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Learning Unit 7 

 

 

Association Rule Mining 
 

 

 

 
I N T R O D U C T I O N 

 

The seventh learning unit introduces students to association rule mining. 

This unit has the following learning objectives: 

 

 
LEARNING OBJECTIVES 

 

After studying this unit students should understand the 

 

- general concept of association rule mining 

- concepts of support, lift and confidence in a rule 

- Apriori algorithm for association rule mining 

- FP-growth algorithm for association rule mining 

- use of RapidMiner in association rule mining. 

 

 

Study hints 

This learning unit takes two weeks; it should take 19 hours to complete. 

Part of the work is theoretical in nature and involves reading Provost, 

pages 289–291. A more detailed discussion concerning the Apriori and 

FP-growth algorithms is then provided in this chapter of the workbook. 

Finally, students are required to complete the exercises in the assignment 

bundle. 

 

A presentation given by the lecturer will summarise the most important 

points and provide examples in RapidMiner concerning the analysis of 

data using association rule mining algorithms. Students should dedicate 

about 9 hours to studying in the first week and 10 hours in the second 

week. 

 

 
S T U D Y  C O R E 

 

1 Association Rule Mining: Motivation and Main Concepts 

 

Association rule mining (ARM) is a rather interesting technique since it 

allows data analysts to find a relationship between attributes of interest 

in a dataset. Companies very often use ARM for the following tasks: 

 

Motivation 
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 Market Basket Analysis 

 Word Net Analysis 

 Personalisation and customization of a service 

 

 

First of all, an association rule takes the following form: 
𝐿𝐻𝑆 → 𝑅𝐻𝑆 

 

LHS means ‘left hand side’ and RHS means ‘right hand side’. The LHS is 

usually an item, set of items or set of attributes, while the RHS is also an 

item, set of items or set of attributes. Stated otherwise, the LHS implies 

the RHS, or rather ‘if LHS, then RHS’. 

 

A concrete example of an association rule could be: 
{𝑚𝑖𝑙𝑘, 𝑏𝑟𝑒𝑎𝑑, 𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠} → {𝑒𝑔𝑔𝑠} 

 

This can be read as ‘if the customer buys milk, bread and tomatoes, then 

it is highly likely that eggs will be bought too’. 

 

In order to select interesting rules from the dataset, the algorithms use 

two important metrics: support and confidence. Support is a number 

between 0 and 1 and indicates how frequently that particular rule is true 

in the dataset. Confidence is also a number between 0 and 1 and 

represents how many times the rule has been found to be true.  

 

Another important concept is the concept of lift, that is a number ≥ 1. 

Unfortunately, there is a complex probabilistic explanation behind the lift 

concept. In our case though it is simply important to know that the lift 

represents the degree to which the attributes occur independently from 

each other, and that a value > 1 implies that there is some sort of 

dependency. A value of 1 implies that these attributes are independent 

and no rule can be created between the two attributes or items.  

 

2 Apriori Algorithm 

 

This section introduces an informal description of the Apriori algorithm 

presented in [1]. The Apriori algorithm was designed to work on 

transactions to identify which items occur simultaneously most often. 

Here, each of the transactions considered is expected to be a set of items 

(itemset). To determine a relationship to be interesting, the algorithm 

defines a threshold T as the number of transactions in a database in 

which an itemset has to appear in order to be considered interesting.  

 

Apriori uses an approach that begins by checking items of one element 

against the transactions in the database and then including further 

elements in the basket. If an itemset is found to be irrelevant with respect 

to the threshold T, the itemset is discarded to pass on to the next itemset 

in a breadth first search. At the end of the algorithm, the set of itemsets 

that pass the threshold T check are returned to the user.  

association rule 

 

 

Support, confidence 

 

 

Lift 

 

 

Apriori 

 

 

itemset 
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In order to further prune the returned itemset (since this may contain a 

large number of items if only T is defined) the user can also specify a 

support ε (support as defined in Section 1 above in this chapter) stating 

the percentage of transactions in which the itemset has to present itself in 

order to consider it a relevant association rule. 

 

Due to its simplicity, despite being historically relevant the Apriori 

algorithm has a number of limitations. The two most relevant limitations 

are that it generates a large number of subsets and that its breadth first 

traversing strategy takes a very long time to traverse the entire database. 

These limitations led researchers to look into more efficient algorithms 

for association rule mining, one of which is the FP-Growth algorithm 

introduced in the next section (also available in RapidMiner). 

 

 

2 FP-Growth Algorithm 

 

This section introduces, again in informal fashion, the FP-growth 

algorithm [2]. FP-growth stands for ‘frequent pattern growth’. FP-Growth 

improves upon the Apriori algorithm quite significantly. The major 

improvement to Apriori is particularly related to the fact that the FP-

growth algorithm only needs two passes on a dataset. 

 

 In the first step, the algorithm builds a compact data structure 

called the FP-tree. 

 In the second step, the algorithm builds frequent itemsets 

directly from the FP-tree. 

 

In addition, the algorithm has the parameter φ, which is user defined, to 

define a threshold for which items are considered as frequent. 

As an illustrative example, consider the following dataset of 

transactions: 

 

Transaction ID Items 

1 {apricots, bread} 

2 {bread, carrots, dumplings} 

3 {apricots, carrots, dumplings, eggs} 

4 { apricots, dumplings, eggs} 

5 { apricots, bread, carrots } 

6 { apricots, bread, carrots, 

dumplings} 

7 { apricots } 

8 { apricots, bread, carrots} 

9 { apricots, bread, dumplings } 

10 { bread, carrots, eggs} 

 

 

limitations 

 

 

Frequent pattern growth 

 

 

FP-tree 

  

  

Item frequency 

parameter φ 

  
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Considering the first transaction, for example, it means that apricots and 

bread were bought together. 

 

For this dataset, with regard to step 1, the FP-tree is constructed as 

follows: 

1. Read the first transaction {apricots, bread}. 

a. Create a root node. 

b. Create a path root  apricots  bread and set their 

counts to 1. 

2. Read the second transaction {bread, carrots, dumplings}. 

a. Create a path root  bread  carrot  dumplings. 

b. Set their count to 1. 

c. Transactions 1 and 2 share bread, but their path is 

distinct because they do not have the same prefix. 

d. Link bread in the first path with bread in the second 

path. 

3. Read the third transaction {apricots, carrots, dumplings, eggs}. 

a. Since this path shares apricots with the first path, set the 

count of apricots to 2, then add nodes carrots, dumplings 

and eggs after the apricots node. 

b. Add links between carrots and dumplings. 

 

This is continued in the same fashion until the entire dataset has been 

mapped. Figure 1 shows a depiction of the algorithm used to create the 

FP-tree. 

 

 

 
Figure 1: FP-tree building. 

 

 

After creating the FP-tree, the algorithm proceeds to identify the frequent 

itemsets by using the FP-tree. In order to do this, the algorithm takes 
Prefix path subtree 

  

  
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each of the items and checks the entire prefix path subtree preceding the 

items. For the eggs item, the prefix path subtree is as shown in Figure 2. 

Informally speaking, the prefix path subtree is nothing more than the 

part of the tree above the eggs items. 

 

 

 

 
Figure 2: Prefix path subtree for the eggs item. 

 

 

Now it must be checked whether eggs are a frequent item. To do so 

count the occurrences of the eggs item in the subtree (along the dotted 

lines) and sum the frequencies. In this case the count = 3. If the user 

defined parameter φ ≥ 2 then {eggs} are considered a frequent item. Now 

that eggs have been extracted as a frequent item, use the prefix path 

subtree to find all the itemsets ending in {eggs}. See Figure 3 for an 

example of how FP-Growth creates these itemsets.  

 

 
Figure 3: Frequent itemsets evaluation ending in eggs. 

 

 

The main issue now is to identify which of these itemsets are more 

relevant. In order to do this FP-growth uses the prefix path subtree to 
Conditional FP-tree 

  

  
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create an FP-tree around the eggs item. This is called a conditional FP-tree 

(for the eggs item). To do this, the eggs item is removed from the prefix 

path sub tree. This is done because eggs are no longer needed. The goal is 

to see what happens in the prefix of the transactions, or to see what is 

frequent simultaneously with the eggs item. Figure 4 illustrates such a 

tree for the eggs item. 

 

 

 

 
Figure 4: Conditional FP-Tree for the eggs item. 

 

 

The interesting thing is that at this point it is only necessary to count. So 

now the count = 2 for dumplings, so {dumplings, eggs} may be called a 

frequent itemset. Similarly, {apricots, dumplings, eggs} is also a frequent 

itemset. To find out whether the {carrots, eggs} pattern is a frequent 

itemset, the prefix path ending in {carrots, eggs} must be found. The 

same procedure as before is applied recursively and the prefix path is 

then found in the following prefix path (Figure 5). 

 

 

 

 

 
Figure 5: {carrots, eggs} prefix path. 
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Thus the count ≥ 2 with respect to carrots. After applying this procedure 

a number of times recursively, for this dataset the following itemsets are 

found to be the frequent ones: 

 

Suffix Frequent Itemset 

{eggs} {eggs}, {eggs, dumplings}, 

{apricots, dumplings, eggs}, 

{carrots, eggs}, {apricots, eggs} 

{dumplings} {dumplings}, {carrots, dumplings}, 

{bread, carrots, dumplings}, 

{apricots, carrots, dumplings}, 

{bread, dumplings}, {apricots, 

bread, dumplings}, {apricots, 

dumplings} 

{carrots} {carrots}, {bread, carrots}, {apricots, 

bread, carrots}, {apricots, carrots} 

{bread} {bread}, {apricots, bread} 

{apricots} {apricots} 

 

 

As previously stated, FP-growth has a number of advantages with 

respect to Apriori, in particular in that it only requires two steps to define 

the general FP-tree to start the rule mining procedure, as has been 

illustrated. It is also much faster than Apriori in the rule mining task. 

 

FP-growth also has some disadvantages. First of all, the FP-tree may be 

expensive to build, since if the dataset is big it may not fit in memory. 

Secondly the support metric can only be calculated once the tree has been 

created. This effectively means that in datasets in which the tree cannot 

be built, the support also cannot be calculated, meaning that the data 

analyst should resort to something simpler, like, for example, the Apriori 

algorithm previously explained. 

 

 

3 Assignment Bundle: Frequent Itemset Mining 

 

Students should work on the assignment bundle section on Frequent 

Itemset Mining (LU07: Frequent Itemset Mining in RapidMiner) and 

complete the related exercises.  
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