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Chapter 3

Concepts and Relations

1 Introduction

The Business Rules Manifesto proclaims as its central thesis or “mantra”: Rules are
built on facts, and facts are built on terms. But what are they, the terms, facts and
rules that the Manifesto talks about? How must you understand them, how are
they interconnected, and why can you rely on just these notions to build a rigorous
framework for business rules? The answer is found in mathematics: relation algebra
is a formal method to define, implement and work with well-formed business rules.
Relation algebra provides todays professionals with a way of thinking and a way
of working: what to do to describe and manipulate relations effectively, quickly,
and without mistakes. Proficiency in these skills will allow you to analyze business
requirements, to conduct conceptual analysis, to search for and create new rules, to
test the outcome, and finally to produce exact specifications.

This chapter explains almost all about two basic notions that we will be needing as
we identify, express, and manipulate the rules in the business environment. These
two notions are: concept and relation.

We will introduce them using a language-oriented approach. Which is natural, as
business workers express their requirements and ways of working in natural lan-
guage. But to turn that into very exact rules that can be handled by computers,
we cannot escape using a mathematical formalism, called relation algebra. Theory
about ”Relation Algebras” is a distinct branch in mathematics which came about in
the nineteenth century by the efforts of mathematicians such as De Morgan, Peirce,
and Schröder [9, 27, 30]. Their results have been studied, expanded and enhanced
throughout the twentieth century. This has resulted in a clear and well-understood
formalism that meets our needs in describing business rules.

After reading this chapter, you are expected to be familiar with these notions because
all business rules approaches are built upon these fundaments. The Ampersand
approach is no exception.

This chapter is outlined as follows. We start from fundamentals: basic sentences.
Next, we discuss some mathematical notions that the Business Rules Manifesto im-
plicitly uses in its article 3.1 “Rules build on facts, and facts build on concepts ex-
pressed by terms”. Examples will illustrate the theory, in order to give a better un-
derstanding of the ideas and formalisms. And do not worry, we only need a basic
and almost intuitive understanding, no advanced mathematics is involved.

2 Sentences

2.1 BASIC SENTENCES

Business workers use natural language to talk about things in the real world. There-
fore, we need a clear and unambiguous way to capture the meaning in natural lan-
guage sentences. Let us consider the following basic sentences to start with:

– ABBA sang the song Waterloo,
– DoeMaar sang Smoorverliefd,
– Joosten receives building-permit number 5678,
– William Kennedy has residence-permit NL44,
– ABBA sang ‘Money, money, money’,
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– Ersin Seyhan has residence-permit NL901,
– the Open University offers the course Business Rules,
– Fatima has passed the exam for Business Rules,
– Caroline has passed the exam for Spanish Medieval Literature.

These sentences follow the scheme: noun - verb - noun, in which the nouns refer to
objects in the real world. The Business Rules Manifesto uses the word term to refer toTerm
the individual real-world objects such as ABBA, the building permit number 5678,
the residence permit NL_44, Caroline, and the Business Rules course.

Instead of ‘term’, many other words are in use: software engineers call them ‘in-
stance’ and mathematicians call them ‘element’. In knowledge engineering and
model theory, such things are called ‘atom’. Throughout this book we use the word
‘atom’, though any synonym like ‘instance’, ‘item’, ‘element’, ‘member’ or ‘object’,
will do in practice.

An atom refers to an individual object in the real world, such as the student calledAtom
‘Caroline’. But what if there are three different Carolines? What does it mean to say:
“Caroline has passed the exam for Spanish Medieval Literature.”? This sentence
might be true for one Caroline, but false for the others. Clearly, to avoid ambiguous
sentences, an atom must identify exactly one real-world object, no more, no less.
Or rather, it suffices that the atom identifies one object within the context in which
we are working: if the context is a group with only one Caroline, there will be no
ambiguity. Similarly, ABBA is unique among all pop groups in the world; there
ought to be only one building permit with number 5678; etcetera.

Each of the basic sentences above represents a fact, something that is taken to be true.Fact
The example sentences follow the noun-verb-noun scheme, but the notion of basic
sentence applies to just about any sentence that has two atoms related by a verb-like
expression. For example, if we use the name ‘Caroline’ and the number ‘3’ as atoms,
the following is also a basic sentence: “In Caroline’s house there are three rooms”.
This basic sentence contains two atoms, and if we leave out those atoms, a template
remains, as in: “In ... ’s house, there are ... rooms”. So, a basic sentence in naturalBasic sentence
language relates two atoms.

Still, a basic sentence does not accommodate arbitrary atoms. For example, switch-
ing the atoms produces a sentence “In 3’s house, there are Caroline rooms” which
makes no sense at all, it is non-sense. In this particular example, the first blanks are
clearly meant for a person and the second one should obviously be a number. In
other sentences, other concepts may be required. For instance, in the sentence “...
has passed the exam for ...” the first blanks are supposedly some student and the
second blanks must be some course.

In Ampersand, an abstraction like ‘student’, ‘number’, and ‘course’, that you need
to replace by an actual student, number, or course, is called a concept. ConceptsConcept
should not be confused with atoms: concepts are abstract, and atoms are concrete.
Atoms are the terms, the individual things in the real world that you can point out.
A concept is an abstraction, it is not the individual thing but the type of thing. We
can say for example that Caroline (an atom) is a student (a concept), ABBA is a pop
group, and NL_44 is a residence permit.

So basic sentences have a fixed template, and moreover, every term (or atom, as
we prefer to call it) that you fill in on the blanks, belongs to a certain concept. The
Business Rules Manifesto, in its article 3.1, hints at just this distinction between term
and concept. That article can be explained as:

– a term expresses a business concept, it corresponds to an individual thing that is
relevant in the business context,

– a concept is an abstract description or definition that is instantiated (expressed) by
the actual realworld thing (term or object),
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– a fact makes an assertion about the concepts, it is a basic sentence that expresses a
relationship between two terms.

2.2 CONCEPT

As we want to describe our business rules with computer precision, we must be
rigorous in our definitions.

At the surface level, a term refers to one individual thing that exists in the real world.
At the deep level, a concept stands for terms that are similar: they share the same
meaning, have similar properties, similar behavior, and similar connections with
other terms or concepts.

Every abstract concept comes with an intension: a definition that lets you determineIntension
whether an arbitrary ‘thing’ in the business environment is an instance of the con-
cept. The reader of the definition is expected to understand which ‘individual terms
that exist in the real world’ meet the definition and should be (represented as) a term
in the extension of the concept. Next, a concept also has an extension, more oftenExtension
called population or contents. This is the set of all terms that the concept actuallyPopulation

Contents stands for, at present. It is customarily denoted using a bracket notation, for instance
Age = { 7, 3, 5, 2 }. Occasionally square brackets are used: Age = [ 5; 3; 2; 7 ]. In
mathematics, the special symbol ∈ is used to denote that an element is contained in
the set, so we have: 3 ∈ Age, 7 ∈ Age, etc.

The inclusion symbol ⊂ is used to denote that one set is a subset of another, it isInclusion
contained in it. For instance { 3, 7 } ⊂ Age, or { William Kennedy, Ersin Seyhan,
Caroline } ⊂ Person. Because the inclusion symbol is not easy to type, we will often
replace it with the symbol `, which means exactly the same.

Subsets usually contain less atoms than the enveloping set, but in general, the two
sets are allowed to be equal. If we want to draw attention to the fact that equality
is permitted, we sometimes write A v B. But if equality is not permitted, we must
write two assertions:

A ⊂ B and ¬ (A = B)

Three important properties to remember about atoms are:

– each instance of the concept is considered to be whole and indivisible, and it is
why we use the name ‘atom’. The element ‘ABBA’ is regarded as one indivisible
member of the Popgroup concept, even though, from another point of view, it may
be composed of four units,

– there is no specific order or sequence among the atoms of a concept,
– an atom can occur only once in the population. That is: each atom must differ

from every other element within the set. A term meets the concept definition, or it
does not. It is meaningless to say that it meets the definition twice.

The latter property is sometimes referred to as entity integrity by database designers.Entity integrity

A concept is characterized by its intension, a sound definition that exemplifies its
business semantics, its meaning, properties, behaviour. Definitions are generally sta-
ble, and do not change overnight, regardless whether there are millions, hundreds,
tens or even no instances on record for the concept. And although definitions can
change over time, such changes are not very frequent.

To contrast: extensions can and will change constantly. The extension is the time-
varying part. At any given moment, there is a specific content, and that content can
differ from the content one minute before or after. For instance, Student is an impor-
tant concept at any university, but the student population is constantly changing. A
concept may even have an empty extension at some time, denoted ∅. But even if twoEmpty extension
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concepts are both empty, we consider them to be different: a Student concept differs
from the Car concept, even if there are neither students nor cars on record.

In general, concept names are nouns such as ‘Student’, ‘Customer’ or ‘Car’, some-
times qualified to better express its meaning, e.g. ‘Old-timer Car’, ‘Bachelor Student’,
or ‘Priority Customer’. By convention, we write the name of a concept with a capital:
‘Popgroup’, ‘Permit’, or ‘Course’.

2.3 RELATION

Above, we defined ‘fact’ as a basic sentence that expresses a relationship between
two terms. Having abstracted the individual terms to concepts, we also desire an
abstract notion to replace the individual fact templates. The answer provided by
mathematics is called: relations.

Let us introduce this by way of an example: some friends organizing a tennis tourna-
ment which will include a mixed-double competition. Although the group of friends
has 4 women and 5 men, only three pairs want to participate in the mixed double.
These are the facts:

– Aisha doubles with Marek.
– Sophie doubles with Raúl.
– Nellie doubles with Toine.

Obviously, the template for these facts is: ... doubles with ... with the first concept
being Woman, the second concept involved is Man. We now introduce the relation
named doublesWith which is defined as “the set of all pairs of one woman and one
man wanting to participate in the upcoming tennis tournament”. We can write the
pairs one by one:

– 〈‘Aisha’,‘Marek’〉 ∈ doublesWith.
– 〈‘Nellie’,‘Toine’〉 ∈ doublesWith.
– 〈‘Sophie’,‘Raúl’〉 ∈ doublesWith.

Or we may list the entire population of doublesWith in one go:

doublesWith = { (Nellie, Toine); (Aisha, Marek); (Sophie, Raúl) }.

We can also make a drawing of this relation, a so-called instance diagram or VennInstance diagram
diagram. This shows all facts as arcs connecting the woman and man that together

FIGURE 3.1 Instance diagram: which woman doublesWith which man

make up a pair, as shown in figure 3.1. An instance diagram provides very detailed
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insight into the current state of affairs in the business, which can be very useful some-
times. It works fine for small examples, but this kind of diagram quickly becomes
unreadable if many pairs participate.

We may also use a layout with two columns as in table 3.1.

Woman Man
Sophie Raúl
Aisha Marek
Nellie Toine

TABLE 3.1 doublesWith: tabular layout of the participating pairs

Facts can be represented in many ways. A telephone directory lists names with tele-
phone numbers in a tabular layout, a dictionary does the same with words and their
meanings. But a story about a poker or bridge game may be illustrated with a dia-
gram showing the hands of each player.

The time and effort people take to communicate the contents of relations indicates
the importance of suitable representations. In practice, form follows function: de-
pending on circumstances, audience, and the sheer number of facts, the designer
chooses a representation that best suits the purpose.

2.4 CARTESIAN PRODUCT

The most comprehensive representation of a relation is a two-dimensional array. It
shows all instances of one concept, Woman, along one axis, and all instances of the
second concept, Man, along the other axis, like a spreadsheet page as in table 3.2. It
allows you to easily mark participation in the tournament.

doublesWith Marek John Rob Toine Raúl
Sophie - - - - x
Aisha x - - - -
Jenny - - - - -
Nellie - - - x -

TABLE 3.2 Two-dimensional layout of the participating pairs

This representation lets you consider all possible combinations of one woman and
one man, a total of 4× 5 = 20 possible pairs. The “set of all possible pairs” is called
a Cartesian product in mathematics.Cartesian product

Formally, the Cartesian product of two concepts A and B is (the set of) all pairs that
combine one atom from the first concept A, with one atom from the second concept,
B. Obviously, the number of pairs in the Cartesian product is equal to the number of
atoms in A times the number of atoms in B; which explains (in part) why it is called
a ‘product’.

The Cartesian product of concepts A and B is denoted as: A × B. We sometimes
denote it as V[A,B] or V for short, with the V’s lefthand side rendered as a double
line, if the printer can do that. Of course, if there is any chance of ambiguity, V[A,B]
should be written in full to prevent confusion with, say, V[B,C] or V[B,A].

Another good example of Cartesian product is a deck of common playing cards.
There are 4 suits {spades, diamonds, clubs, hearts}, and 13 ranks. Because every
combination is possible, there are 52 playing cards in the Cartesian product of Suit×
Rank, as shown in figure 3.2. The cards in the picture are neatly arranged, but re-
member that in general, there is no special ordering along the axes.
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FIGURE 3.2 Set of 52 playing cards

To be exact: this is different from Rank× Suit. While the tuple (diamonds, ace) looks
very similar to the tuple (ace, diamonds), there is a big difference as the two atoms
are written in inverse order. This finesse will be important later on when we discuss
the inverse of a relation.

Some standard terminology when discussing Cartesian products:

– the left-hand set of the product is called source or domain,Source
– the right-hand set of the product is called target, or co-domain, or sometimes rangeTarget

or image,
– each single element of the product is called a tuple or pair.Tuple

2.5 RELATION IN MATHEMATICS

Having defined the Cartesian product, we can now explain the formal definition of
a relation which is:Relation

– a named subset of the Cartesian product of two concepts, where all tuples in the
subset have a similar meaning, similar properties, and similar behavior.

The relation name is usually a verb, possibly qualified, like you saw in the templatesRelation name
for basic sentences. We will generally write the relation name in italics and in low-
ercase. Whatever name you choose for a relation, make it (almost) self-explanatory.
When trying to understand a design, the business stakeholders will start to look at
names first. So make sure that the names are really close to the intent of the relation,
its real-world meaning and pragmatics. Relation names, being verbs, often seem
to express some kind of activity. But beware: the intention of relations is never to
prescribe action, there is no imperative rule involved. Each tuple in a relation only
records a single fact: that a certain woman doubles with a man in a tennis tourna-
ment, that the customer buys an item, receives a receipt, and pays the money. The
fact may come into being at some moment in time, but its timing is irrelevant. The
fact as such becomes and remains true, and will be kept on record indefinitely.

Like with concepts, a relation has an intension, a precise definition. The definitionIntension
serves to determine which pairs should be represented in the extension of the rela-
tion, and which ones ought to be absent. The definition or pragmatics captures thePragmatics
meaning of the relation.

You should check that doublesWith, with its three couples entered for the tennis com-
petition, is indeed a relation according to our definition. Another example of a re-
lation is the subset of community cards lying face-up on the table in a poker game,
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shown in figure 3.3.

FIGURE 3.3 Community cards on the table are a special selection of playing cards

A tuple in a relation refers to one instance of the source and one instance of the tar-
get, and the tuple is fully identified by exactly these two atoms. Therefore, there is
no need to have special identifiers to distinguish the tuples of a relation: the identi-
fication of its source- and target instance suffices.

To summarize so far:

– an atom corresponds to an individual real world thing. Each atom or term is cap-
tured as an instance, an element in a set, and that set is the extension of a concept,

– a concept is an abstract description or definition that is instantiated by the actual
realworld things or objects. The intension is the definition of the relevant terms;
the extension is the set of all terms in the business context that meet the definition,

– a fact is a basic sentence that expresses a truth about two terms,
– a relation is an abstract description of facts. Mathematically, it is defined as a subset

of the Cartesian product of two concepts, and it captures the deep structure of
basic sentences,

– the intension of the relation provides the definition or meaning of the relevant facts,
– the extension of the relation consists of pairs, and each tuple represents a single fact

that is true in the business context.

EXERCISE 3.1

has_name : Client→Name

Suppose a legal consultant has two clients, labeled C_1 and C_2. Their names are
Martin and Stacey. Write down the basic sentences to express this knowlegde in
natural language. Then, state the deep structure of these sentences.

ANSWER

C_1 has_name Martin
C_2 has_name Stacey

EXERCISE 3.2

sells : Vendor×ProductType

Invent three basic sentences to represent some content in this relation.
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ANSWER

Vendor_1 sells Shampoo
Vendor_1 sells Toothpaste
Vendor_2 sells Chair

2.6 TERMINOLOGY AND NOTATIONS

Some standard terminology when discussing relations:

– the relation declaration is the combination of its name, its source and its target,Declaration
together with its definition, i.e. its meaning or intension,

– the signature of a relation is the combination of relation name, (the name of) sourceSignature
concept, and (the name of) target concept,

– the type of a relation is defined as (the name of) the source concept, and (the nameType
of) the target concept. In other words: a relation type indicates the full Cartesian
product, the relation is its subset.

Type is important when we compare the extensions of relations. If two relations have
different types, then they contain tuples with atoms taken from different source or
target concepts. Only if two relations are of the same type, i.e. both relations are
subsets of the same Cartesian product, can we compare their contents.

To avoid ambiguity in discussions, every relation should have a unique signature, i.e.
the name, source and target are a unique combination. Often, if sources and targets
are not in doubt, the relation name is enough to know about which relation we are
talking. Sometimes one name is used for several relations. Theoretically, this is fine
provided that the types are different. For stakeholders, it may be rather confusing.

To denote the signature of a relation with name r, source A and target B, we write

r : A×B , or r[A,B] for short.

The customary notation for writing the contents of a relation is

r = { ( a, b ) | ( a, b ) ∈ r}

A more concise notation is sometimes used for a single tuple:

a r b means that tuple ( a, b ) ∈ r

For a given atom a ∈ A, we can determine all elements b ∈ B that are related to
a. This set, which in general may have 0, 1 or any arbitrary number of elements, is
called the target of the element a:

target(a) = { b ∈ B | ( a, b ) ∈ r}

Likewise, for a given b ∈ B, the subset of instances in A that relate to b is called the
source of b:

source(b) = { a ∈ A | ( a, b ) ∈ r}

Notice in the above formulas that the left-hand sides do not indicate about which
relation we are talking. To avoid confusion, a subscript may indicate the relation for
which the target and source are being considered:

targetrelation (a), and sourcerelation (b)

So now the words source and target have double usage. First, every relation r has aSource
Target
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source and a target concept. And second, each atom of the source has its own target
set, and each instance of the target has its source set.

Bear in mind that in general, a relation is not the entire set of all possible combina-
tions of elements, but only a subset, a selection of certain pairs. To emphasize this
important difference, the Cartesian product V[A,B] is sometimes called the universalUniversal relation
relation of A and B, with ”universal” meaning that it contains all possible tuples that
can be produced from (the current contents of) A and B.

Various mathematical symbols will be needed further on. You can read the symbolsSymbol
out aloud by pronouncing them as follows:

∀means ’for all’.
∃means ’there exists’.
∧means ’and’.
∨means ’or’.
→means ’implies’.
←means ’is implied by’, which is the same but it goes in the other direction.

The symbols are merely a mathematical shorthand notation and pronunciation. Just
remember the meanings and pronunciations above, and you will find nothing mys-
terious about them.

2.7 IDENTITY RELATION

At this point, we want to introduce to you a special relation: the so-called identityIdentity relation
relation, abbreviated to Id or even to I (for this particular relation yes, an uppercase
i).

This relation can be defined for every concept, taking that concept for its source as
well as for its target. The definition states that each atom (of the source) is equal
to itself (now as an atom in the target). The contents of this relation contains every
possible tuple composed of two identical elements.

identity Apple Orange Pear Berry Grape
Apple x
Orange x
Pear x
Berry x
Grape x

TABLE 3.3 Identity relation is special selection of the Cartesian product with iden-
tical source and target

In the matrix representation of table 3.3, the identity relation has a marking exactly
on the diagonal, and nowhere else. The example tells us five facts: ‘fruit w is identical
to fruit w’, for all five fruits, ranging from apple to grape. Another way to write
down this identity relation is as follows:

IFruit = {( w, w ) | w ∈ Fruit }

The subscript indicates the concept for which the Identity relation is taken. If the
concept is not in doubt, the subscript is usually omitted.

2.8 NAMING

We aim to use the notions of atom and fact, concept and relation consistently through-
out this book. Other authors coin other names and notions that may look rather
similar in meaning and usage, but often there are subtle differences.
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For instance, UML programming works with ‘classes’, a notion that is similar but not
equal to our notion of concept. And database modelling uses the name ‘entity’, or
sometimes even ‘type’, for a notion that is also similar but not equal to our concept.

The SBVR standard (more on that later) defines term as a ‘verbal designation of a
general concept in a specific subject field’. The ‘general concept’ that this alludes to,
is described as a ‘unit of knowledge created by a unique combination of characteris-
tics’.

The many different names and definitions may be a cause of confusion. Illustrative
of this is the SBVR statement that “a concept type is an object type that specializes
the concept ‘concept’, whereas a concept is related to a concept type by being an
instance of the concept type.”

So according to the SBVR naming convention, a person John Doe should be called a
concept, which is an instance of the concept type Customer. We however prefer to call
Customer the concept, and refer to the person John Doe as an instance of Customer.

Also, what we call a relation goes under different names. SBVR calls ‘fact type’ for
what we prefer to call a ‘relation’. UML coins the word ‘association’, and ‘reference’
and ‘relationship’ are used by still others.

For some readers, words like ‘source’ and ‘target’ may bring to mind the hyperlinks
of the World Wide Web. However, hyperlinks, strictly speaking, are not relations. Al-
though a hyperlink does provide a link from a source (webpage) to a target (another
webpage), the reverse, from target back to source, is missing. For a given webpage,
there is no sure way to know all webpages that have a hyperlink to it. Moreover,
hyperlinks do not implement the referential integrity demand (see below), resulting
in the infamous “error 404” reports.

2.9 INTEGRITY

When you deal with concepts and relations in computers, you must always adhere
to two demands.

First, for every concept, it must be so that every atom is unique within the extension. Re-
member that each atom represents a single term in the business environment. That
term meets the definition of the concept, or it does not. It is a member in the pop-
ulation, or it is not. But never can it be in the population, twice! If students are
identified by their first names, then the computer can only deal with one student
named Caroline. This demand was referred to as entity integrity.Entity integrity

Second, we stated that each tuple in (the extension of) a relation refers to one instance
of the source and one instance of the target concepts. This requires that those two
atoms referred to must actually exist in the current extensions of the concepts, they must
be on record. This important demand is usually referred to as referential integrity.Referential

integrity
At first glance, these two are rather trivial demands. However, one must realize that
extensions are constantly changing. Therefore, if an atom is deleted from (the current
extension of) some concept, the consequence is that all tuples referring to that very
atom ought to be deleted also, in all relations that the concept may be involved in,
either as a source or as a target. On the other hand, whenever we want to insert a
tuple in a relation, we must assure that the associated source and target atoms are
present in their respective extensions.

2.10 VALIDATION

The intension (definition) of a relation tells us how to decide which facts ought to be
true in the business environment. The extension is the current content, it captures all
of the facts that are currently on record.
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You must realize that these two are fundamentally different. For example, the cur-
rent content of the relation may not be up-to-date: a fact is true, but not yet recorded.
Or a tuple is recorded for a relation, but the corresponding fact is no longer true. This
kinds of problems may not always be attributed to a computer issue or a business
error, e.g. a customer has posted a complaint but the mail has not yet been received.

The activity to check whether the computer-stored information is a valid represen-
tation of the situation in the real business world is called validation. Such a checkValidation
will concern the (current) contents of one or more extensions. Validation may also
be used in a broader sense: whether an entire design captures all the relevant fea-
tures of a business environment. Validation in general requires a human effort, as
only humans have a grasp of reality. Only on rare occasions can the computer signal
validation problems.

Do not confuse validation with verification which is only an internal check on theVerification
stored information, and reporting possible problems, especially problems with in-
tegrity. Such checking can be done automatically, by computers, without referring to
the real world. Clearly, problems detected by verification may sometimes be caused
by invalid data, but there may also be errors in the data store or in the programmed
checks.

3 Models and diagrams

3.1 MODELS AND DIAGRAMS

If you are trying to understand a business context, you will need to get a grip on the
concepts and relations that are important. You start out with basic sentences, try to
extract the deep structure of the sentences, and keep note of the structures you have
uncovered so far.

A conceptual model is the exhaustive listing of all concepts and relations that are rel-Conceptual model
evant in a certain (business) setting. Such a listing can be provided in textual form,
which will make it dull and incomprehensible, and only a trained engineer or com-
puter programmer will like it. The listing can also be provided in a more attractive
way, such as a diagram, a graphical representation of the model, or even by way of
a prototype system for users to explore and play with.

For a conceptual model to be correct, we require that the signature of each relation
shall be unique: for any given source and target, there is at most one relation with
a certain name. The same name may be used elsewhere in the model, for relations
defined on other sources or targets. However, it can become quite confusing for
people trying to read and understand a model if different relations have identical
names.

3.2 CONCEPTUAL DIAGRAM

A good way to get a grip on the concepts and relations in your business environment
is by making a diagram such as figure 3.4. A picture is often very useful to oversee
the context, and to discuss important aspects with stakeholders.

The example conceptual diagram uses dots to represent concepts, connected by arcs
that represent the relations. This diagram employs the arrow notation, with the ar-
rowhead pointing from the source (shaft of the arrow) to the target concept (point of
the arrow). Relation names are written next to each arc, so that the unique signature
of each relation (name, source and target) is easy to read from the diagram.

Remark that the diagram does not show current students or courses that are presently
available. Nor does it show which students are involved in which course. In general,
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FIGURE 3.4 Example of a conceptual diagram

abstracting away from the contents enables you to oversee the structure of many re-
lations at once.

The diagrams are easy to understand as long as the number of concepts and relations
is moderate. When the numbers go up, say more than 20 concepts, then the sheer
size of the diagrams makes them incomprehensible for most people, and again, only
the trained specialists will like to work with such diagrams.

In this kind of diagrams, the arrowheads are sometimes placed at the base of the
arc (as in the ‘crow’s feet’ notation well known from database modelling). Other
notations place it halfway, or at the end of the arc, as for instance is common in UML
diagrams. Still other notations omit the arrows altogether, so that source or target
must be looked up in the documentation of the conceptual model.

3.3 INSTANCE DIAGRAM

You can also use diagrams to show (some of) the contents of the concepts and rela-
tions. Such a diagram is called an Instance diagram, as shown in figure 3.5.

The instance diagram provides a level of detail that is lacking in the conceptual dia-
gram. It depicts some instances of the concepts and relations, corresponding to true
facts of reality. Already at this small scale, the diagram is rather cluttered. As men-
tioned before, instance diagrams are generally not very comprehensible due to the
sheer amount of detail. They are mostly used only with small subsets, to illustrate a
certain finesse of argument or to highlight some intricacy.

4 Operations on relations

We started out with basic sentences, facts that are true within a certain business
context. Sentences can be combined in many ways to produce other sentences. By
making the right combinations, the new sentences express true assertions about the
business that is true as well.

Relation algebra provides numerous operations to produce new relations from ex-
isting ones. Learning to use them is vital in order to exploit the expressive power of
relations: applying the operators correctly will ensure that the new sentences, your
new facts, will be true as well.
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FIGURE 3.5 Example of an instance diagram

We begin with two operators that have only one argument: complement and inverse.
Then we discuss operations that are known from set theory: intersection, union,
and difference. A genuine relational operator is discussed next: composition. Other
relational operators such as ‘dagger’ and ‘implication’ are discussed thereafter.

4.1 COMPLEMENT

The complement operator is used to indicate the tuples that are not in the populationComplement
operator of a relation.

Consider the mixed doubles, defined as subset of the Cartesian product of Woman
× Man. The relation signature is doublesWith[Woman,Man]. The complement is the
relation that has the same type, but its contents is the ‘remainder’: all pairs in V that
are not in the original relation. For this reason, some authors refer to this operation
as negation.Negation

Complement is usually denoted by an overstrike, r, and you pronounce it as ‘com-
plement of r’. Because overstrike is not easy to type, it may be denoted by a minus
sign in front of the relation: -r.

A tabular representation of the complement relation is easy to write down. In the
example of teams for the mixed double, it contains a total of 4× 5− 3 = 17 tuples,
representing all potential couples that are not entered for the mixed doubles compe-
tition (table 3.4).

complement of doublesWith Marek John Rob Toine Raúl
Sophie x x x x
Aisha x x x x
Jenny x x x x x
Nellie x x x x

TABLE 3.4 Pairs not entered for a mixed double competition

Another way to denote a complement is by way of set difference, using the backslashSet difference
\symbol. The set difference F\G is all instances that are contained in set F, at the
left, but not contained in the righthand set, G. So we may denote the complement of
relation r[A,B] as the difference V[A×B]\r.
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Obviously, if there is any ambiguity what the enveloping Cartesian product would
be, then the complement would also be in doubt. To illustrate the point: the com-
plement of all students attending class is probably those students that are enrolled
for the course, but that do not attend todays class. But perhaps the speaker meant
the people in the classroom that are not students, such as the teacher and perhaps a
visitor?

Complement is a so-called involutive operator: apply the operator twice, and it willInvolutive
reproduce the original relation. In formula:

r = r

4.2 INVERSE

Earlier, we pointed out that the Cartesian product of a set A and a set B is A × B,
and this is not the same as B × A (except of course if A = B, more on that later).
However, a relation that contains tuples of the form (a, b) can easily be altered into
a relation containing tuples of the form (b, a) simply by changing the order of the
elements. Mathematically, it is a brand new tuple, as source and target differ from
before.

This operation, producing a new relation from an existing one, is called ‘taking the
inverse’, inversion, or sometimes conversion. It is denoted by writing a ` symbolInverse

Conversion (pronounced ‘flip’) after the relation name:

sang`[Hit song,Popgroup]

We may pronounce this as ‘flip of Popgroup sang Hit song’. For most of us, it is more
comfortable to change the relation name into something more sensible like ‘Hit song
wasSungBy Popgroup’, or ‘Hit song originatedFrom Popgroup’. Beware however that
in general, different relation names mean different relations!

The formal declaration of the inverse relation r` of a relation declared as r[A,B] is as
follows:

r`[B,A] having contents{( b, a ) | ( a, b ) ∈ r }

As the inverse operator merely swaps the left and right hand sides of each tuple, it
is easy to write down the extension of the new relation, if given the extension of the
old one. In a tabular form, the inverse operator merely swaps columns, as shown in
table 3.5.

Man Woman
Raúl Sophie
Marek Aisha
Toine Nellie

TABLE 3.5 Inverse of the selected couples for a mixed double competition

In the two-dimensional matrix layout (see table 3.2), the inverse operator mirrors the
entire content of the matrix along the diagonal. The two axes, source and target, are
swapped accordingly.

Like complement, the inverse operator is also involutive: apply it twice, and you endInvolutive
up with the original relation. This may be no surprise, as the inverse operator does
not change the facts, it merely rephrases them. In formula:

r`
`
= r
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4.3 SET OPERATIONS

Set theory in mathematics describes several operators that produce new sets from
existing ones. Each operation unambiguously defines which elements will belong to
the new set, and which ones are excluded.

In particular, we assume that you are familiar with the intersection, union and dif-
ference operators on sets. It ought to be an easy exercise to verify for arbitrary sets F
and G that:

F ∪ G = (F\G) ∪ (F ∩ G) ∪ (G\F)

and

( F \ G ) ∩ ( F ∩ G ) = ∅

Because we defined relations as subsets of a Cartesian product, we can apply any setSet operation
operation to two relations r and s, provided of course that they share the same types.
We have:

– Intersection : r ∩ s is the relation that contains the tuples that are contained in rela-Intersection
tion r as well as in s, or r ∩ s = {(x, y)|(x, y) ∈ r and (x, y) ∈ s}

– Union : r ∪ s is the relation that contains all pairs that are present either in relationUnion
r or in s, or r ∪ s = {(x, y)|(x, y) ∈ r or (x, y) ∈ s}

– Difference : r\s is the relation that only takes tuples of relation r not present in s, orDifference
r\s = {(x, y)|(x, y) ∈ r and ¬(x, y) ∈ s}. You may check that this is equivalent to
the intersection r ∩ s.

Remember, if relations are not defined on the same Cartesian product, they will con-
tain tuples that cannot be compared. Such relations are disjoint, and the set opera-
tions above produce no meaningful results.

4.4 COMPOSITION

The Composition operator produces a new relation from two existing ones. It com-Composition
operator bines two expressions into a single expression. The formal definition of composition

is as follows.

Let r[A,B] and s[B,C] be two relations, with the same concept being the target of r as
well as the source of s. Then the composition of r and s, is the relation with type A ×
C. Its content is calculated as

{ ( a, c ) | there exists at least one b ∈ B such that a r b and b s c}

The composition operator is denoted by a semicolon ; between the two relation
names, like this: r ; s. It is pronounced as ‘composed with’, in this case: r composed
with s.

The figure 3.6 illustrates how composition works. An Actor (at the left) possesses
some Skills (middle), and Skill required-for a Role (at the right). The meaning of the
composition relation is: the Actor possesses at least one of the Skills required for the Role.
In natural language, you might say that the actor has some skill for the role, but
the formalization is much more precise. It is a combination of two facts: the actor
possesses a particular skill. And the skill is required for the role. In fact, the actor
may possess several skills, or the role may require many skills, but exact information
about skills is absent from the composition. For an actor to be related to a role means
only that the actor has at least one required skill for the role.

Another example was seen in figure 3.5 by composing relation takes with isPassingFor.
Student Caroline takes an exam, yesterday, that is passing for Spanish Medieval Lit-
erature. Also, student Fatima takes several exams, and one of them is passing for the

53



Open Universiteit Rule Based Design

FIGURE 3.6 Instance diagram of a composition

Business Rules course. But according to the diagram, no exam was taken by Dennis
that is passing for World Religions.

Obviously, you cannot compose just any two relations. If there is no middle ground,
then composition has no meaning. Readers familiar with relational database theory
will recognize that composition corresponds to the ‘natural join’ operator.

4.5 ADVANCED OPERATORS

Apart from composition, several other operations can be defined for two relations.
We will briefly discuss them, although we will rarely use them. Moreover, math-
ematically speaking, it can be shown that all these advanced operations can be re-
duced to ordinary composition. In the following definitions, let r[A,B] and s[B,C] be
two relations, with B being the target of r and the source of s.

The relative addition of r and s, is the relation with signature (r † s) : A× C, and itsRelative addition
content is defined as

{ ( a, c ) | (∀ b ∈ B) either a r b or b s c or both}

The relative addition operator is denoted by the symbol †, pronounced as ‘dagger’,
between the two relation names.

To illustrate how relative addition works, consider a company that receives a lot
of customer questions about a number of topics. Frontdesk employees are able to
explain some of the topics over the telephone to customers. Or they may connect a
customer through to some back office employee who specializes in certain topics. A
frontdesk employee can be teamed up with a backoffice employee if together, they
cover all possible topics. Figure 3.7 shows an instance diagram that contains three
possible teams.

The natural language interpretation of relative addition is just that: a tuple (a, c) is
in the relative addition if the two relations, canExplain from a and isSpecializationOf
to c, together cover the entire middle ground of possible topics for questions. More
formally: the relative addition equals those tuples (a, c) in A×C, such that the entire
set B is contained in the union of their two sets target[r,](a) plus source[s,](c).
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FIGURE 3.7 Instance diagram for Frontoffice-Backoffice teaming

The relative subsumption of relations r and s, is the relation with signature ( r ] s ) :Relative
subsumption A × C. By definition, its content is

{ ( a, c ) | (∀ b ∈ B ) if b s c then a r b }

The operator is denoted by the ] symbol. Let us illustrate the idea of this operator
with an example, which will also explain why we use the ] symbol as it resembles an
inclusion symbol.

Suppose some institute offers tours abroad for students. Whether a student is eligible
for a tour destination, depends on whether he or she has passed for the required
courses. Two relations are involved:

– Course requiredFor Destination
– Student passedTheExamFor Course

and these are combined to produce a new relation

– Student isEligibleFor Destination

Figure 3.8 shows a sample of the instance diagram. Caroline is eligible to go to
Madrid, because she passed for the required course Spanish Medieval Literature.
For the trip to Rome, two courses are required, Latin and World Religions. Student
Ang has passed for both courses, so he qualifies. Student Brown is less fortunate,
as she has not yet passed for Latin which is one of the required subjects. Remark
that the destination of Amsterdam requires no courses at all, hence all students are
eligible irrespective of their achievements in exams.

For a destination to be open to a student requires that for all courses: if Course
requiredFor Destination then Student passedTheExamFor Course. In other words, for a
student a to be eligible for a destination c, it is required for every course b that the
set targetpassedTheExamFor (a) is contained in sourcerequiredFor (c).

Or, if we use the inclusion symbol in the opposite direction, we may write:

targetpassedTheExamFor (a) ⊃ sourcerequiredFor (c)

This inclusion explains why we use the ] symbol to denote the relative subsumption
of two relations r ] s. Some authors call this operator the "left residual", and it may
be denoted by the forward slash / instead of the square bracket.

Finally, the relative implication of r and s, is the relation with signature ( r [ s ) : A × C.Relative
implication
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FIGURE 3.8 Instance diagram for passedTheExamFor and requiredFor

By definition, its content is

{ ( a, c ) | (∀ b ∈ B) if a r b then b s c }

We denote this operator by a square bracket [, resembling the inclusion symbol ⊂.
for the similar reason as above. Some authors call this operator the "right residual",
and instead of the square bracket they may denote it by the backslash \.

5 Laws for operations on relations

Using clauses like ‘and’, ‘or’, ‘if’, ‘then’, ‘for all’ and ‘exists’, you can combine basic
sentences into rather complex phrases. Just so, relation operators enable you to write
complex formulas. But often, one meaning can be phrased in several equivalent
ways, and a mathematical formula can be written in several ways. It can be difficult
to decide whether different expressions have the exact same meaning, and if they
will be true (or false) in exactly the same circumstances. For example:

– for`; sent ` deliveredTo, meaning: ‘An Invoice for a certain Order is sent to a par-
ticular Customer, only if that certain Order was delivererdTo that particular Cus-
tomer.’ In other words, only invoices for delivered orders should be sent to the
customer.

– deliveredTo; sent` ` f or`, meaning: ‘If an Order was not delivered to some Cus-
tomer and that Customer was sent an Invoice, then certainly that particular Invoice
was not for that Order.’

Do these formulas express the same business meaning, or not? As a designer, you
want to pick an easy way to express a certain text. To do that, you need the ability to
rewrite one formula into another without loss of meaning.

This section introduces important laws from relation algebra that allows you to do
exactly that. The laws are useful, because they allow you to manipulate with entire
extensions at once, instead of having to consider all the tuples one by one. As a
rule designer, you must learn to use these laws, and manipulate and reason with
formulas and operators, just like you have once learned to manipulate with numbers.
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5.1 LAWS FOR SET OPERATORS

Operators on sets obey laws that are well known in set theory. For instance, when
determining the intersection of multiple sets, it makes no difference in which order
the intersections are calculated. To put it more formally: intersection is

∩ is associative: (A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B ∩ C (3.1)
∩ is commutative: A ∩ B = B ∩ A (3.2)

Union, like intersection, is also associative and commutative, i.e. ∩may be replaced byAssociative
Commutative ∪ in the two laws above.

∪ is associative: (A ∪ B) ∪ C = A ∪ (B ∪ C) = A ∪ B ∪ C (3.3)
∪ is commutative: A ∪ B = B ∪ A (3.4)

When a formula combines union and intersection, the laws of distributivity apply:Distributivity

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (3.5)

The first line reads: “intersection with a union equals the union of the intersections”,
and the second one can be pronounced as “the union with an intersection equals the
intersection of the unions”.

5.2 LAWS FOR COMPOSITION AND RELATIVE ADDITION

Composition and relative addition are associative operators. Just like in law 3.1,
it does not matter how brackets are placed in an expression with two or more of
the same operators. As a consequence, brackets may be omitted and the expression
looks less cluttered.

(p; q); r = p; (q; r) = p; q; r (3.6)
(p † q) † r = p † (q † r) = p † q † r (3.7)

The next law is special for composition. It states that the identity relation I may
be removed if used in a composition: the identity relation is neutral with respect toNeutral
composition and can be omitted.

r; I = I; r = r (3.8)

Similarly, you may remove the complement of identity I (sometimes referred to as
diversity), if it appears in a relative addition.Diversity

r † I = I † r = r (3.9)

5.3 LAWS FOR THE INVERSE OPERATOR

The following laws show how the conversion operator behaves.

involutive: r`
`

= r (3.10)

distributive: (r ∪ q)` = r` ∪ q` (3.11)

and also: (r ∩ q)` = r` ∩ q` (3.12)

In the next two laws, the order of the relations r and s is reversed:

(r; s)` = s`; r` (3.13)

(r † s)` = s` † r` (3.14)

57



Open Universiteit Rule Based Design

5.4 LAWS FOR DISTRIBUTION IN COMPOSITIONS

When working with compositions of relations, it often happens that a union or inter-
section appears somewhere in the formula. There is one distributive law that allows
to remove the union operator from compositions of relations.

p; (q ∪ r); s = (p; q; s) ∪ (p; r; s) (3.15)

As relations p and s are arbitrary, you may replace either one with the identity rela-
tion. It would be nice if the same kind of distribution would hold for intersection, ∩,
but alas not. Distribution does not apply for intersections in general. Only if certain
conditions are met, does distribution apply for intersections. This will be demon-
strated later on.

5.5 LAWS FOR COMPLEMENT

The best known law concerning complement is that it is an involutive operator: ap-
ply it twice and the original relation is reproduced:

involutive: r = r (3.16)

The mathematician De Morgan was first to formulate these laws:De Morgan

r ∪ s = r ∩ s (3.17)
r ∩ s = r ∪ s (3.18)

The laws above are frequently used because they allow the complement operator to
‘move around’ in your formulas. There are similar laws involving ; and † operators,
also named after De Morgan:

r; s = r † s (3.19)
r † s = r; s (3.20)

Equations 3.18 and 3.20 are collectively known as De Morgan’s laws. Lesser known,
but almost as important are equivalences which De Morgan called “Theorem K”.
These will be discussed in the next chapter.

5.6 LAWS ABOUT INCLUSION

Laws about set inclusion are very important, because inclusion lies at the basis of
rule assertions that the next chapter is all about. This section provides some laws
about the inclusion operator ` or ⊂. The following assertion is obviously true for
relations r and s sharing the same type:

(r ∩ s) ` r ` (r ∪ s) (3.21)

Inclusion can be combined with the flip and complement operators, which produces
the following equivalences. Beware though that the order of r and s is reversed in
the second formula only:

r ` s ⇔ r` ` s` (3.22)
r ` s ⇔ s ` r (3.23)

58



Chapter 3 Concepts and Relations

Inclusion also combines easily with operators other than flip and complement, some-
times referred to as the monotonicity of inclusion. But beware that the following lawsMonotonicity
are not equivalences but work in only one direction:

r ` s ⇒ r ∩ t ` s ∩ t (3.24)
r ` s ⇒ r ∪ t ` s ∪ t (3.25)
r ` s ⇒ r; t ` s; t (3.26)
r ` s ⇒ t; r ` t; s
r ` s ⇒ r † t ` s † t (3.27)
r ` s ⇒ t † r ` t † s

5.7 OPERATOR PRECEDENCE

To conclude this section, we give some conventions that govern precedence of oper-
ators. Just like in arithmatics, where for instance “take the square of” takes prece-
dence over addition. These conventions save brackets and simplifies the writing of
formulas with multiple operators. Table 3.6 contains the precedence rules.

expression precedence rule to be read as
unary operators r` and r have highest precedence
r; q flip and complement always take precedence (r); q
r † r (also if flip or complement appear (r) † q
r`; q at the righthand side) (r`); q
r` † q (r`) † q
; and †, having equal precedence, take precedence over ∩ and ∪, = and `
p ∩ q; r ; and † bind stronger than ∩ and ∪, = and ` p ∩ (q; r)
p ∩ q † r (also if ; or † appears at the lefthand side) p ∩ (q † r)
p ∪ q; r p ∪ (q; r)
p ∪ q † r p ∪ (q † r)
∩ precedes over ∪
p ∪ q ∩ r ∩ binds stronger than ∪ p ∪ (q ∩ r)
= and ` have weakest precedence of all
p = q ∪ r ∪ and ∩ bind stronger than = or ` p = (q ∪ r)
p = q ∩ r p = (q ∩ r)
p ` q ∪ r p ` (q ∪ r)
p ` q ∩ r p ` (q ∩ r)

TABLE 3.6 Precedence of operators

6 Homogeneous relations

So far, we discussed relations based on Cartesian products with sources and targets
arbitrary. But the same concept may be used for both source and target. This section
is devoted to exactly such relations, and the special features that they have.

A relation for which one concept serves both as source and as target is called
an endorelation.Endorelation

All other relations will be called heterogeneous relations: their source and target con-Heterogeneous
relation cepts are different.

We already encountered one example of a relation with identical source and target,
namely the Identity relation, abbreviated I. Examples of endorelations are easy to
think of, once you realize that they correspond to basic sentences that express facts
about similar terms.
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Some examples are: Person isRelatedTo Person, in arithmetics: Number isGreaterThan
Number, and in chemistry: Compound mayDecomposeInto Compound. Or in soft-
ware maintenance: Software-change interferesWith Software-change. In business ad-
ministration: Department isSubordinateTo Department. And in process design: Use-
case isSubvariantOf Use-case.

In a conceptual diagram, the endorelations are easy to spot because the relation con-
nects a concept with itself, and there will be an arc pointing back to its origin.

Let us consider a relation r[A,A]. By our definition, relation r is homogeneous as
its source and target are the same. We can point out several characteristics that the
relation r may, or may not have.

6.1 REFLEXIVE

A relation r[A,A] is called reflexive if for all elements x in the set A, the tuple (x, x)Reflexive
is in r. The relation isACloseFriendOf is an example: everybody is a close friend of
themselves. The condition can be stated as:

I ` r

The complete opposite is a relation with the property that identical pairs (x, x) are
forbidden. Relations with this property are called irreflexive. Two irreflexive exam-Irreflexive
ples are isSpectatorOfPerformanceByActor or isParentOf.

In a matrix representation, a reflexive relation will show markings in all cells on the
diagonal (and probably in other places as well, but that does not concern us). To con-
trast, an irreflexive relation may have markings anywhere, except on the diagonal.

An endorelation can, but need not be reflexive or irreflexive. In general, no specific
conditions apply for tuples (x, x) to be, or not to be in the extension. For instance,
when elections are held, then a relation Person votesFor Person may, or may not show
that some people voted for themselves. Of course, the votes remain secret in general.

6.2 SYMMETRIC

Relation r is called symmetric if for any tuple (x, y) ∈ r, the inverse tuple (y, x) is alsoSymmetric
in r. This can also be written as:

r` ` r

We leave it to the reader to verify that a relation is symmetric if and only if equality
holds, i.e.

r` = r

Examples of relations that are symmetric (or at least ought to be so) are isMarriedTo,
isInAMeetingWith, and isInTheSameClassAs.

A relation r is asymmetric if for any tuple (x, y) in r, the inverse tuple (y, x) is not inAsymmetric
r, which of course can be written as:

r` ∩ r = ∅

An example of a relation that is asymmetric is awardsBonusPaymentTo. Of course,
violations may occur: two managers that award bonuses to one another. Remark
that an asymmetric relation is automatically irreflexive. Indeed, we do not want a
manager to award a bonus to him- or herself.
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Like with (ir)reflexivity, many endorelations are neither symmetric nor asymmetric.
The relation Website hasHyperlinkTo Website is an example: some websites may link
to one another, but there is no rule or obligation to do so.

An endorelation may be ‘almost’ asymmetric, meaning that it would be asymmetric
were it not for some specific tuples (x, x). Such relations are called antisymmetric,Antisymmetric
and they are characterized as

r` ∩ r ⊂ I

6.3 PROPERTY RELATION

In some situations, an endorelation p may be both symmetric and antisymmetric at
the same time. Some careful reasoning shows that such a relation p must satisfy the
condition: p ` I. We leave it to the reader to verify that both the identity relation
and the empty relation ∅ are symmetric and antisymmetric.

However, there is more to it, if we consider the elements of the source (and target!)
set A. We can divide A into two subsets: one subset with the atoms x that do satisfy
(x, x) ∈ p, and the subset of all other elements in A that are not in p : (y, y) 6∈ p. The
relation p divides the source set in two disjoint subsets. In other words, the relation
p can be understood as a property of atoms of A. Yes, the atom x is in the subset for
which (x, x) is in p. Or no, the tuple (y, y) is not in p. For this reason, an endorelation
that is symmetric and antisymmetric is sometimes called a binary property for A.Binary property

By the way: there are other ways to specify properties for atoms of A, as will be
shown in the chapter on design considerations.

6.4 TRANSITIVE AND INTRANSITIVE

If a relation is homogeneous, then we may define the composition with itself. In fact,
this can be done over and over again, and you can derive many new endorelations
in this way. As an example, consider the relation isCloseTo. If Utrecht isCloseTo Hil-
versum, and Hilversum isCloseTo Almere, then we have Utrecht isCloseTo someplace
that isCloseTo Almere. A relation r is called transitive if the composition with itself isTransitive
contained in the relation itself:

r; r ` r

Another example of transitivity is the ‘subset’ relation among sets: if A ⊂ B and
B ⊂ C then A ⊂ C, or (excuse the complicated notation!)

⊂;⊂ ` ⊂

The opposite of transitivity is shown in family-relationships as studied in genealogy.
If we have Person isParentOf Person, then we can compose the isParentOf relation
with itself. The composite is in fact the isGrandparentOf relation, and a person may
not be both parent and grandparent of a child. Hence, isParentOf is an example of an
intransitive relation, meaning:Intransitive

r; r ∩ r = ∅

Repeat the composition and you arrive at Person isGreatgrandparentOf Person, etcetera.
Genealogy now jumps to one generalized relation Person isAncestorOf Person, which
is a transitive relation. The reader should verify that this particular relation does sat-
isfy the inclusion r; r ` r, but equality r; r = r does not hold. Again, like reflexivity
and symmetry, many endorelations have neither the transitive nor the intransitive
property.
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6.5 SUMMARY OF ENDOPROPERTIES

The various properties that endorelations may have, can be written using mathemat-
ical symbols.

reflexive ( ∀a ) a r a (3.28)
irreflexive ( ∀a ) ¬a r a. Or equivalent : ¬(∃a ) a r a (3.29)
symmetric ( ∀a, b ) a r b → b r a (3.30)

asymmetric ( ∀a, b ) a r b → ¬(b r a) (3.31)
antisymmetric ( ∀a, b ) a r b ∧ b r a → a = b (3.32)

transitive ( ∀a, b ) (∃x)(a r x) ∧ (x r b) → (a r b) (3.33)
intransitive ( ∀a, b ) (∃x)(a r x) ∧ (x r b) → ¬(a r b) (3.34)

6.6 STRUCTURE OF A SET

There is a close link between the structure of a set, and the properties of an endorela-
tion. If for a set A an endorelation p exists that is reflexive, symmetric and transitive
at the same time, then the set A can be partitioned. That is: we can point out a num-
ber of subsets (called partitions) A1, A2, A3 ..., up to An, such that each element of
A is contained in exactly one of the subsets. The intersection of any two subsets is
empty, and the union of all subsets equals the original set A. Such a relation is called
an equivalence relation.Equivalence

relation
Examples are easy to find: Employee worksAtTheSameDepartmentAs Employee, or
Student hasSameGradeAs Student. An instance diagram of this kind of relation re-
sembles an archipelago of islands: the entire set consists of islands, every element is
in one island, and islands do not overlap. This is also called a partitioning of the setPartitioning
A.

It is well possible to have more than one equivalence relation (and matching parti-
tioning) for a concept. For example, cars can be partitioned according to color, or
age, or mileage, weight, value or any other property.

If for a set A we have an endorelation p that is reflexive, asymmetric and transitive
at the same time, this means that the set A has some ordering or hierarchy. The rela-
tion is said to be an ordering relation or order. For example: Employee isSubordinateToOrdering relation
Employee, amounting to hierarchy among workers. Or Department isPartOf Depart-
ment, which corresponds to organizational top-down structure. Other examples are
set inclusion and ancestor relations.

An instance diagram of this kind of set resembles a tree with branches, with the
elements arranged along the separate branches. Or to be precise: one or more trees.
Notice that in general, the ordering is incomplete, as not every possible combination
of two employees will participate in the relation: neither is subordinate to the other.
In an instance diagram, these employees will appear on separate branches. This is
called a partial order because there exists tuples (x, y) such that neither (x, y) ∈ p norPartial order
(y, x) ∈ p.

It is called a total order, or linear order, if any two elements can be compared: eitherTotal order
(x, y) ∈ p or (y, x) ∈ p. In other words, p ∪ p` = V. For a linear order, the instance
diagram will resemble a single line, or a tree with just a single branch. All elements
will be neatly arranged on that line. An example is the common isSmallerThanOrEqualTo
relation on numbers.
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6.7 THE isA RELATION

To conclude this section on endorelations, we finish with an ubiquitous relation that
is not homogeneous. In large sets, one can point out all kinds of subsets. For example,
in the set of all customers we can pick out all customers who joined last week, or
who haven’t paid the last invoice, or who live in New Amsterdam, or who have not
ordered a Harry Potter book. The corresponding basic sentences are simple, like ‘X,
the customer who joined last week is customer X’, or ‘Y, the customer who lives in
New York is customer Y’. The common template looks like ‘.... isA ....’. In all cases,
we have a relation with the subset as source, and the enveloping set as target. An
instance of the former isA instance of the latter, no exceptions.

The definition (intension) of the first concept, which is the subset, is more limited,
more restrictive than the intension of the enveloping concept. And necessarily, the
extension of the first concept is contained in the extension of the other concept.
Whenever this is the case, we call the source the specialisation, the target being theSpecialisation
generalisation.Generalisation

An inclusion relation is a relation for which the source is a proper subset of the target.Inclusion relation

This kind of relation is quite common in conceptual models, and they are easy to
spot because they are usually named isA. Examples of this kind of relation are easy
to think of: Student isA Person. Or in arithmetics: Prime-Number isA Number. Or
chemistry: Pure-Substrate isA Compound. But please do not make the mistake to
think that these are endorelations, as their sources and targets are really different!

As a closing remark: it is quite possible that the extension of one concept is a subset
of the extension of another one. All customers in the shop happen to be male, all
company cars run on diesel fuel. But this alone, is not enough for generalisation-
specialisation. The customers need not be male by definition; company cars may
run on any kind of fuel and still be a company car. Here, the subset property is just
a coincidence, and the extensions of the concepts, without changing definitions, can
be quite different at some other time.

7 Multiplicity constraints

Basic sentences express single facts. By studying the deep structure of sentences, we
arrived at the notion of relation, called ‘fact-type’ by the Business Rules Manifesto.
The Manifesto states that rules build on facts. Indeed, even a single relation can
be subjected to control: the relation must satisfy some business rule. A business
rule that governs a single relation is by its very nature rather simple and easy to
understand. Such rules are frequently encountered, and they have their own name:
multiplicity constraints. They express knowledge about how the tuples in a relationMultiplicity

constraint should be organised, and what behaviour is expected or prevented.

From mathematics we learn that multiplicity constraints come in exactly four flavours.
Each one has been given a distinct name: univalent, total, injective and surjective.
The rule analyst can establish for every relation which constraints apply. The mul-
tiplicity constraints can be applied in any combination, which results in a total of
16 possible combinations. Indeed, relations can be found in practice where no con-
straints apply and anything goes, up to relations that are under very restrictive mul-
tiplicity constraints.

7.1 UNIVALENT AND TOTAL

These two multiplicity constraints must be verified at the source concept. A relation
r is said to be univalent, if every atom in the source occurs in at most one tuple of theUnivalent
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relation. This means that every atom in the source is related to at most one atom in
the target.

A relation r is said to be total, if every atom in the source occurs in at least one tupleTotal
of the relation. This means that every atom in the source is related to at least one
atom in the target.

These properties are easily verified in a matrix representation of the relation. If we
write the relation with the source at the left, and the target across, then univalent
means that there is at most one hit on every row. Total means that there is at least
one hit on every row, and more than one hit is also fine.

In an instance diagram (figure 3.9), univalence means that at most one arc emanates
from every source element. Total means that at least one outgoing arc is drawn for
each element.

FIGURE 3.9 Left: univalent, not total; right: total, not univalent

7.2 INJECTIVE AND SURJECTIVE

These two multiplicity constraints are to be verified at the target concept. A relation
r is said to be injective, if every atom in the target occurs in at most one tuple of theInjective
relation. This means that every atom in the target is related to at most one atom in
the source.

A relation r is said to be surjective, if every atom in the source occurs in at least oneSurjective
tuple of the relation. This means that every atom in the source is related to at least
one atom in the source.

Again, these properties are easy to verify in a matrix representation. Source at the
left, target across, then an injective relation will show at most one hit in each col-
umn, whereas a surjective relation will show one or more hits in every column of the
matrix.

In an instance diagram (figure 3.10), injective means that in each target element, at
most one arc arrives. Surjective means that at least one incoming arc is drawn to
each element.

FIGURE 3.10 Left: injective, not surjective; right: surjective, not injective

64



Chapter 3 Concepts and Relations

7.3 FUNCTION

One combination of multiplicity constraints appears frequently in practical applica-
tions, and they deserve their own name: function.

A relation r is a function if it is both univalent and total. So every atom in the sourceFunction
is related to exactly one atom in the target concept.

To emphasize the property of being a function, we often use a shorthand notation.
We simply write

r : A→ B

the arrow here means that relation r has signature r[A,B] and it is both univalent and
total. Alas, the meaning of this arrow in the formula, differs from the meaning of
arrows used in conceptual models such as figure 3.4 or instance diagrams such as
figure 3.11.

The word ‘function’ is also used in mathematics, with notation f (x) = y. For in-
stance the function ‘square’: f (x) = x2. It is no coincidence that the same word is
used: in a mathematical function, each and every number x is related to exactly one
other number y. Thus, the mathematical function ‘square’ is both univalent and to-
tal. This becomes clear if we write (x, x2) instead of f (x) = x2. This relation contains
tuples such as (1, 1), (2, 4), (3, 9) but also (0, 0), (−1, 1), (−2, 4). Indeed, the ‘square’
function produces correct tuples in this way, exactly one tuple for each number x.

7.4 INJECTION, SURJECTION, BIJECTION

Functions are frequently encountered, and they often even have additional multi-
plicity constraints, either injectivity or surjectivity. A function r (a relation that is
both univalent and total) is called:

Injection, if the function is injectiveInjection
Surjection, if the function is surjectiveSurjection
Bijection, if it is both injective and surjective.Bijection
Figure 3.11 depicts these properties. The reader is invited to verify that every isA
relation is always an injection. And also to think of counterexamples: a relation may
well be an injection without being an isA relation!

Notice in the rightmost example that the inverse relation is also a function. A closer
inspection reveals that a bijection requires that the source and target datasets must
have exactly the same number of atoms, for each atom in the source is related to one
target element, and reversely.

FIGURE 3.11 Common combinations of multiplicities. Left to right: function, injec-
tion, surjection, and bijection.

Although most relations are subject to some multiplicity constraints, this does not
mean that such rules apply for every concept in every relation. For example, a busi-
ness may dictate that each invoice is sent to one customer. Or, for every invoice in
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the source concept, there is exactly one tuple in the relation isSentTo in which that in-
voice appears. But not the other way around: one customer may be sent no invoice
at all, or she may receive hunderds.

Multiplicity constraints are very important in conceptual models, and we will dis-
cuss some more features of multiplicities in the next chapter that is all about rules.
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