
Software evolutionOpen Universiteit

20

Artikel 2

BLOK II

A Practical Model for Measuring Maintainability

I. Heitlager, T. Kuipers & J. Visser

Proceedings of the 6th International Conference on Quality of Information
and Communications Technology, 30-39, 2007

Artikel 2 A Practical Model for Measuring Maintainability

21

A Practical Model for Measuring Maintainability
– a preliminary report –

Ilja Heitlager
Software Improvement Group

The Netherlands
Email: i.heitlager@sig.nl

Tobias Kuipers
Software Improvement Group

The Netherlands
Email: t.kuipers@sig.nl

Joost Visser
Software Improvement Group

The Netherlands
Email: j.visser@sig.nl

Abstract—The amount of effort needed to maintain a software
system is related to the technical quality of the source code of
that system. The ISO 9126 model for software product quality
recognizes maintainability as one of the 6 main characteristics
of software product quality, with adaptability, changeability,
stability, and testability as subcharacteristics of maintainability.

Remarkably, ISO 9126 does not provide a consensual set of
measures for estimating maintainability on the basis of a system’s
source code. On the other hand, the Maintainability Index has
been proposed to calculate a single number that expresses the
maintainability of a system.

In this paper, we discuss several problems with the MI,
and we identify a number of requirements to be fulfilled by
a maintainability model to be usable in practice. We sketch a
new maintainability model that alleviates most of these problems,
and we discuss our experiences with using such as system for IT
management consultancy activities.

I. INTRODUCTION

The ISO/IEC 9126 standard [1] describes a model for soft-
ware product quality that dissects the overall notion of quality
into 6 main characteristics1: functionality, reliability, usability,
efficiency, maintainability, and portability. These characteris-
tics are further subdivided into 27 sub-characteristics. Further-
more, the standard provides a consensual inventory of metrics
that can be used as indicators of these characteristics [2], [3].

The identification and definition of software quality char-
acteristics of the ISO quality model provides a useful frame
of reference and standardized terminology which facilitates
communication concerning software quality. The defined met-
rics provide guidance for a posteriori evaluation of these
characteristics based on effort and time spent on activities
related to the software product, such as impact analysis, fault
correction, or testing. Unfortunately, the listed metrics are
not measured on the system itself and lack predictive power.
Speaking informally, they predict tomorrow’s weather to be
the same as today’s.

In general, the proposed metrics for assessing the main-
tainability characteristics are not measured on the subject of
maintenance, i.e. the system’s source code and documentation,
but on the performance of the maintenance activity by the
technical staff.

1In fact, this subdivision is given for so-called internal and external quality,
while a separate subdivision is made for quality in use. See also below.

Many software metrics have been proposed as indicators
for software product quality [4], [5]. In particular, Oman et al.
proposed the Maintainability Index (MI) [6], [7]: an attempt to
objectively determine the maintainability of software systems
based upon the status of the source code. The MI is based
on measurements the authors performed on a number of
systems and calibrating these results with the opinions of the
engineers that maintained the systems. The results for the
systems examined were plotted, and a fitting function was
derived. The resulting fitting function was then promoted to be
the Maintainability Index producing function. Subsequently, a
small number of improvements were made to the function.

We have used the Maintainability Index in our consultancy
practice [8] over the last four years, alongside many other
measures, and found a number of problems with it. Although
we see a clear use for determining the maintainability of the
source code of a system in one (or a few) simple to understand
metrics, we have a hard time using the Maintainability Index to
the desired effect. A prime reason is that a particular computed
value of the MI does not provide clues on what characteristics
of maintainability have contributed to that value, nor on what
action to take to improve this value.

Based on the limitations of metrics such as the MI, we
have formed an understanding of the minimal requirements
that must be fulfilled by a practical model of maintainability
that is grounded in source code analysis. With these require-
ments in mind we have started to formulate and apply an
alternative maintainability model. In this alternative model, a
set of well-chosen source-code measures are mapped onto the
sub-characteristics of maintainability according to ISO 9126,
following pragmatic mapping and ranking guidelines.

The work reported in this paper is preliminary in the sense
that our maintainability model is still evolving. In particular,
adjustments and refinements are made to the model on a case
by case basis. Nonetheless, the practical value of the model
has already been demonstrated in our practise, and we expect
further improvements of the model to only bring an increased
degree of detail and precision.

This paper is structured as follows. In Section II, we recapit-
ulate the ISO 9126 standard for software product quality, fo-
cussing on the characteristics of maintainability. In Section III,
we revisit the Maintainability Index and its limitations as
perceived by us, which leads up to a formulation in Section IV

Software evolutionOpen Universiteit

22

of minimal requirements on a practical maintainability model.
The particular model we have come up with is outlined, in
simplified form, in Section V. In Section VI, we discuss the
merits of the presented model and we sketch its relation to
the actual, more elaborate model we employ in practise. We
share some experiences and results of the application of this
model in our management consulting practise in Section VII.
In Section VIII we discuss related work, and we conclude the
paper in Section IX.

II. ISO 9126 SOFTWARE ENG. PRODUCT QUALITY

In 1991, an international consensus on terminology for the
quality characteristics for software product evaluation was
published by the International Standards Organization (ISO):
ISO/IEC IS 9126:1991 Software Product Evaluation - Quality
Characteristics and Guidelines for Their Use [9]. During the
period 2001 to 2004, an expanded version was developed and
published by the ISO, which consists of one International
Standard (IS) and three Technical Reports (TR):

• IS 9126-1: Quality Model [1]
• TR 9126-2: External Metrics [2]
• TR 9126-3: Internal Metrics [3]
• TR 9126-4: Quality in Use Metrics [10]

The international standard laid down in the first part defines
the quality model. The technical reports contain a consensual
inventory of measures (metrics) for evaluating the various
characteristics defined in the quality models.

A. Views on software product quality

The ISO 9126 quality model distinguishes three different
views on software product quality:

• Internal quality: concerns the properties of the system that
can be measured without executing it.

• External quality: concerns the properties of the system
that can be observed during its execution.

• Quality in use: concerns the properties experienced by its
(various types of) users during operation and maintenance
of the system.

Internal quality is believed to impact external quality, which
in turn impacts quality in use.

B. Characteristics of software product quality

Central to the quality model of ISO 9126 is its breakdown of
the notions of internal and external software product quality
into 6 main characteristics which are further subdived into
a total of 27 quality subcharacteristics. This breakdown is
depicted in Fig. 1. In this paper, we are focussing on the
maintainability characteristic, which is subdivided into:

• Analysability: how easy or difficult is it to diagnose the
system for deficiencies or to identify the parts that need
to be modified?

• Changeability: how easy or difficult is it to make adap-
tations to the system?

• Stability: how easy or difficult is it to keep the system in
a consistent state during modification?

• Testability: how easy or difficult is it to test the system
after modification?

• Maintainability conformance: how easy or difficult is it
for the system to comply with standards or conventions
regarding maintainability?

In the sequel, we will not dwell upon the last of these sub-
characteristics.

The third view of quality, i.e. quality in use, is not broken
down according to the same hierarchy. Rather, four char-
acteristics of quality in use are distinguished: effectiveness,
productivity, safety, and satisfaction. These characteristics are
not subdivided further. Quality in use remains out of the scope
of this paper.

C. Maintainability measures

Measures for estimating external, internal, and quality-in-
use characteristics are listed in three technical reports accom-
panying the standard quality model. For the maintainability
characteristic, 16 external quality measures are defined [2],
and 9 internal quality measures [3].

1) External metrics: The suggested external metrics are
computed by measuring the performance of the maintenance
activity by the technical staff. For example, to measure
changeability, the ‘change implementation elapse time’ is
suggested. A parameter to this measure is the average time that
elapses between the moment of diagnosis and the moment of
correction of a deficiency. To measure testability, the ‘re-test
efficiency’ is suggested as measure, computed from the time
spent to obtain certainty that a deficiency has indeed been
corrected. Thus, the maintainability of the software product is
estimated by timing the duration of maintenance tasks.

2) Internal metrics: Some suggested internal metrics are
based on a comparison of required features and features
implemented so far. For example, to measure analysability, the
‘activity recording’ measure is suggested, which is defined as
the ratio between the number of data items for which logging
is implemented versus the number of data items for which
the specifications require logging. Other internal metrics are
again based on measurements of the maintenance activity.
For example, the ‘change impact’ measure of changeability
is computed from the number of modifications made and the
number of problems caused by these modifications.

3) Critique: These suggested internal and external mea-
sures are not (exclusively) based on direct observation of the
software product, but rather on observations of the interaction
between the product and its environment: its maintainers, its
testers, its administrators; or on comparison of the product
with its specification, which itself could be incomplete, out of
date, or incorrect.

Therefore, for measuring maintainability by direct observa-
tion of a system’s source code, we need to look elsewhere.

III. REVISITING THE MAINTAINABILITY INDEX

The Maintainability Index [6], [7] has been proposed to
objectively determine the maintainability of software systems
based on the status of the corresponding source code. The MI

Artikel 2 A Practical Model for Measuring Maintainability

23

analysability
changeability
stability
testability

maintainability

maturity
fault tolerance
recoverability

reliability

external and internal quality

suitability
accuracy

interoperability
security

functionality

adaptability
installability
co-existence
replacability

portability

understandability

learnability
operability

attractiveness

usability

time behaviour

resource
utilisation

efficiency

Fig. 1. Breakdown of the notions of internal and external software product quality into 6 main characteristics and 27 sub-characteristics. The 6 so-called
compliance sub-characteristics of each of the 6 main characteristics have been suppressed in this picture. In this paper, we focus on the maintainability
characteristic and its 4 sub-characteristics of analysability, changeability, stability, and testability.

is a composite number, based on several different metrics for
a software system. It is based on the Halstead Volume (HV)
metric [11], the Cyclomatic Complexity (CC) [12] metric,
the average number of lines of code per module (LOC),
and optionally the percentage of comment lines per module
(COM). Halstead Volume, in turn, is a composite metric based
on the number of (distinct) operators and operands in source
code. The complete fitting function is:

171−5.2ln(HV)−0.23CC−16.2ln(LOC)+50.0sin
√

2.46 ∗ COM

This fitting function is the outcome of data collection on a
large number of systems, calibrated with the expert opinions
of the technical staff that maintained them. The higher the MI,
the more maintainable a system is deemed to be.

In our software quality consultancy practise, we have had
the opportunity of calculating the maintainability index for a
large and diverse collection of mission-critical software sys-
tems. These systems have been developed by many different
teams, using many different technologies, for many different
purposes. Based on this experience, we have identified a
number of important limitations of the MI in the context of
software quality assessment.

A. Root-cause analysis

Since the MI is a composite number, it is very hard to
determine what causes a particular value for the MI. In fact,
since the MI fitting function is based entirely on statistical
correlations, there may be no causal relation at all between
the values of ingredient metrics and the value of the MI
derived from them. The acceptance of a numerical metric
with practitioners, we find, increases greatly when they can
determine what change in a system caused a change in the
metric. When the MI has a particularly low value, indicating
low maintainability, it is not immediately clear what steps can
be taken to increase it.

B. Average complexity

One of the metrics used to compose the MI is the average
Cyclomatic Complexity. We feel this is a fundamentally flawed
number. Particularly for systems built using object-oriented

technology, the complexity per module will follow a power
law distribution. Hence, the average complexity will invariably
be low (e.g. because all setters and getters of a Java system
have a complexity of 1), whereas anecdotal evidence suggests
that the maintenance problems will occur in the few outliers
that have exceptionally high complexity. In general, the use
of averaging to aggregate measures on individual system parts
tends to mask the presence of high-risk parts.

C. Computability

The Halstead Volume metric, in particular, is difficult to
define and to compute. There is no consensual definition of
what constitutes an operator or an operand in a language such
as Java or C#. For this and other reasons, the Halstead Volume
is a metric that is not widely accepted within the software
engineering community (e.g. see [13], [14] for a critique).
Even if a crisp definition of the notions of operator and
operand would be available for all mainstream languages, the
Halstead metrics would remain relatively difficult to compute.
Basically, a complete and accurate tokenization of all programs
needs to be carried out to compute these numbers. For some
languages, tokenization is not enough, and a full syntactic and
partial semantic analysis is required.

D. Comment

The implication of using the number of lines of comment
as a metric is that a well documented piece of code is better
to maintain than a piece of code that is not documented at
all. Although this appears to be a logical notion, we find
that counting the number of lines of comment, in general,
has no relation with maintainability whatsoever. More often
than not, comment is simply code that has been commented
out, and even if it is natural language text it sometimes refers
to earlier versions of the code. Also, more documentation for
a particular piece of code may have been added, precisely
because it is more complex, hence more difficult to maintain.
Apparently, the authors of the MI had reservations about
measuring comment, as they made this part of the MI optional.

Software evolutionOpen Universiteit

24

source code property
e.g. complexity

system quality characteristics
e.g. changeability

source code measure
e.g. cyclomatic complexity

influences

indicates

can be measured by

can be caused by

Fig. 2. The maintainability model that we propose maps system-level quality characteristics as defined by the ISO 9126-1 standard into source code measures.
The first step in this mapping links these system-level characteristics to source code properties. The second step provides a measurement of the properties in
terms of one or more source code measures.

E. Understandability

There is no logical argument why the MI formula contains
the particular constants, variables, and symbols that it does.
The formula just ‘happens’ to be a good fit to a given data
set. As a result the formula is hard to understand and to
explain. Why does the formula have two volume measures (HV
and LOC) as parameter? Why is the cyclomatic complexity
multiplied by 0.23? Why does the count of comment lines
appear under a square root and a sin function? When commu-
nicating about maintainability among stakeholders in a system,
the recurring invocation of an empirical experimentation as
justification for the formula is a source of frustration rather
than enlightenment.

F. Control

Using the MI proves to be hard, both on the management
level as well as on the technical/developer level. We find that
the lack of control the developers feel they have over the
value of the MI makes them dismissive of the MI for quality
assessment purposes. This directly influences management
acceptance of the value. Although having a measure such
as the MI at your disposal is obviously more useful than
knowing nothing about the state of your systems, the lack
of knobs to turn to influence the value makes it less useful as
a management tool.

IV. REQUIREMENTS FOR A MAINTAINABILITY MODEL

Based on the limitations of metrics such as the MI, we
have formed an understanding of the minimal requirements
that must be fulfilled by a practical model of maintainability
that is grounded in source code analysis. In particular, we want
the following requirements to be met by the various measures
to be used in the model:

• Measures should be technology independent as much as
possible. As a result, they can be applied to systems that
harbour various kinds of languages and architectures.

• Each measure should have a straightforward definition
that is easy to compute. Consequently, little up-front
investment is needed to perform the measurement.

• Each measure should be simple to understand and ex-
plain, also to non-technical staff and management. It

should facilitate communication between various stake-
holders in the system.

• The measures should enable root-cause analysis. By
giving clear clues regarding causative relations be-
tween code-level properties and system-level quality, they
should provide a basis for action.

In the sequel, we will discuss for each proposed measure
whether these requirements are met or not.

V. SIG MAINTAINABILITY MODEL

With these requirements in mind we have started to for-
mulate an alternative maintainability model in which a set
of well-chosen source-code measures are mapped onto the
sub-characteristics of maintainability according to ISO 9126,
following pragmatic mapping and ranking guidelines.

This is by no means a complete and mature model, but work
in progress. In fact, the model presented here is actually the
stable core of a larger model that has evolved on a case by
case basis in the course of several years of software quality
consultancy. Evolution has not stopped, and adjustments and
refinements are still being made, driven by new situations
we encounter, new knowledge we acquire, and retrospective
evaluations of each assessment study we perform. In the
current paper we share the current state of affairs, and welcome
feedback from the academic community.

As illustrated in Fig. 2, the maintainability model we
propose links system-level maintainability characteristics to
code-level measures in two steps. Firstly, it maps these system-
level characteristics to properties on the level of source code,
e.g. the changeability characteristic of a system is linked to
properties such as complexity of the source code. Secondly,
for each property one or more source code measures are
determined, e.g. source code complexity is measured in terms
of cyclomatic complexity. Below we will discuss these two
steps in more detail.

A. System characteristics mapped onto source code properties

Our selection of source code properties, and the mapping of
system characteristics onto these properties is shown in Fig. 3.

The notion of source code unit plays an important role in
various of these properties. By a unit, we mean the smallest

Artikel 2 A Practical Model for Measuring Maintainability

25

IS
O

91
26

m
ai

nt
ai

na
bi

lit
y

source code properties

vo
lu

m
e

co
m

pl
ex

ity
pe

r
un

it

du
pl

ic
at

io
n

un
it

si
ze

un
it

te
st

in
g

analysability x x x x
changeability x x
stability x
testability x x x

Fig. 3. Mapping system characteristics onto source code properties. The
rows in this matrix represent the 4 maintainability characteristics according
to ISO 9126. The columns represent code-level properties, such as volume,
complexity, duplication, unit length, number of units, and number of modules.
When a particular property is deemed to have a strong influence on a particular
characteristic, a cross is drawn in the corresponding cell..

piece of code that can be executed and tested individually. In
Java or C# a unit is a method, in C a unit is a procedure or
function. For a language such as COBOL, there is no smaller
unit than a program. Further decompositions such as sections
or paragraphs are effectively labels, but are not pieces of
code that are sufficiently encapsulated to be executed or tested
individually.

The influence of the various source code properties on main-
tainability characteristics of a software system is as follows:

• Volume: The overall volume of the source code influences
the analysability of the system.

• Complexity per unit: The complexity of source code units
influences the system’s changeability and its testability.

• Duplication: The degree of source code duplication (also
called code cloning) influences analysability and change-
ability.

• Unit size: The size of units influences their analysability
and testability and therefore of the system as a whole.

• Unit testing: The degree of unit testing influences the
analysability, stability, and testability of the system.

This list of properties is not intended to be complete, or pro-
vide a watertight covering of the various system-level charac-
teristics. Rather, they are intended to provide a minimal, non-
controversial estimation of the main causative relationships be-
tween code properties and system characteristics. Intentionally,
we only highlight the most influential causative links between
source code properties and system characteristics. For instance,
the absence of a link between volume and testability does not
mean the latter is not influenced at all by the former, but rather
that the influence is relatively minor.

For ranking, we use the following simple scale for each
property and characteristic: ++ / + / o / - / --. We will now
discuss the various code-level properties in more detail and
for each provide straightforward guidelines for measuring and
ranking them.

B. Volume

It is fairly intuitive that the total size of a system should
feature heavily in any measure of maintainability. A larger
system requires, in general, a larger effort to maintain. In par-
ticular, higher volume causes lower analysability (the system
is harder to understand).

1) Lines of code: Many different metrics have been pro-
posed for measuring volume. We could use a simple line
of code metric (LOC), which counts all lines of source code
that are not comment or blank lines. Within the context of a
single programming language, this measure provides sufficient
grounds for comparison between systems and for unequivocal
rating. For example, a Java system of 200 KLOC could be
considered small (+), while a system of 1.3 MLOC or more
could be rated as extremely big (--).

2) Man years via backfiring function points: However, to
meet our requirement that our method be as language indepen-
dent as possible, we correct for expressivity and productivity
of programming languages. For this purpose, we make use of
the Programming Languages Table of Software Productivity
Research LLC [15]. For an extensive set of programming
languages, this table lists (i) how many LOC corresponds on
average to a function point (FP), and (ii) how many function
points per month a programmer can on average produce when
using this language. This leads us to use the following ranking
scheme:

KLOC

rank MY Java Cobol PL/SQL
++ 0 − 8 0-66 0-131 0-46
+ 8 − 30 66-246 131-491 46-173
o 30 − 80 246-665 491-1,310 173-461
- 80 − 160 655-1,310 1,310-2,621 461-922
-- > 160 > 1, 310 > 2, 621 > 922

Thus, a system larger than 160 man years (MY) is considered
extremely large, and is ranked as --. For Java systems, this
means that 1.3 million lines of code produce a -- ranking,
while for COBOL this threshold lies only at 2.6 MLOC. When
a system consists of programs written in various languages, we
simply translate each separate LOC count to man years, add
these together, and perform ranking according to the first two
columns.

Needless to say, this method of ranking systems by vol-
ume is not extremely accurate, but, it has turned out to be
sufficiently accurate for our purposes. In fact, we have found
our ranking scheme to be highly usable in practise; it is fast,
repeatable, sufficiently accurate, explainable, and technology
independent.

The requirement of enabling root-cause analysis is not quite
fulfilled by the volume measure. When a system is found to
be large, the measurement value itself does not immediately
indicate causes or possible solutions. By dividing the system
into modules, layers, or other partitions, it may be possible
to track down those parts that are driving the code bloat.
But often, this is not the case, and the excessive volume
may simple be the result of attempting to pour too much

Software evolutionOpen Universiteit

26

low
59%

moderate
14%

high
16%

very high
11%

low
78%

moderate
13%

high
7%

very high
2%

Fig. 4. Distribution of lines of code over the four complexity risk levels
for two different systems. Regarding complexity, the leftmost system scores
-- and the rightmost system scores -.

functionality into a single system.
3) Other volume measures: Apart from lines of code, or

man months calculated via backfiring function points, we
frequently use supplementary estimates. For example, for some
systems it makes sense to get some estimate of functional
size, by counting database tables and fields, screens or input
fields, logical and physical files, and such. We employ similar
rating schemes in relation to these measures. However, these
measures are often not easy to calculate, they are rather
language specific, and they do not measure general volume,
but functional size specifically. We use them as secondary
measures only.

C. Complexity per unit

The complexity property of source code refers to the degree
of internal intricacy of the source code units from which it is
composed. Complex units are difficult to understand (analyze)
and difficult to test, i.e. complexity of a unit negatively impacts
the analysability and testability of the system.

1) Cyclomatic complexity per unit: Since the unit is the
smallest piece of a system that can be executed and tested
individually, it makes sense to calculate the cyclomatic com-
plexity on each unit. As we discussed earlier, the complexity
follows a power law distribution, so calculating an average
of the complexities of individual units will give a result that
may smooth out the outliers. Summation of unit complexities
provides a complexity number of the entire system. However,
this sum has been observed to correlate strongly with volume
measures such as total LOC and is, therefore, not meaningful
as complexity measure [16]. A different way to aggregate the
complexities of units needs to be found.

To arrive at a more meaningful aggregation, we take the
following categorization of units by complexity, provided by
the Software Engineering Institute, into account [17]:

CC Risk evaluation
1-10 simple, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk
> 50 untestable, very high risk

Thus, from the cyclomatic complexity of each unit, we can
determine its risk level.

We now perform aggregation of complexities per unit by
counting for each risk level what percentage of lines of code
falls within units categorized at that level. For example, if, in
a 10.000 LOC system, the high risk units together amount to
500 LOC, then the aggregate number we compute for that risk
category is 5%. Thus, we compute relative volumes of each
system to summarize the distribution of lines of code over
the various risk levels. These complexity risk ‘footprints’ are
illustrated in Fig. 4 for two different systems.

Given the complexity risk footprint of a system, we deter-
mine its complexity rating using the following schema:

maximum relative LOC

rank moderate high very high
++ 25% 0% 0%
+ 30% 5% 0%
o 40% 10% 0%
- 50% 15% 5%
-- - - -

Thus, to be rated as ++, a system can have no more than 25%
of code with moderate risk, no code at all with high or very
high risk. To be rated as +, the system can have no more than
30% of code with with moderate risk, no more than 5% with
high risk, and no code with very high risk. A system that has
more than 50% code with moderate risk or more than 15%
with high or more than 5% with very high risk is rated as --.

For example, the system with the leftmost complexity
profile of Fig. 4 will be rated as --, since it breaks both the
15% boundary for high risk code and the 5% boundary for
very high risk code. The rightmost profile leads to a - rating,
because it breaks the 0%, but not the 5% boundary for very
high risk code.

The boundaries we defined are based on experience. During
the course of evaluating numerous systems, these boundaries
turned out to partition systems into categories that corre-
sponded to expert opinions. This rating scheme is again
language independent, easy to explain and compute, and
sufficiently accurate for our purposes. Also, by listing the
most complex units, the sources of increase risk and decreased
mainainability are easy to track down.

2) Other complexity measures: In particular cases, we
use complementary measures for complexity. These include
structure metrics such as fan-in, fan-out, coupling, and stability
measures derived from these. These measures can be computed
in many different ways, depending on the interrelations and
groupings of units that are taken into account. We have
not fixed, language-independent rating schemes for these
measures, and we employ them mainly as supplemental to
cyclomatic complexity.

D. Duplication

Duplication of source code fragments (code clones) is a
phenomenon that occurs in virtually every system. Though
the occurrence of a small amount of duplication is natural,
excessive amounts of duplication are detrimental to its main-
tainability, in particular to the characteristics of analysability

Artikel 2 A Practical Model for Measuring Maintainability

27

and changeability [18].

Basically, excessive duplication makes a system larger than
it needs to be. In fact, we have frequently analyzed systems
that were (much) larger than we had expected on the basis
of their functionality. We have found that measuring code
duplication gives a fairly simple estimate of how much larger
a system is. Of course, various other factors also contribute
to a system being larger than necessary, including the lack of
use of library functions.

Many different techniques have been proposed for finding
duplication in source code, also called clone detection [19]–
[24]. Most of these techniques have been developed to opti-
mize the trade-off between accuracy, performance, and lan-
guage independence. We have experimented with several of
these sophisticated techniques, but we have settled on an
extremely simple method for determining code duplication.

1) Duplicated blocks over 6 lines: We calculate code
duplication as the percentage of all code that occurs more
than once in equal code blocks of at least 6 lines. When
comparing code lines, we ignore leading spaces. So, if a
single line is repeated many times, but the lines before and
after differ every time, we do not count it as duplicated. If
however, a group of 6 lines appears unchanged in more than
one place, we count it as duplicated. Apart from removing
leading spaces, the duplication we measure is an exact string
matching duplication.

Clearly the accuracy of our results is below that of some
more sophisticated techniques. However, the duplication mea-
sure we defined is again easy to explain and implement, it
is fully language independent, and extremely fast. In practise,
we have discovered that the accuracy is quite sufficient for our
purposes.

Our rating scheme for duplication is as follows:

rank duplication
++ 0-3%
+ 3-5%
o 5-10%
- 10-20%
-- 20-100%

Thus, a well-designed system should not have more than
5% code duplication. Only exceptionally lean systems shown
duplication lower than 3%. When duplication exceeds 20%,
source code erosion is out of control.

The duplication measure allows root-cause analysis to the
extent that the largest duplicates can be listed and the parts
of the system where more duplication occurs can be tracked
down. However, solving duplication problems often involves
more than simply factoring out duplicated fragments into
reusable subroutines. Instead, a deeper cause may be present,
such as lack of development skills or supporting tools, archi-
tectural or design problems, or counter-productive productivity
incentives.

E. Unit size

Apart from the complexity per unit, the size of the units
from which a system is composed may shed light on its
maintainability. Intuitively, larger units are more difficult to
maintain because they have lower analysability and lower
testability.

As remarked earlier, a strong statistical correlation exists
between size (e.g. in terms of LOC) and cyclomatic complex-
ity. The added value of computing unit size in addition to
complexity per unit may therefore seem dubious; many of
the complex units will also be large. Still, using unit size
as a measure complementary to complexity allows detection
of large units with low complexity. In our experience, many
systems contain a significant number of such units, which
should be taken into account when evaluating maintainability.

1) Lines of code per unit: To measure unit size, we again
use a simple lines of code metric. The risk categories and
scoring guidelines are similar to those for complexity per unit,
except that the particular threshold values are different.

F. Unit testing

Unit tests are small programs, written by developers, for
automatically testing their code, one unit at a time. For many
languages, unit testing frameworks are available that can be
integrated into development environments. Examples are JUnit
for unit testing of Java code2, and NUnit for .Net languages
such as C#3. The presence of an extensive set of good unit
tests in a code base has a significant positive impact on
maintainability. Unit tests raise testability, since with a single
push of a button, tests can be executed. Unit tests raise
stability, because they provide a regression suite as safety
net to help prevent introducing errors when modifications are
made. Unit tests also have a strong documentative nature,
which is good for analysability.

1) Unit test coverage: Unit test coverage can be measured
with dedicated tools such as Clover4. These tools do not
perform static source code analysis, but rather a dynamic
analysis which involves running the tests.

Our scoring scheme for unit test coverage is as follows:

rank unit test coverage
++ 95-100%
+ 80-95%
o 60-80%
- 20-60%
-- 0-20%

Thus, an excellent sets of unit tests covers between 95 and
100% of all production code. A coverage below 60% is
considered poor.

The unit test coverage measure does not fulfill our all all
requirements. Coverage analysis tools, or even unit testing
frameworks, are not available for all languages, and the

2http://www.junit.org/
3http://www.nunit.org/
4http://www.cenqua.com/clover/

Software evolutionOpen Universiteit

28

IS
O

91
26

m
ai

nt
ai

na
bi

lit
y

source code properties

vo
lu

m
e

co
m

pl
ex

ity
pe

r
un

it

du
pl

ic
at

io
n

un
it

si
ze

un
it

te
st

in
g

++ -- - - o
analysability x x x x o
changeability x x -
stability x o
testability x x x -

Fig. 5. Mapping source code property scores back to system-level scores
for maintainability subcharacteristics. A system-level score is derived for each
sub-characteristic by taking a weighted average of the scores of relevant (i.e.
marked with a cross) code properties. By default, all weights are equal.

measure is therefore not language independent. Also, coverage
analysis is not trivial to compute, since the analysis is dynamic
and requires some degree of tuning for each individual system.

2) Number of assert statements: A high level of unit test
coverage is easy to obtain by writing unit tests of bad quality.
A test that, directly or indirectly, invokes many methods is a
‘unit’ test only in name, but contributes to a high coverage
value. Also, a test that invokes methods, but does not check
behaviour (i.e. contains no assert statements), contributes to
the coverage measure without actually testing anything. Thus,
in some situations, the awareness of developers that coverage
is being measured may lead to increased coverage without
increased ‘real’ testing. In these situations, it is essential to
also measure the quality of unit tests.

To estimate quality of unit tests, we count the number of
assert statements. This is again a very simple measure, easy
to implement, understand, and explain. We currently have no
fixed rating scheme in place, but merely use this measure to
validate the coverage measure.

G. Source code ratings mapped back to system-level

After scoring individual source code properties, we arrive
at a scoring of the sub-characteristics of maintainability by
aggregation according to the mapping of Fig. 3. An instance
of such a backward mapping of source-code level ratings to
system-level ratings is depicted in Fig. 5. Basically, to arrive
at a system-level score, a weighted average is computed of
each source-level score that is relevant according to the cross
marks in the matrix. The weights are all equal by default,
but different weighing schemes can be applied when deemed
appropriate.

Of course, averaging can be applied again to arrive at a
single score for overall maintainability. For the example of
Fig. 5, this score would be -, meaning poor maintainability.

We do not attribute much added value to such a single score.
Rather, the scores for the various sub-characteristics convey
more information, and can be traced back in a straightforward

manner to the underlying code-level scores. In contrast to a
single number, such as the Maintainability Index, this allows
root-cause analysis, serves to point out diverging values, and
provides a basis to take steps for improving maintainability.

In the example of Fig. 5, for instance, the poor testability
(-) can be traced back to very high complexity (--) and
high unit size (-), while unit testing is present, though not
complete. Analysability is still average (o), in spite of high
complexity (--), because the system volume is rather low (++).
To improve maintainability, it would be advisable to refactor
highly complex units, which may bring down unit sizes as
well.

VI. DISCUSSION

As mentioned in the introduction, the model presented
here is only a simplified subset of the more sophisticated
model that we actually apply in our consultancy practise. The
actual model includes more source code properties, addressing
issues such as modularization, architectural compliance, use
of frameworks and libraries, and separation of concerns. Also,
technical properties that are not purely source-code related are
taken into account, concerning for instance the build and de-
ployment process and the employed platform and technology.
Some of these involve measuring and rating procedures based
on check-lists and associated decision trees.

In both the simplified model presented here and the actual
model we employ, all underlying measures are selected to
match as much as possible the requirements formulated in
Section IV. The measures are easy to calculate and explain.
They do not involve obfuscating formulas such as the fitting
function of the Maintainability Index. Almost all measures
are completely language independent, which guarantees they
are applicable to systems that involve different technology
mixtures. The understandability of the measures and the
traceability of the rating process allows root-cause analysis
of maintainability problems and provides a basis for taking
corrective action. The use of ISO 9126 as frame of reference
implies that the model is grounded in a consensual terminology
for software product quality. From discussions with developers
of dozens of industrial systems we learn that the measures are
well accepted.

Thus, the proposed model does not suffer from the problems
identified for the Maintainability Index. It does not generate
a single number, so it is not a composite index. It facilitates
root cause analysis better than the MI, because it does not use
averages. It can be easily explained to both technical personnel
as well as to responsible managers. It uses numbers that can be
easily influenced by changing the code. Preliminary findings
show that these changes in the code make systems more
maintainable, according to the maintainers of the systems.

VII. SOME MEASUREMENT RESULTS

The simple measures we have proposed have proven effec-
tive in practise. In particular, they allow to reveal significant
differences in maintainability even among systems of compa-
rable size, using comparable technologies. This is illustrated in

Artikel 2 A Practical Model for Measuring Maintainability

29

0%

5%

10%

15%

20%

25%

30%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Code duplication

C
o

m
p

le
x
it

y
 (

M
c
C

a
b

e
 >

 2
0

)

Fig. 6. Three measures applied to a range of modern, object-oriented software systems (Java and C#). The horizontal axis represents degree of duplication. The
vertical axis represents percentage of code with cyclomatic complexity above 20. The size of the bubbles indicates volume. Note that systems of comparable
size are found to vary significantly in terms of complexity and degree of duplication.

Fig. 6, where volume, complexity, and duplication are plotted
for a range of Java and C# systems. For example, for the
two biggest systems the degree of duplication varies between
16% and 32%, while the percentage of code with cyclomatic
complexity over 20 varies between 7% and 25%. On the other
hand, systems with comparable complexity (around 4%) vary
in degree of duplication between 3% and 38%.

VIII. RELATED WORK

The usefulness of ISO 9126 for software product quality
evaluation has been called into doubt by Al-Kilidar et al [25].
Their criticism arose from an attempt to apply the standard
during an experiment involving pair-design. An important
criticism is the following:

“ISO/IEC 9126 provides no guidance, heuristics,
rules of thumb, or any other means to show how
to trade off measures, how to weight measures or
even how to simply collate them.”

We subscribe to this criticism, and the model we presented in
this paper is an attempt at provide these missing elements.

Antonellis et al. [26] proposed a method of mapping object-
oriented source code metrics onto the maintainability sub-
characteristics according to ISO 9126. The metrics are selected
from the metrics suite of Chidamber and Kemerer [27]. The
method involves elicitation of weights for each pair of metric
and sub-characteristic from a system expert. Subsequently,
cluster analysis is performed on the calculated results to
distribute the units of the system over a fixed number of
clusters. The analysis of these clusters provides insight into
maintainability problems of the system and their causes. We
are currently investigating whether this data-mining approach
can complement our model.

Broy et al. [28] have independently developed a similar
model of maintainability in which maintenance activities are
strictly separated from facts about the system being main-
tained. Both activities and facts are organized into hierarchical
trees whose leaves are related through a (weighted) matrix that
indicates which atomic facts influence each atomic activity.
The decompositon of activities is based on the IEEE 1219
standard maintenance process, and the decomposition of facts
has been developed in concert with industrial partners. A
simplified part of the full model is presented only. Specific
rating guidelines or weights are not presented.

Oman et al. [29] have proposed a hierarchical structure
of measurable maintainability attributes, based on a review
of 35 publications. They attach specific software metrics to
the leafs of the tree and propose a formula for combining
them into a single index. No specific weights are proposed to
instantiate that formula. A much larger number of metrics is
proposed than in [6], and they include not only source code
metrics, but also metrics about e.g. changes, defects found,
and documentation.

IX. CONCLUSIONS AND FUTURE WORK

A. Summary

The ISO 9126 standard is a good frame of reference
for communication about software product quality, but falls
short of providing a practically applicable method of quality
assessment. In particular, the metrics listed by the accompa-
nying technical reports can at best establish the degree of
maintainability of a system after the fact. The vast literature
on software metrics, on the other hand, proposes numerous
ways of measuring software without providing a traceable and
actionable translation to the multi-faceted notion of quality.
In particular, the Maintainability Index suffers from severe

Software evolutionOpen Universiteit

30

limitations regarding root-cause analysis, ease of computation,
language independence, understandability, explainability, and
control.

We have argued that a well-chosen selection of measures
and guidelines for aggregating and rating them can, in fact,
provide a useful bridge between source code metrics and
the ISO 9126 quality characteristics. We have presented such
a selection, grown out of our software quality assessment
practise, that forms the stable core of a practically usable
maintainability model. In the course of dozens of software
assessment projects performed on business critical industrial
software systems, this model has been tested and refined.

B. Future work

Fenton et al. [30], [31] propose the use of Baysian Belief
Nets (BBN) in software assessment. Johnson et al. [32] use
an extension of BBNs, called influence diagrams, specifically
in combination with ISO 9126. The underlying idea is that
BBNs capture causal relationships that can not be captured
with traditional statistical approaches to software metrics. We
would like to investigate how our approach relates to theirs and
whether our rating schemas could be captured with BBNs.

The ISO is currently developing the ISO 25000 se-
ries (SQuaRE) to complement and partially supersede ISO
9126 [33], [34]. The first parts of this series are expected
to be published over the coming two years. We are looking
forward to this development, and we hope to incorporate the
new standard into our maintainability model.

ACKNOWLEDGMENT

Thanks to Per John, Michel Kroon, and Harro Stokman of
the Software Improvement Group for their contributions to the
design of the model presented in this paper.

REFERENCES

[1] ISO, “ISO/IEC 9126-1: Software engineering - product quality - part 1:
Quality model,” Geneva, Switzerland, 2001.

[2] ——, “ISO/IEC TR 9126-2: Software engineering - product quality -
part 2: External metrics,” Geneva, Switzerland, 2003.

[3] ——, “ISO/IEC TR 9126-3: Software engineering - product quality -
part 3: Internal metrics,” Geneva, Switzerland, 2003.

[4] N. Fenton and S. Pfleeger, Software metrics: a rigorous and practical
approach. Boston, MA, USA: PWS Publishing Co., 1997, 2nd edition,
revised printing.

[5] H. Zuse, A Framework of Software Measurement. Hawthorne, NJ, USA:
Walter de Gruyter & Co., 1997.

[6] P. W. Oman and J. R. Hagemeister, “Construction and testing of
polynomials predicting software maintainability.” Journal of Systems and
Software, vol. 24, no. 3, pp. 251–266, 1994.

[7] D. M. Coleman, D. Ash, B. Lowther, and P. W. Oman, “Using metrics
to evaluate software system maintainability.” IEEE Computer, vol. 27,
no. 8, pp. 44–49, 1994.

[8] A. van Deursen and T. Kuipers, “Source-based software risk assess-
ment,” in ICSM ’03: Proc. Int. Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2003, p. 385.

[9] ISO, “ISO/IEC IS 9126: Software product evaluation - quality charac-
teristics and guidelines for their use,” Geneva, Switzerland, 1991.

[10] ——, “ISO/IEC TR 9126-4: Software engineering - product quality -
part 4: Quality in use metrics,” Geneva, Switzerland, 2004.

[11] M. H. Halstead, Elements of Software Science, ser. Operating, and
Programming Systems. New York, NY: Elsevier, 1977, vol. 7.

[12] T. J. McCabe, “A complexity measure.” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

[13] C. Jones, “Software metrics: Good, bad and missing,” Computer, vol. 27,
no. 9, pp. 98–100, 1994.

[14] R. E. Al-Qutaish and A. Abran, “An analysis of the design and
definitions of Halstead?s metrics,” in 15th Int. Workshop on Software
Measurement (IWSM’2005). Shaker-Verlag, 2005, pp. 337–352.

[15] Software Productivity Research LCC, “Programming Languages Table,”
Feb. 2006, version 2006b.

[16] M. Shepperd, “A critique of cyclomatic complexity as a software metric,”
Softw. Eng. J., vol. 3, no. 2, pp. 30–36, 1988.

[17] C. M. Software Engineering Institute, “Cyclo-
matic complexity – software technology roadmap,”
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html.

[18] C. Kapser and M. W. Godfrey, “‘cloning considered harmful’ considered
harmful.” in 13th Working Conference on Reverse Engineering (WCRE
2006). IEEE Computer Society, 2006, pp. 19–28.

[19] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in WCRE ’95: Proceedings of the Second Working
Conference on Reverse Engineering. Washington, DC, USA: IEEE
Computer Society, 1995, p. 86.

[20] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
ICSM ’96: Proc. of the 1996 Int. Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 1996, p. 244.

[21] K. Kontogiannis, “Evaluation experiments on the detection of program-
ming patterns using software metrics,” in WCRE ’97: Proceedings of
the Fourth Working Conference on Reverse Engineering (WCRE ’97).
Washington, DC, USA: IEEE Computer Society, 1997, p. 44.

[22] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in ICSM ’98: Proceedings of the
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 1998, p. 368.

[23] J. Krinke, “Identifying similar code with program dependence
graphs,” in Proc. Eighth Working Conference on Reverse Engineering
(WCRE’01). IEEE Computer Society, 2001, p. 301.

[24] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of clone
detection by string matching,” J. Softw. Maint. Evol., vol. 18, no. 1, pp.
37–58, 2006.

[25] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use and usefulness of
the ISO/IEC 9126 quality standard.” in 2005 International Symposium on
Empirical Software Engineering (ISESE 2005), 17-18 November 2005,
Noosa Heads, Australia. IEEE, 2005, pp. 126–132.

[26] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris, E. Theodoridis,
C. Tjortjis, and N.Tsirakis, “A data mining methodology for evaluat-
ing maintainability according to ISO/IEC-9126 software engineering –
product quality standard,” in Special Session on System Quality and
Maintainability - SQM2007, 2007.

[27] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design.” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[28] M. Broy, F. Deissenboeck, and M. Pizka, “Demystifying maintainabil-
ity,” in Fourth International Workshop on Software Quality Assurance
(SOQUA 2007). ACM, 2007.

[29] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in Proceedings of Conference on Software Mainte-
nance, 1992., Nov. 1992, pp. 337–344.

[30] N. E. Fenton and M. Neil, “Software metrics: roadmap.” in ICSE -
Future of SE Track, 2000, pp. 357–370.

[31] P. Hearty, N. E. Fenton, M. Neil, and P. Cates, “Automated population
of causal models for improved software risk assessment.” in 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2005), November 7-11, 2005, Long Beach, CA, USA, D. F.
Redmiles, T. Ellman, and A. Zisman, Eds. ACM, 2005, pp. 433–434.

[32] P. Johnson, R. Lagerstrm, P. Närman, and M. Simonsson, “System
quality analysis with extended influence diagrams,” in Special Session
on System Quality and Maintainability - SQM2007, 2007.

[33] W. Suryn, A. Abran, and A. April, “ISO/IEC SQuaRE. the second
generation of standards for software product quality,” in Software
Engineering and Applications (SEA 2003), M. Hamza, Ed. Acta Press,
2003.

[34] A. Abran, R. Al Qutaish, J. Desharnais, and N. Habra, ISO-based Model
to Measure Software Product Quality. Institute of Chartered Financial
Analysts of India (ICFAI), ICFAI Books, 2007, to appear.

