
Content chapter 2

Ampersand

1 Introduction 21
2 Rules 21
3 Rules in Business 23
4 An example 24
5 Control Principle 26
6 Rule Management 27
7 Case Study: A Service Desk 27
7.1 The business rules 28
7.2 Specification of the rule engine 29
7.3 The rules at work 30
7.4 Points of interest 34
8 Consequences 35

20



Chapter 2 Ampersand

Chapter 2

Ampersand
An Approach to Control Business Processes

1 Introduction

This chapter shows how to use business rules for specifying both business processes
and the software that supports them. This approach yields a consistent design,
which is derived directly from business rules. This leads to software that complies
with the rules of the business.

The approach, called Ampersand, is specifically suited for business processes with
strong compliance requirements, such as financial processes or government pro-
cesses that execute legislature. Features of Ampersand are: rules define a process, no
process modeling is required, compliance with the rules is guaranteed, and rules areCompliance
maintained by systematically signalling participants in the process.

A case study completes this chapter.

2 Rules

Ampersand lets you design information systems to control business processes. It is
based on rules. But what exactly are rules? Merriam-Webster’s dictionary contains
over a dozen different definitions. Some of those are in agreement with this book:

– A prescribed guide for conduct or action.
– An accepted procedure, custom, or habit.
– A regulation or bylaw governing procedure or controlling conduct.

For practical purposes, however, you will need a definition that you can use when
you design information systems and business processes. We need a definition that
lets you tell a rule apart from other statements. The following definition provides
the means to say whether a statement is a rule or not.

A business rule is a verifiable statement that some stakeholders intend to obey, withinBusiness rule
a certain context.

Here is an example of a rule:

In our club, a coat of any guest shall be in the cloakroom, as long as the guest is in
the club.

Let us analyse this statement, to better understand what we mean by a business rule.

a Rules have a scope.Scope
The context of the stakeholders is our club in which this rule is valid. We call this
the scope of this rule. A rule may or may not hold beyond its scope. People may
or may not wear their coats outside of the club.

b Rules have stakeholders.
Anyone involved in a rule is called stakeholder. For example, to ensure that guestsStakeholder
put their coats in the cloakroom, there may be a bell boy to take the coats in and
hand them out again, or there may be a staff member who sees to it that people
who try to smuggle their coats inside are intercepted. Or a simple notice may
inform the dear guests to leave their coats, or else. Whenever a rule has no stake-
holders, then apparently no one is interested if the rule is obeyed or not. Such a

21



Open Universiteit Rule Based Design

rule has no business merit, and we do not consider it to be a business rule. Stake-
holders who “live by the rules” are working to satisfy rules, each in his or her own
role.

c Rules are verifiable.Verifiable
If there is a guest inside the club who holds a coat, we have a violation of this rule.
We call a rule verifiable if its violations can be spotted unambiguously and objec-
tively. That violation could be a signal to someone to take action. A floor manager
might summon the offender to take his or her coat out to the cloakroom. Or, a staff
member might take the coat from the guest and put it away in the cloakroom. Or
even the guest himself might take some action. He might toss his coat out of the
window, ensuring that it is beyond the scope of this rule. Technically, that would
be an acceptable thing to do, unless there are rules in place that forbid littering the
street... Whatever actions happen, the situation should be restored to where the
rule is complied with.

For a better understanding, let us look at some counterexamples. The following
statements are not rules:

– Our club is transparent to the outside world.
Whether this statement is true or not is open for discussion, depending on what
you think “transparent” means. For this statement to be a rule, we must be able
to determine objectively whether it is true or not. Within the context of this book,
this statement is not a rule because it is not verifiable.
Rules must have the property of being concrete.Concrete

– Club members get up in the morning and go to sleep in the evening.
This is not a rule if none of the stakeholders really cares. If nobody is willing to
maintain the truth, we have no rule.
Rules must have the property of being relevant.Relevant

– E = mc2

This is a law of nature, which is considered true in any scope and without the
intervention for any stakeholder whatsoever. No one will check to see if the rule
is obeyed or violated, and certainly will no stakeholder put in an effort to undo
violations. Even if we would consider this to be a rule, there is no need to maintain
what mother Nature maintains for us. Such irrelevant rules and laws of nature are
out of our scope, they are not business rules.
Business rules must represent agreements that people care about.

– Peter Lee Jones has visited the club this morning.
This statement can be either true or false, so it is a verifiable statement. And once
we have established its truth, it will never change. Therefore, we call this a fact
rather than rule, even though theoretically, there is no reason why facts should not
be rules.

Rules usually assume a number of things tacitly. That is also the case in our example.
The rule sounds: “In our club, a coat of any guest shall be in the cloakroom, as long
as the guest is in the club.” It assumes a number of things, such as:

– There is a club, which we call “our club”. To avoid uncertainty, we had better
remove the reference to “our” club, and supply the exact name of the club.

– Coats have owners, especially guests can be owner of a coat.
– Coats can be in the cloakroom. This also implies that there is a cloakroom.
– Guests stay in the club for a certain period of time.

If one of these assumptions is not true, the rule is meaningless. Requirements en-
gineers, who write rules on behalf of stakeholders, must be aware of these tacit as-
sumptions.

Also, the exact phrasing of a rule is really important. Rephrasing can cause problems,
because there may be implicit assumptions underlying the statements. The follow-
ing examples show how seemingly innocent rephrasings can unwillingly change the

22



Chapter 2 Ampersand

intended meaning:

– In our club, guests must put their coats in the cloakroom.
This rule does not prevent a guest from taking his coat into the club. He or she can
take the coat out, right after putting it in the cloakroom. To avoid this and similar
situations, it is good practice not to prescribe actions, but to describe a state.

– In our club, the coat of each guest must be in the cloakroom, as long as they are in
the club.
This rule assumes that every guest has precisely one coat. If this is not the case,
then what?

– In our club, all coats must be kept in the cloakroom at all times.
In this case, coats of members and staff are also kept in the cloakroom...

– In our club, the bell boy will put your coat in the cloakroom.
This rule affects anyone entering the club. It does not say what to do with your coat
when the bell boy is absent. Besides, it is not specific about “you”. In principle,
this rule also applies to the mailman who drops by to deliver some mail...

In order to check whether a statement is a rule, please ask yourself the following
questions:

a Can I decide objectively at any moment in time, whether the rule is satisfied or
not? If so, this statement is verifiable. As a double check, can I think of a situation
that violates the rule?

b Where and in which situation(s) does this statement make sense? This gives you
the scope.

c Can you identify who are affected by this rule? If so, these people (or groups) are
your stakeholders.

d Is there an intention to keep this statement true? If so, which stakeholder(s) take
which action(s) to maintain this rule? If none of the stakeholders have such inten-
tion, your statement is not a rule.

3 Rules in Business

Business rules can be used to manage and control business processes. In this sense,
business rules actually define the business process. This yields compliant systems andDefine

Business process compliant processes. This chapter explains the principle, which can be summarized
as: signal violations (in real time) and act to resolve them. This drives a series of
events to comply with all business rules. It lets us conclude that business rules are
sufficient as an instrument to design compliant business processes and information
systems.

Whenever and wherever people cooperate to work together, they coordinate their
work by making agreements and commitments. These agreements and commit-
ments constitute the rules of the business. A logical consequence is that these rules
must be known and understood by all who have to comply. From this perspective,
business rules are the cement that ties a group of individuals together to form an
organization. In practice, many rules are documented, especially in larger organi-
zations. Life of a business analyst can hardly be made easier: rules are known and
discussed in the organization’s own language, and stakeholders know (or are sup-
posed to know) the rules and abide by them.

The role of information technology is to help maintain business rules. That is: ifMaintain
any rule is violated, a computer can signal that and prompt people (inside and out-
side the organization) to resolve the issue. The Ampersand approach uses this as a
principle for controlling business processes. For that purpose two kinds of rules are
distinguished: rules that are maintained by people and rules that are maintained by
computers.

23



Open Universiteit Rule Based Design

A rule maintained by people may be violated temporarily, for the time required to
fix the situation. For example, a rule might say that each benefit application requires
a decision. This is violated from the moment an application arrives until a corre-
sponding decision is made. Allowing the temporary violation gives a person time
to make a decision. For that purpose, a computer monitors all rules maintained by
people and signals them to take appropriate action. Signals generated by the system
represent (temporary) violations, which are communicated to people as a trigger for
action.

A rule maintained by computers need never be violated. Any violation is either
corrected or prevented. If for example a credit approval is checked by someone
without the right authorization, this can be signalled as a violation of the rule that
such work requires authorization. An appropriate reaction is to prevent the transac-
tion (of checking the credit application) from taking place. In another example the
credit approval might violate a rule saying that name, address, zip and city should
be filled in. In that case, a computer might correct the violation by filling out the
credit approval automatically.

Since all rules (both the ones maintained by people and the ones maintained by com-
puters) are monitored, computers and persons together form a system that lives by
the rules. This establishes compliance. Business process management (BPM) is also
included, based on the assumption BPM is all about handling cases. Each case (for
instance a credit approval) is governed by a set of rules. This set is called the procedureProcedure
by which the case is handled (e.g. the credit approval procedure). Actions on that
case are triggered by signals, which inform users that one of these rules is (temporar-
ily) violated. When all rules are satisfied (i.e. no violations with respect to that case
remain), the case is closed. This yields the controlling principle of BPM.Closed

This principle rests solely on rules. Computer software is used to derive the actions,
generating the business processes directly from the rules of the business. To com-
pare: workflow management derives actions from a workflow model, that captures
a procedure in terms of actions. Workflow models are specified by modelers, who
take the rules of the business, and transform these into actions plus an appropriate
but fixed order to achieve the desired result.

The new approach has two advantages: the work to draw up a workflow model
can be saved and potential mistakes made by process modelers can be avoided. It
sheds a different light on process models, whose role is reduced to documenting and
explaining a process to human participants in the process. Process models no longer
serve as a ‘recipe for action’, as is the case in workflow management.

The following section discusses an example, that illustrates this process control prin-
ciple.

4 An example

Consider the handling of permit applications by a procedure based solely on rules.
Each permit application is seen as a case to be handled, using the principle of rule
based process control (section 3). First the business rules are given that define the
situation. We subsequently discuss a scenario of the demonstration that is given
with the generated software and the data model (also generated from the rules) on
which that application is based.

The example consists of the following business rules.

a An application for a permit may be accepted only from one individual whose
identity is authenticated.

b Each application for a permit must be treated only by authorized personnel.
c Every application must lead to a decision.

24



Chapter 2 Ampersand

d An application for a particular type of permit may never lead to a decision about
another type of permit.

e Every employee must be assigned to one or more particular areas.
f An employee may only handle applications from those areas to which (s)he is

assigned.

First, we establish that each statement is indeed a business rule by showing that each
rule is falsifiable. For that purpose, one example is given of a violation for each rule:

a An application for a permit from an individual with suspicious identity or creden-
tials.

b An application that is handled by an unauthorized person.
c A permit application without a decision.
d An application for a building permit that leads to a decision about a hunting per-

mit.
e An employee assigned to no area at all (perhaps an apprentice?).
f An employee assigned to Soho who handles an application from the East End.

As for the IT consequences, notice that violation d can be prevented by a computer,
by consistently choosing the type of the permit as the type of the corresponding de-
cision. This causes rule d to be free of violations all the time. Rule c may be violated
for some time, but in the end a decision must be made. So the work is assigned to an
employee who makes that decision. Rule e may also be violated for some time, but
the employee cannot handle applications for the time being. Rules a, b, and f may be
enforced by preventing all transactions that might violate the rule. Thus, a system
emerges that complies with all these rules.

An application to controls this process has been built on a computer. The functional
specification was generated by software that translates a set of (formalized) rules
into a conceptual model, a data model, and a catalogue of services with their ser-
vices defined formally. This specification defines a software system that maintains
all rules mentioned above. The specification guarantees that many rules can never
be violated, and the remaining ones such as c yield a signal as long as a decision on
the application is pending. A compliant implementation was obtained by building
a prototype generator that produces a database application according to the given
specification.

An actual scenario of interleaved user and computer activities, used in demonstra-
tions of information systems generated by business rules, proceeded as follows:

a An employee creates a new application for ‘Joosten’, who wants to have a ‘build-
ing permit’.

b The system returns an error message for violating rule a. This means that an appli-
cation for a permit from an individual whose identity is unknown is not accepted.

c The employee remembers he should have checked the identity of the applicant.
He asks for identification and enters the applicant’s passport number into the sys-
tem.

d The employee can now record the new application. As far as this employee is
concerned, he is done with the application.

e Next, an employee must be allocated for making the required decision. If an em-
ployee is chosen in violation of rules b or f, that transaction is blocked.

f The employee who makes the decision records it in the information system. The
fact that this decision is about a building permit is copied (by the computer) from
the application, without any interference from the employee.

Notice that this system may be criticized for picking an employee ‘by hand’. This
behaviour is a logical consequence of not having the rules in place for picking em-
ployees. One could argue that the system is incomplete, because there are too few
rules. Adding appropriate rules will yield a process in which employees are assigned
automatically. This illustrates how a limited (even partial) set of rules can be used

25



Open Universiteit Rule Based Design

already to generate process control. In practice, this means that process control may
be implemented incrementally.

Automated data analysis tools can also use the business rules to produce specifica-
tion artifacts such as an UML class diagram, or formal specifications of the software
services required to maintain all rules. These deliverables are not shown here for the
sake of brevity.

5 Control Principle

After discussing rule based design (section 3) and illustrating it with an example
(section 4), let us discuss the consequences of rule based control of business processes
in some more detail.

The principle of rule based BPM is that any violation of a business rule may be used
to trigger actions. This principle implements Shewhart’s Plan-Do-Check-Act cycle
(often attributed to Deming) [31]. Figure 2.1 illustrates the principle. Assume the ex-

FIGURE 2.1 Principle of rule based process management

istence of an electronic infrastructure that contains data collections, functional com-
ponents, user interface components and whatever else is necessary to support the
work. An adapter observes the business by drawing information from any available
source (e.g. a data warehouse, interaction with users, or interaction with information
systems). The observations are fed to a detector, which checks them against business
rules in a rule base. If rules are found to be violated, the detector signals a process
engine. The process engine distributes work to people and computers, who take ap-
propriate actions. These actions can cause new signals, causing subsequent actions,
and so on until the process is completed.

The system as a whole cycles repeatedly through the phases shown in figure 2.2. The
detector detects when rules are violated and signals this by analyzing events as theyEvent
occur. The logic to detect violations dynamically is derived from the business rules.

26



Chapter 2 Ampersand

FIGURE 2.2 Engine cycle for a rule based process engine

This results in systematic and perpetual monitoring of business rules. Whenever a
violation is detected, a signal is raised for the attention of some actor or actors SignalsViolation

Signal sent to specific actors (either automated or human) will trigger actions. These actions
can cause other rules to produce signals by which other actors are triggered. So the
actual order of events is determined dynamically.

6 Rule Management

Changing the rules is done by altering the contents of the rule base. The behaviour
of the organization will change accordingly. A rule that is removed can no longer
be violated, so the signals caused by that rule will cease to exist. New rules create
new kinds of violations, which cause people to take new kinds of action. In this way,
changing the rules has a profound impact on the processes governed by these rules.

For this reason, an organization must obviously manage their rules. Since the rules
of the business change all the time, business processes change along with them. Doc-
umenting the rules is one thing, but a process needs to be in place to deal with rule
changes.

Even rule changes are subject to rules. The process of legislature in a country is a
good example; countries have rules that govern how new laws are made. In most
organizations, simpler processes than that will be in place. By defining the "rule
management process" as "the collection of rules that govern rule changes", you can
use our approach to define that process, just like any other process.

7 Case Study: A Service Desk

This section demonstrates the Ampersand approach by means of a case study.

Business rules can and will apply to people, processes, and overall corparate be-
haviour. If we restrict to rules that we want to capture in some information system
(perhaps practicable business rules is a suitable name), then this book is primarily con-Practicable

business rules cerned with what we call the invariant rules, also known as integrity rules or con-
Invariant rules straints. These rules assert facts that must (need to, ought to, should) hold at all

times. Several other categories of practicable business rules can be pointed out, but
we will not be examining them in this book, mainly because those rules cannot be
easily captured by way of Relation algebra and the Ampersand approach.

The case study is about an IT Service Desk that handles incoming customer calls
about software and hardware problems. It illustrates a multi-step process involving
components, problem solutions, and responses that may or may not be acceptable.

27



Open Universiteit Rule Based Design

The process is driven by just a few business rules about the relations between incom-
ing calls, the required responses, and business activities to provide those responses.

Our way of working is as follows.

a We start with the business rules. The customer’s point of view first, and we add
a few business rules that are indispensable from the point of view of internal pro-
cessing.

b Based on these few rules, a small but coherent business process engine can be gen-
erated. We discuss the abstract structure of this engine. It consists of a conceptual
model, and of a set of rules now rephrased as exact formulas.

c Next, we demonstrate how this engine works in practice, by tracing one call from
start to finish. We show how the process is driven by alternating between per-
forming some business activities, and signalling rule violations, until no violations
remain.

Of course, it is just a small example and we cannot elaborate on the details, excep-
tions or extensions. However, you are welcome to try and expand the example. This
will give you a feel of our Ampersand method, and also about the versatility of the
business rules approach in general.

7.1 THE BUSINESS RULES

From the customer’s point of view, we can establish one all-important rule:

1 Every call must get an acceptable response.

No more, no less.

This rule ensures that every process instance, once initiated, will get to be concluded.
In effect, this one rule governs the entire process, driving it from start to finish. The
rule is violated as long as there exists some call with no response at all, in other
words: there is work to do. But even if some response is available for a call, the
rule may be violated. For instance, the response may be recorded in the system, but
nobody thought to tell the customer. Or, the client is informed but the client does
not accept it because it does not solve the problem. The wording of the rule is very
precise: it requires that the response must be acceptable.

Switching to the point of view of internal processing, we have several more rules:

2 Every call is entered by exactly one client.

3 Every call involves at least one hardware- or software component.

4 Every response describes at least one problem solution that applies to at least one
component involved in the call.

Let us briefly explain these rules. The requirement 2, that every call should originate
with exactly one customer, is quite natural. And it ensures that the company can
send an invoice to each customer, for services rendered; a process however that is
beyond the scope of our example.

Rule 3 states that a call must involve some hardware- or software components. This
also is rather obvious: if no components are involved, then why put in a call? Later
on, we will see that both rule 2 and rule 3 establish a property of one particular
relation, a type of business rule that is generally named "multiplicity rules" or "car-
dinality".

The fourth rule states that every response must describe at least one problem solu-
tion. Not just any problem solution: it must apply to some component or other that
is involved in the call. The idea is that a problem solution can be useful only if it
applies to at least one of the components involved in the call. Notice that this rule is

28



Chapter 2 Ampersand

a simplification of reality. Call analysis, assessing which components are involved,
and determining the problems and appropriate solutions can be quite a difficult job.
Again, we consider this part of the process beyond our scope. We simply assume that
the job gets done somehow, and that all knowledge about components and problem
solutions is recorded somehow, somewhere.

7.2 SPECIFICATION OF THE RULE ENGINE

By inspecting the few rules above, we can see there are five concepts involved:
Client, Call, Response, Component, and Problem Solution.
These concepts are involved in six relationships, such as:

– Call is placed_by a Client, and
– Problem Solution is described_in a Response.

Of course, all kinds of refinements and extensions can be conceived. But for this case
study, we are satisfied with our five concepts and six relationships. A suitable way
to understand and discuss these is by drawing a diagram, such as figure 2.3. This

FIGURE 2.3 Diagram of the conceptual model

diagram gives a clear picture of the concepts and relations involved in our rules. But
please beware that the picture does not show any rules at all. It merely depicts the
structure, a conceptual model consisting of concepts and relations.

To get at the actual rules, we need to delve somewhat deeper. In fact, there is some
mathematics involved to rephrase the rules in perfect detail. Perfect meaning: pre-
cise and unambiguous. So much so that a computer can read the stored data for all
the concepts and relations, and calculate each and every violation of the rules. The
mathematical rephrasing of rules into exact formulas will be extensively discussed
later in the book. For now, we will use the four rules as phrased above.

The conceptual model and the rules together specify exactly what is needed to run
the business. In effect, they constitute the functional specifications of a business pro-
cess engine that will maintain these rules, and signal any violations. Non-functional
specifications concern important aspects of information systems design that we do
not capture in our business rules. For instance, security demands, scalability prop-
erties, response times, user interface requirements etc.

29



Open Universiteit Rule Based Design

7.3 THE RULES AT WORK

Let’s play the part of a helpdesk employee. As you enter the Service Desk workspace
on a friday morning, you notice that two calls have already been handled this morn-
ing. All relevant facts about these calls have been recorded correctly. Those facts
may be inserted in the previous diagram, as shown in figure 2.4. You may check

FIGURE 2.4 Initial data on record. No violations

that indeed, all four rules are complied with. There are no violations to be resolved,
no work to be done. You may notice a component named "software X" for which
at present, no problem solutions are known. This however is no cause for alarm,
because a lack of solutions violates none of our rules.

Then, a new call comes in from the client named Capone, and your work begins.

Step1 In the relation placed_by, you enter the client name and the call identifier,
which is "friday #3". In figure 2.5, the new fact is inserted in the correct place. For
your ease of reading, the new fact is placed at the bottom of the table, and high-
lighted. For the business process engine however, positioning nor highlighting have
any significance. As the data is being inserted into the computer, the engine will
check the rules, and detect two violations:

– rule 1 says that every call must have an acceptable response, but no response is
available for "friday #3".

– rule 3 says that every call is related to at least one hardware- or software compo-
nent, but "friday #3" is unrelated.

Notice that there is no priority among these violations, there are no rules that tell you
what to do first. Rules that dictate the order in which activities must be executed are
sometimes called imperative rules. In practical situations, rules about the particular
order of work may be convenient, as it keeps track of what can or needs to be done.
But even more often, you will find that the particular order is unimportant, the real
importance is what can or needs to be done.

In our case example, you need to find out which components are involved in this
call. Let us assume that you find that two components are involved: the "software
X" and that "driver 17", again. And you should also prepare some response for this
particular call. So you enter three new facts into the computer:

30



Chapter 2 Ampersand

FIGURE 2.5 Step 1: new call placed. Violations

– the call "friday #3" involves the component "software X",
– the call "friday #3" involves the component "driver 17", and
– response "Re friday #3" is available for the call "friday #3".

Step 2 You enter the data into the system, while realizing that it does not matter
whether you do it one at a time (in any arbitrary order), or all at once. Once you

FIGURE 2.6 Step 2: call analysis. Other violations

have entered all three tupels, you find that some of the previous violations have
been remedied, but now other violations emerge (figure 2.6).

– rule 1 is still being violated. A response is available for "friday #3", but as yet, the
client has not accepted it.

– rule 4 says that every response describes at least one problem solution. Moreover,
that problem solution must apply to at least one component involved in the call.

31



Open Universiteit Rule Based Design

The available response is empty, as it describes no problem solution.

Step 3 The helpdesk employee (you) now notices that component "driver 17" is
involved, and a problem solution is already known for that one: "reload" the driver.
So you describe_in your response that particular problem solution (figure 2.7).

FIGURE 2.7 Step 3: try one solution

Incidentally: this figure depicts only the tables and the tuples populating them, but
no more. This way of representing the information may be harder to understand for
people. But of course, it does not affect the workings of the process engine in any
way.

When you record this tuple, the engine will calculate that rule 4 is no longer violated.
This rule concerns four relations (available_for, involves, applies_to and described_in).
Notice how new tuples were entered in three, but not all four relations. In this case,
the violation is resolved because a suitable tuple already existed in the fourth rela-
tion, applies_to. Thus, a suitable response is now available.

Step 4 As yet, the client has not accepted a response, and rule 1 is still being vio-
lated. You, or the computer, may infer from the data that only one tuple in relation
accepted_by seems to be missing. Indeed, automatically inserting the fact "Response
Re friday #3 is accepted_by Client Capone" would eliminate the final violation.

But this is a bad idea. The computer cannot make a real-world decision like deciding
whether a response is acceptable or not. And indeed, when asked, the client clearly
states that reloading driver 17 does not solve the issue. Hence, this fact may not be
entered into the accepted_by relation, neither automatically nor manually. Contacting
the client has not really changed the situation of step 3. The recorded facts are still
as shown in figure 2.7, and the violation of rule 1 is still there.

Step 4 revisited So you need to come up with another response that is better than
the one available now. Let us assume that you invite somebody else, a back-office
employee, to examine the nature of the call and the components involved. She no-
tices that "Software X" may be the cause of the trouble. A reinstallation of that com-
ponent may solve the issue, and so she adds a new tuple into the relation applies_to.
She informs you of the addition, and the situation is now as in figure 2.8.

32



Chapter 2 Ampersand

FIGURE 2.8 Step 4: other solution

Step 5 This new problem solution alone, does not remedy the violation of rule 1.
But now that it is available, you can easily compose a new response for the client.
Your new response gets the name "Extra" as its identifier, and you record several facts
for it. The new problem solution is described_in it, you make it available_for the call,
and you inform the client of it. And luckily, this time it works: the response "Extra" is
accepted_by the client "Capone". Moreover, when you insert all this information into
the three corresponding relations, the computer detects no more violations. All busi-
ness rules are complied with, which is to say that the process terminates (figure 2.9).

FIGURE 2.9 Step 5: no more violations. Process terminates

Summary From a business perspective, the following scenario has been executed:

– The client placed a new call.

33



Open Universiteit Rule Based Design

– The system signalled violations of two rules.
– The helpdesk workers then performed various business activities, and recorded

the data obtained in these activities.
– Every time, the system used the latest data to check compliance to the rules and

generated new signals for each rule violation.

After a number of steps, and having entered all the relevant data, all the rules were
complied with, no violations persisted, and no signals for work needed to be raised.
This means that this, and in fact all calls have been processed successfully. Our case
is complete.

7.4 POINTS OF INTEREST

This case study is rather simple. It describes the essence of a primary process: how
a call for service is answered. Several interesting observations can be made even in
this simple case:

Declarative versus imperative rules Our rules are declarative in nature. They de-
scribe which states are okay: every rule is satisfied, there are no violations. Or not,
some rule is violated, and there is work to be done. But the rules do not say how,
by whom, or in which work sequence the activities need to be executed. Imperative
rules dictate exactly what must be done how, when and by whom. It is well possible
to write imperative rules, but we advocate against it because such rules will produce
process flows that cannot be easily adapted to new demands. The declarative rules
do not enforce any particular sequence of work. It lets the workers free to decide
whichever activity can or should be done.

Application supports the workers The information system generated from rule
requirements should determine whether the data being entered, combined with the
data already present, violate the rules. The system can then either prevent the new
data from being entered (the data is rejected for being wrong). Or the system should
signal violations to the workers so that corrective actions can be taken. But the
system should not enforce a particular order of entering the data about real-world
events. Ampersand’s concept of business process does not presuppose any event
sequence. The only provision on the process is that, in the end, all rules are satisfied
and no violations remain.

Processing adds data As the business process is being executed, and violations are
being resolved, data is constantly being added. Less common is that data already
recorded in the system has to be changed. Changing some data may raise new and
often unexpected violations. As a consequence, rework may be required for cases
that are currently being processed or even for completed cases. In exceptional cases,
you may even have to delete some data. But deletions may have even greater conse-
quences than mere changes. For instance, an all-too-easy way to deal with a call, is
to delete the fact that it was placed. Such an act would frustrate the very purpose of
the business process engine.

Violations and activities are not the same All violations can and should be reme-
died. This is achieved by executing activities (and recording the data into the sys-
tem). However, it is wrong to assume that a single violation corresponds to one bit
of data or one particular activity. The case shows examples where a single new fact
results in several violations. Also, one violation may require multiple changes or
additions of data items for elimination. We even have an activity that resulted in no
data at all (the client was informed of the response "Re friday #3" but this response
was not acceptable). The implication is that a computer may calculate the violations,
but it cannot always determine the appropriate actions to eliminate them. It often

34



Chapter 2 Ampersand

requires some judgment to decide what is wrong, and what must be done to remedy
the rule violations that the computer signals. For that, we will always need people
with a sound judgment of reality.

Extensions Our specifications contain five concepts, six relations, two multiplicity
rules, and two composite rules. Many extensions are conceivable. It is important to
realize that whenever you add something new to these specifications, be it a concept,
a relation or a rule, you must do so for a sound purpose based on business goals. To
illustrate the point, let us consider some extensions.

– A rule like "a Response is accepted_by at most one Client" seems appropriate. In
fact, every relation should be inspected to determine its multiplicity constraints;
as will be explained in the next chapter.

– We stated that the client was informed of the response "Re friday #3" but this re-
sponse was not acceptable. Apparently, a relation "Client is informed_of Response"
might be added to model this part of the business. And whenever you add a rela-
tion, you should also think about rule(s) that might apply to it. Here, you probably
want to control the business process by ensuring that "IF a Response is accepted_by
a Client, THEN that Client is informed_of that Response". This kind of composite
rules will be discussed in chapter 4.

– Another extension may be to discern between "Problem" and "Solution", that are
now lumped together into one concept. You might want tot replace this by two
concepts plus a relation. This kind of improvement, and many others, will be
covered in chapter 5.

– Still other options are to record which employees are handling the calls, or to add
a rule that calls may be placed only by clients who have negotiated a service con-
tract. In the end, the business must decide which rules serves their purposes best.
And it is up to you, as a designer, to capture those rules in the specifications in the
best possible way.

This concludes our demonstration how a business process is controlled by way of
business rules. And even though our case study included only four rules, the busi-
ness process being driven is far from trivial.

The computer brings each signal to the attention of some designated actor(s) who
must take action to remedy the violation. The actor will then enter new information
into the system (or sometimes adjust the data already in the system). The computer
will then check all the data, old and new, and signal the latest violations. This process
is repeated until no violations remain. As a consequence, when all rules are satisfied,
there is no more work to be done, and the case can be closed.

The approach taken by Ampersand is to drive the process by alternating between the
business actions (choosing and executing business activities, and recording the data),
and system actions (inspecting all the rules and signalling rule violations), until no
violations remain. Moreover, the Ampersand approach ensures that in the end, all
the rules will be complied with. This concludes our demonstration how compliance
to the business rules provides us with a sound way to control the processes of the
business.

8 Consequences

Controlling business processes directly by means of business rules has consequences
for designers, who will encounter a simplified design process. From a designer’s
perspective, the design process is depicted in figure 2.10. The effort of design fo-
cuses on requirements engineering. The main task of a designer is to collect rules to
be maintained. From that point onwards, a generator (G) produces various design
artifacts, such as data models, process models etc. These design artifacts can then
be fed into an information system development environment (another generator la-

35



Open Universiteit Rule Based Design

FIGURE 2.10 Design process for rule based process management

belled G). That produces the actual system. Alternatively, the design can be built in
the conventional way as a database application. The rule base (RAP, currently un-
der development) will help the designer by storing, managing and checking rules,
to generate specifications, analyze rule violations, and validate the design. For that
purpose, the designer must formalize each business rule, using a supportive tool
(Ampersand). He must also describe each rule in natural language for the purpose
of communication to users, patrons and other stakeholders.

FIGURE 2.11 Design process for rule based process management

From the perspective of an organization, the design process looks like figure 2.11.
The focal point of attention is the dialogue between a problem owner and designer.
The former decides which requirements he wants and the latter makes sure they are
captured accurately and completely. The designer helps the problem owner to make
requirements explicit. Ownership of the requirements remains in the business. The
designer can tell with the help of his tools whether the requirements are sufficiently
complete and concrete to make a buildable specification. The designer sticks to the
principle of one-requirement-one-rule, enabling him to explain the correspondence
of the specification to the business.

36




