
Learning Unit 7

45

Association Rule Mining

Introduction 46

Study core 46

1 Association Rule Mining: Motivation and Main Concepts 46

2 Apriori Algorithm 47

3 FP-Growth Algorithm 47

4 Assignment Bundle: Frequent Itemset Mining 53

Open Universiteit Data Analytics

46

Learning Unit 7

Association Rule Mining

I N T R O D U C T I O N

The seventh learning unit introduces students to association rule mining.

This unit has the following learning objectives:

LEARNING OBJECTIVES

After studying this unit students should understand the

- general concept of association rule mining

- concepts of support, lift and confidence in a rule

- Apriori algorithm for association rule mining

- FP-growth algorithm for association rule mining

- use of RapidMiner in association rule mining.

Study hints

This learning unit takes two weeks; it should take 19 hours to complete.

Part of the work is theoretical in nature and involves reading Provost,

pages 289–291. A more detailed discussion concerning the Apriori and

FP-growth algorithms is then provided in this chapter of the workbook.

Finally, students are required to complete the exercises in the assignment

bundle.

A presentation given by the lecturer will summarise the most important

points and provide examples in RapidMiner concerning the analysis of

data using association rule mining algorithms. Students should dedicate

about 9 hours to studying in the first week and 10 hours in the second

week.

S T U D Y C O R E

1 Association Rule Mining: Motivation and Main Concepts

Association rule mining (ARM) is a rather interesting technique since it

allows data analysts to find a relationship between attributes of interest

in a dataset. Companies very often use ARM for the following tasks:

Motivation

 Data Analytics

47

 Market Basket Analysis

 Word Net Analysis

 Personalisation and customization of a service

First of all, an association rule takes the following form:
𝐿𝐻𝑆 → 𝑅𝐻𝑆

LHS means ‘left hand side’ and RHS means ‘right hand side’. The LHS is

usually an item, set of items or set of attributes, while the RHS is also an

item, set of items or set of attributes. Stated otherwise, the LHS implies

the RHS, or rather ‘if LHS, then RHS’.

A concrete example of an association rule could be:
{𝑚𝑖𝑙𝑘, 𝑏𝑟𝑒𝑎𝑑, 𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠} → {𝑒𝑔𝑔𝑠}

This can be read as ‘if the customer buys milk, bread and tomatoes, then

it is highly likely that eggs will be bought too’.

In order to select interesting rules from the dataset, the algorithms use

two important metrics: support and confidence. Support is a number

between 0 and 1 and indicates how frequently that particular rule is true

in the dataset. Confidence is also a number between 0 and 1 and

represents how many times the rule has been found to be true.

Another important concept is the concept of lift, that is a number ≥ 1.

Unfortunately, there is a complex probabilistic explanation behind the lift

concept. In our case though it is simply important to know that the lift

represents the degree to which the attributes occur independently from

each other, and that a value > 1 implies that there is some sort of

dependency. A value of 1 implies that these attributes are independent

and no rule can be created between the two attributes or items.

2 Apriori Algorithm

This section introduces an informal description of the Apriori algorithm

presented in [1]. The Apriori algorithm was designed to work on

transactions to identify which items occur simultaneously most often.

Here, each of the transactions considered is expected to be a set of items

(itemset). To determine a relationship to be interesting, the algorithm

defines a threshold T as the number of transactions in a database in

which an itemset has to appear in order to be considered interesting.

Apriori uses an approach that begins by checking items of one element

against the transactions in the database and then including further

elements in the basket. If an itemset is found to be irrelevant with respect

to the threshold T, the itemset is discarded to pass on to the next itemset

in a breadth first search. At the end of the algorithm, the set of itemsets

that pass the threshold T check are returned to the user.

association rule

Support, confidence

Lift

Apriori

itemset

Open Universiteit Data Analytics

48

In order to further prune the returned itemset (since this may contain a

large number of items if only T is defined) the user can also specify a

support ε (support as defined in Section 1 above in this chapter) stating

the percentage of transactions in which the itemset has to present itself in

order to consider it a relevant association rule.

Due to its simplicity, despite being historically relevant the Apriori

algorithm has a number of limitations. The two most relevant limitations

are that it generates a large number of subsets and that its breadth first

traversing strategy takes a very long time to traverse the entire database.

These limitations led researchers to look into more efficient algorithms

for association rule mining, one of which is the FP-Growth algorithm

introduced in the next section (also available in RapidMiner).

2 FP-Growth Algorithm

This section introduces, again in informal fashion, the FP-growth

algorithm [2]. FP-growth stands for ‘frequent pattern growth’. FP-Growth

improves upon the Apriori algorithm quite significantly. The major

improvement to Apriori is particularly related to the fact that the FP-

growth algorithm only needs two passes on a dataset.

 In the first step, the algorithm builds a compact data structure

called the FP-tree.

 In the second step, the algorithm builds frequent itemsets

directly from the FP-tree.

In addition, the algorithm has the parameter φ, which is user defined, to

define a threshold for which items are considered as frequent.

As an illustrative example, consider the following dataset of

transactions:

Transaction ID Items

1 {apricots, bread}

2 {bread, carrots, dumplings}

3 {apricots, carrots, dumplings, eggs}

4 { apricots, dumplings, eggs}

5 { apricots, bread, carrots }

6 { apricots, bread, carrots,

dumplings}

7 { apricots }

8 { apricots, bread, carrots}

9 { apricots, bread, dumplings }

10 { bread, carrots, eggs}

limitations

Frequent pattern growth

FP-tree





Item frequency

parameter φ



 Data Analytics

49

Considering the first transaction, for example, it means that apricots and

bread were bought together.

For this dataset, with regard to step 1, the FP-tree is constructed as

follows:

1. Read the first transaction {apricots, bread}.

a. Create a root node.

b. Create a path root  apricots  bread and set their

counts to 1.

2. Read the second transaction {bread, carrots, dumplings}.

a. Create a path root  bread  carrot  dumplings.

b. Set their count to 1.

c. Transactions 1 and 2 share bread, but their path is

distinct because they do not have the same prefix.

d. Link bread in the first path with bread in the second

path.

3. Read the third transaction {apricots, carrots, dumplings, eggs}.

a. Since this path shares apricots with the first path, set the

count of apricots to 2, then add nodes carrots, dumplings

and eggs after the apricots node.

b. Add links between carrots and dumplings.

This is continued in the same fashion until the entire dataset has been

mapped. Figure 1 shows a depiction of the algorithm used to create the

FP-tree.

Figure 1: FP-tree building.

After creating the FP-tree, the algorithm proceeds to identify the frequent

itemsets by using the FP-tree. In order to do this, the algorithm takes
Prefix path subtree





Open Universiteit Data Analytics

50

each of the items and checks the entire prefix path subtree preceding the

items. For the eggs item, the prefix path subtree is as shown in Figure 2.

Informally speaking, the prefix path subtree is nothing more than the

part of the tree above the eggs items.

Figure 2: Prefix path subtree for the eggs item.

Now it must be checked whether eggs are a frequent item. To do so

count the occurrences of the eggs item in the subtree (along the dotted

lines) and sum the frequencies. In this case the count = 3. If the user

defined parameter φ ≥ 2 then {eggs} are considered a frequent item. Now

that eggs have been extracted as a frequent item, use the prefix path

subtree to find all the itemsets ending in {eggs}. See Figure 3 for an

example of how FP-Growth creates these itemsets.

Figure 3: Frequent itemsets evaluation ending in eggs.

The main issue now is to identify which of these itemsets are more

relevant. In order to do this FP-growth uses the prefix path subtree to
Conditional FP-tree





 Data Analytics

51

create an FP-tree around the eggs item. This is called a conditional FP-tree

(for the eggs item). To do this, the eggs item is removed from the prefix

path sub tree. This is done because eggs are no longer needed. The goal is

to see what happens in the prefix of the transactions, or to see what is

frequent simultaneously with the eggs item. Figure 4 illustrates such a

tree for the eggs item.

Figure 4: Conditional FP-Tree for the eggs item.

The interesting thing is that at this point it is only necessary to count. So

now the count = 2 for dumplings, so {dumplings, eggs} may be called a

frequent itemset. Similarly, {apricots, dumplings, eggs} is also a frequent

itemset. To find out whether the {carrots, eggs} pattern is a frequent

itemset, the prefix path ending in {carrots, eggs} must be found. The

same procedure as before is applied recursively and the prefix path is

then found in the following prefix path (Figure 5).

Figure 5: {carrots, eggs} prefix path.

Open Universiteit Data Analytics

52

Thus the count ≥ 2 with respect to carrots. After applying this procedure

a number of times recursively, for this dataset the following itemsets are

found to be the frequent ones:

Suffix Frequent Itemset

{eggs} {eggs}, {eggs, dumplings},

{apricots, dumplings, eggs},

{carrots, eggs}, {apricots, eggs}

{dumplings} {dumplings}, {carrots, dumplings},

{bread, carrots, dumplings},

{apricots, carrots, dumplings},

{bread, dumplings}, {apricots,

bread, dumplings}, {apricots,

dumplings}

{carrots} {carrots}, {bread, carrots}, {apricots,

bread, carrots}, {apricots, carrots}

{bread} {bread}, {apricots, bread}

{apricots} {apricots}

As previously stated, FP-growth has a number of advantages with

respect to Apriori, in particular in that it only requires two steps to define

the general FP-tree to start the rule mining procedure, as has been

illustrated. It is also much faster than Apriori in the rule mining task.

FP-growth also has some disadvantages. First of all, the FP-tree may be

expensive to build, since if the dataset is big it may not fit in memory.

Secondly the support metric can only be calculated once the tree has been

created. This effectively means that in datasets in which the tree cannot

be built, the support also cannot be calculated, meaning that the data

analyst should resort to something simpler, like, for example, the Apriori

algorithm previously explained.

3 Assignment Bundle: Frequent Itemset Mining

Students should work on the assignment bundle section on Frequent

Itemset Mining (LU07: Frequent Itemset Mining in RapidMiner) and

complete the related exercises.

References

1. R. Agrawal and R. Srikant (1994): Fast algorithms for mining

association rules in large databases, Proceedings of the 20th

International Conference on Very Large Data Bases, VLDB, Santiago,

Chile, September 1994, pp. 487-499.

Disadvantages of FP-growth

 Data Analytics

53

2. J. Han, H. Pei, and Y. Yin: Mining Frequent Patterns without

Candidate Generation, Proc. Conf. on the Management of Data

(SIGMOD'00, Dallas, TX), New York, NY: 1-12 ACM Press.

