuss the result 
for each hypothesis. 

It was hypothesized that groups with prior collaborative experience would obtain 
higher test scores (Hypothesis 1) and lower cognitive load resulting in increased 
efficiency (Hypothesis 2) than inexperienced groups. Results confirmed the 
expectation for increased test scores following prior collaborative experience in all 
phases and increased efficiency in the short-term and delayed retention tests. These 
are the primary results of this experiment. 

The results suggest that prior collaborative experience in similar tasks was transferred 
to new complex learning tasks (Kalyuga, 2013) and helped to optimize the cognitive 
load associated with transactional activities (P. A. Kirschner et al., 2018). Acquiring 
collaborative schemas based on similar tasks permitted groups to deal with the high 
cognitive load of high information density. It seems that working memory resources 
invested in transactional activities were used to construct high-order schemas of the 
learning tasks (Van den Bossche et al., 2011). This result is in line with Fransen et al. 
(2013) in the sense that experienced groups developed group and task schemas. In 
contrast, inexperienced groups could not handle the high cognitive load leading to the 
construction of poor knowledge of the tasks. An interesting result is that 
inexperienced groups reported a lower mental effort in the short-term retention phase 
which significantly decreased efficiency in experienced groups. One possible 
explanation for this result is that their lower knowledge level may have reduced their 
assessment of the complexity of tasks, overestimated their current performance which 
in turns decreased their mental effort ratings (Nugteren, Jarodzka, Kester, & Van 
Merriënboer, 2018a). 

Effects of Group Experience and Information Distribution on Collaborative Learning 
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Concerning information distribution, we expected that low information density 
decreases cognitive load because learners require fewer transactional activities 
amongst themselves, leading to higher test scores (Hypothesis 3) and efficiency 
(Hypothesis 4) than high information density. Results supported these hypotheses for 
performance in the short-term retention test and for efficiency in the learning phase. 
It seems that the advantage of some group members being able to solve part of the 
problem individually affected transactional activities during the learning phase 
increasing efficiency. But this benefit only improved the performance in short-term 
(i.e., the short-term retention test), and faded out in the delayed retention test. 

As the distribution of the amount of information alters intrinsic cognitive load 
(Sweller et al., 2011), it is intriguing that differential information distribution did not 
achieve the same impact as the prior collaborative experience (see effect sizes in 
MANOVAs). This result might be explained by the positive interdependence acquired 
by the experienced groups. A relevant study that may support this explanation is 
provided by D. W. Johnson, Johnson, Ortiz, and Stanne (1991) who compared the 
impact of positive goal interdependence and resource interdependence. They found 
that groups with positive goal interdependence exhibited better results than groups 
with positive resource interdependence. Our data seems to coincide with their results 
in the sense that shared schemas on how to work on relevant tasks may have more 
decisively affected collaborative learning than the interdependence based on 
information distribution.  

Regarding the expected higher test scores (Hypothesis 5) and efficiency (Hypothesis 
6) of experienced groups in tasks with higher rather than lower information density,
the results did not yield evidence for performance. However, the experienced groups
were more efficient in the short-term and delayed retention tests. The higher efficiency
suggests that task-based collaboration schemas could be activated and transferred to
the learning tasks. Although inter-individual activities under high information
density conditions were more intense (i.e., more communication and coordination
activities), it seems that experienced groups optimized the cognitive load and learned
to solve problems more efficiently. The lack of significant results in the learning phase
suggests that the advantages of collaboration are not always observable immediately
(Soderstrom & Bjork, 2015). Subsequent individual post-tests revealed the benefits of
having acquired collaboration schemas.

Jimmy Zambrano inhoud tabs v3.indd   80 14-10-2019   12:33:15



Ch
ap

te
r 

4

Chapter 4 

80 

inexperienced groups (M = -0.12, SD = 0.75). The significant interaction between main 
effects indicated that for the task with high information density, experienced groups 
are more efficient than inexperienced groups, (p = .01, ηp2 = .04). However, for low 
information density, experienced and inexperienced groups are not significantly 
different (p = .90, ηp2 = .00). 

Discussion 
The goal of this study was to examine the effect of prior collaborative experience (i.e., 
experienced vs. inexperienced groups) and collaborative intensity related to task 
information distribution (i.e., high information density vs. low information density) 
on test scores and cognitive load during collaborative learning. We discuss the result 
for each hypothesis. 

It was hypothesized that groups with prior collaborative experience would obtain 
higher test scores (Hypothesis 1) and lower cognitive load resulting in increased 
efficiency (Hypothesis 2) than inexperienced groups. Results confirmed the 
expectation for increased test scores following prior collaborative experience in all 
phases and increased efficiency in the short-term and delayed retention tests. These 
are the primary results of this experiment. 

The results suggest that prior collaborative experience in similar tasks was transferred 
to new complex learning tasks (Kalyuga, 2013) and helped to optimize the cognitive 
load associated with transactional activities (P. A. Kirschner et al., 2018). Acquiring 
collaborative schemas based on similar tasks permitted groups to deal with the high 
cognitive load of high information density. It seems that working memory resources 
invested in transactional activities were used to construct high-order schemas of the 
learning tasks (Van den Bossche et al., 2011). This result is in line with Fransen et al. 
(2013) in the sense that experienced groups developed group and task schemas. In 
contrast, inexperienced groups could not handle the high cognitive load leading to the 
construction of poor knowledge of the tasks. An interesting result is that 
inexperienced groups reported a lower mental effort in the short-term retention phase 
which significantly decreased efficiency in experienced groups. One possible 
explanation for this result is that their lower knowledge level may have reduced their 
assessment of the complexity of tasks, overestimated their current performance which 
in turns decreased their mental effort ratings (Nugteren, Jarodzka, Kester, & Van 
Merriënboer, 2018a). 

Effects of Group Experience and Information Distribution on Collaborative Learning 

81 

Concerning information distribution, we expected that low information density 
decreases cognitive load because learners require fewer transactional activities 
amongst themselves, leading to higher test scores (Hypothesis 3) and efficiency 
(Hypothesis 4) than high information density. Results supported these hypotheses for 
performance in the short-term retention test and for efficiency in the learning phase. 
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(Sweller et al., 2011), it is intriguing that differential information distribution did not 
achieve the same impact as the prior collaborative experience (see effect sizes in 
MANOVAs). This result might be explained by the positive interdependence acquired 
by the experienced groups. A relevant study that may support this explanation is 
provided by D. W. Johnson, Johnson, Ortiz, and Stanne (1991) who compared the 
impact of positive goal interdependence and resource interdependence. They found 
that groups with positive goal interdependence exhibited better results than groups 
with positive resource interdependence. Our data seems to coincide with their results 
in the sense that shared schemas on how to work on relevant tasks may have more 
decisively affected collaborative learning than the interdependence based on 
information distribution.  

Regarding the expected higher test scores (Hypothesis 5) and efficiency (Hypothesis 
6) of experienced groups in tasks with higher rather than lower information density,
the results did not yield evidence for performance. However, the experienced groups
were more efficient in the short-term and delayed retention tests. The higher efficiency
suggests that task-based collaboration schemas could be activated and transferred to
the learning tasks. Although inter-individual activities under high information
density conditions were more intense (i.e., more communication and coordination
activities), it seems that experienced groups optimized the cognitive load and learned
to solve problems more efficiently. The lack of significant results in the learning phase
suggests that the advantages of collaboration are not always observable immediately
(Soderstrom & Bjork, 2015). Subsequent individual post-tests revealed the benefits of
having acquired collaboration schemas.
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Concerning the reduction in the difference in similar test scores (Hypothesis 7) and 
efficiency (Hypothesis 8) between experienced and inexperienced groups when 
learning with low information density, results supported this expectation in all phases 
of the study with no significant differences on these measures. Data suggest that prior 
collaborative experience may be redundant when tasks have a low level of complexity 
in terms of inter-individual activity. Learners may have devoted working memory 
resources to harmonizing their schemes of working together with the low information 
density that required less group interaction. The experience of sharing each item and 
performing shared calculations for each problem step may have interfered with 
individual calculations. This could have unnecessarily increased the amount of inter-
individual activities and the cognitive load impairing performance and efficiency. 

The results of this study allow us to conclude that prior collaborative experience on 
relevant tasks and how the interacting information is distributed amongst learners are 
promising research lines that can improve our knowledge about collaborative 
learning. Data supported the assumption that grouping learners does not necessarily 
lead to better learning. For this reason, providing collaborative schemas using relevant 
tasks may help to improve group performance and member learning. This group 
advantage is crucial in learning situations where the tasks are complex (i.e., high level 
of element interactivity) and information distribution among group members 
demands a high level of intra-group activity. 

Instructional design of collaborative learning should consider interacting information 
elements of a task and the cognitive load associated with transactional activities. 
Cognitive load theory assumes that any learning task is divisible into meaningful 
elements, and its distribution in collaborative settings may result in fundamental 
differences at group and individual level. For this reason, given that the goal of 
learning was to solve problems individually, firstly it is important not lose sight that 
the performance and efficiency of collaborative learning must be evaluated in terms 
of individual learning of group members (F. Kirschner et al., 2009a). Accordingly, 
collaborative learning is better when it promotes better individual learning. 

Secondly, students who learn in groups with high-interactivity level tasks require 
relevant group work schemas (Zambrano R. et al., 2019b). Learning tasks needed to 
be solved with all information elements provided to group members, and information 
distribution was varied to test its effects on inter-individual activities. From cognitive 
load theory, transactional activities are complex meaning-making cognitive 
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operations whose load in working memory may foster or inhibit the acquisition of 
schemas in long-term memory (Tindale & Kameda, 2000). As coordination and 
communication activities during learning may impose a high cognitive load, it seems 
that task-based group schemas help groups to better guide their actions to achieve 
higher effectiveness. 

Our findings have important instructional implications when learning from 
collaborative high-complexity problems. If learners are novices, learning tasks are 
complex, and information distribution demands high inter-individual activity, 
teachers should prepare group members prior to collaboration using similar problems 
that are already known to them so that they learn to work together. During the 
learning phase, members should receive the conceptual and procedural knowledge to 
solve the problems. The distribution of information should  be balanced among all 
group members so that everyone has the same opportunity to process all types of 
information elements. Because each member has only a part of the information, 
communication and coordination processes help students to acquire better mental 
representation of the tasks. If task information does not demand high interactivity 
among group members, it is not necessary for the teachers to prepare the learners to 
collaborate. 

This study has some limitations. It is necessary to identify which specific factors are 
associated with the prior collaborative experience and the cognitive load they impose 
during learning (Janssen, Kirschner, et al., 2010). Future research should explore 
group composition, such as whether the benefits decrease when new groups are 
formed with members who differ in their experience (Prichard, Bizo, & Stratford, 
2011). Further, more investigation is needed during class periods to determine how 
social factors such as friendship between learners or emotional regulation skills affect 
information distribution and its cognitive load. 
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operations whose load in working memory may foster or inhibit the acquisition of 
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communication activities during learning may impose a high cognitive load, it seems 
that task-based group schemas help groups to better guide their actions to achieve 
higher effectiveness. 

Our findings have important instructional implications when learning from 
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learning phase, members should receive the conceptual and procedural knowledge to 
solve the problems. The distribution of information should  be balanced among all 
group members so that everyone has the same opportunity to process all types of 
information elements. Because each member has only a part of the information, 
communication and coordination processes help students to acquire better mental 
representation of the tasks. If task information does not demand high interactivity 
among group members, it is not necessary for the teachers to prepare the learners to 
collaborate. 

This study has some limitations. It is necessary to identify which specific factors are 
associated with the prior collaborative experience and the cognitive load they impose 
during learning (Janssen, Kirschner, et al., 2010). Future research should explore 
group composition, such as whether the benefits decrease when new groups are 
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Appendix A
Table A1
Example of Material used by Individuals in Preparation Phase

STEPS TO THE GROUP WORK MEMBER 1 MEMBER 2 MEMBER 3
You should identify whether the values of the 
equation are on the left side or right side of the equal

sign.
−10𝑥𝑥𝑥𝑥2 + 13 = 20𝑥𝑥𝑥𝑥 𝑥 14𝑥𝑥𝑥𝑥2 = = −7 + 3𝑥𝑥𝑥𝑥

You should communicate with the other members to 
identify other similar values. Then, pass the values to 
the left side, changing the sign, and keep the result in 
mind. 
Perform quickly and without error, all of the 
operations that are possible and maintain the result 
in your mind. 
Everyone must share their values with others and 
sort them. Keep in mind the results.
Factor the trinomial with your other partners. 
Remember to carry out these calculations mentally. 
To avoid forgetting a partial result, each member 
must have part of the information in his/her mind.

When Equal to Zero, resolve the equations mentally.

Write down the results on the worksheet:

𝑥𝑥𝑥𝑥1 = −
5
8

𝑥𝑥𝑥𝑥2 =
4
3

85 

5. Effects of Prior Knowledge on Collaborative and Individual
Learning4

Collaborative learning is an extensively used instructional technique by which 
individuals interact in small groups to learn to solve academic problems. This study 
aimed to determine the impact of task-specific prior knowledge on individual learners 
and collaborative groups that were instructed to collaborate. A 2 (individual vs. 
collaborative group) × 2 (novice vs. knowledgeable learners) factorial experiment with 
228 students was carried out to examine the effects of these treatments on performance 
and mental effort in learning and its outcomes. As expected, knowledgeable 
individuals and knowledgeable collaborative groups outperformed novice 
individuals and novice collaborative groups in learning outcomes. Less 
knowledgeable, collaborating learners outperformed less knowledgeable, individual 
learners in learning outcomes. While more knowledgeable collaborating and 
individual learners performed equally well in the learning phase and the delayed test, 
on the retention test, collaborative groups demonstrated better performance. In 
general, collaboration benefited learning compared to individual learning in complex 
tasks, but performance depended on the learner task-specific prior knowledge. 

Keywords: cognitive load theory; collaborative learning; individual learning;
topic prior knowledge.

4 This chapter was published as:
Zambrano R., J., Kirschner, F., Sweller, J., & Kirschner, P. A. (2019). Effects of prior knowledge on 

collaborative and individual learning. Learning and Instruction. 
doi:10.1016/j.learninstruc.2019.05.011
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and collaborative groups that were instructed to collaborate. A 2 (individual vs. 
collaborative group) × 2 (novice vs. knowledgeable learners) factorial experiment with 
228 students was carried out to examine the effects of these treatments on performance 
and mental effort in learning and its outcomes. As expected, knowledgeable 
individuals and knowledgeable collaborative groups outperformed novice 
individuals and novice collaborative groups in learning outcomes. Less 
knowledgeable, collaborating learners outperformed less knowledgeable, individual 
learners in learning outcomes. While more knowledgeable collaborating and 
individual learners performed equally well in the learning phase and the delayed test, 
on the retention test, collaborative groups demonstrated better performance. In 
general, collaboration benefited learning compared to individual learning in complex 
tasks, but performance depended on the learner task-specific prior knowledge. 

Keywords: cognitive load theory; collaborative learning; individual learning;
topic prior knowledge.

4 This chapter was published as:
Zambrano R., J., Kirschner, F., Sweller, J., & Kirschner, P. A. (2019). Effects of prior knowledge on 

collaborative and individual learning. Learning and Instruction. 
doi:10.1016/j.learninstruc.2019.05.011
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Introduction 
Collaborative learning is an extensively used instructional technique. It refers to the 
process by which individuals interact in small groups to learn to solve academic 
problems (Slavin, 2014). However, literature indicates that learning in groups is not 
always associated with better learning compared to individual learning (Clinton & 
Kohlmeyer, 2005; Morgan & Tindale, 2002; Shibley & Zimmaro, 2002; Tindale, 1993; 
Weldon, Blair, & Huebsch, 2000). 

This article begins with a short discussion of the importance of developing effective 
collaborative groups (i.e., team formation) and reveals that the results of research in 
this area are inconclusive. That being said, from an instructional perspective data 
indicate that providing explicit guidance on how to collaborate on highly demanding 
tasks may help collaborative groups to take advantage of inter-individual activities 
for learning. The discussion on developing collaborative groups is followed by a 
review of collaborative learning research from a cognitive load theory (CLT) 
perspective (Sweller et al., 2011). The experiment carried out here examined whether, 
taking prior knowledge into account, collaborative groups are more effective than 
individual learners when they are prepared to learn collaboratively with highly 
complex tasks. Groups were prepared for collaboration via explicit guidance on how 
to work together considering the characteristics of the tasks.  

Promoting Successful Collaboration 
One way to maximize collaborative learning is to develop collaborative groups to be 
effective. Research on team development suggests that a collaborative group is 
effective when it develops shared mental models, mutual performance monitoring, 
and interpersonal trust (Fransen et al., 2011), positive social interdependence (D. W. 
Johnson & Johnson, 2009) or social cohesion (Sharan & Sharan, 1992). This assumes 
that high-performing groups require extensive periods of time (Gersick, 1988; S. D. 
Johnson, Suriya, Won Yoon, Berrett, & La Fleur, 2002). However, research shows that 
collaborative group development is not always associated with higher performance. 
For example, concerning cohesion (i.e., the progressive tendency for a group to stick 
together in the pursuit of instrumental goals), a meta-analysis showed that the 
cohesion-performance relationship was stronger for tasks requiring high 
interdependence such as communication, coordination, and mutual performing 
monitoring (Gully, Devine, & Whitney, 2012). However, a subsequent meta-analysis 
reexamining this relationship found that cohesion had a lower effect size with 
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increasing performance, decreasing even further when the measure of cohesion was 
more general (Castaño, Watts, & Tekleab, 2013). 
 
From an instructional perspective, there is also evidence that suggests that learners 
can take advantage of collaborative work when they receive guidance on how to 
collaborate rather than waiting for collaborative groups to develop naturally. For 
example, Buchs et al. (2015) used 10 min to instruct group members on collaborative 
skills. They found that learning in dyads with instructional support on how to work 
together produces better learning outcomes compared to learning individually or 
collaboratively without instructional support. Prichard, Bizo, et al. (2006) examined 
the benefits of guiding collaborative members on how to work in groups with three 
cohorts. In general, they found that the cohort that received instructions on how to 
collaborate outperformed the cohort that was not trained and that the benefits of the 
collaboration guide could be lost when the collaborative group members split up into 
new groups. 
 
Group development and instructional approaches have in common that collaborative 
groups should have some experience or guidance in working together. A factor in this 
might be task complexity as a determinant of the effectiveness of learners who have 
been prepared to collaborate compared to individual learners. Task complexity is a 
concern that has been extensively studied within a CLT framework. 
 
Collaboration from a Cognitive Load Theory Perspective 
CLT is an instructional perspective based on human cognitive architecture (Sweller, 
Van Merriënboer, & Paas, 2019). It suggests that when acquiring and automating 
complex knowledge (e.g., school domains) instructors should provide proper 
guidance keeping task complexity within working memory capacity which can be as 
low as two elements (Gilchrist & Cowan, 2011) and considering whether long-term 
memory structures facilitate or impair learning (Kalyuga et al., 2003). Cognitive load 
refers to the load on working memory when processing information (Sweller et al., 
2011). CLT researchers have presented evidence that students learn better when they 
process task information within the boundaries of working memory (Sweller et al., 
2011). If tasks are complex and little knowledge is stored in long-term memory, 
learners experience overload and performance decays. 
 
Collaborative learning is an emerging research topic in CLT. Under some 
circumstances group interactions can be a source of cognitive load associated with a 
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collaborative learning task (P. A. Kirschner et al., 2018). However, evidence of the 
advantages of collaborative learning compared with individual learning is not always 
consistent. On the one hand, there is evidence that a collaboration-based approach 
may be more beneficial than individual learning when problems are highly complex 
and when information is distributed among different working memories. 
Investigations by F. Kirschner et al. (F. Kirschner et al., 2009b; F. Kirschner, Paas, & 
Kirschner, 2011; F. Kirschner, Paas, Kirschner, et al., 2011) suggest that groups may be 
more effective and efficient because members can make use of each other’s working 
memory resources (the collective working memory effect; F. Kirschner, Paas, & 
Kirschner, 2011). The collective working memory effect holds that collaborative 
learning is more effective than individual learning when the complexity of the 
learning material is high (F. Kirschner, Paas, Kirschner, et al., 2011). Sharing 
information processing of learning materials among the collaborative group members 
who share working memory resources permits better comprehension and knowledge 
acquisition of the to be learned tasks. This effect seems to occur when the benefits of 
reducing cognitive load due to information distribution (i.e., making learners depend 
on each other’s information) are higher than the cognitive costs incurred in 
communication and coordination activities (i.e., transactional activities). F. Kirschner, 
Paas, and Kirschner (2011) also found that for low-complexity tasks, collaborative 
learning was redundant since group members achieved equal or lower performance 
and efficiency scores than individuals. An interesting result in F. Kirschner, Paas, 
Kirschner, et al. (2011) is that group members perceived a higher perception of mental 
effort in the learning phase which was related to a higher performance and efficiency 
on the posttest. 

On the other hand, evidence suggests that collaboration does not improve learning 
either low- nor high-complexity tasks compared with individual learning. 
Investigations by Retnowati et al. (2010, 2016) investigated the effect of conventional 
problems and worked-out examples (worked examples) on individual and 
collaborative learning. They found that in some high-complexity tasks, individuals 
performed better than groups. They also found that working in collaborative groups 
was more beneficial than working alone in problem-solving tasks. In general, 
Retnowati et al. concluded that at least under some circumstances, especially when 
using worked examples collaborative learning is not better than individual learning 
either in high or low complex tasks. Unlike the Kirschner et al. study, task information 
was not distributed among members in these studies. Curiously, in the learning phase 
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of the second experiment (Retnowati et al., 2016), individual learners outperformed 
groups in high-complexity tasks with a significantly higher cognitive load. 

When considering prior knowledge, there are also mixed results. Zhang et al. (2015) 
explored collaborative learning when grouping learners by their scores of the 
previous year. Learners with lower scores were collaboratively grouped and 
categorized as less knowledgeable learners (with lower prior knowledge), and those 
with higher score as advanced learners (higher prior knowledge). The latter did not 
receive instruction on the domain-specific learning task. Researchers found that 
heterogeneous groups (i.e., groups including novice and advanced learners) favored 
lower prior knowledge learners, whereas for more knowledgeable learners, 
homogeneity was redundant. Moreover, individuals with higher prior domain 
knowledge marginally outperformed homogeneous and heterogeneous groups. 
Zhang et al. (2016) replicated this study and obtained similar results. These studies 
are limited because novice and advanced students were not grouped using prior 
knowledge specifically related to the learning tasks. 

Retnowati, Ayres, and Sweller (2018) performed a study manipulating prior 
knowledge of learning tasks. Participants had either incomplete or complete prior 
knowledge and compared collaborative groups with individual learning. Interaction 
analyses revealed that when learners have gaps in their knowledge base, collaborative 
learning is superior to individual learning. However, when learners have complete 
prior knowledge, individual learning is superior to collaborative learning. They also 
found that individual learning condition participants with complete prior knowledge 
for all learning tasks (individual-complete knowledge condition) outperformed 
collaboration with complete and incomplete knowledge and individual with 
incomplete knowledge conditions in transfer tasks. However, the researchers did not 
compare complex and simple tasks. It is not yet clear whether these results would vary 
if the complexity of the tasks is increased to the point that individual learners with 
complete prior knowledge still need to rely on other group members’ working 
memory resources. 

Considering prior knowledge in collaborative learning also can pose challenges in 
predicting cognitive load. If group members are advanced, learning collaboratively 
may be harmful because transaction activities demand working memory resources 
resulting in increases in cognitive load. However, if the task has a very high level of 
interactive elements and peers have partially developed previous knowledge, it can 
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lower prior knowledge learners, whereas for more knowledgeable learners, 
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are limited because novice and advanced students were not grouped using prior 
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be expected that the collaboration is beneficial. Thus, demands on working memory 
may increase if collaboration is unnecessary and decrease if collaborating partners 
have useful knowledge with group members taking advantage of partially developed 
schemas to refine their knowledge in a learning situation (i.e., reexposure effect; 
Rajaram & Pereira-Pasarin, 2010). These two opposing effects on working memory 
demands may counteract each other. 

The Present Study 
Task complexity, information distribution (member interdependence), and prior 
knowledge are factors that may explain the advantage of collaborative learning. 
However, the inconclusive results seem to suggest that grouping learners to 
collaborate does not necessarily promote better learning (Gillies, 2016). Also, currently 
there are no data from CLT-based studies about preparing groups to collaborate (see 
section 1.1). 

Instructing students how to work collaboratively on specific tasks may be a category 
of domain-generalized knowledge (Kalyuga, 2013) at the group level (P. A. Kirschner 
et al., 2018). Knowledge about how to collaborate may work better when it is built into 
a domain-specific task. When this type of knowledge is learned in task-specific 
situations, it may be retrieved from long-term memory and used in similar tasks 
through analogical transfer (Gick & Holyoak, 1980). For example, a group of learners 
may better learn problems of linear demand and supply curves in an administration 
subject if they previously learned to solve problems of linear equations in mathematics 
compared to another group of learners who did not work on mathematics tasks as a 
team. Group members may transfer their experience from one task situation to 
another by finding correspondences through schema induction (Gick & Holyoak, 
1980). Generalized domain-knowledge on collaborative work may explain why 
learners who are prepared to work together are more effective than individual 
learners (Buchs et al., 2015; Prichard, Bizo, et al., 2006). 

This study is a first step to attempt to close this gap. Accordingly, this experiment 
examined the effect of learning in groups instructed to collaborate vs. learning 
individually and the effect of prior knowledge level on performance and mental effort 
with high-complexity problems.  

Effects of Prior Knowledge on Collaborative and Individual Learning 
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The hypotheses were: 
H1. When learning individually, students with more knowledge will outperform 

and invest less mental effort than students with less knowledge. 
H2. When learning in collaborative groups, students with more knowledge will 

outperform students with less knowledge but the counteractive effects on mental 
effort when more and less knowledgeable students collaborate cannot be 
precisely determined. 

H3. For learners with less knowledge, collaborative learning groups will outperform 
and perceive less mental effort than individual learning groups. 

H4. For learners with more knowledge, learning in collaborative groups will become 
detrimental and no advantage to learning in collaborative groups will be found. 

 
Method 

Participants 
This study was conducted with 228 students (135 females, 93 males) of a large, public 
high school in Sangolquí, Ecuador. Their average age was 15.87 years (SD = .745). The 
study was part of the mathematics classes and received approval from the local ethical 
committee. Participants did not have prior knowledge of the learning phase tasks 
because it is not included in the content of the very strict national curriculum which 
explicitly prohibits teaching topics not in the curriculum. Further, teachers at the 
school confirmed that they had not previously taught the content of the learning tasks 
and that all participants came from the same school. Finally, participants were 
randomly assigned to the conditions to exclude any systematic prior knowledge 
differences. Participants were notified of the study and received academic 
compensation of 10 points for voluntary participation. 
 
Design and Procedure 
A 2 (collaborative learning vs. individual learning) x 2 (less vs. more knowledgeable 
learners) factorial design was used. Dependent variables were performance and 
mental effort. The study was conducted in five phases: preparation, prior knowledge 
instruction, learning, retention testing, and delayed testing. Each phase consisted of 
multiple sessions of 45 minutes. Three instructors and the experimenter guided 
participants throughout all phases of the study. The experimenter supervised the 
procedure to guarantee intervention fidelity. All instructions were read aloud. 
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The five phases entailed: 
1. Preparation: Construct collaboration schemas using the previously learned 

domain-specific task of solving quadratic equations and emphasizing 
collaborative work. Half of the participants formed 3-person collaborative 
groups (collaborative group condition), and the other half worked individually 
(individual condition). This phase consisted of four sessions over one week. 

2. Prior knowledge instruction: Half of each of the collaborative group and individual 
conditions received instruction on how to calculate a break-even point (BEP). 
This phase comprised one session on the day following the preparatory phase. 

3. Learning: All participants received the same learning tasks to calculate the BEP 
either as individuals or in teams. This phase comprised one session on the day 
following the prior knowledge instruction phase. 

4. Retention testing: Similar problems with only the name of the costs and their 
values varied from the learning tasks were used to evaluate the outcomes of the 
collaborative and individual learning conditions one day after the learning 
phase. 

5. Delayed testing: Similar retention testing problems but seven days after the 
learning phase. 

 
The preparation phase began in the second week of the new school term, after two 
months of school vacation, to reduce effects of having previously worked together. 
Participants were randomly assigned to two conditions: individual learning and 
collaborative groups. All learners worked on solving quadratic equations. There were 
no time restraints on the first tasks, but 10 min were allotted to solve the final two 
tasks from the second session onwards (a digital clock was placed in front of the class); 
writing was permitted only for the final answer. Instructors encouraged members to 
interact with each other, to share their values and coordinate calculations among 
themselves, and discouraged non-task conversations. Participants received the correct 
answers at the end of each session and were asked to think about how they may 
collaborate better on the following tasks. 
 
In the prior knowledge instruction phase, half of the participants were randomly selected 
to receive additional instruction. Each learner received a booklet with the concepts of 
the BEP and a worked example on how to solve a problem (8 min). After studying the 
booklet, they solved three conventional problems individually (7 min each) using the 
worked example of the booklet as assistance. After solving each problem, they 
received the worked example of the three problems and were asked to compare their 
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results and correct their mistakes. Moreover, learners were asked if they had questions 
to clarify any step for calculating the BEP. Instructors made sure all learners had 
corrected the errors to foster problem-solving understanding. The other half of the 
participants received a theoretical class about the topic of the new term, real number 
properties, which was unrelated to the BEP. 

In the learning phase, only individuals and groups that had completed the previous 
phases participated. An a priori analysis with a power of .8 and a medium-size effect 
(i.e., .06; Cohen, 1988) revealed that the study required 32 individuals for the 
individual learning condition or 11 triadic groups for the collaborative learning 
condition to reliably test the hypotheses (see Results section). Collaborative group 
members remained in their groups to maintain the previous schemas of working 
together (Prichard, Bizo, et al., 2006). Groups and individuals worked on three tasks 
to calculate the BEP (9 min for task 1, 8 min for tasks 2 and 3 = 25 min). As in the 
preparation phase, the instructors encouraged group members to share their values 
and to coordinate the calculations to solve each problem. If a collaborative group or 
individual solved the task before the time assigned, that group or individual was 
required to wait to start the next problem. All problems were solved mentally. Using 
paper and pencil was only permitted for recording the final answer and indicating the 
mental effort after completing each task. 

In the retention and delayed test phases, participants were required to individually 
solve three conventional problems in 30 min, 10 min per problem. They were asked to 
write the calculations for each step of the problems and scored the amount of mental 
effort invested in each problem. If a student was absent from the retention test, s/he 
was allowed to take the delayed test and vice-versa because each test was analyzed 
independently. No case, thus, needed to be deleted. 

Materials 
The materials were in the domain of mathematics and economics. The preparation 
phase consisted of solving quadratic equations, while the remaining phases involved 
calculating BEPs. All materials were paper-based and presented in booklets. 

Preparation phase. 
Quadratic equations are compulsory in the national curriculum, and the participants 
had already received instruction the previous year. All tasks were designed and 
assigned with a completion strategy scaffolding approach (Van Merriënboer, 1990) as 
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1. Preparation: Construct collaboration schemas using the previously learned 

domain-specific task of solving quadratic equations and emphasizing 
collaborative work. Half of the participants formed 3-person collaborative 
groups (collaborative group condition), and the other half worked individually 
(individual condition). This phase consisted of four sessions over one week. 

2. Prior knowledge instruction: Half of each of the collaborative group and individual 
conditions received instruction on how to calculate a break-even point (BEP). 
This phase comprised one session on the day following the preparatory phase. 

3. Learning: All participants received the same learning tasks to calculate the BEP 
either as individuals or in teams. This phase comprised one session on the day 
following the prior knowledge instruction phase. 

4. Retention testing: Similar problems with only the name of the costs and their 
values varied from the learning tasks were used to evaluate the outcomes of the 
collaborative and individual learning conditions one day after the learning 
phase. 

5. Delayed testing: Similar retention testing problems but seven days after the 
learning phase. 

 
The preparation phase began in the second week of the new school term, after two 
months of school vacation, to reduce effects of having previously worked together. 
Participants were randomly assigned to two conditions: individual learning and 
collaborative groups. All learners worked on solving quadratic equations. There were 
no time restraints on the first tasks, but 10 min were allotted to solve the final two 
tasks from the second session onwards (a digital clock was placed in front of the class); 
writing was permitted only for the final answer. Instructors encouraged members to 
interact with each other, to share their values and coordinate calculations among 
themselves, and discouraged non-task conversations. Participants received the correct 
answers at the end of each session and were asked to think about how they may 
collaborate better on the following tasks. 
 
In the prior knowledge instruction phase, half of the participants were randomly selected 
to receive additional instruction. Each learner received a booklet with the concepts of 
the BEP and a worked example on how to solve a problem (8 min). After studying the 
booklet, they solved three conventional problems individually (7 min each) using the 
worked example of the booklet as assistance. After solving each problem, they 
received the worked example of the three problems and were asked to compare their 

Effects of Prior Knowledge on Collaborative and Individual Learning 

93 

results and correct their mistakes. Moreover, learners were asked if they had questions 
to clarify any step for calculating the BEP. Instructors made sure all learners had 
corrected the errors to foster problem-solving understanding. The other half of the 
participants received a theoretical class about the topic of the new term, real number 
properties, which was unrelated to the BEP. 

In the learning phase, only individuals and groups that had completed the previous 
phases participated. An a priori analysis with a power of .8 and a medium-size effect 
(i.e., .06; Cohen, 1988) revealed that the study required 32 individuals for the 
individual learning condition or 11 triadic groups for the collaborative learning 
condition to reliably test the hypotheses (see Results section). Collaborative group 
members remained in their groups to maintain the previous schemas of working 
together (Prichard, Bizo, et al., 2006). Groups and individuals worked on three tasks 
to calculate the BEP (9 min for task 1, 8 min for tasks 2 and 3 = 25 min). As in the 
preparation phase, the instructors encouraged group members to share their values 
and to coordinate the calculations to solve each problem. If a collaborative group or 
individual solved the task before the time assigned, that group or individual was 
required to wait to start the next problem. All problems were solved mentally. Using 
paper and pencil was only permitted for recording the final answer and indicating the 
mental effort after completing each task. 

In the retention and delayed test phases, participants were required to individually 
solve three conventional problems in 30 min, 10 min per problem. They were asked to 
write the calculations for each step of the problems and scored the amount of mental 
effort invested in each problem. If a student was absent from the retention test, s/he 
was allowed to take the delayed test and vice-versa because each test was analyzed 
independently. No case, thus, needed to be deleted. 

Materials 
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follows: the first session began with an introduction about quadratic equations and 
two worked examples showing how to solve them using the factoring method during 
prior knowledge activation. Five rules on how to solve the equations collaboratively 
were given and explained to the collaborative group condition, followed by a worked 
example showing how each group member should apply them (see supplementary 
material), and a conventional task with the correct answer. Examples of the rules are: 
When it is possible to perform the calculations without the help of others, do it alone 
and continually rehearse the results to avoid forgetting them. For the collaborative 
group condition, we manipulated the task information, unpacking the equation 
values to distribute them among group members (e.g., for −45x2, each member would 
receive −15x2), requiring each learner to depend on other members to solve the 
problem. This manipulation also had the purpose of providing prior experience for 
the information distribution of the learning tasks. Each member received different 
values for solving the same equation and a table in which they could write down the 
intermediate steps (see supplementary material). The individual condition 
participants received the same values and the table. 
 
In the second session, both conditions received the rules of collaboration, two 
conventional problems with correct answers, and a conventional problem without the 
correct answer again. The conventional problems had six values, two for each group 
member; individuals received all values. In the third and fourth sessions, both 
collaborative groups and individuals received three conventional quadratic equation 
problems without correct answers, with six to nine values  
(e.g., −10 + 5𝑥𝑥𝑥𝑥2 − 50 − 50 + 200𝑥𝑥𝑥𝑥 = 1𝑥𝑥𝑥𝑥 − 50𝑥𝑥𝑥𝑥2 + 50𝑥𝑥𝑥𝑥 + 100𝑥𝑥𝑥𝑥2). 
 
Prior knowledge instruction phase. 
One way to acquire generalizable domain-specific collaboration schemas may be to 
use different tasks but with analogous features. Calculating the BEP is a problem with 
similar characteristics to quadratic equations such as: requiring a combination of 
several numerical values, using basic mathematical operations, calculating partial 
answers, holding them in working memory, and finding a single correct answer. The 
material included a brief explanation of the BEP and a worked example (see Table 1 
and steps in Table 2). It also included three conventional problems that were similar 
to those used in the learning phase, and their corresponding resolution process 
(worked examples). 
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Table 1 
Example a BEP Problem 
Calculate the break-even point of a school chairs business: 

• Total chairs produced: 50 
• Price of each chair: $41 
• Office and warehouse rental: $108 
• Cost of the wood for the chairs: $155 
• Administrator’s salary: $119 
• Cost of the metal for the chairs: $63 
• Profit: $ 52 
• Cost of the paint for the chairs: $82 
• Electricity, water, telephone, and Internet service: $71 

 
Learning phase. 
Each participant received the concepts of the BEP, two worked examples, prompt 
questions, three learning tasks, and a piece of paper with examples of fixed and 
variable costs and the BEP in unit’s formula (see step 6, Table 2). The booklet explained 
the BEP and the types of costs (i.e., fixed and variable costs, variable cost per unit, and 
total costs), the contribution, and the BEP both in units and sales. The worked 
examples contained a 7-step procedure (see Table 2). Examples of prompt questions 
were: What was the difference between the BEPs in units and sales? How did you 
calculate the contribution? Examples of fixed and variable costs were provided to 
avoid confusion during the learning phase. 
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avoid confusion during the learning phase. 
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Table 2 
Process to Calculate the BEP 

Steps to solve the problem Calculations 
Interacting 

elements 

Temporary 
answers 

maintained in 
working 
memory 

1. Recognize cost items Nine items of the problem
155, 63, 82, 50, 41, 108, 71, 119, 
52 9 

2. Total variable cost VC1 +VC2 + VC3 = TVC 
155 + 63 + 82 = 300 7 300 

3. Variable cost per unit TVC ÷ amount produced = CU
300 ÷ 50 = 6 5 300, 6 

4. Contribution Price – CU = C 
41 – 6 = 35 5 6, 35 

5. Total fixed cost FC1 + FC2 + FC3 + profit = TFC 
108 + 71 + 119 + 52 = 350 9 35, 350 

6. BEP in units TFC ÷ C = BPU 
350 ÷ 35 = 10 5 35, 350, 10 

7. BEP in sales BPU × price = BPS 
10 × 41 = 410 5 10, 410 

Note. CV = variable cost; FC = fixed cost; TVC = total variable cost; CU = variable cost per unit; 
C = contribution; TFC = total fixed cost; BPU = BEP in units; BPS = BEP in sales. 

Participants from the collaborative group and individual conditions received the same 
learning tasks. Task complexity level was determined using the method of Sweller 
and Chandler (1994), which counts the number of items and operations that must be 
considered and processed in working memory to solve the task. As presented in Table 
2, the 7-step procedure to solve each problem comprised nine items that must be 
integrated during 8 min to obtain a single correct answer (Table 2). Like the equations 
of the preparation phase, no step could be solved without all members sharing and 
working together on their items. Each member needed to depend on other’s 
information. A group member received a fixed cost, a variable cost and any of the 
other three items that were insufficient to solve each step of the problem. Members 
had to share all their items, coordinate how to solve each step, and jointly perform 
calculations using basic mathematical operations. Each step varied in the number of 
interacting items (column 3 of Table 2), amounting to a total of 45 including 
mathematical signs. Also, in each step, individual participants and collaborative 
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groups had to perform multiple mental calculations to find many partial answers, 
hold them temporarily in working memory (column 4 of Table 2), and then integrate 
them with partial answers computed by others in the group without writing the 
calculations (i.e., mental arithmetic; DeStefano & LeFevre, 2004). Given these cognitive 
demands, it was assumed that the tasks were highly complex. 
 
Retention and delayed test phases. 
The quality of the task-specific knowledge of each participant was assessed using six 
similar problems with the same level of complexity as the learning tasks. Participants 
received worksheets with three tasks one day after the learning tasks (the retention 
test) and three other similar tasks seven days after (the delayed test). Each problem 
included a table with seven numbered rows to write the calculations for each step of 
the solution process. 
 
Measurement 
Cognitive load. 
Cognitive load was measured subjectively in the learning, retention test, and delayed 
test phases using a 9-point mental effort rating scale (Paas, Tuovinen, et al., 2003). 
Mental effort “refers to the cognitive capacity that is actually allocated to 
accommodate the demands imposed by the task; thus, it can be considered to reflect 
the actual cognitive load” (Paas, Tuovinen, et al., 2003, p. 64). The scale is non-
intrusive, is sensitive to changes in complexity, and is valid, and reliable for individual 
learning (Szulewski, Gegenfurtner, Howes, Sivilotti, & van Merriënboer, 2017). 
Participants were asked to ‘Please rate the level of mental effort you invested in this 
task’ on a Likert scale ranging from 1 (very, very low mental effort) to 9 (very, very 
high mental effort) after each problem to obtain a more precise estimation of the 
invested load (Van Gog et al., 2012). Cognitive load for each collaborative group for 
the learning phase was calculated averaging the scores of the members. Individual 
scores were used in subsequent phases. 
 
Performance. 
Performance was measured in the learning, retention test, and delayed test phases. 
The total number of points for all three learning tasks was 3: 1 point per correct answer 
or 0 points if the answer was incorrect. For the three tasks of the retention test and 
delayed test, a total of 7 points could be awarded based on the seven calculations 
required to obtain the BEP. Each calculation was scored individually based on 
whether correct values and mathematical operations were used. Correct calculations 
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received 1 point and incorrect calculations 0 points, resulting in a maximum score of 
21 points and a minimum of 0. If a step was partially correct, a proportional score was 
given (e.g., if in steps 4, 6 or 7 an incorrect value was used, ½ point was given). 
Performance scores on the learning, retention test and delayed test phases were 
transformed into proportions. 
 

Results 
The data were analyzed with 2 (collaborative group vs. individual learning) x 2 (less 
knowledgeable learners vs. more knowledgeable learners) analyses of variance 
(ANOVAs). Dependent variables were performance and mental effort, which were 
measured and analyzed separately for the learning, retention test, and delayed test 
phases. There were no activities or analyses carried out between the phases. Data 
exploration revealed outliers. However, the outliers were not excluded because an 
analysis that excluded outliers showed that they did not alter the pattern of significant 
results. The results are reported separately, and the means and standard deviations of 
the dependent variables for all phases are shown in Tables 2, 3, and 4. A summary of 
all significant results is provided in Appendix A. A significance level of .05 was used 
for all analyses. Partial eta-squared was used as a measure of effect size, with values 
of .01, .06, and .14 corresponding to small, medium, and large effects, respectively 
(Cohen, 1988). 
 
Learning Phase 
Two collaborative groups and two individuals were excluded from the analysis after 
not completing the previous phases. In this phase, 17 three-person novice 
collaborative groups, 19 knowledgeable collaborative groups, 66 less knowledgeable 
individuals, and 46 more knowledgeable individuals participated. Table 3 shows 
descriptive statistics. 
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Table 3 
Means and Standard Deviations for Dependent Variables in the Learning Phase 

Dependent variables 
Condition 

Collaborative groups Individuals 
M SD M SD 

Learning performance (0-1) 
  Less knowledgeable 
learners 

.51 .31 .25 .29 

  More knowledgeable 
learners 

.84 .20 .65 .24 

Learning mental effort (1–9) 
  Less knowledgeable 
learners 

6.27 2.06 6.41 1.58 

  More knowledgeable 
learners 

6.99 1.68 5.51 1.87 

Concerning performance, the ANOVA revealed a significant main effect for 
condition, F(1, 144) = 18.391, MSE = 0.073, p < .001, ηp2 = .113: collaborative groups 
(M = .69, SD = .31) outperformed individual learners (M = .42, SD = .34). The main 
effect for knowledge level was also significant, F(1, 144) = 49.265, MSE = 0.073, 
p < .001, ηp2 = .255: knowledgeable learners (M = .71, SD = .25) outperformed novice 
learners (M = .31, SD = .31). The interaction between main effects was not significant; 
F(1, 144) = 0.417, MSE = 0.073, ns.  

For mental effort, the main effect for condition was significant, F(1, 144) = 4.006, 
MSE = 3.052, p = .047, ηp2 = .027: collaborative groups (M = 6.65, SD = 1.88) experienced 
more mental effort than individual learners (M = 6.04, SD = 1.76). However, the main 
effect for knowledge level was not significant, F(1, 144) = 0.077, MSE = 3.052, ns. The 
interaction between these effects was significant, F(1, 144) = 5.849, MSE = 3.052, 
p = .017, ηp2 = .039. A post-hoc Bonferroni test showed that for participants learning 
individually, more knowledgeable learners reported less mental effort than less 
knowledgeable learners (p = .008, ηp2 = .048). No differences were found for 
participants learning in collaborative groups. The test also showed no difference for 
less knowledgeable learners; however, for more knowledgeable learners, 
collaborative groups reported more mental effort than individuals (p = .002, ηp2 = .063). 
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participants learning in collaborative groups. The test also showed no difference for 
less knowledgeable learners; however, for more knowledgeable learners, 
collaborative groups reported more mental effort than individuals (p = .002, ηp2 = .063). 
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Retention Test 
In this phase, 49 novice collaborative group members, 56 knowledgeable collaborative 
group members, 61 novice individuals, and 46 knowledgeable individuals 
participated. Table 4 shows the descriptive results. 

Table 4 
Means and Standard Deviations for Dependent Variables in the Retention Test Phase 

Dependent variables 

Condition 
Collaborative 

groups 
Individuals 

M SD M SD 
Retention test performance (0-1) 
       Less knowledgeable learners .50 .22 .23 .22 
       More knowledgeable learners .87 .18 .74 .24 
Retention test mental effort (1–9) 
       Less knowledgeable learners 6.01 2.50 3.86 2.29 
       More knowledgeable learners 5.67 1.87 6.12 1.62 

The ANOVA for performance found a significant main effect for condition, 
F(1, 208) = 46.764, MSE = 0.047, p < .001, ηp2 = .184: collaborative groups (M = .70, 
SD = .27) outperformed individuals (M = .45, SD = .34). Concerning knowledge level, 
F(1, 208) = 217.926, MSE = 0.047, p < .001, ηp2 = .512: more knowledgeable participants 
(M = .81, SD = .22) outperformed less knowledgeable participants (M = .35, SD = .26). 
The interaction between main effects was also significant, F(1, 208) = 5.580, 
MSE = 0.047, p = .019, ηp2 = .026. The Bonferroni test showed that for participants 
learning individually, more knowledgeable learners outperformed less 
knowledgeable learners (p < .001, ηp2 = .414); among participants learning in 
collaborative groups, more knowledgeable participants outperformed less 
knowledgeable learners (p < .001, ηp2 = .270). It was also found that among more 
knowledgeable learners, collaborative groups outperformed individual learners 
(p < .001, ηp2 = .174) and, for less knowledgeable participants, collaborative groups 
outperformed individual learners (p = .002, ηp2 = .044). The large difference in effect 
sizes explains the significant interaction. 

Regarding mental effort, a significant main effect for condition was found, 
F(1, 208) = 8.524, MSE = 4.443, p = .004, ηp2 = .039: collaborative groups (M = 5.83, 
SD = 2.18) reported more mental effort than individuals (M = 4.83, SD = 2.31). 
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Knowledge level was also significant, F(1, 208) = 10.698, MSE = 4.443, p = .001, 
ηp2 = .049: more knowledgeable learners (M = 5.87, SD = 1.77) reported more mental 
effort than less knowledgeable learners (M = 4.82, SD = 2.60). The interaction between 
these effects was also significant, F(1, 208) = 19.908, MSE = 4.443, p < 001, ηp2 = .087. The 
Bonferroni test showed that among participants learning individually, more 
knowledgeable learners reported more mental effort than less knowledgeable learners 
(p < .001, ηp2 = .126). There was no significant difference between more and less 
knowledgeable learners on levels of mental effort when they learned in collaborative 
groups. In addition, among novice participants, collaborative groups reported more 
mental effort than individual learners (p < .001, ηp2 = .120). However, for 
knowledgeable participants, no difference between individuals and collaborative 
groups was found, indicating the cause of the significant interaction. 

 
Delayed Test 
In this phase, 49 novice collaborative group members, 57 knowledgeable collaborative 
group members, 65 novice individuals, and 44 knowledgeable individuals 
participated. Descriptive statistics are shown in Table 5. 
 
Table 5 
Means and Standard Deviations for Dependent Variables in the Delayed Test Phase 

Dependent variables 

Condition 
Groups  Individuals 

M SD  M SD 
Delayed test performance (0-1)     
         Less knowledgeable learners  .39 .14 .26 .20 
         More knowledgeable learners .78 .23 .79 .22 
Delayed test mental effort (1–9)     
         Less knowledgeable learners  3.58 1.42 4.48 1.77 
         More knowledgeable learners 5.30 1.87 5.66 1.29 

 
For performance, the main effect for condition was significant, F(1, 212) = 4.467, 
MSE = 0.041, p = .036, ηp2 = .021: collaborative groups (M = .60, SD = .27) outperformed 
individual learners (M = .48, SD = .33). The main effect for knowledge level was also 
significant, F(1, 212) = 271.491, MSE = 0.041, p < .001, ηp2 = .562: more knowledgeable 
learners (M = .78, SD = .22) achieved better performance than less knowledgeable 
learners (M = .32, SD = .19). The interaction between effects was significant, 
F(1, 212) = 6.861, MSE = 0.041, p = .009, ηp2 = .031. For individual learning (p < .001, 
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ηp2 = .464) and for collaborative learning (p < .001, ηp2 = .311), it was found that more 
knowledgeable learners outperformed less knowledgeable learners. The Bonferroni 
test indicated that less knowledgeable participants performed better in collaborative 
groups than those learning individually (p = .001, ηp2 = .053); however, there was no 
significant difference between collaborative and individual groups explaining the 
significant interaction.  

Regarding mental effort, the main effect for condition was significant, 
F(1, 212) = 8.553, MSE = 2.682, p = .004, ηp2 = .039: individual learners reported more 
mental effort (M = 4.98, SD = 1.70) than collaborative groups (M = 4.50, SD = 1.88). The 
main effect for knowledge level was also significant, F(1, 212) = 42.909, MSE = 2.682, 
p < .001, ηp2 = .168: more knowledgeable learners (M = 5.48, SD = 1.65) reported more 
mental effort than less knowledgeable learners (M = 4.09, SD = 1.68). The interaction 
between these effects was not significant F(1, 212) = 1.189, MSE = 2.682, ns. 

Discussion 
The results are discussed following the order of the hypotheses, starting with 
condition followed by level of prior knowledge. Regarding condition, it was expected 
that for individual learning, more knowledgeable learners would outperform and 
invest less mental effort than less knowledgeable learners (h1). In the learning phase, 
more knowledgeable individuals reported less mental effort than less knowledgeable 
learners as expected but performed equally well. In retention and delayed tests, more 
knowledgeable learners outperformed less knowledgeable learners as expected. 
Knowledgeable learners invested more mental effort in the retention phase and 
similar mental effort in the delayed test. This suggests that for high-complexity tasks, 
prior knowledge reduces mental effort during learning without necessarily improving 
performance during learning. However, as found by Retnowati et al. (2018), the 
benefits of providing prior knowledge for complex tasks had significant benefits in 
the performance outcomes (1 and 7 days after). Interestingly, in the retention test, 
novice individuals experienced a lower cognitive load. One possible explanation may 
be their lack of knowledge which may have reduced their judgment of the complexity 
of tasks and overestimated their current performance, which in turn decreased their 
mental effort ratings (Nugteren et al., 2018a).  

We also expected that when students who have prior knowledge learn in collaborative 
groups, they will outperform less knowledgeable learners, but the counteractive 
effects on mental effort when more and less knowledgeable students collaborate 
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cannot be precisely determined (h2). As expected, we found evidence for performance 
both in retention and delayed test phases. Advanced learners could handle the 
complexity due to their better task-specific knowledge. This result allows us to assume 
that transactional activities were advantageous for advanced learning groups because 
the learning tasks had a high level of element interactivity (Retnowati et al., 2018; 
2016). This advantage was observed in both individual post-tests. For cognitive load, 
we found nonsignificant differences. Mental effect results suggest that transactional 
activities could have interfered with prior knowledge (Retnowati et al., 2018). 
Seemingly, collaborative groups of advanced learners experienced cognitive load 
caused by the redundancy of interactions that were unnecessary because group 
members already had partially developed task knowledge. This cognitive load may 
be equivalent to the low-knowledge groups’ cognitive load. Low-knowledge groups 
may have performed irrelevant transactional activities (e.g., randomly searching 
activities) because they lack sufficient schemas that guide their operations in high-
complexity tasks (Zhang et al., 2016). 

Concerning the effect of prior knowledge, it was expected that when learners are less 
knowledgeable, collaborative groups outperform and perceive less mental effort than 
individuals (h3). We found evidence for this hypothesis on performance both in the 
retention and delayed tests. For cognitive load, surprisingly, less knowledgeable 
learners that learned in collaborative groups perceived a significantly higher load than 
individuals in the retention test while no difference was found in the other phases. In 
line with the collective working memory effect (F. Kirschner, Paas, & Kirschner, 2011), 
greater cognitive capacity allowed collaborative groups to acquire better mental 
representations from the complex information. These data suggest that when learners 
are required to learn from highly demanding problems, collaborative learning may 
impose a substantial cognitive load, but is more effective than in individual learning, 
and its benefits are observed in the long term (Soderstrom & Bjork, 2015). The 
perception of higher mental effort in the retention phase of learners who learned in 
collaborative groups is interesting (M = 6.01), but even more interesting is the 
substantially lower cognitive load perceived by individual students (M = 3.86). It 
seems, they did not invest a high mental effort because they did not have the 
appropriate task knowledge (Sweller et al., 2011). It may be necessary to investigate 
these cases in depth through the analysis of think-aloud protocols (Kalyuga & Plass, 
2018). 
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It was also expected that when learners have prior knowledge, learning in 
collaborative groups will become detrimental, with no collaborative group advantage 
(h4). This was confirmed for all phases and measures except the performance in the 
retention phase of those who learned in collaborative groups. This result might be 
explained by the activating of prior task schemas when carrying out highly complex 
tasks. During the learning phase, knowledgeable collaborative group members 
reported significantly higher cognitive load because they may need to reconcile their 
own knowledge with externally provided guidance (Kalyuga et al., 2003). Besides, 
they may have to deal with the transactional activities that were inevitable due to the 
distribution of information among members which further increased the perception 
of mental effort. 

Interestingly, despite reporting more mental effort during collaborative learning, in 
the retention phase, more knowledgeable collaborative group members were more 
effective than more knowledgeable individuals. Seemingly, collaborative learning and 
prior knowledge for high-complexity tasks did not seem detrimental as the 
additionally acquired collaborative group knowledge allowed collaborators to 
outperform individuals the next day. However, this advantage was not long-lasting 
(i.e., in the delayed test). 

Conclusions 
In general, the results seem to suggest that collaborative learning may be effective for 
high-complexity tasks compared with individual learning when learners have 
domain-generalized knowledge at a collaborative group level (Kalyuga, 2013). Giving 
learners guidance on how to work together seems to be associated with better 
performance than just bringing students together to learn new problems (Gillies, 2016; 
P. A. Kirschner et al., 2018). Seemingly, learners who are prepared to learn 
collaboratively build task-based collaboration schemas. They may be applied through 
analogical transfer when these collaborative groups must learn similar tasks (Gick & 
Holyoak, 1980). It may be reasonable to think that domain-generalizable knowledge 
for collaboration operates as intergroup guides that take advantage of transactional 
activities to better learn relatively new tasks. 

Furthermore, the effectiveness of collaborative learning is affected by prior task 
knowledge (Retnowati et al., 2018; Zhang et al., 2016; Zhang et al., 2015). Providing 
preliminary instruction to construct partially developed domain-specific knowledge 
before subsequent explicit instruction may produce higher performance in the 
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retention and delayed tests than learning individually without such prior knowledge. 
Similarly, learning collaboratively with partial knowledge structures yields higher 
performance than collaborating among less knowledgeable learners. However, when 
individuals and collaborative groups with this prior knowledge are compared, the 
advantage of learning in collaborative groups only decreases the mental effort in the 
learning phase (i.e., due to the advantage distribution) and produces higher 
performance in the retention test. In the longer term (i.e., delayed test), the 
performance between collaborative groups and individuals is equal. However, if 
learners have not received preliminary instruction, learning in collaborative groups is 
more effective with higher performance than learning individually in the short- and 
long-term as indicated by the retention and delayed tests respectively. 
 
Practical Implications 
This study has educational implications when the learning goal is to learn high-
complexity problems, and when high performance needs to be sustained in the 
longer-term. First, if collaborative learning is used, learners should be provided 
preparation in learning in collaborative groups through practice on tasks previously 
learned in the same domain. Once learners have had a collaborative group experience, 
they will then be able to manage the collaborative cognitive load and transfer this 
experience to relatively new problems. Also, before giving explicit or full 
comprehensive instruction for learning to solve quite complex problems, novice 
collaborative group members should receive preliminary knowledge to guide 
subsequent acquisition. Instructors can begin instruction by providing guidance using 
worked examples to first stimulate individual long-term memory elaboration and 
then promote the construction of better schemas through collaborative learning. 
 
However, if learners have prior task-specific knowledge, learning in collaborative 
groups may not be more beneficial than learning individually because collaborative 
groups experience more cognitive load during full guidance (i.e., learning phase) and 
an advantage in performance is not durable in the long term. 

 
Limitations and Future Directions 
Assuming that cognitive load may vary during learning (Kalyuga & Plass, 2018), it is 
important to develop ways of measuring it during collaboration activities. Making 
collaborative group activities explicit along with their respective cognitive loads is 
fundamental. For this, an in-depth analysis of the loads related to transactional 
activities is required concerning how group members process task information 

Jimmy Zambrano inhoud tabs v3.indd   104 14-10-2019   12:33:18



Ch
ap

te
r 

5

Chapter 5 

104 

It was also expected that when learners have prior knowledge, learning in 
collaborative groups will become detrimental, with no collaborative group advantage 
(h4). This was confirmed for all phases and measures except the performance in the 
retention phase of those who learned in collaborative groups. This result might be 
explained by the activating of prior task schemas when carrying out highly complex 
tasks. During the learning phase, knowledgeable collaborative group members 
reported significantly higher cognitive load because they may need to reconcile their 
own knowledge with externally provided guidance (Kalyuga et al., 2003). Besides, 
they may have to deal with the transactional activities that were inevitable due to the 
distribution of information among members which further increased the perception 
of mental effort. 

Interestingly, despite reporting more mental effort during collaborative learning, in 
the retention phase, more knowledgeable collaborative group members were more 
effective than more knowledgeable individuals. Seemingly, collaborative learning and 
prior knowledge for high-complexity tasks did not seem detrimental as the 
additionally acquired collaborative group knowledge allowed collaborators to 
outperform individuals the next day. However, this advantage was not long-lasting 
(i.e., in the delayed test). 

Conclusions 
In general, the results seem to suggest that collaborative learning may be effective for 
high-complexity tasks compared with individual learning when learners have 
domain-generalized knowledge at a collaborative group level (Kalyuga, 2013). Giving 
learners guidance on how to work together seems to be associated with better 
performance than just bringing students together to learn new problems (Gillies, 2016; 
P. A. Kirschner et al., 2018). Seemingly, learners who are prepared to learn 
collaboratively build task-based collaboration schemas. They may be applied through 
analogical transfer when these collaborative groups must learn similar tasks (Gick & 
Holyoak, 1980). It may be reasonable to think that domain-generalizable knowledge 
for collaboration operates as intergroup guides that take advantage of transactional 
activities to better learn relatively new tasks. 

Furthermore, the effectiveness of collaborative learning is affected by prior task 
knowledge (Retnowati et al., 2018; Zhang et al., 2016; Zhang et al., 2015). Providing 
preliminary instruction to construct partially developed domain-specific knowledge 
before subsequent explicit instruction may produce higher performance in the 

Effects of Prior Knowledge on Collaborative and Individual Learning 

105 

retention and delayed tests than learning individually without such prior knowledge. 
Similarly, learning collaboratively with partial knowledge structures yields higher 
performance than collaborating among less knowledgeable learners. However, when 
individuals and collaborative groups with this prior knowledge are compared, the 
advantage of learning in collaborative groups only decreases the mental effort in the 
learning phase (i.e., due to the advantage distribution) and produces higher 
performance in the retention test. In the longer term (i.e., delayed test), the 
performance between collaborative groups and individuals is equal. However, if 
learners have not received preliminary instruction, learning in collaborative groups is 
more effective with higher performance than learning individually in the short- and 
long-term as indicated by the retention and delayed tests respectively. 
 
Practical Implications 
This study has educational implications when the learning goal is to learn high-
complexity problems, and when high performance needs to be sustained in the 
longer-term. First, if collaborative learning is used, learners should be provided 
preparation in learning in collaborative groups through practice on tasks previously 
learned in the same domain. Once learners have had a collaborative group experience, 
they will then be able to manage the collaborative cognitive load and transfer this 
experience to relatively new problems. Also, before giving explicit or full 
comprehensive instruction for learning to solve quite complex problems, novice 
collaborative group members should receive preliminary knowledge to guide 
subsequent acquisition. Instructors can begin instruction by providing guidance using 
worked examples to first stimulate individual long-term memory elaboration and 
then promote the construction of better schemas through collaborative learning. 
 
However, if learners have prior task-specific knowledge, learning in collaborative 
groups may not be more beneficial than learning individually because collaborative 
groups experience more cognitive load during full guidance (i.e., learning phase) and 
an advantage in performance is not durable in the long term. 

 
Limitations and Future Directions 
Assuming that cognitive load may vary during learning (Kalyuga & Plass, 2018), it is 
important to develop ways of measuring it during collaboration activities. Making 
collaborative group activities explicit along with their respective cognitive loads is 
fundamental. For this, an in-depth analysis of the loads related to transactional 
activities is required concerning how group members process task information 

Jimmy Zambrano inhoud tabs v3.indd   105 14-10-2019   12:33:19



Chapter 5 

106 

individually and amongst themselves and how learners support each other to 
overcome task-related difficulties. An evaluation of the impact of transactional 
activity patterns on performance and mental effort in individual long-term post-tests 
also is required. 

Further, the subjective measurement of cognitive load may not be appropriate for 
collaborative learning (F. Kirschner, Paas, Kirschner, et al., 2011; Retnowati et al., 
2016). Although the mental effort scale appears to be robust for individual conditions, 
it should be determined if it is valid and reliable for collaborative learning conditions. 
Other measures of cognitive load that account for the multiple sources and types of 
cognitive load in collaborative conditions may need to be constructed. 

Another limitation of this study is that a pretest was not used. Although the tasks in 
the learning phase are not easily acquired without being part of a curricular program, 
students might acquire this knowledge outside the school context. Of course, our use 
of random allocation to groups should eliminate any systematic biases. A pretest 
would test whether this is the case. 

This study is a first step to uncover the cognitive load factors associated with 
individual and collaborative learning considering the prior knowledge effect. Future 
studies should replicate this study to confirm these results and examine the effect of 
prior knowledge between individual learning, and collaborative learning with and 
without collaborative preparation. Also, tasks with higher and lower complexity 
should be used to investigate relations between prior knowledge and complexity. 
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Appendix A 
Table A.1 
Summary of Two-Way ANOVAs of the Effects on the Variables 

Dependent Variables 
Conditions Performance Mental effort 

Learning phase 
Group vs. individual >*** >* 
Knowledgeable vs. novice >*** ns 
Interactions ns * 

Individuals: knowledgeable vs. novice ns <** 
Groups: knowledgeable vs. novice ns ns 
Novice: collaborative groups vs. individual ns ns 
Knowledgeable: collaborative groups vs. 
individual 

ns >** 

Retention test 
Group vs. individual >*** >** 
Knowledgeable vs. novice >*** >*** 
Interactions * ***

Individuals: knowledgeable vs. novice >*** >***
Groups: knowledgeable vs. novice >*** ns
Novice: collaborative groups vs. individual >*** >***
Knowledgeable: collaborative groups vs. 
individual 

>** ns

Delayed test 
Group vs. individual >* <** 
Knowledgeable vs. novice >*** >*** 
Interactions ** ns 

Individuals: knowledgeable vs. novice >*** ns 
Groups: knowledgeable vs. novice >*** ns 
Novice: collaborative groups vs. individual >*** ns 
Knowledgeable: collaborative groups vs. 
individual 

ns ns 

* p < .05. ** p < .01. *** p < .001.
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individually and amongst themselves and how learners support each other to 
overcome task-related difficulties. An evaluation of the impact of transactional 
activity patterns on performance and mental effort in individual long-term post-tests 
also is required. 

Further, the subjective measurement of cognitive load may not be appropriate for 
collaborative learning (F. Kirschner, Paas, Kirschner, et al., 2011; Retnowati et al., 
2016). Although the mental effort scale appears to be robust for individual conditions, 
it should be determined if it is valid and reliable for collaborative learning conditions. 
Other measures of cognitive load that account for the multiple sources and types of 
cognitive load in collaborative conditions may need to be constructed. 

Another limitation of this study is that a pretest was not used. Although the tasks in 
the learning phase are not easily acquired without being part of a curricular program, 
students might acquire this knowledge outside the school context. Of course, our use 
of random allocation to groups should eliminate any systematic biases. A pretest 
would test whether this is the case. 

This study is a first step to uncover the cognitive load factors associated with 
individual and collaborative learning considering the prior knowledge effect. Future 
studies should replicate this study to confirm these results and examine the effect of 
prior knowledge between individual learning, and collaborative learning with and 
without collaborative preparation. Also, tasks with higher and lower complexity 
should be used to investigate relations between prior knowledge and complexity. 

Effects of Prior Knowledge on Collaborative and Individual Learning 
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Appendix A 
Table A.1 
Summary of Two-Way ANOVAs of the Effects on the Variables 

Dependent Variables 
Conditions Performance Mental effort 

Learning phase 
Group vs. individual >*** >* 
Knowledgeable vs. novice >*** ns 
Interactions ns * 

Individuals: knowledgeable vs. novice ns <** 
Groups: knowledgeable vs. novice ns ns 
Novice: collaborative groups vs. individual ns ns 
Knowledgeable: collaborative groups vs. 
individual 

ns >** 

Retention test 
Group vs. individual >*** >** 
Knowledgeable vs. novice >*** >*** 
Interactions * ***

Individuals: knowledgeable vs. novice >*** >***
Groups: knowledgeable vs. novice >*** ns
Novice: collaborative groups vs. individual >*** >***
Knowledgeable: collaborative groups vs. 
individual 

>** ns

Delayed test 
Group vs. individual >* <** 
Knowledgeable vs. novice >*** >*** 
Interactions ** ns 

Individuals: knowledgeable vs. novice >*** ns 
Groups: knowledgeable vs. novice >*** ns 
Novice: collaborative groups vs. individual >*** ns 
Knowledgeable: collaborative groups vs. 
individual 

ns ns 

* p < .05. ** p < .01. *** p < .001.
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Supplementary Material
Example of Material used by Groups in the Preparation Phase

Let's practice a solved example for this equation: −10𝑥𝑥𝑥𝑥2 + 13 + 20𝑥𝑥𝑥𝑥 − 14𝑥𝑥𝑥𝑥2 = −7 + 3𝑥𝑥𝑥𝑥

STEPS TO THE GROUP WORK MEMBER 1 MEMBER 2 MEMBER 3

You should identify whether the values of the equation are 

on the left side or the right side of the equal sign.
−10𝑥𝑥𝑥𝑥2 + 13 = 20𝑥𝑥𝑥𝑥 − 14𝑥𝑥𝑥𝑥2 = = −7 + 3𝑥𝑥𝑥𝑥

You should communicate with the other members to 
identify similar values. Afterwards, shift the values to the 
left side, changing the sign, and keep the result in mind.

7 − 3𝑥𝑥𝑥𝑥 =

Perform quickly and without error all the possible 
operations and keep the result in mind.

−10𝑥𝑥𝑥𝑥2 − 14𝑥𝑥𝑥𝑥2 = 20𝑥𝑥𝑥𝑥 − 3𝑥𝑥𝑥𝑥 = 13 + 7 =

Everyone must share their values with others and sort
them, keeping in mind the results.

−24𝑥𝑥𝑥𝑥2 + 17𝑥𝑥𝑥𝑥 + 20 = 0

Factor the trinomial with your partners. Remember to carry 
out these calculations mentally. To avoid forgetting a 
partial result, each member must have it in his/her mind.

(−8𝑥𝑥𝑥𝑥 − 5)(3𝑥𝑥𝑥𝑥 − 4) = 0

When Equal to Zero, resolve the equations mentally.
−8𝑥𝑥𝑥𝑥 − 5 = 0

3𝑥𝑥𝑥𝑥 − 4 = 0

Write down the results on the worksheet:
𝑥𝑥𝑥𝑥 = −

5
8

                 𝑥𝑥𝑥𝑥 = 4
3
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6. General Discussion

This chapter presents the main findings of the research and its theoretical and 
instructional implications. In addition, its limitations are discussed and opportunities 
for future research are proposed. 

Introduction 
Nowadays, more and more voices demand that students learn to solve problems 
through group work (Griffin & Care, 2015; OECD, 2017). Some of these voices come, 
for example, from pedagogical perspectives that argue from the assumption that the 
human being is a social being by nature and that knowledge is an intersubjective 
construction (Derry, 2013; Freire, 2008; Hakkarainen, Paavola, Kangas, & Seitamaa-
Hakkarainen, 2013). The business sector argues from the need to achieve higher 
efficiency in the processes and organizational results that depend on inter-individual 
and inter-group activities (Salas, Bowers, & Edens, 2001; Salas, Fiore, & Letsky, 2012). 
Other voices come from instructional perspectives that assume that collaboration 
could improve the acquisition of school knowledge (D. W. Johnson & Johnson, 2009; 
Slavin, 2012). A large number of the views that advocate collaboration (Hmelo-Silver 
& Chinn, 2015; O'Donnell & Hmelo-Silver, 2013), could fit within a continuum. At one 
end of that continuum, collaborative learning is seen as a pedagogical method (i.e., 
learning to be collaborative, independent of the learning task), that is an essential 
condition for carrying out tasks that are group-based by nature (i.e., learning to 
collaborate for essentially collaborative tasks). At the other end of the continuum, 
collaboration is seen as an instructional strategy to assist in learning essentially 
individual tasks, which is the main approach of this dissertation (Slavin et al., 1985). 

Consequently, there is an overwhelming amount of literature on collaborative 
learning. However, not all studies show that learning in groups is beneficial (Pai et al., 
2015; Swanson, McCulley, Osman, Scammacca Lewis, & Solis, 2017). A crucial aspect 
that could contribute in understanding why and when collaboration is beneficial or 
harmful is to take into account the characteristics of human cognitive architecture 
(P. A. Kirschner et al., 2018; Sweller et al., 2011). In other words, researchers and 
educators should consider the multiple factors that affect information processing in 
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the working memory of group members and the construction of schemas in their long-
term memories. 
 
The goal of this research was to explore the consequences of decreasing the cognitive 
load associated with group interactions in order to improve collaborative learning in 
highly complex tasks. It was assumed that a collaborative group consists of a cognitive 
unit (Hinsz et al., 1997) that can simultaneously process more information elements 
due to the combination of the working memories of its members (i.e., collective 
working memory) and despite the need to engage in transactional activities (i.e., 
communication and coordination cognitive processes; F. Kirschner, Paas, & Kirschner, 
2011). Transactional activities can be affected by multiple variables, with respect to the 
individual (e.g., previous task schemas), the group (e.g., intra-group experience in 
similar tasks or distribution of information among students), or the task (e.g., level of 
element interactivity) (P. A. Kirschner et al., 2018). Those variables may be optimized 
to improve task information group processing. By optimizing inter-individual 
processing during collaborative learning, group members may dedicate more 
resources from their working memories to build better task schemas in long-term 
memory. 
 
In this work, it was assumed that a way to optimize the transactional activities and 
the cognitive load, could be by providing groups with collaborative experience based 
on relatively similar tasks (i.e., creating experienced groups). Accordingly, a goal was 
to determine if this group experience allowed learning peers to properly use their 
transactional activities to learn better, have higher performance, and be more efficient 
than members of groups without this collaborative experience (i.e., non-experienced 
groups). Another goal was to examine how the distribution of information amongst 
group members (i.e., high-density information vs. low-density information) and prior 
knowledge (i.e., novices vs. advanced learners) affect the results of students learning 
in experienced and non-experienced groups. 
 
In all studies of this dissertation, members of experienced groups were prepared using 
math tasks, specifically problems relating to solving quadratic equations which they 
solved in a group. Non-experienced groups consisted of students who had, just as the 
others, learned to solve quadratic equations but who solved them individually. 
Solving such equations was something that the students had already learned in the 
previous school year. Members of the groups that received guidance on how to 
collaborate remained in their own groups in the learning phase. Each of the studies 
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was conducted at the beginning of three different school periods in Ecuadorian 
schools, after two months of vacation (i.e., July and August). As far as possible, 
students did not have any prior collaborative experience for several weeks before the 
experiments. Members of the experienced groups received explicit guidance on how 
to collaborate with previously known tasks (i.e., solving quadratic 

equations) whose characteristics were similar to those of the learning tasks (i.e., 
calculating the break-even point in economics). Finally, the group experience gained 
in the just described preparation phase was maintained keeping the groups intact in 
the learning phase. Also, the variables of performance (i.e., learning, short-term 
retention, and delayed retention), mental effort (i.e., cognitive load) and efficiency 
were measured in the learning phase and the post-test phases. Efficiency was not 
measured only in the study reported in Chapter 5. For post-tests (i.e., learning 
outcomes), short-term retention tasks (i.e., a day later), and delayed retention tasks 
(i.e., seven days later) were used. 

Main findings 
The mixed study (Chapter 3) examined whether prior collaborative experience based 
on similar tasks increases effectiveness (i.e., performance), decreases cognitive load 
and, therefore, increases efficiency in the learning, short-term retention and delayed 
retention phases. In addition, it examined the differences between experienced and 
non-experienced groups concerning socio-cognitive, socio-regulatory, and socio-
emotional transactional activities as well as task unrelated transactional activities. 
Results supported expectations regarding the advantage of experienced group 
members in learning outcomes (i.e., retention and delayed tests). That is, members of 
the groups that were provided preparation time to gain experience in collaboration 
with relatively similar tasks performed better, experienced less mental effort, and 
were more efficient than non-experienced groups on the retention and delayed tests. 
However, in the learning phase, there were no significant differences on any 
measures. It seems the preparation of the experienced groups allowed them to acquire 
group-based information elements that were transferred to learning new tasks. The 
higher performance and efficiency of experienced groups suggest that the students 
optimized their transactional activities, which in turn may have contributed to the 
acquisition of better task schemas. In other words, the cognitive load associated with 
individual and interindividual processing of task information fostered the acquisition 
of better schemas in long-term memory. 
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The superior quality of task schemas was confirmed in the retention tests in which 
each step of the problem-solving process was measured. Because the results of the 
learning phase did not show differences between both types of groups, an analysis of 
the verbal interactions was carried out under the assumption that they impose 
cognitive load that may promote or inhibit individual learning. During inter-
individual processing, each member had to continuously monitor the ongoing 
conversation, keep their own ideas in their memory, integrate the information 
presented by others, and continuously update their mental representations (Mojzisch, 
Krumm, & Schultze, 2014). These transactional activities may impose a high cognitive 
load (P. A. Kirschner et al., 2018). Therefore, examining the interactions may help to 
understand the benefits of group experience in terms of cognitive load. An analysis of 
verbal interactions was made with a sample of five experienced, and five non-
experienced groups. It showed that the experienced groups spent more time solving 
the learning task problems. Also, as expected, experienced groups had more socio-
cognitive interactions and fewer socio-regulatory and task unrelated interactions. The 
number of socio-emotional interactions was not different between both conditions. 
These data allowed the suggestion that the collaborative work schemas acquired in 
the preparation phase may have guided inter-individual information processing of 
learning tasks. The analysis of the subcategories of socio-cognitive interactions 
showed that groups with previous collaborative experience might have invested less 
cognitive load in the interpretation of the problem. This result indicates that 
experienced groups may have found common elements between preparation tasks 
and learning tasks. The conceptual and procedural information to solve quadratic 
equations and break-even point problems (the two types of problems used) are 
different. However, it is possible to assume that experienced groups may realize, for 
example, that both types of problems required each student to share their information 
items to understand the situation, or that each member had to process other members' 
information and integrate it with information which (s)he had in her/his hands to 
anticipate the procedure to follow. 

The number of socio-cognitive interactions devoted to individual and shared 
calculations, as well as self-correction, may also reveal the advantage obtained by 
experienced groups. Unlike non-experienced groups, experienced groups performed 
fewer individual calculations to solve each step of the learning tasks. This result is 
complemented by the finding that experienced group members had more interactions 
relating to shared and self-correction calculations during the learning phase. Shared 
calculations may be a type of transactional communication which involves micro-
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cycles of interaction in which one member actively listens (i.e., processes) the 
information of another member, elaborates other information intrinsically related to 
what (s)he heard to communicate it to the group, with another member contributing 
other intrinsically associated elaborations (Noreen, 2013). Transactional 
communication is a collaborative skill that is associated with better learning (Fransen 
et al., 2013; Vogel, Kollar, et al., 2016) and is explained by the existence of a shared 
mental model on how to collaborate (Mohammed & Dumville, 2001). Because 
transactional communication can be acquired, for example through scripts (Noroozi, 
Biemans, Weinberger, Mulder, & Chizari, 2013), instructional videos (Jurkowski & 
Hänze, 2015), or scaffolding strategies as in this study, it seems that experienced 
groups built schemas of transactive activity during the preparation phase. These 
schemas may guide the distribution of the cognitive load associated with the 
calculations to solve the problems. In such schemas, self-correction may be a verbal 
behavior that exhibits a mechanism of (meta)cognitive monitoring where students 
evaluate the accuracy of their own working memory processes (Ramdass & 
Zimmerman, 2008). According to the knowledge categories of Geary's evolutionary 
educational psychology (Geary, 2005; Sweller, 2008) (see Chapter 2), (meta)cognitive 
monitoring may be a biologically primary skill because humans have evolved to 
execute it (Carruthers, 2009). The high cognitive load associated with (meta)cognitive 
monitoring may be a function of the level of novelty and complexity of the content 
that student monitors and not of the monitoring itself (Van Gog, Kester, & Paas, 2011). 
Self-correction may be an indicator of the high cognitive load associated with the 
calculations of learning tasks. This verbal operation of (meta)cognitive control may be 
associated with the need to perform more precise mathematical calculations, with 
fewer errors, and consequently may contribute to better learning and performance 
(Ramdass & Zimmerman, 2008). Conversely, the lower number of self-correction 
verbal behaviors of non-experienced group members may indicate that they 
overestimated the precision of their (meta)cognitive control, and this overestimation 
may have influenced them in constructing erroneous task schemas in long-term 
memory. 
 
Another finding in this study was that experienced groups had, as expected, fewer 
socio-regulatory and task unrelated interactions. According to cognitive load theory, 
relevant knowledge structures guide behavior and cognition in a relatively familiar 
environment (Sweller et al., 2011). This principle could be seen in experienced groups 
because their task-based collaboration schemas may be transferred to the learning 
tasks, so it was not necessary to invest substantial working memory resources in 

Jimmy Zambrano inhoud tabs v3.indd   112 14-10-2019   12:33:20



Ch
ap

te
r 

6

Chapter 6 

112 

The superior quality of task schemas was confirmed in the retention tests in which 
each step of the problem-solving process was measured. Because the results of the 
learning phase did not show differences between both types of groups, an analysis of 
the verbal interactions was carried out under the assumption that they impose 
cognitive load that may promote or inhibit individual learning. During inter-
individual processing, each member had to continuously monitor the ongoing 
conversation, keep their own ideas in their memory, integrate the information 
presented by others, and continuously update their mental representations (Mojzisch, 
Krumm, & Schultze, 2014). These transactional activities may impose a high cognitive 
load (P. A. Kirschner et al., 2018). Therefore, examining the interactions may help to 
understand the benefits of group experience in terms of cognitive load. An analysis of 
verbal interactions was made with a sample of five experienced, and five non-
experienced groups. It showed that the experienced groups spent more time solving 
the learning task problems. Also, as expected, experienced groups had more socio-
cognitive interactions and fewer socio-regulatory and task unrelated interactions. The 
number of socio-emotional interactions was not different between both conditions. 
These data allowed the suggestion that the collaborative work schemas acquired in 
the preparation phase may have guided inter-individual information processing of 
learning tasks. The analysis of the subcategories of socio-cognitive interactions 
showed that groups with previous collaborative experience might have invested less 
cognitive load in the interpretation of the problem. This result indicates that 
experienced groups may have found common elements between preparation tasks 
and learning tasks. The conceptual and procedural information to solve quadratic 
equations and break-even point problems (the two types of problems used) are 
different. However, it is possible to assume that experienced groups may realize, for 
example, that both types of problems required each student to share their information 
items to understand the situation, or that each member had to process other members' 
information and integrate it with information which (s)he had in her/his hands to 
anticipate the procedure to follow. 

The number of socio-cognitive interactions devoted to individual and shared 
calculations, as well as self-correction, may also reveal the advantage obtained by 
experienced groups. Unlike non-experienced groups, experienced groups performed 
fewer individual calculations to solve each step of the learning tasks. This result is 
complemented by the finding that experienced group members had more interactions 
relating to shared and self-correction calculations during the learning phase. Shared 
calculations may be a type of transactional communication which involves micro-

General Discussion 

113 

cycles of interaction in which one member actively listens (i.e., processes) the 
information of another member, elaborates other information intrinsically related to 
what (s)he heard to communicate it to the group, with another member contributing 
other intrinsically associated elaborations (Noreen, 2013). Transactional 
communication is a collaborative skill that is associated with better learning (Fransen 
et al., 2013; Vogel, Kollar, et al., 2016) and is explained by the existence of a shared 
mental model on how to collaborate (Mohammed & Dumville, 2001). Because 
transactional communication can be acquired, for example through scripts (Noroozi, 
Biemans, Weinberger, Mulder, & Chizari, 2013), instructional videos (Jurkowski & 
Hänze, 2015), or scaffolding strategies as in this study, it seems that experienced 
groups built schemas of transactive activity during the preparation phase. These 
schemas may guide the distribution of the cognitive load associated with the 
calculations to solve the problems. In such schemas, self-correction may be a verbal 
behavior that exhibits a mechanism of (meta)cognitive monitoring where students 
evaluate the accuracy of their own working memory processes (Ramdass & 
Zimmerman, 2008). According to the knowledge categories of Geary's evolutionary 
educational psychology (Geary, 2005; Sweller, 2008) (see Chapter 2), (meta)cognitive 
monitoring may be a biologically primary skill because humans have evolved to 
execute it (Carruthers, 2009). The high cognitive load associated with (meta)cognitive 
monitoring may be a function of the level of novelty and complexity of the content 
that student monitors and not of the monitoring itself (Van Gog, Kester, & Paas, 2011). 
Self-correction may be an indicator of the high cognitive load associated with the 
calculations of learning tasks. This verbal operation of (meta)cognitive control may be 
associated with the need to perform more precise mathematical calculations, with 
fewer errors, and consequently may contribute to better learning and performance 
(Ramdass & Zimmerman, 2008). Conversely, the lower number of self-correction 
verbal behaviors of non-experienced group members may indicate that they 
overestimated the precision of their (meta)cognitive control, and this overestimation 
may have influenced them in constructing erroneous task schemas in long-term 
memory. 
 
Another finding in this study was that experienced groups had, as expected, fewer 
socio-regulatory and task unrelated interactions. According to cognitive load theory, 
relevant knowledge structures guide behavior and cognition in a relatively familiar 
environment (Sweller et al., 2011). This principle could be seen in experienced groups 
because their task-based collaboration schemas may be transferred to the learning 
tasks, so it was not necessary to invest substantial working memory resources in 
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socially shared regulatory interactions (Vuopala et al., 2019). That is, unlike non-
experienced groups, experienced groups seemingly invested less cognitive load both 
in interactions to organize and coordinate their discussions to solve the learning 
problems, and in task unrelated discussions. Other studies show that socio-regulatory 
transactional activities, such as mutual monitoring, are associated with better 
performance, especially in complex tasks (Näykki et al., 2015). However, it seems that 
if groups have schemas on how to collaborate, it is likely that they do not need to 
invest substantial working memory resources in agreeing on how to proceed with the 
resolution of the tasks. Shared schemas of regulation may have helped experienced 
group members to focus their mental resources on better inter-individual processing, 
which may explain their better schemas in retention and delayed tests. 
 
Chapter 4 reports on a study that aimed to examine whether the distribution of 
information affects the effectiveness and efficiency of groups with and without 
collaborative experience. For this study, the essential concept of element interactivity 
level (Sweller, 2010) was applied to group learning. According to cognitive load 
theory, the more interactive elements to be processed simultaneously (or in a short 
time scale), the more complex is the task. The more complex the task, the more a 
learner is required to invest working memory resources (i.e., cognitive load). These 
premises may also apply to collaborative learning assuming that groups can behave 
as an information processing unit (Hinsz et al., 1997) and that inter-individual 
processes (i.e., transactional activities) may be considered as group-based information 
elements that are not related to the task (i.e., extraneous cognitive load, unless the task 
is collaborative by nature). Assuming the same amount of time-on-task, it would be 
expected that the more inter-individual activities amongst group members, the more 
complex is the collaborative work which requires more working memory resources 
(i.e., cognitive load). Since transactional activities may depend on multiple factors, for 
example, how information elements must be interconnected to solve the task, it is to 
be expected that the way in which task information is distributed among group 
members may result in different levels of intra-group density. Accordingly, task 
information used in Chapter 3 was manipulated to create two conditions of 
distribution: high- and low-density information. The extent to which experienced 
groups can optimize their working memory resources and have better results in 
complex tasks (i.e., a high level of task element interactivity) that should be learned 
with a high level of information density (i.e., group-based element interactivity) was 
examined. 
 

General Discussion 

115 

Evidence for the hypothesis that experienced groups are more efficient than non-
experienced groups in tasks with higher information density in retention and delayed 
tests was obtained. However, no evidence of higher performance and lower mental 
effort was found in these tests, nor was any significant difference in the learning 
phase. Another finding was that there was no significant difference between 
experienced and non-experienced groups in performance, mental effort, and 
efficiency in all phases on tasks that demanded lower density information. These 
results suggest that groups that previously worked on analogous tasks acquired 
relevant schemas of group work and transferred those schemas to learning highly 
complex tasks. All groups experienced similar performance and mental effort. 
However, efficiency measures showed that groups with collaborative preparation 
could optimize their collective working memory resources (F. Kirschner, Paas, & 
Kirschner, 2011) to deal with the high cognitive demand of inter-individual processing 
and task information elements. 

Chapter 5 reports on a study that aimed to determine the impact of task-specific prior 
knowledge level (i.e., novices vs. advanced learners) on experienced groups and 
individual learners. Groups were prepared in the same way as in the previous studies 
and received the higher information distribution used in Chapter 4. Additionally, half 
of the students who learned in experienced groups and individually received an 
additional session that had the purpose of providing specific schemas of the new 
learning tasks using worked-examples. Regarding learning condition, evidence for 
the expectation that for individual learning, more knowledgeable learners outperform 
novice learners in retention and delayed tests was found. This result was not obtained 
in the learning phase. Mental effort was, as expected, lower in the learning phase, but 
in the retention test the experienced groups invested a higher mental effort. No 
difference was found in the delayed test. When students learn in experienced groups, 
as expected, knowledgeable learners outperformed novice learners in the retention 
and delayed tests and invested a similar amount of mental effort in all phases. 
Concerning prior knowledge levels, evidence for the hypothesis that when learners 
are novices, groups outperform individuals was found in retention and delayed tests, 
but not in the learning phase.  The expectation that experienced groups would invest 
a lesser amount of mental effort than non-experienced groups was not found in any 
phase. Instead, those who learned in groups invested more mental effort in the 
retention phase. Finally, the hypothesis that there is no difference between 
experienced groups and individuals when students had prior knowledge was 
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confirmed in all phases, except in the retention phase where students in the 
knowledgeable groups outperformed those in the individual learning condition. 

This last study presents evidence that prior task knowledge affects the advantage of 
having generalizable collaboration schemas for similar tasks. According to the 
collective working memory effect (F. Kirschner, Paas, & Kirschner, 2011), groups are 
more effective when tasks are highly complex. However, this effect has not been found 
in all investigations (Retnowati et al., 2016, 2018). Evidence for this effect was found 
here, but with the variant that groups received guidance on how to collaborate. In 
addition to the schemas on how to collaborate, the acquisition of partially developed 
task information elements explains when collaboration is effective compared to 
learning individually. When learning tasks have a high level of element interactivity 
to the point of overwhelming the working memory capacity of novice learners, 
learning in groups turns out to be more appropriate as long as members have schemas 
on how to collaborate on the learning task. However, if students already have prior 
knowledge of the task, having collaborative structures may be redundant. These 
findings suggest that knowledge structures considerably define the advantage of 
learning in groups. Students do not learn better if they are only grouped to solve a 
complex problem. Instead, it may be harmful. Learners should learn to collaborate 
with each other according to the characteristics of the task. If the task is so complex 
that it overloads working memory, it is even appropriate to provide both shared work 
schemas and partially developed schemas of the learning task. It seems that flexible, 
collaborative knowledge based on relevant tasks combined with task-specific schemas 
make up structures in long-term memory that optimize group information processing 
and allow learners to anticipate the missing information elements that must be 
acquired to solve the learning problems. 

Implications 

Theoretical implications 
A fundamental assumption of cognitive load theory is that extraneous load (i.e., 
unrelated task information elements) must be reduced when learning new domain-
specific tasks (i.e., task information elements). When learners store task elements in 
long-term memory, they use these elements schematically (i.e., encapsulated) to solve 
complex problems without affecting the working memory limitations. In turn, 
previously built schemas form a cognitive structure that allows learners to acquire 
more complex tasks or mental representations of their environments (see the 
environmental organizing and linking principles in Chapter 2). 

General Discussion 

117 

 
Although cognitive load theory has been developed mainly through studies of 
individual learning, this research shows that collaborative learning can be improved 
the cognitive load factors that affect transactional activities are also considered. 
Previous research has found that groups may construct a collective working memory 
space (F. Kirschner, Paas, & Kirschner, 2011), which may explain when and why to 
use collaborative learning. The collective working memory effect holds that group 
members may share their working memory resources among themselves to better 
process highly interacting task information elements and construct better mental 
representations in long-term memory than students who learn individually (F. 
Kirschner, Paas, & Kirschner, 2011). This research aimed to contribute to this effect by 
expanding the explanation of how and why learning in groups may be more 
appropriate considering the cognitive load imposed by transactional activities. 
 
Assuming that the instructional goal is to acquire domain-specific task schemas that 
must be executed individually (i.e., after the learning phase), the cognitive load 
demanded by transactional activities (i.e., group-based information elements) should 
be categorized as extraneous load. It is possible to consider that transactional activities 
impose an intrinsic load when the instructional goal is to learn how to collaborate on 
particular tasks. In any case, inter-individual activities are inevitable, and research 
should find ways to optimize them to improve individual and group performance. 
 
Cognitive load theory can be expanded to explain the advantages and disadvantages 
of collaborative learning when examining the transactional activities themselves as 
well as the factors that affect them. When considering the implications of the essential 
concept of element interactivity, it can be plausibly assumed that transactional 
activities can be thought of as interactive elements that may or may not contribute to 
learning. Interactive elements are roughly defined as "elements that must be 
simultaneously processed in working memory as they are logically related" (Sweller 
et al., 2011, p. 58). This concept explains both intrinsic and extraneous loads. In 
collaborative learning, inter-individual processes are information-processing 
mechanisms that impose a cognitive load within a group. Therefore, it is possible to 
talk about group-based interactivity information elements. These processes may 
impose a cognitive load at individual and group levels and may be related to factors 
such as prior knowledge on collaborative work (chapter 3), information distribution 
among members (chapter 4) or prior knowledge of the learning task (chapter 5). 
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Interacting information elements related to group learning may be reduced or 
optimized. For example, Chapter 3 shows that experienced groups reduced their 
regulatory interactions and unrelated task conversations perhaps because members 
acquired group schemas on how to organize themselves to process information and 
how to focus their interactions on tasks by avoiding engaging in interactions that do 
not contribute to learning. Optimization, on the other hand, does not imply reducing 
transactional activities but improving them. For example, experienced groups carried 
out more shared calculations and fewer individual calculations. It seems that 
experienced groups members learned that it is better to share their working memory 
resources and take advantage of the resources of other members to solve the complex 
steps of the problem than to try to do this alone. Also, according to the results of the 
time-on-task analysis of Chapter 3, optimizing collaborative cognitive load may even 
imply that students invest more time in inter-individual processing to consolidate 
their schemas in long-term memory. 
 
Another theoretical implication is to consider the flexible, transferable, or 
generalizable knowledge structures of long-term memory to construct relatively new 
domain-specific task schemas (Kalyuga, 2013). According to the environmental 
organizing and linking principle (see Chapter 2), schemas stored in long-term 
memory guide behavior. From this principle, it can be inferred that collaborative 
schemas based on relevant tasks may function as a shared central executive (Van den 
Bossche et al., 2011) that guides inter-individual activities of group members in 
relatively new tasks. Group schemas may be flexible to the extent that they can be 
applied to specific or analogical conditions of collaboration, because schemas are 
acquired and transferred situationally (Cooper & Sweller, 1987; Gick & Holyoak, 1983; 
Godden & Baddeley, 1975); in this case, with specific tasks and classmates. Under 
similar conditions of group learning, it seems that students recover their long-term 
memory group processing strategies required by the task such as group 
communication, sharing information, mutual coordination to solve specific task steps, 
organization of member participation, transactive contributions, cognitive 
monitoring, control of irrelevant interactions, etcetera (P. A. Kirschner et al., 2018; 
Zambrano R. et al., 2019a; Zambrano R. et al., 2020). These group information 
processing strategies may be executed through analogical transfer, which involves 
using processes to solve other similar problems (Gentner et al., 2001; Gick & Holyoak, 
1983; Novick, 1988). 
 

General Discussion 

119 

The availability of prior collaborative experiences may optimize the cognitive load 
associated with transactional activities. Solving new and complex learning problems 
in collaboration may demand a lot of working memory resources without 
contributing to the acquisition of better task schemas. If there is no prior collaborative 
experience, resolving complex problems in groups may require students to carry out 
unnecessary or irrelevant transactional activities (e.g., non-task interactions or 
discussions to organize themselves, Zambrano R. et al., 2019). These strategies may 
reduce the time for processing task information and harm group member learning. 
For this reason, the cognitive load related to collaborative work may be optimized by 
providing groups guidance on how to work together for their transactional activities 
to be more efficient and effective. 

Another implication for cognitive load theory is the role of prior knowledge in 
collaborative learning. According to the expertise reversal effect (Kalyuga et al., 2003), 
advanced students who receive instructional guidance to learn previously acquired 
information elements may have equal or higher cognitive load and equal performance 
(i.e., partial expertise reversal effect) or lower performance (i.e., full expertise reversal 
effect) than novices. It is plausible to assume that this effect may occur under 
conditions of collaboration (Zhang et al., 2016; Zhang et al., 2015). When the goal of 
instruction is processing and storing highly complex information relevant to group 
learning (i.e., high levels of task information elements and group-based information 
elements), having schemas on how to solve tasks in collaboration may not be 
sufficient. This research suggests (Chapter 5) that it is better to have collaborative 
experience in analogous tasks and partially developed schemas of specific learning 
tasks (i.e., task- and group-based shared schemas; Fransen et al., 2013; Van den 
Bossche et al., 2011). It seems a combination of generalizable knowledge and specific 
tasks create a cognitive structure that promotes better information processing during 
group learning and improves the quality of the schemas to solve learning problems. 
Providing partially developed knowledge schemas for complex tasks improves 
learning in both individual learners and non-experienced groups. However, learning 
how to handle complex tasks improves substantially more when learning groups have 
collaborative work schemas compared to individual learning. 

Learning in groups that have relevant prior task-based experience may or may not 
decrease cognitive load during learning, but group members may learn better and 
develop more efficient representations of the task. Instructional design could reduce 
the cognitive load of the students who learn in groups by managing the complexity of 
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the task, providing prior experience on similar tasks, organizing the distribution of 
information elements among group members, or ensuring the prior knowledge of the 
task. However, in principle, it is not possible to eliminate the collaborative cognitive 
load because it is the result of inter-individual processing without which it is not 
possible to learn in groups. Consequently, collaborative cognitive load research (i.e., 
associated with transactional activities) (P. A. Kirschner et al., 2018; Zambrano R. et 
al., 2020) is a unique field of research that may clarify the advantages and limitations 
of collaborative learning. 

Instructional implications 
The research reported here has a number of Important Instructional Implications, 
namely: 
• Groups may learn new, highly complex tasks when they have had previous

collaborative experience in similar tasks. Instructors can provide collaboration
schemas through tasks with similar characteristics already known by learners
(e.g., mathematics with calculus or statistics with economics). During the
preparation of learners, instructors should model group work through
scaffolding (i.e., fading approach) using cognitive prompts or scripts.

• When collaborative tasks are complex because students have to learn a large
number of interactive elements (i.e., task element interactivity is high) through a
high level of inter-individual processing (i.e., group-based element interactivity
is high), groups should be prepared to collaborate with similar tasks that they
have already learned to solve. If the tasks have high levels of task element
interactivity but low levels of group-based element interactivity, groups do not
require preparation for collaborative learning.

• When tasks are challenging to learn individually because they have very high-
level element interactivity, it is better to design collaborative tasks, prepare
groups to collaborate on similar tasks, and provide specific schemas about the
learning tasks. Instruction on how to collaborate may help groups to adequately
communicate and coordinate their inter-individual activities, and the initial
instruction of specific learning tasks may help to build the missing schemas to
learn to solve the task.

Limitations and future research 
This study has several limitations. First, the grading system in the learning phase did 
not allow evaluation of the collaboration process. Only the final score of each task was 
considered, but not the score of each step of the task. The reason why this rating 
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process was used was to encourage verbal interaction between collaborating learners 
and not download working memory through written elaborations (Van Bruggen et 
al., 2002). In the study reported in Chapter 3, voice recorders were used to identify the 
types of interactions. Future research may include recordings of both individual and 
inter-individual written elaborations, as well as non-verbal communication to obtain 
more information about the collaborative learning process (Martinez-Maldonado et 
al., 2017). 

Another limitation was that no working memory measurement was made to adapt 
the instruction to individual differences (Mojzisch et al., 2014). This research took 
advantage of prior knowledge about solving quadratic equations problems to prepare 
experienced groups, with the purpose of reducing the cognitive load to learn new 
domain-specific tasks and collaborative skills simultaneously (Fransen et al., 2013). 
However, this does not imply that individual differences in the processing of 
numerical, visual, or verbal information do not affect the results of groups (Barnes & 
Raghubar, 2017). It might be expected that individual working memory capacity 
affects group performance (Mojzisch et al., 2014). Perhaps students with more 
working memory capacity require fewer preparation sessions to work in groups than 
those with lower working memory capacity. It can also be assumed that those with 
lower working memory capacity benefit more when working in experienced groups 
with highly complex tasks (i.e., group-to-individual-in-group transfer; Schulz-Hardt 
& Brodbeck, 2012) than individual students or non-experienced groups with higher 
working memory capacity. 

The advantage of a previous collaborative experience was indicated by the higher 
performance and cognitive efficiency on the retention and delayed tests. In addition 
to these measurements, in future investigations, self-report questionnaires on group 
work (e.g., Fransen et al., 2011) and cognitive load (e.g., an adaptation of Leppink, 
Paas, Vleuten, Van Gog, & Van Merriënboer, 2013) could be applied to investigate if 
there is a difference between the perceptions of experienced and non-experienced 
groups about their own performance, and contrast this perception with the analysis 
of interactions as was done in the learning phase of Chapter 3. 

Future research may replicate the studies reported in this dissertation by comparing 
the three learning conditions simultaneously. The study would consist of comparing 
individual learning, experienced groups, and non-experienced groups, with students 
of high and low prior knowledge about the learning tasks. Because it has been 
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suggested that groups develop across multiple and dynamic phases before effectively 
collaborating to learn new tasks (Fransen et al., 2013; Tuckman & Jensen, 1977), groups 
were prepared with familiar tasks. It was assumed that if group members were 
required to learn to work together with new tasks, they may experience more 
cognitive load than learning to collaborate with known tasks. Future research may 
examine whether training groups with new tasks is really harmful. It entails, in turn, 
assuming that there may be collaboration schemas applicable to different (i.e., non-
analogous) domain-specific tasks.  
 
Another future investigation may be to examine the effect of group modeling. In the 
current investigation, students were prepared to work in groups by combining a 
scaffolding strategy (i.e., fading and completion) and a script collaboration (i.e., built-
in collaboration rules in worked examples) with already known similar tasks. It is 
possible that video-based collaborative worked-examples can accelerate the 
preparation of students to collaborate. Rummel and her colleagues (Rummel & Spada, 
2005; Rummel et al., 2006) have provided evidence of the effectiveness of this strategy. 
However, it has not been examined if the advantage of this strategy depends on task 
complexity and information distribution.  
 
Finally, future research to develop cognitive load measurements that are valid and 
reliable for collaborative learning is required. In this investigation, cognitive load was 
measured with the 9-point subjective scale (Paas, 1992). This scale seems to be reliable 
in individual learning conditions (Paas, Van Merrienboer, & Adam, 1994). However, 
this measurement and other similar ones (e.g., Leppink et al., 2013) cannot indicate 
what the cognitive load factors are (e.g., split attention or redundancy) (Sweller, 2018a, 
2018b). In conditions of collaboration where many more factors interact, this type of 
measurement may not be sufficiently specific. A promising way to measure the 
cognitive load in collaborative learning is to identify the linguistic features during 
collaborative learning that may be associated with the types of transactional activities 
and cognitive load (Khawaja et al., 2012, 2013). 
 

Conclusion 
This dissertation provides evidence to suggest that collaborative learning may be 
more effective and efficient by preparing groups to collaborate. The advantage of 
providing groups with collaboration schemas depends on how the information is 
distributed among group members and the prior knowledge of the specific domain 
tasks. The current investigations were designed using cognitive load theory, and 
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123 

mental effort measurements were used. This instructional approach provided a 
fruitful explanation of the advantage of having flexible collaboration schemas to solve 
similar learning problems that must be executed individually (i.e., after collaborative 
learning). It was also possible to explain the advantages of reducing or optimizing 
group processing of task information, considering that transactional activities are 
elements of information that impose a cognitive load. In general, the results confirmed 
that prior knowledge on how to collaborate and on the specific task explains why and 
when collaborative learning may or may not be effective and efficient. 
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mental effort measurements were used. This instructional approach provided a 
fruitful explanation of the advantage of having flexible collaboration schemas to solve 
similar learning problems that must be executed individually (i.e., after collaborative 
learning). It was also possible to explain the advantages of reducing or optimizing 
group processing of task information, considering that transactional activities are 
elements of information that impose a cognitive load. In general, the results confirmed 
that prior knowledge on how to collaborate and on the specific task explains why and 
when collaborative learning may or may not be effective and efficient. 
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147 

Summary 

In today’s society there seems to be a globally widespread notion that students learn 
best via collaboration. Additionally, there is overwhelming literature that supposes 
implicit or explicitly that grouping students to collaborate results in more effective 
and efficient learning outcomes. However, not all scientific studies show that learning 
in groups is consistently beneficial. A crucial aspect that may contribute in 
understanding why and when collaboration is favorable or harmful is considering the 
human cognitive architecture. This dissertation uses as its foundation the cognitive 
architecture of the human brain and, thus, by the factors that influence the processing 
of information in the working memories of members of collaborating groups and how 
new information is stored in their long-term memories. 

The primary goal of this research was to determine the consequences of decreasing the 
cognitive load associated with group interactions in order to improve collaborative learning in 
carrying out highly complex learning tasks. Collaborative learning groups can be 
considered as information processing systems that can simultaneously process more 
information elements due to the combination of the working memories of its members 
(i.e., collective working memory) and its transactional activities (i.e., communication 
and coordination processes). Inter-individual activities can be affected by the 
interaction of multiple variables related to learners (e.g., prior knowledge with respect 
to the task), groups (e.g., group-member experience in similar tasks or distribution of 
information among members), or tasks (e.g., level of element interactivity). 
Manipulating these variables may help to understand how to optimize group 
information processing and its cognitive load. 

In this research it is assumed that transactional activities and its related cognitive load 
may be optimized providing groups with collaborative experience based on relatively 
similar tasks (i.e., creating task-based experienced groups). Underlying the primary 
research goal is to determine if this group experience allows peers to appropriately 
use their transactional activities to learn better, have higher performance, and be more 
efficient than members of groups without this collaborative experience (i.e., non-
experienced groups). Other goals were to examine how the distribution of information 
among group members (i.e., high-density information vs. low-density information) 
and how prior knowledge (i.e., novices vs. advanced learners) affect the results of 
students learning in experienced and non-experienced groups. 
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among group members (i.e., high-density information vs. low-density information) 
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Chapter 2 explore the state of the art of cognitive load theory regarding collaborative 
learning. Specifically, the principles of human cognitive architecture, knowledge 
acquired through this cognitive architecture, and the types of cognitive load involved 
in acquiring new knowledge are discussed. It is suggested that the fundamental 
theoretical assumptions of cognitive load theory, although it has been built mostly 
through individual learning research, may apply to understand when and why 
collaborative learning may be an effective and efficient learning strategy. One way to 
improve this understanding is to explore the cognitive load factors related to intra-
group processing of complex tasks. In other words, research needs to determine the 
variables that impact the transactional activities during collaboration, and their 
consequences on individual learning outcomes. It is suggested that mutual cognitive 
interdependence may be a principle that explains the evolution of human cognitive 
architecture. However, it does not mean, from an instructional perspective, that 
collaborating to learn domain-specific tasks will always be appropriate because 
carrying out learning tasks in groups may impose unnecessary cognitive load 
associated with transactional activities in addition to the ‘normal’ load of the task. For 
this reason, it is proposed to consider the role of generalized domain knowledge 
concerning group work and prior task knowledge to optimize the working memory 
cognitive load associated with intra-group processing to acquire better schemas in 
long-term memory. It concludes with suggestions of a number of research hypotheses 
which have been derived from this discussion. 

Chapter 3 examines whether prior collaborative experience based on having carried 
out similar tasks increases effectiveness (i.e., performance), decreases cognitive load 
and, therefore, increases efficiency in the learning, short-term retention, and delayed 
retention phases. Results suggests that having in task-based group experience 
improves the learning outcomes. That is, members of the groups that had taken part 
in the preparation sessions designed to provide experience in collaboration with 
relatively similar tasks performed better, experienced less mental effort, and were 
more efficient than non-experienced groups on the retention and delayed tests. In 
addition, this study examined the differences between experienced and non-
experienced groups concerning socio-cognitive, socio-regulatory, and socio-
emotional and task unrelated transactional activities. An analysis of verbal 
interactions conducted with five experienced and five non-experienced groups 
showed that the experienced groups spent more time solving the learning task 
problems, had more socio-cognitive interactions and fewer socio-regulatory as well as 
task unrelated interactions. The number of socio-emotional interactions was not 
different between both conditions. These data suggest that collaborative work 
schemas acquired in the preparation phase may guide collaborative learning and 
optimize the working memory cognitive load devoted by group members to inter-
individual information processing of learning tasks. 

Summary 

149 

Chapter 4 examines whether the distribution of information among learners affects 
the effectiveness and efficiency of learning for groups with and without collaborative 
experience. Based on the essential concept of element interactivity level of cognitive 
load theory, it was assumed transactional activities are a type of group-based 
information element that imposes cognitive load, and that this may result in different 
levels of information density. Results suggest that experienced groups optimized their 
working memory resources and were more efficient in performing complex learning 
tasks (i.e., a high level of task element interactivity) with a higher level of information 
density than a lower level of information density (i.e., group-based element 
interactivity). Also, as expected, no significant difference was found between 
experienced and non-experienced groups in performance, mental effort, and 
efficiency, in all three of the measurement moments (study, short-term retention and 
delayed retention) on tasks that demanded lower information density. It seems that 
groups that previously worked on similar tasks acquired relevant schemas of group 
work and transferred them to learn highly complex tasks. These results provide 
instructional implications for designing efficient collaborative learning environments 
with respect to team experience and information distribution. 

Chapter 5 examines the effect of task-specific prior knowledge level (i.e., novices vs. 
advanced learners) on students that learned in groups that previously received 
instruction on how to collaborate (i.e., instructed groups) and individual learners. 
Advanced learners received an additional session that had the purpose of providing 
specific schemas of the new learning tasks. Regarding the learning condition, it was 
found that when students learn individually, advanced learners outperform novice 
learners in retention and delayed tests as expected. However, learners in the 
instructed groups invested higher mental effort in the retention test and an equivalent 
mental effort in the delayed test. When students learn in groups, as expected, more 
knowledgeable learners outperform novices and invest an equivalent amount of 
mental effort in the retention and delayed tests. Concerning prior knowledge, when 
learners are novices, as expected, groups outperform individuals in retention and 
delayed tests. However, instructed groups invested more mental effort in the 
retention test and equivalent mental effort in the delayed test. As expected, no 
difference between experienced groups and individuals was found in all tests when 
students had prior knowledge, except that in the retention test knowledgeable groups 
outperformed individual learning condition. It appears that task-based prior 
collaborative experience (i.e., a type of team expertise) and task-specific schemas (i.e., 
task expertise) make up structures in long-term memory that optimize group 
information processing to learn highly complex learning problems. 

Chapter 6 presents an overview of the main findings of this research, the theoretical 
and instructional implications, the limitations of the research, and future studies. This 
chapter ends by concluding that the evidence found in this research suggests that 
collaboration may be more effective and efficient for learning highly complex tasks 
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when groups are prepared to collaborate by previously solving other analogous tasks. 
The advantage of helping groups to acquire collaborative experience based on 
relevant tasks depends on how the information is distributed among group members 
and their prior knowledge of the new domain-specific tasks. It was found that the 
cognitive load theory approach can provide us with comprehensive explanations of 
the advantage of having acquired collaboration schemas to solve similar learning 
problems that learners are required to carry out individually (i.e., after collaborative 
learning). This approach allowed for the explanation of the benefits of reducing or 
optimizing group processing of task information, considering that transactional 
activities are elements of information that impose a cognitive load. In sum, it is 
concluded that prior knowledge on how to collaborate (i.e., a type of team expertise) 
and on the domain-specific task explain why and when collaborating for learning with 
highly complex tasks may or may not be effective and efficient. 

Previous research on cognitive load and collaborative learning (F. Kirschner et al., 
2009a; F. Kirschner, Paas, & Kirschner, 2011; F. Kirschner, Paas, Kirschner, et al., 2011) 
has taught us that if we are to effectively and efficiently employ collaborative learning 
we should make use of complex learning tasks to (1) profit from the collective working 
memory and (2) ensure that the benefits of collaborative learning are higher than the 
costs of transactive activities involved in collaboration. This research adds that we also 
must ensure that teams have (3) learned how to collaborate and that the team has 
experience collaborating on analogous types of tasks (P. A. Kirschner et al., 2018; 
Zambrano R. et al., 2020), and (4) the necessary prior domain-specific knowledge to 
work effectively on the tasks (Zambrano R. et al., 2019a; Zambrano R., Kirschner, 
Sweller, & Kirschner, 2019b; Zambrano R. et al., 2019c). 

151 

Samenvatting 

In onze huidige maatschappij is er en algemene en wijdverspreide opvatting dat 
leerlingen het beste leren door samen te werken; samenwerkend leren. Daarnaast is 
er ook heel veel literatuur die er vanuit gaat - ofwel impliciet ofwel expliciet – dat 
samenwerkend leren tot effectiever en efficiënter leren leidt. Echter, in meer detail 
naar deze literatuur kijkend kan geconcludeerd worden dat niet al het samenwerkend 
leren voordelig is voor leren. Belangrijk is dan ook om te onderzoeken hoe 
verschillende variabelen van samenwerkend leren het leerproces van de leerlingen 
beïnvloed. In dit proefschrift zal de cognitieve architectuur van het menselijke brein, 
en daarmee de factoren die van invloed zijn op het verwerken van informatie in het 
werkgeheugen van groepsleden en de manier waarop informatie wordt opgeslagen 
in hun lange termijn geheugen, hiervoor de leidraad zijn. Vanuit dit perspectief 
kunnen leerlingen die samenwerken om een leertaak te volbrengen worden gezien als 
informatieverwerkende systemen die meer informatie kunnen verwerken dan 
individueel werkende leerlingen omdat ze: A) door gebruik te maken van 
transactionele activiteiten (d.w.z. communicatie- en coördinatieprocessen) B) hun 
werkgeheugens kunnen combineren (m.a.w. gebruik maken van een collectieve 
werkgeheugen). Interactie tussen leerlingen die samenwerken kan beïnvloed worden 
door variabelen met betrekking tot: de leerling (bvb. voorkennis die relevant is voor 
de leertaak), de groep (bvb. de ervaring van groepsleden met gelijkwaardige leertaken 
of de verdeling van informatie over deze leden) of de leertaak (bvb. de hoeveelheid 
interactie tussen de verschillende informatie elementen in de leertaak). Door deze 
variabelen te manipuleren kan er belangrijk inzicht worden verkregen op hoe de 
informatieverwerking in groepen en de bijbehorende ervaren cognitieve belasting, 
geoptimaliseerd kan worden.  

In dit onderzoek wordt er verondersteld dat de transactionele activiteiten en hun 
cognitieve belasting geoptimaliseerd kunnen worden, wat zal resulteren in groepen 
die ervaring hebben met het samenwerken aan leertaken die relatief gelijkaardig of 
analoog zijn (d.w.z. het creëren van taak-gebaseerde ervaringsgroepen). Het 
onderliggende onderzoeksdoel is om te bepalen of deze groepservaring de mogelijkheid biedt aan 
hun leeftijdsgenoten om hun eigen transactionele activiteiten op een gepaste manier te 
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gebruiken om beter te leren, hun prestaties te verbeteren en hun efficiëntie te verhogen ten 
opzichte van leden van groepen zonder deze collaboratieve ervaring (d.w.z. niet-ervaren 
groepen). Het onderzoek had ook andere doelen, waaronder het bepalen in welke mate 
de distributie van informatie onder de groepsleden (d.w.z. een hoge 
informatiedichtheid tegen een lage informatiedichtheid) en een voorkennis (d.w.z. 
beginnelingen tegen gevorderde leerlingen ten opzichte van een bepaalde inhoud) de 
resultaten van leerlingen in ervaren en niet-ervaren groepen. 

Hoofdstuk 2 zet de huidig theorieën rond cognitieve belasting in relatie tot 
samenwerkend leren uiteen. Hierbij worden de principes van de cognitieve 
architectuur van het menselijke brein en de verschillende type cognitieve belasting 
verbonden aan de verwerving van nieuwe kennis. Er wordt hierbij gesuggereerd dat 
de fundamentele theoretische veronderstellingen van de cognitieve belastingtheorie, 
hoewel deze voornamelijk is gebaseerd op individueel leren, gebruikt kunnen worden 
om te begrijpen wanneer en waarom samenwerkend leren een effectieve en efficiënte 
leerstrategie kan zijn. Één manier om hier meer inzicht in te verkrijgen is te 
achterhalen welke cognitieve belastingfactoren gerelateerd zijn aan gezamenlijk leren 
van complexe taken. Met ander woorden: onderzoek zal de variabelen moeten 
identificeren die van invloed zijn op de transactionele activiteiten tijdens het 
samenwerkingsproces, en de gevolgen voor de individuele leeruitkomsten bepalen. 
Er wordt gesuggereerd dat wederkerige cognitieve afhankelijkheid (EN: mutual 
cognitive interdependence) een principe kan zijn die de evolutie van de menselijke 
cognitieve architectuur kan verklaren. Dit betekent echter niet, vanuit een 
institutioneel perspectief, dat voor het leren van domein specifieke taken 
samenwerken altijd het meest geschikt zal zijn. Het in samenwerking uitvoeren van 
leertaken legt immers een bijkomende en onnodige cognitieve belasting op de leerling 
die geassocieerd wordt met transactionele activiteiten. Deze cognitieve belasting komt 
boven op de ‘normale’ belasting van de domein specifieke leertaak. Om deze reden 
wordt voorgesteld om de rol van gegeneraliseerde domeinkennis betreffende 
samenwerken in groepen en voorkennis over de domein specifieke taak te 
onderzoeken. Dit om de cognitieve belasting geassocieerd met het 
samenwerkingsproces te optimaliseren zodat betere schema’s in het 
langetermijngeheugen gecreëerd kunnen worden. Op basis van deze theoretische 
inzichten zullen een aantal onderzoekshypotheses worden geformuleerd. 

Hoofdstuk 3 onderzoekt of eerdere ervaringen met samenwerkend-leren aan 
gelijkaardige taken de effectiviteit (d.w.z. de prestaties) bevordert en de ervaren 
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cognitieve belasting vermindert, waardoor de leerefficiëntie en de kennisretentie 
(d.w.z. leren) op korte en langere termijn ook verbeteren. De resultaten doen 
vermoeden dat taakgerichte groepservaring een positieve invloed heeft op de 
leeruitkomsten. Met andere woorden: de groepsleden die aan voorbereidende sessies 
deelgenomen hadden, die bedoeld waren om een zekere ervaring met het 
samenwerken aan gelijksoortige taken op te doen, presteerden beter, ervaarde minder 
mentale inspanning, en waren efficiënter tijdens de korte- en lange-termijn 
kennisretentietaken, dan de groepsleden die geen ervaring op dit gebied hadden 
opgedaan. Deze studie onderzocht niet alleen de verschillen in leren en ervaren 
cognitieve belasting, maar ook de verschillen tussen ervaren en niet-ervaren groepen 
wat betreft socio-cognitieve, socio-regulerende, socio-emotionele en niet-
taakgerelateerde transactionele activiteiten. Een analyse van de verbale interacties 
uitgevoerd met transcripties van vijf ervaren en vijf niet-ervaren groepen toonde aan 
dat de ervaren groepen meer tijd besteden aan het oplossen van de problemen 
verbonden aan de leertaken, en ook meer socio-cognitieve en minder socio-
regulerende en niet-taakgerelateerde interacties hadden. Het aantal socio-emotionele 
interacties was hetzelfde voor beide groepen. Deze data suggereren dat er tijdens de 
voorbereidende fase kennis is verworven over het samenwerkingsproces, en dat deze 
kennis het samenwerkend leren op een later tijdstip heeft helpen sturen waardoor de 
cognitieve belasting geassocieerd met het samenwerkingsproces geoptimaliseerd 
werd. 

Hoofdstuk 4 onderzoekt of de distributie van informatie onder groepsleden van 
invloed is op de effectiviteit en de efficiëntie van leren voor groepen met en zonder 
eerdere samenwerkingservaring. Gebaseerd op het essentiële concept van 
elementinteractiviteit (d.w.z. hoeveel interactie er tussen de verschillende informatie-
elementen in een uit te voeren leertaak is) uit de cognitieve belastingstheorie, werd er 
verondersteld dat transactionele activiteiten een groepsgeoriënteerd informatie-
element vormen, dat dus cognitieve belasting kan veroorzaken, waardoor 
verschillende niveaus van informatiedichtheid mogelijk zijn. De resultaten 
suggereren dat de ervaren groepen het gebruik van hun beschikbare werkgeheugen 
optimaliseerden en ook dat ze efficiënter waren bij het uitvoeren van complexe 
leertaken (d.w.z. leertaken met veel interactiviteit tussen de elementen) bij taken die 
meer informatiedicht waren dan bij taken die minder informatiedicht waren (d.w.z. 
groepgeoriënteerde elementinteractiviteit).  
Zoals verwacht werd er ook geconstateerd dat er bij taken met een lager niveau van 
informatiedichtheid er geen significant verschil was tussen de ervaren en de niet-
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cognitieve belasting vermindert, waardoor de leerefficiëntie en de kennisretentie 
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vermoeden dat taakgerichte groepservaring een positieve invloed heeft op de 
leeruitkomsten. Met andere woorden: de groepsleden die aan voorbereidende sessies 
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wat betreft socio-cognitieve, socio-regulerende, socio-emotionele en niet-
taakgerelateerde transactionele activiteiten. Een analyse van de verbale interacties 
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dat de ervaren groepen meer tijd besteden aan het oplossen van de problemen 
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cognitieve belasting geassocieerd met het samenwerkingsproces geoptimaliseerd 
werd. 
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elementinteractiviteit (d.w.z. hoeveel interactie er tussen de verschillende informatie-
elementen in een uit te voeren leertaak is) uit de cognitieve belastingstheorie, werd er 
verondersteld dat transactionele activiteiten een groepsgeoriënteerd informatie-
element vormen, dat dus cognitieve belasting kan veroorzaken, waardoor 
verschillende niveaus van informatiedichtheid mogelijk zijn. De resultaten 
suggereren dat de ervaren groepen het gebruik van hun beschikbare werkgeheugen 
optimaliseerden en ook dat ze efficiënter waren bij het uitvoeren van complexe 
leertaken (d.w.z. leertaken met veel interactiviteit tussen de elementen) bij taken die 
meer informatiedicht waren dan bij taken die minder informatiedicht waren (d.w.z. 
groepgeoriënteerde elementinteractiviteit).  
Zoals verwacht werd er ook geconstateerd dat er bij taken met een lager niveau van 
informatiedichtheid er geen significant verschil was tussen de ervaren en de niet-
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ervaren groepen wat betreft hun prestaties, mentale inspanning en efficiëntie. Het 
blijkt dus dat groepen die al eerder met gelijkaardige taken gewerkt hadden relevante 
schema’s voor het groepsproces aangeworven hadden, en die konden gebruiken om 
zeer complexe leertaken uit te voeren. Deze resultaten hebben implicaties voor het 
ontwerpen van efficiënte samenwerkend leeromgevingen wat betreft ervaring van 
teamleden werkend met elkaar en informatiedistributie over groepsleden. 

Hoofdstuk 5 onderzoekt het effect van het niveau van domeinspecifieke voorkennis 
(d.w.z. beginners vs. gevorderden in een kennisdomein) op leerlingen in groepen die 
instructie kregen over samenwerking en individueel lerende. Gevorderde lerende 
hadden een voorbereidende sessie gevolgd bedoeld om specifieke schema’s voor de 
leertaken te verwerven. Wat betreft het leren in geïnstrueerde groepen vs. individueel 
leren laten de resultaten zoals verwacht zien dat dat wanneer de leerlingen 
individueel leren de leerlingen met meer voorkennis (d.w.z. de gevorderden) beter 
presteren dan de leerlingen met weinig voorkennis (d.w.z. de beginners), zowel voor 
de korte-termijn als de uitgestelde retentietoets. De geïnstrueerde groepen moesten 
echter een grotere mentale inspanning leveren tijdens de korte-termijn retentietoets 
en evenveel mentale inspanning in de uitgestelde rententietoets. Daarnaast 
presteerden de ervaren groepen met gevorderden, zoals verwacht, beter dan de 
geïnstrueerde groepen met beginners, en moesten ze evenveel mentale inspanning 
leveren bij zowel de korte-termijn retentietoets als de uitgestelde. Wat betreft het 
niveau van domeinspecifieke voorkennis laten de resultaten zoals verwacht zien dat 
beginners die in groepen leren beter presteren dan individueel lerende bij zowel de 
korte-termijn- als de uitgestelde retentietoets. Geïnstrueerde groepen leveren echter 
een grotere mentale inspanning (d.w.z. ervaren meer cognitieve belasting) bij de 
korte-termijn retentietoets en een equivalente mentale inspanning in de uitgestelde 
retentietoets. Zoals verwacht, was er geen verschil in beide toetsen tussen de 
geïnstrueerde groepen en de individuen met veel voorkennis, behalve dat bij de korte-
termijn retentietoets de leerlingen in de groepen met meer voorkennis beter 
presteerden dan de lerende in de individuele leerconditie. Het blijkt dat eerdere 
ervaring met het taakgerichte samenwerken (d.w.z. het bezitten van een soort 
gezamenlijke expertise op het gebied van samenwerken) en het hebben van specifieke 
taak schema’s (d.w.z. het bezitten van taakexpertise) helpen om kennis, die de 
verwerking van groepsinformatie optimaliseren, in het langetermijngeheugen op te 
bouwen, en met zeer complexe leerproblemen om te gaan. 
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Hoofdstuk 6 geeft een overzicht van de voornaamste bevindingen van voorgaande 
studies, alsook een samenvatting van de theoretische en instructionele implicaties, de 
beperkingen van dit onderzoek, en voorstellen voor vervolg onderzoek. Dit hoofdstuk 
eindigt met de conclusie dat de resultaten van de verschillende onderzoeken 
suggereren dat samenwerkend leren effectiever en efficiënter is om het leren van zeer 
complexe leertaken te bevorderen. Dit is echter op voorwaarde dat de groepen de 
nodige voorbereiding voor het samenwerken krijgen door aan analoge taken te 
werken. Het voordeel dat een dergelijke voorbereiding kan opleveren is echter ook 
afhankelijk van hoe de informatie onder de groepsleden verdeeld is en hoe groot hun 
voorkennis is van de domeinspecifieke taken. Er kan daarnaast worden vastgesteld 
dat cognitieve belastingstheorie een duidelijke en uitgebreide verklaring kan geven 
voor het voordeel van samenwerkingsschema's om vergelijkbare leerproblemen op te 
lossen. Deze cognitieve benadering verklaart ook het voordeel van het reduceren of 
optimaliseren van het in samenwerking verwerken van taakinformatie, rekening 
houdend dat transactionele activiteiten cognitieve belasting veroorzaken. Kortom, er 
wordt vastgesteld dat voorkennis over hoe men moet samenwerken (d.w.z. een soort 
samenwerkingsexpertise) en over de domeinspecifieke taken (d.w.z. 
domeinexpertise) bepalend is om te kunnen verklaren wanneer en waarom 
samenwerkend leren bij zeer complexe taken al dan niet effectief en efficiënt zal zijn.  

Uit eerder onderzoek naar cognitieve belasting en samenwerkend leren (F. Kirschner 
et al., 2009a; F. Kirschner, Paas, & Kirschner, 2011; F. Kirschner, Paas, Kirschner, et al., 
2011) weten wij dat wij (1) complexe leertaken moeten gebruiken om voordeel uit het 
collectieve werkgeheugen te kunnen halen alsmede (2) ervoor moeten zorgen dat de 
voordelen van samenwerkend leren groter zijn dan kosten van de transactieve 
activiteiten verbonden aan het samenwerken. Van dit onderzoek kunnen wij hieraan 
toevoegen dat men ervoor moet zorgen dat de groepen / teams (3) al geleerd hebben 
hoe ze samen moeten werken en dat ze ook ervaring hebben opgedaan met het 
samenwerken aan gelijkaardige taken; en (4) over de nodige domeinspecifieke 
voorkennis beschikken om op een effectieve wijze met de leertaken om te gaan 
(Zambrano R. et al., 2019a; Zambrano R., Kirschner, Sweller, & Kirschner, 2019b; 
Zambrano R. et al., 2019c). 
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Resumen 

En la sociedad actual parece haber una noción generalizada de que los estudiantes 
aprenden mejor a través de la colaboración. Además, existe una literatura abrumadora 
que supone implícita o explícitamente que agrupar a los estudiantes para colaborar 
da lugar a resultados de aprendizaje más efectivos y eficientes. Sin embargo, no todos 
los estudios científicos muestran que aprender en grupos es consistentemente 
beneficioso. Un aspecto crucial que puede contribuir en la comprensión del por qué y 
cuándo la colaboración es favorable o perjudicial, es considerar la arquitectura 
cognitiva humana. Esta disertación usa como fundamento la arquitectura cognitiva 
del cerebro humano y, por lo tanto, los factores que afectan el procesamiento de la 
información en la memoria de trabajo de los miembros del grupo y cómo adquieren 
la nueva información en sus memorias de largo plazo. 

El objetivo principal de esta investigación fue determinar las consecuencias de la 
disminución de la carga cognitiva asociada con las interacciones grupales para mejorar el 
aprendizaje colaborativo en la realización de tareas de aprendizaje altamente complejas. Los 
grupos de aprendizaje colaborativo pueden considerarse como sistemas de 
procesamiento de información que pueden procesar simultáneamente más elementos 
de información debido a la combinación de las memorias de trabajo de sus miembros 
(i.e., memoria de trabajo colectiva) y sus actividades transaccionales (i.e., procesos de 
comunicación y coordinación). Las actividades interindividuales pueden verse 
afectadas por la interacción de múltiples variables relacionadas con los alumnos (e.g., 
el conocimiento previo con respecto a la tarea), con los grupos (e.g., la experiencia de 
miembros del grupo en tareas similares o la distribución de información entre ellos) o 
con las tareas (e.g., el nivel de interactividad de los elementos de información). La 
manipulación de estas variables puede ayudar a comprender cómo optimizar el 
procesamiento de información grupal y su carga cognitiva. 

En esta investigación se asume que las actividades transaccionales y su respectiva 
carga cognitiva pueden optimizarse proporcionando a los grupos experiencia 
colaborativa basada en tareas relativamente similares (i.e., creando grupos 
experimentados basados en tareas). Un objetivo específico derivado del objetivo 
principal de esta investigación fue determinar si esta experiencia grupal permite a los 
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compañeros utilizar adecuadamente sus actividades transaccionales para aprender mejor, tener 
un mayor rendimiento y ser más eficientes que los miembros de grupos sin experiencia de 
colaboración (i.e., grupos sin experiencia). Otros objetivos fueron examinar cómo la 
distribución de información entre los miembros del grupo (i.e., la información de alta 
densidad frente a la información de baja densidad) y cómo el conocimiento previo (i.e., 
principiantes versus aprendices avanzados) afecta los resultados de los estudiantes 
que aprenden en grupos con y sin experiencia. 

El Capítulo 2 explora el estado del arte de la teoría de la carga cognitiva con respecto 
al aprendizaje colaborativo. Específicamente, se discuten los principios de la 
arquitectura cognitiva humana, el conocimiento adquirido a través de esta 
arquitectura cognitiva y los tipos de carga cognitiva involucrados en la adquisición de 
nuevo conocimiento. Se sugiere que los supuestos teóricos fundamentales de la teoría 
de la carga cognitiva, aunque se han desarrollado principalmente a través de la 
investigación del aprendizaje individual, pueden aplicarse para comprender cuándo 
y por qué el aprendizaje colaborativo puede ser una estrategia de aprendizaje efectiva 
y eficiente. Una forma de mejorar esta comprensión es explorar los factores de carga 
cognitiva relacionados con el procesamiento intragrupal de tareas complejas. En otras 
palabras, la investigación necesita determinar las variables que impactan las 
actividades transaccionales durante la colaboración y sus consecuencias en los 
resultados de aprendizaje de los estudiantes individuales. Se sugiere que la 
interdependencia cognitiva mutua puede ser un principio que explica la evolución de 
la arquitectura cognitiva humana. Sin embargo, no significa, desde una perspectiva 
de la instrucción, que colaborar para aprender tareas específicas del dominio siempre 
sea apropiado, porque llevar a cabo tareas de aprendizaje en grupos puede imponer 
una carga cognitiva innecesaria asociada con actividades transaccionales, además de 
la carga ‘propia’ de la tarea. Por esta razón, se propone considerar el papel del 
conocimiento de dominio generalizado en relación con el trabajo en grupo y el 
conocimiento de tareas previas para optimizar la carga cognitiva de la memoria de 
trabajo asociada con el procesamiento intragrupal para adquirir mejores esquemas en 
la memoria a largo plazo. Se concluye sugiriendo algunas hipótesis de investigación 
derivadas de esta discusión. 

El Capítulo 3 examina si la experiencia de colaboración previa basada en haber 
realizado tareas similares aumenta la efectividad (i.e., el rendimiento), disminuye la 
carga cognitiva y, por lo tanto, aumenta la eficiencia en las fases de aprendizaje, 
retención a corto plazo y retención demorada. Los resultados sugieren que tener 
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experiencia grupal basada en tareas mejora los resultados del aprendizaje. Es decir, 
los miembros de los grupos que habían participado en las sesiones de preparación 
diseñadas para proporcionar experiencia de colaboración con tareas relativamente 
similares se desempeñaron mejor, experimentaron menos esfuerzo mental y fueron 
más eficientes que los grupos sin experiencia tanto en la retención como en las pruebas 
demoradas. Además, este estudio examinó las diferencias entre los grupos 
experimentados y no experimentados con respecto a las actividades transaccionales 
socio-cognitivas, socio-regulatorias y socio-emocionales y no relacionadas con la 
tarea. Un análisis de las interacciones verbales realizado con cinco grupos 
experimentados y cinco no experimentados mostró que los grupos experimentados 
pasaron más tiempo resolviendo los problemas de la tarea de aprendizaje, tuvieron 
más interacciones socio-cognitivas y menos interacciones socio-regulatorias y no 
relacionadas con la tarea. El número de interacciones socio-emocionales no fue 
diferente entre ambas condiciones. Estos datos sugieren que los esquemas de trabajo 
colaborativo adquiridos en la fase de preparación pueden guiar el aprendizaje 
colaborativo y optimizar la carga cognitiva de la memoria de trabajo que dedicaron 
los miembros del grupo al procesamiento de información interindividual de las tareas 
de aprendizaje. 

El Capítulo 4 examina si la distribución de la información entre los estudiantes afecta 
la efectividad y la eficiencia de los grupos con y sin experiencia colaborativa. Basado 
en el concepto esencial del nivel de interactividad del elemento de la teoría de la carga 
cognitiva, se asumió que las actividades transaccionales son un tipo de elemento de 
información grupal que impone carga cognitiva, y que esto puede resultar en 
diferentes niveles de densidad de información. Los resultados sugieren que los grupos 
experimentados optimizaron sus recursos de memoria de trabajo y fueron más 
eficientes en la realización de tareas de aprendizaje complejas (i.e., un alto nivel de 
interactividad de elementos de la tarea) con el nivel más alto de densidad de 
información que con el nivel más bajo de densidad de información (i.e., interactividad 
de elementos basada en el grupo) Además, como se esperaba, no se encontraron 
diferencias significativas entre los grupos con experiencia y sin experiencia en el 
rendimiento, el esfuerzo mental y la eficiencia en todas las fases cuando las tareas 
exigían un menor nivel de densidad de la información. Parece que los grupos que 
previamente trabajaron en tareas similares adquirieron esquemas relevantes de 
trabajo grupal y los transfirieron para aprender tareas altamente complejas. Estos 
resultados proveen lineamientos instruccionales para el diseño de ambientes de 
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aprendizaje colaborativo teniendo en cuenta la experiencia grupal y la distribución de 
la información. 

El Capítulo 5 examina el efecto del nivel de conocimiento previo específico de la tarea 
(i.e., principiantes versus estudiantes avanzados) sobre los estudiantes que trabajaron 
en grupos que habían recibido previamente instrucción sobre cómo colaborar (i.e., 
grupos instruidos) y estudiantes individuales. Los estudiantes avanzados recibieron 
una sesión adicional que tenía el propósito de proporcionar esquemas específicos de 
las nuevas tareas de aprendizaje. Con respecto a la condición de aprendizaje, se 
encontró que cuando los estudiantes aprenden individualmente, los estudiantes 
avanzados superan a los estudiantes novatos en las prueba de retención y demorada 
como se esperaba. Sin embargo, los estudiantes de los grupos instruidos invirtieron 
un mayor esfuerzo mental en la prueba de retención y un esfuerzo mental equivalente 
en la prueba demorada. Cuando los estudiantes aprenden en grupos, como se 
esperaba, los estudiantes con más conocimientos superan a los novatos e invierten una 
cantidad equivalente de esfuerzo mental en las pruebas de retención y demorada. Con 
respecto al conocimiento previo, cuando los alumnos son novatos, como se esperaba, 
los grupos superan en desempeño a los individuos en las pruebas de retención y 
demorada. Sin embargo, los grupos instruidos invirtieron más esfuerzo mental en la 
prueba de retención y un esfuerzo mental equivalente en la prueba demorada. Como 
se esperaba, no se encontraron diferencias en todas las pruebas entre quienes 
aprendieron en los grupos experimentados e individualmente cuando los estudiantes 
tenían conocimiento previo, excepto que en la prueba de retención los grupos con 
conocimiento previo superaron a la condición de aprendizaje individual. Parece que 
la experiencia de colaboración previa basada en tareas (i.e., un tipo de experticia 
basada en el equipo) y los esquemas específicos de la tarea (i.e., experticia basada en 
la tarea) conforman estructuras en la memoria a largo plazo que optimizan el 
procesamiento de información grupal para aprender problemas de aprendizaje 
altamente complejos. 

El Capítulo 6 presenta una visión general de los principales hallazgos de esta 
investigación, las implicaciones teóricas e instructivas, las limitaciones de la 
investigación y los estudios futuros. Este capítulo termina concluyendo que la 
evidencia encontrada en esta investigación sugiere que la colaboración puede ser más 
efectiva y eficiente para aprender tareas altamente complejas cuando los grupos están 
preparados para colaborar mediante la resolución de otras tareas similares. La ventaja 
de ayudar a los grupos a adquirir experiencia de colaboración basada en tareas 
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relevantes depende de cómo se distribuye la información entre los miembros del 
grupo y el conocimiento previo de las nuevas tareas de dominio específico. Se 
encontró que el enfoque de la teoría de la carga cognitiva puede proporcionar 
explicaciones apropiadas sobre la ventaja de tener esquemas de colaboración flexibles 
para resolver problemas de aprendizaje similares que deben ejecutarse 
individualmente (i.e., después del aprendizaje colaborativo). Este enfoque permitió 
explicar los beneficios de reducir u optimizar el procesamiento grupal de la 
información de la tarea, considerando que las actividades transaccionales son 
elementos de información que imponen una carga cognitiva. En suma, se concluye 
que el conocimiento previo sobre cómo colaborar (i.e., un tipo de experticia de equipo) 
y sobre la tarea de dominio específico explica por qué y cuándo colaborar para 
aprender con tareas altamente complejas puede o no ser efectivo y eficiente. 

La investigación previa sobre la carga cognitiva y el aprendizaje colaborativo (F. 
Kirschner et al., 2009a; F. Kirschner, Paas, & Kirschner, 2011; F. Kirschner, Paas, 
Kirschner, et al., 2011) ha mostrado que si deseamos emplear el aprendizaje 
colaborativo de manera efectiva y eficiente, debemos usar tareas de aprendizaje 
complejas para (1) aprovechar la memoria de trabajo colectiva y (2) asegurarnos que 
los beneficios del aprendizaje colaborativo sean más altos que los costos de las 
actividades transaccionales involucradas en la colaboración (F. Kirschner et al., 2009a). 
Esta investigación añade que también debemos asegurarnos de que los equipos (3) 
hayan aprendido a colaborar, y que tengan experiencia colaborando en tareas 
análogas (PA Kirschner et al., 2018; Zambrano R. et al., 2018; Zambrano R. et al., 2020), 
y (4) los conocimientos previos de dominio específico necesarios para trabajar 
efectivamente en las tareas (Zambrano R. et al., 2019a; Zambrano R. et al., 2019b; 
Zambrano R. et al., 2019c). 
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