
Aspect-oriented software
engineering

21

Objectives
The objective of this chapter is to introduce you to aspect-oriented
software development, which is based on the separation of concerns.
When you have read this chapter, you will:

■ understand why the separation of concerns is a good guiding principle
for software development;

■ have been introduced to the fundamental ideas underlying aspects
and aspect-oriented software development;

■ understand how an aspect-oriented approach may be used for
requirements engineering, software design, and programming;

■ be aware of the difficulties of testing aspect-oriented systems.

Contents
21.1 The separation of concerns

21.2 Aspects, join points, and pointcuts

21.3 Software engineering with aspects

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 565

566 Chapter 21 ■ Aspect-oriented software engineering

In most large systems, the relationships between the requirements and the program
components are complex. A single requirement may be implemented by a number of
components and each component may include elements of several requirements.
In practice, this means that implementing a change to the requirements may involve
understanding and changing several components. Alternatively, a component may
provide some core functionality but also include code that implements several system
requirements. Even when there appears to be significant reuse potential, it may be
expensive to reuse such components. Reuse may involve modifying them to remove
extra code that is not associated with the core functionality of the component.

Aspect-oriented software engineering (AOSE) is an approach to software devel-
opment that is intended to address this problem and so make programs easier to
maintain and reuse. AOSE is based around abstractions called aspects, which
implement system functionality that may be required at several different places in a
program. Aspects encapsulate functionality that cross-cuts and coexists with other
functionality that is included in a system. They are used alongside other abstrac-
tions such as objects and methods. An executable aspect-oriented program is
created by automatically combining (weaving) objects, methods, and aspects,
according to specifications that are included in the program source code.

An important characteristic of aspects is that they include a definition of where
they should be included in a program, as well as the code implementing the cross-
cutting concern. You can specify that the cross-cutting code should be included
before or after a specific method call or when an attribute is accessed. Essentially,
the aspect is woven into the core program to create a new augmented system.

The key benefit of an aspect-oriented approach is that it supports the separation of
concerns. As I explain in Section 21.1, separating concerns into independent ele-
ments rather than including different concerns in the same logical abstraction is good
software engineering practice. By representing cross-cutting concerns as aspects,
these concerns can be understood, reused, and modified independently, without
regard for where the code is used. For example, user authentication may be repre-
sented as an aspect that requests a login name and password. This can be automati-
cally woven into the program wherever authentication is required.

Say you have a requirement that user authentication is required before any change
to personal details is made in a database. You can describe this in an aspect by stat-
ing that the authentication code should be included before each call to methods that
update personal details. Subsequently, you may extend the requirement for authenti-
cation to all database updates. This can easily be implemented by modifying the
aspect. You simply change the definition of where the authentication code is to be
woven into the system. You do not have to search through the system looking for all
occurrences of these methods. You are therefore less likely to make mistakes and
introduce accidental security vulnerabilities into your program.

Research and development in aspect-orientation has primarily focused on aspect-
oriented programming. Aspect-oriented programming languages such as AspectJ
(Colyer and Clement, 2005; Colyer et al., 2005; Kiczales, et al., 2001; Laddad,
2003a; Laddad, 2003b) have been developed that extend object-oriented program-
ming to include aspects. Major companies have used aspect-oriented programming

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 566

21.1 ■ The separation of concerns 567

in their software production processes (Colyer and Clement, 2005). However, cross-
cutting concerns are equally problematic at other stages of the software development
process. Researchers are now investigating how to utilize aspect-orientation in sys-
tem requirements engineering and system design, and how to test and verify aspect-
oriented programs.

I have included a discussion of AOSE here because its focus on separating con-
cerns is an important way of thinking about and structuring a software system.
Although some large-scale systems have been implemented using an aspect-oriented
approach, the use of aspects is still not part of mainstream software engineering. As
with all new technologies, advocates focus on the benefits rather than the problems
and costs. Although it will be some time before AOSE is routinely used alongside
other approaches to software engineering, the idea of separating concerns that under-
lies AOSE are important. Thinking about the separation of concerns is a good gen-
eral approach to software engineering.

In the remaining sections of the chapter, I therefore focus on the concepts that are
part of AOSE and discuss the advantages and disadvantages of using an aspect-
oriented approach at different stages of the software development process. As my
aim is to help you understand the concepts underlying AOSE, I do not go into detail
of any specific approach or aspect-oriented programming language.

21.1 The separation of concerns

The separation of concerns is a key principle of software design and implementation.
It means that you should organize your software so that each element in the program
(class, method, procedure, etc.) does one thing and one thing only. You can then
focus on that element without regard for the other elements in the program. You can
understand each part of the program by knowing its concern, without the need to
understand other elements. When changes are required, they are localized to a small
number of elements.

The importance of separating concerns was recognized at an early stage in the
history of computer science. Subroutines, which encapsulate a unit of functionality,
were invented in the early 1950s and subsequent program structuring mechanisms
such as procedures and object classes have been designed to provide better mecha-
nisms for realizing the separation of concerns. However, all of these mechanisms
have problems in dealing with certain types of concern that cut across other con-
cerns. These cross-cutting concerns cannot be localized using structuring mecha-
nisms such as objects or functions. Aspects have been invented to help manage these
cross-cutting concerns.

Although it is generally agreed that separating concerns is good software engineer-
ing practice, it is harder to pin down what is actually meant by a concern. Sometimes
it is defined as a functional notion (i.e., a concern is some element of functionality in
a system). Alternatively, it may be defined very broadly as ‘any piece of interest or

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 567

568 Chapter 21 ■ Aspect-oriented software engineering

focus in a program’. Neither of these definitions is particularly useful in practice.
Concerns certainly are more than simply functional elements but the more general
definition is so vague that it is practically useless.

In my view, most attempts to define concerns are problematic because they
attempt to relate concerns to programs. In fact, as discussed by Jacobsen and Ng
(2004), concerns are really reflections of the system requirements and priorities of
stakeholders in the system. System performance may be a concern because users
want to have a rapid response from a system; some stakeholders may be concerned
that the system should include particular functionality; companies who are support-
ing a system may be concerned that it is easy to maintain. A concern can therefore be
defined as something that is of interest or significance to a stakeholder or a group of
stakeholders.

If you think of concerns as a way of organizing requirements, you can see why an
approach to implementation that separates concerns into different program elements is
good practice. It is easier to trace concerns, expressed as a requirement or a related set
of requirements, to the program components that implement these concerns. If the
requirements change, then the part of the program that has to be changed is obvious.

There are several different types of stakeholder concern:

1. Functional concerns, which are related to the specific functionality to be included
in a system. For example, in a train control system, a specific functional concern
is train braking.

2. Quality of service concerns, which are related to the non-functional behavior of
a system. These include characteristics such as performance, reliability, and
availability.

3. Policy concerns, which are related to the overall policies that govern the use of
a system. Policy concerns include security and safety concerns and concerns
related to business rules.

4. System concerns, which are related to attributes of the system as a whole, such
as its maintainability or its configurability.

5. Organizational concerns, which are related to organizational goals and priori-
ties. These include producing a system within budget, making use of existing
software assets, and maintaining the reputation of the organization.

The core concerns of a system are those functional concerns that relate to its pri-
mary purpose. Therefore, for a hospital patient information system, the core func-
tional concerns are the creation, editing, retrieval, and management of patient records.
In addition to core concerns, large systems also have secondary functional concerns.
These may involve functionality that shares information with the core concerns, or
which is required so that the system can satisfy its non-functional requirements.

For example, consider a system that has a requirement to provide concurrent
access to a shared buffer. One process adds data to the buffer and another process

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 568

21.1 ■ The separation of concerns 569

takes data from the same buffer. This shared buffer is part of a data acquisition sys-
tem where a producer process puts data in the buffer and a consumer process takes
data from the buffer. The core concern here is to maintain a shared buffer so the core
functionality is associated with adding and removing elements from the buffer.
However, to ensure that the producer and consumer processes do not interfere with
each other, there is an essential secondary concern of synchronization. The system
must be designed so that the producer process cannot overwrite data that has not
been consumed and the consumer process cannot take data from an empty buffer.

In addition to these secondary concerns, other concerns such as quality of service
and organizational policies reflect essential system requirements. In general, these
are system concerns—they apply to the system as a whole rather than to individual
requirements or to the realization of these requirements in a program. These are
called cross-cutting concerns to distinguish them from core concerns. Secondary
functional concerns may also be cross-cutting although they do not always cross-cut
the entire system; rather, they are associated with groupings of core concerns that
provide related functionality.

Cross-cutting concerns are shown in Figure 21.1, which is based on an example
of an Internet banking system. This system has requirements relating to new cus-
tomers such as credit checking and address verification. It also has requirements
related to the management of existing customers and the management of customer
accounts. All of these are core concerns that are associated with the system’s pri-
mary purpose—the provision of an Internet banking service. However, the system
also has security requirements based on the bank’s security policy, and recovery
requirements to ensure that data is not lost in the event of a system failure. These are
cross-cutting concerns as they may influence the implementation of all of the other
system requirements.

Programming language abstractions, such as procedures and classes, are the
mechanism that you normally use to organize and structure the core concerns of a
system. However, the implementation of the core concerns in conventional program-
ming languages usually includes additional code to implement the cross-cutting,
functional, quality of service, and policy concerns. This leads to two undesirable
phenomena: tangling and scattering.

Security Requirements

Recovery Requirements

Core Concerns

New Customer
Requirements

Customer
Management
Requirements

Account
Requirements

Cross-cutting
Concerns

Figure 21.1 Cross-
cutting concerns

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 569

570 Chapter 21 ■ Aspect-oriented software engineering

Tangling occurs when a module in a system includes code that implements
different system requirements. The example in Figure 21.2, which is a simplified
implementation of part of the code for a bounded buffer system, illustrates this phe-
nomenon. Figure 21.2 is an implementation of the put operation that adds an item
for the buffer. However, if the buffer is full, it has to wait until a corresponding get
operation removes an item from the buffer. The details are unimportant; essentially
the wait () and notify () calls are used to synchronize the put and get operations. The
code supporting the primary concern (in this case, putting a record into the buffer),
is tangled with code implementing synchronization. Synchronization code, which is
associated with the secondary concern of ensuring mutual exclusion, has to be
included in all methods that access the shared buffer. Code associated with the syn-
chronization concern is shown as shaded code in Figure 21.2.

The related phenomenon of scattering occurs when the implementation of a sin-
gle concern (a logical requirement or set of requirements) is scattered across several
components in a program. This is likely to occur when requirements related to sec-
ondary functional concerns or policy concerns are implemented.

For example, say a medical record management system, such as the MHC-PMS,
has a number of components concerned with managing personal information, med-
ication, consultations, medical images, diagnoses, and treatments. These implement
the core concern of the system: maintaining records of patients. The system can be
configured for different types of clinic by selecting the components that provide the
functionality needed for the clinic.

However, assume there is also an important secondary concern which is the main-
tenance of statistical information; the health code provider wishes to record details of
how many patients were admitted and discharged each month, how many patients
died, what medications were issued, the reasons for consultations, and so on. These
requirements have to be implemented by adding code that anonymizes the data
(to maintain patient privacy) and writes it to a statistical database. A statistics compo-
nent processes the statistical data and generates the statistic reports that are required.

Figure 21.2 Tangling
of buffer management
and synchronization
code

synchronized void put (SensorRecord rec)
{

// Check that there is space in the buffer; wait if not
if (numberOfEntries == bufsize)

wait () ;
// Add record at end of buffer
store [back] = new SensorRecord (rec.sensorId, rec.sensorVal) ;
back = back + 1 ;
// If at end of buffer, next entry is at the beginning
if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
// indicate that buffer is available
notify () ;

} // put

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 570

21.2 ■ Aspects, join points, and pointcuts 571

This is illustrated in Figure 21.3. This diagram shows examples of three classes
that might be included in the patient record system along with some of the core
methods for managing patient information. The shaded area shows the methods that
are required to implement the secondary statistics concern. You can see that this sta-
tistics concern is scattered throughout the other core concerns.

Problems with scattering and tangling occur when the initial system requirements
change. For example, say new statistical data had to be collected in the patient record
system. The changes to the system are not all located in one place and so you have to
spend time looking for the components in the system that have to be changed. You
then have to change each of these components to incorporate the required changes.
This may be expensive because of the time required to analyze the components and
then make and test the changes. There is always the possibility that you will miss
some code that should be changed and so the statistics will be incorrect.
Furthermore, as several changes have to be made, this increases the chances that you
will make a mistake and introduce errors into the software.

21.2 Aspects, join points, and pointcuts

In this section, I introduce the most important new concepts associated with aspect-
oriented software development and illustrate these using examples from the MHC-
PMS. The terminology that I use was introduced by the developers of AspectJ in the
late 1990s. However, the concepts are generally applicable and not specific to the
AspectJ programming language. Figure 21.4 summarizes the key terms that you
need to understand.

A medical records system such as the MHC-PMS includes components that handle
logically related patient information. The patient component maintains personal infor-
mation about a patient, the medication component holds information about medications
that may be prescribed, and so on. By designing the system using a component-based
approach, different instantiations of the system can be configured. For example, a ver-
sion could be configured for each type of clinic with doctors only allowed to prescribe

Figure 21.3 Scattering
of methods
implementing
secondary concerns

Patient

getName ()
editName ()
getAddress ()
editAddress ()
...
anonymize ()
...

<attribute decls>

Image

getModality ()
archive ()
getDate ()
editDate ()
...
saveDiagnosis ()
saveType ()
...

<attribute decls>

Consultation

makeAppoint ()
cancelAppoint ()
assignNurse ()
bookEquip ()
...
anonymize ()
saveConsult ()
...

<attribute decls>

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 571

572 Chapter 21 ■ Aspect-oriented software engineering

medication relevant to that clinic. This simplifies the job of clinical staff and reduces the
chances that a doctor will mistakenly prescribe the wrong medication.

However, this organization means that information in the database has to be
updated from a number of different places in the system. For example, patient infor-
mation may be modified when their personal details change, when their assigned
medication changes, when they are assigned to a new specialist, etc. For simplicity,
assume that all components in the system use a consistent naming strategy and that
all database updates are implemented by methods starting with ‘update’. There are
therefore methods in the system such as:

updatePersonalInformation (patientId, infoupdate)

updateMedication (patientId, medicationupdate)

The patient is identified by patientId and the changes to be made are encoded in
the second parameter; the details of this encoding are not important for this example.
Updates are made by hospital staff, who are logged into the system.

Imagine that a security breach occurs in which patient information is maliciously
changed. Perhaps someone has accidentally left his or her computer logged on and
an unauthorized person has gained access to the system. Alternatively, an authorized
insider may have gained access and maliciously changed the patient information. To
reduce the probability of this happening again, a new security policy is introduced.
Before any change to the patient database is made, the person requesting the change
must reauthenticate himself or herself to the system. Details of who made the change
are also logged in a separate file. This helps trace problems if they reoccur.

One way of implementing this new policy is to modify the update method in each
component to call other methods to do the authentication and logging. Alternatively,

Figure 21.4
Terminology used in
aspect-oriented
software engineering

Term Definition

advice The code implementing a concern.

aspect A program abstraction that defines a cross-cutting concern.
It includes the definition of a pointcut and the advice
associated with that concern.

join point An event in an executing program where the advice
associated with an aspect may be executed.

join point model The set of events that may be referenced in a pointcut.

pointcut A statement, included in an aspect, that defines the join
points where the associated aspect advice should be
executed.

weaving The incorporation of advice code at the specified join
points by an aspect weaver.

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 572

21.2 ■ Aspects, join points, and pointcuts 573

the system could be modified so that each time an update method is called, method
calls are added before the call to do the authentication, and then after to log the
changes made. However, neither of these is a very good solution to this problem:

1. The first approach leads to a tangled implementation. Logically, updating a
database, authenticating the originator of an update, and logging details of the
update are separate, unrelated concerns. You may wish to include authentication
elsewhere in the system without logging or may wish to log actions apart from
the update action. The same authentication and logging code has to be included
within several different methods.

2. The alternative approach leads to a scattered implementation. If you explicitly
include method calls to do authentication and logging before and after every call
to the update methods, then this code is included at several different places in
the system.

Authentication and logging cut across the core concerns of the system and may
have to be included in several different places. In an aspect-oriented system, you can
represent these cross-cutting concerns as separate aspects. An aspect includes a
specification of where the cross-cutting concern is to be woven into the program, and
code to implement that concern. This is illustrated in Figure 21.5, which defines an
authentication aspect. The notation that I use in this example follows the style of
AspectJ but uses a simplified syntax, which should be understandable without
knowledge of either Java or AspectJ.

Aspects are completely different from other program abstractions in that the
aspect itself includes a specification of where it should be executed. With other

aspect authentication
{

before: call (public void update* (..)) // this is a pointcut
{

// this is the advice that should be executed when woven into // the
executing system
int tries = 0 ;
string userPassword = Password.Get (tries) ;
while (tries < 3 && userPassword != thisUser.password ())
{

// allow 3 tries to get the password right
tries = tries + 1 ;
userPassword = Password.Get (tries) ;

}
if (userPassword != thisUser.password ()) then

//if password wrong, assume user has forgotten to logout
System.Logout (thisUser.uid) ;

}
} // authentication

Figure 21.5 An
authentication aspect

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 573

574 Chapter 21 ■ Aspect-oriented software engineering

abstractions, such as methods, there is a clear separation between the definition of
the abstraction and its use. You cannot tell by examining the method where it will be
called from; calls can be from anywhere that the method is in scope. Aspects, by
contrast, include a ‘pointcut’—a statement that defines where the aspect will be
woven into the program.

In this example, the pointcut is a simple statement:

before: call (public void update* (..))

The meaning of this is that before the execution of any method whose name starts
with the string update, followed by any other sequence of characters, the code in the
aspect after the pointcut definition should be executed. The character * is called a
wildcard and matches any string characters that are allowed in identifiers. The code
to be executed is known as the ‘advice’ and is the implementation of the cross-
cutting concern. In this case, the advice gets a password from the person requesting
the change and checks that it matches the password of the currently logged-in user.
If not, the user is logged out and the update does not proceed.

The ability to specify, using pointcuts, where code should be executed is the dis-
tinguishing characteristic of aspects. However, to understand what pointcuts mean,
you need to understand another concept—the idea of a join point. A join point is an
event that occurs during the execution of a program; so, it could be a method call, the
initialization of a variable, the updating of a field, etc.

There are many possible types of event that may occur during program execution.
A join point model defines the set of events that can be referenced in an aspect-
oriented program. Join point models are not standardized and each aspect-oriented
programming language has its own join point model. For example, in AspectJ events
that are part of the join point model include:

■ call events—calls to a method or a constructor;

■ execution events—the execution of a method or a constructor;

■ initialization events—class or object initialization;

■ data events—accessing or updating of a field;

■ exception events—the handling of an exception.

A pointcut identifies the specific event(s) (e.g., a call to a named procedure) with
which advice should be associated. This means that you can weave advice into a pro-
gram in many different contexts, depending on the join point model that is supported:

1. Advice can be included before the execution of a specific method, a list of
named methods, or a list of methods whose names match a pattern specification
(such as update*).

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 574

21.2 ■ Aspects, join points, and pointcuts 575

2. Advice can be included after the normal or exceptional return from a method.
In the example shown in Figure 21.5, you could define a pointcut that would
execute the logging code after all calls to update methods.

3. Advice can be included when a field in an object is modified; you can include
advice to monitor or change that field.

The inclusion of advice at the join points specified in the pointcuts is the respon-
sibility of an aspect weaver. Aspect weavers are extensions to compilers that process
the definition of aspects and the object classes and methods that define the system.
The weaver then generates a new program with the aspects included at the specified
join points. The aspects are integrated so that the cross-cutting concerns are executed
at the right places in the final system.

Figure 21.6 illustrates this aspect weaving for the authentication and logging
aspects that should be included in the MHC-PMS. There are three different
approaches to aspect weaving:

1. Source code pre-processing, where a weaver takes source code input and gener-
ates new source code in a language such as Java or C++, which can then be com-
piled using the standard language compiler. This approach has been adopted for
the AspectX language with its associated XWeaver (Birrer et al., 2005).

2. Link time weaving, where the compiler is modified to include an aspect weaver.
An aspect-oriented language such as AspectJ is processed and standard Java
bytecode is generated. This can then be executed directly by a Java interpreter or
further processed to generate native machine code.

3. Dynamic weaving at execution time. In this case, join points are monitored and
when an event that is referenced in a pointcut occurs, the corresponding advice
is integrated with the executing program.

The most commonly used approach to aspect weaving is link time weaving, as this
allows for the efficient implementation of aspects without a large run-time overhead.
Dynamic weaving is the most flexible approach but can incur significant performance
penalties during program execution. Source code pre-processing is now rarely used.

Authentication Aspect

Logging Aspect

Patient
...
updateDetails (...)
...

Aspect Weaver

Patient
...
authentication code
updateDetails (...)
logging code
...

Figure 21.6 Aspect
weaving

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 575

576 Chapter 21 ■ Aspect-oriented software engineering

21.3 Software engineering with aspects

Aspects were originally introduced as a programming language construct but, as I
have discussed, the notion of concerns is one that really comes from the system
requirements. Therefore, it makes sense to adopt an aspect-oriented approach at all
stages of the system development process. In the early stages of software engineer-
ing, adopting an aspect-oriented approach means using the notion of separating con-
cerns as a basis for thinking about the requirements and the system design.
Identifying and modeling concerns should be part of the requirements engineering
and design processes. Aspect-oriented programming languages then provide the
technological support to maintain the separation of concerns in your implementation
of the system.

When designing a system, Jacobsen and Ng (2004) suggest that you should think of
a system that supports different stakeholder concerns as a core system plus extensions.
I have illustrated this in Figure 21.7, where I have used UML packages to represent
both the core and the extensions. The core system is a set of system features that imple-
ments the essential purpose of a system. Therefore, if the purpose of a particular
system is to maintain information on patients in a hospital, then the core system pro-
vides a means of creating, editing, managing, and accessing a database of patient
records. The extensions to the core system reflect additional stakeholder concerns,
which must be integrated with the core system. For example, it is important that a med-
ical information system maintains the confidentiality of patient information, so one
extension might be concerned with access control, another with encryption, etc.

There are several different types of extension that are derived from the different
types of concern that I discussed in Section 21.1.

1. Secondary functional extensions These add additional capabilities to the function-
ality provided in the core system. For instance, using the example of the MHC-
PMS, the production of reports on the drugs prescribed in the previous month
would be a secondary functional extension to a patient information system.

2. Policy extensions These add functional capabilities to support organizational
policies. Extensions that add security features are examples of policy extensions.

3. QoS extensions These add functional capabilities to help attain the quality of
service requirements that have been specified for the system. For example, an
extension might implement a cache to reduce the number of database accesses
or automated backups for recovery in the event of a system failure.

4. Infrastructure extensions These extensions add functional capabilities to support
the implementation of a system on some specific implementation platform. For
example, in a patient information system, infrastructure extensions might be used
to implement the interface to the underlying database management system.
Changes to this interface can be made by modifying the associated infrastructure
extensions.

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 576

21.3 ■ Software engineering with aspects 577

Extensions always add some kind of functionality or additional features to the
core system. Aspects are a way to implement these extensions and they can be com-
posed with the core system functionality using the weaving facilities in the aspect-
oriented programming environment.

21.3.1 Concern-oriented requirements engineering

As I suggested in Section 21.1, concerns reflect the requirements of stakeholders.
These concerns may reflect the functionality required by a stakeholder, the quality of
system service, organizational policies or issues that are related to the attributes of
the system as a whole. It therefore makes sense to adopt an approach to requirements
engineering that identifies and specifies the different stakeholder concerns. The term
‘early aspects’ is sometimes used to refer to the use of aspects at early stages in the
software lifecycle where the separation of concerns is emphasized.

The importance of separating concerns during requirements engineering has been
recognized for many years. Viewpoints that represent different system perspectives
have been incorporated into a number of requirements engineering methods
(Easterbrook and Nuseibeh, 1996; Finkelstein et al., 1992; Kotonya and Sommerville,
1996). These methods separate the concerns of different stakeholders. Viewpoints
reflect the distinct functionality that is required by different stakeholder groups.

However, there are also requirements which cross-cut all viewpoints, as shown
in Figure 21.8. This diagram shows that viewpoints may be of different types but
cross-cutting concerns (such as regulation, dependability, and security) generate
requirements that may impact on all of the system viewpoints. This was the major
consideration in the work which I did in the development of the PreView method
(Sommerville and Sawyer, 1997; Sommerville et al., 1998), which included steps to
identify cross-cutting, non-functional concerns.

To develop a system that is organized in the style shown in Figure 21.7, you
should identify requirements for the core system plus the requirements for the sys-
tem extensions. A viewpoint-oriented approach to requirements engineering, where
each viewpoint represents the requirements of related groups of stakeholders, is one

Core System

Extension 1 Extension 2 Extension 3

Extension 4 Extension 5 Extension 6Figure 21.7 Core
system with extensions

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 577

578 Chapter 21 ■ Aspect-oriented software engineering

way to separate core and secondary concerns. If you organize the requirements
according to stakeholder viewpoint, you can then analyze them to discover related
requirements that appear in all or most viewpoints. These represent the core
functionality of the system. Other viewpoint requirements may be requirements that
are specific to that viewpoint. These can be implemented as extensions to the core
functionality.

For example, imagine that you are developing a software system to keep track of
specialized equipment used by the emergency services. Equipment is located at
different places across a region or state and, in the event of an emergency such as a
flood or earthquake, the emergency services use the system to discover what equip-
ment is available close to the site of the problem. Figure 21.9 shows outline require-
ments from three possible viewpoints for such a system.

You can see from this example that stakeholders from all of the different view-
points need to be able to find specific items of equipment, browse the equipment
available at each location, and check in/check out equipment from the store. These
are therefore requirements for the core system. The secondary requirements support
the more specific needs of each viewpoint. There are secondary requirements for
system extensions supporting equipment use, management, and maintenance.

The secondary functional requirements that are identified from any one viewpoint
do not, necessarily, cross-cut the requirements from other viewpoints. For example,
only the maintenance viewpoint is interested in completing maintenance records.
These requirements reflect the needs of that viewpoint and those concerns may not
be shared with other viewpoints. In addition to the secondary functional require-
ments, however, there are cross-cutting concerns that generate requirements of
importance to some or all viewpoints. These often reflect policy and quality of serv-
ice requirements that apply to the system as a whole. As I discussed in Chapter 4,
these are non-functional requirements such as requirements for security, perform-
ance, and cost.

In the equipment inventory system, an example of a cross-cutting concern is system
availability. Emergencies may happen with little or no warning. Saving lives may
require essential equipment to be deployed as quickly as possible. Therefore, the

Viewpoints

Equipment

Users

Managers

Organization

Society

Regulation

Concerns

Security Dependability

THE SYSTEM

Figure 21.8 Viewpoints
and Concerns

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 578

21.3 ■ Software engineering with aspects 579

dependability requirements for the equipment inventory system include requirements
for a high level of system availability. Some examples of these dependability require-
ments, with associated rationale, are shown in Figure 21.10. Using these requirements,
you can then identify extensions to the core functionality for transaction logging and sta-
tus reporting. These make it easier to identify problems and switch to a backup system.

The outcome of the requirements engineering process should be a set of require-
ments that are structured around the notion of a core system plus extensions. For
example, in the inventory system, examples of core requirements might be:

C.1 The system shall allow authorized users to view the description of any item of
equipment in the emergency services inventory.

Figure 21.9
Viewpoints on an
equipment inventory
system

1. Emergency service users

1.1 Find a specified type of equipment (e.g., heavy lifting gear)
1.2 View equipment available in a specified store
1.3 Check-out equipment
1.4 Check-in equipment
1.5 Arrange equipment to be transported to emergency
1.6 Submit damage report
1.7 Find store close to emergency

2. Emergency planners

2.1 Find a specified type of equipment
2.2 View equipment available in a specified location
2.3 Check in/check out equipment from a store
2.4 Move equipment from one store to another
2.6 Order new equipment

3. Maintenance staff

3.1 Check in/check out equipment for maintenance
3.2 View equipment available at each store
3.3 Find a specified type of equipment
3.4 View maintenance schedule for an equipment item
3.5 Complete maintenance record for an equipment item
3.6 Show all items in a store requiring maintenance

Figure 21.10
Availability-related
requirements for the
equipment inventory
system

AV.1 There shall be a ‘hot standby’ system available in a location that is geographically well-separated
from the principal system.

Rationale: The emergency may affect the principal location of the system.

AV.1.1 All transactions shall be logged at the site of the principal system and at the remote standby site.
Rationale: This allows these transactions to be replayed and the system databases made consistent.

AV.1.2 The system shall send status information to the emergency control room system every five
minutes.

Rationale: The operators of the control room system can switch to the hot standby if the principal system is
unavailable.

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 579

580 Chapter 21 ■ Aspect-oriented software engineering

C.2 The system shall include a search facility to allow authorized users to search
either individual inventories or the complete inventory for a specific item of
equipment or a specific type of equipment.

The system may also include an extension that is intended to support equipment
procurement and replacement. Requirements for this extension might be:

E1.1 It shall be possible for authorized users to place orders with accredited sup-
pliers for replacement items of equipment.

E1.1.1 When an item of equipment is ordered, it should be allocated to a specific
inventory and flagged in that inventory as ‘on order’.

As a general rule, you should avoid having too many concerns or extensions to
the system. These simply confuse the reader and may lead to premature design. This
limits the freedom of designers and may result in a system design that cannot meet
its quality of service requirements.

21.3.2 Aspect-oriented design and programming

Aspect-oriented design is the process of designing a system that makes use of
aspects to implement the cross-cutting concerns and extensions that are identified
during the requirements engineering process. At this stage, you need to translate the
concerns that relate to the problem to be solved to corresponding aspects in the pro-
gram that is implementing the solution. You also need to understand how these
aspects will be composed with other system components and ensure that composi-
tion ambiguities do not arise.

The high-level statement of requirements provides a basis for identifying some
system extensions that may be implemented as aspects. You then need to develop
these in more detail to identify further extensions and to understand the functional-
ity that is required. One way to do this is to identify a set of use cases, (discussed in
Chapters 4 and 5) associated with each viewpoint. Use case models are interaction-
focused and more detailed than the user requirements. You can think of them as a
bridge between the requirements and the design. In a use case model, you describe

Viewpoints

I introduced the notion of viewpoints in Chapter 4, where I explained how viewpoints could be used as a way
of structuring the requirements from different stakeholders. Using viewpoints, you can identify the requirements
for the core system from each stakeholder grouping.

http://www.SoftwareEngineering-9.com/Web/Requirements/Viewpoints.html

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 580

21.3 ■ Software engineering with aspects 581

the steps of each user interaction and so start to identify and define the classes in the
system.

Jacobsen and Ng (2004) have written a book that discusses how use cases can be
used in aspect-oriented software engineering. They suggest that each use case repre-
sents an aspect and propose extensions to the use case approach to support join
points and pointcuts. They also introduce the notion of use case slices and use case
modules. These include fragments of classes that implement an aspect. They can be
composed to create the complete system.

Figure 21.11 shows examples of three use cases that might be part of the inven-
tory management system. These reflect the concerns of adding equipment to an
inventory and ordering equipment. Equipment ordering and adding equipment to a
store are related concerns. Once ordered items have been delivered, they must be
added to the inventory and delivered to one of the equipment stores.

The UML already includes the notion of extension use cases. An extension use
case extends the functionality of another use case. Figure 21.12 shows how the
placing of an equipment order extends the core use case for adding equipment to
a specific store. If the equipment to be added does not exist, it can be ordered and
added to the store when the equipment is delivered. During the development of
use case models, you should look for common features and, where possible,
structure the use cases as core cases plus extensions. Cross-cutting features, such
as the logging of all transactions, can also be represented as extension use cases.
Jacobsen and Ng discuss how extensions of this type can be implemented
as aspects.

Add Equipment
to Store

Operator

Remove Equipment
From Store

Place Equipment
Order

Figure 21.11 Use cases
from the inventory
management system

Add Equipment
to Store

Place Equipment
Order

Operator

«extend»

Figure 21.12 Extension
use cases

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 581

582 Chapter 21 ■ Aspect-oriented software engineering

Developing an effective process for aspect-oriented design is essential if aspect-
oriented design is to be accepted and used. I suggest that an aspect-oriented design
process should include the activities shown in Figure 21.13. These activities are:

1. Core system design At this stage, you design the system architecture to support
the core functionality of the system. The architecture must also take into
account quality of service requirements such as performance and dependability
requirements.

2. Aspect identification and design Starting with the extensions identified in the
system requirements, you should analyze these to see if they are aspects in
themselves or if they should be broken down into several aspects. Once aspects
have been identified, these can then be separately designed, taking into account
the design of the core system features.

3. Composition design At this stage, you analyze the core system and aspect
designs to discover where the aspects should be composed with the core system.
Essentially, you are identifying the join points in a program at which aspects
will be woven.

4. Conflict analysis and resolution A problem with aspects is that they may inter-
fere with each other when they are composed with the core system. Conflicts
occur when there is a pointcut clash with different aspects specifying that they
should be composed at the same point in the program. However, there may be
more subtle conflicts. When aspects are designed independently, they may make
assumptions about the core system functionality that has to be modified.
However, when several aspects are composed, one aspect may affect the func-
tionality of the system in a way that was not anticipated by other aspects. The
overall system behavior may then not be as expected.

5. Name design This is an important design activity that defines standards for nam-
ing entities in the program. This is essential to avoid the problem of accidental
pointcuts. These occur when, at some program join point, the name accidentally
matches that in a pointcut pattern. The advice is therefore unintentionally
applied at that point. Obviously this is undesirable and can lead to unexpected
program behavior. Therefore, you should design a naming scheme that mini-
mizes the likelihood of this happening.

Software
Requirements

Program Naming
Standards

Design
Models

Core System
Design

Aspect
Identification
and Design

Composition
Design

Conflict Analysis
and Resolution Name Design

Figure 21.13 A generic
aspect-oriented design
process

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 582

21.3 ■ Software engineering with aspects 583

This process is, naturally, an iterative process in which you make initial design pro-
posals then refine them as you analyze and understand the design issues. Normally,
you would expect to refine the extensions identified in the requirements to a larger
number of aspects.

The outcome of the aspect-oriented design process is an aspect-oriented design
model. This may be expressed in an extended version of the UML which includes
new, aspect-specific constructs such as those proposed by Clarke and Baniassad
(2005) and Jacobsen and Ng (2004). The essential elements of ‘aspect UML’ are a
means of modeling aspects and of specifying the join points at which the aspect
advice should be composed with the core system.

Figure 21.14 is an example of an aspect-oriented design model. I have used the
UML stereotype for an aspect proposed by Jacobsen and Ng. Figure 21.14 shows the
core system for an emergency services inventory plus some aspects that might be
composed with that core. I have shown some core system classes and some aspects.
This is a simplified picture; a complete model would include more classes and
aspects. Notice how I have used UML notes to provide additional information about
the classes that are cross-cut by some aspects.

Figure 21.15 is a more detailed model of an aspect. Obviously, before you design
aspects, you have to have a core system design. As I don’t have space to show this
here, I have made a number of assumptions about classes and methods in the core
system.

The first section of the aspect sets out the pointcuts that specify where it will be
composed with the core system. For example, the first pointcut specifies that the
aspect may be composed at the call getItemInfo (..) join point. The following section
defines the extensions that are implemented by the aspect. In the example here, the
extension statement can be read as:

“In the method viewItem, after the call to the method getItemInfo, a call to
the method displayHistory should be included to display the maintenance
record.”

Inventory

«aspect»
Monitor

Equipment

Store

Location

Log

«aspect»
Maintenance

«aspect»
Ordering

«aspect»
Availability

Platform

DB

«joinpoint»
Equipment
Location

«joinpoint»
Platform

Figure 21.14 An
aspect-oriented
design model

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 583

584 Chapter 21 ■ Aspect-oriented software engineering

Aspect-oriented programming (AOP) started at Xerox’s PARC laboratories in
1997, with the development of the AspectJ programming language. This remains the
most widely used aspect-oriented language, although aspect-oriented extensions of
other languages, such as C# and C++, have also been implemented. Other experi-
mental languages have also been developed to support the explicit separation of con-
cerns and concern composition and there are experimental implementation of AOP
in the .NET framework. Aspect-oriented programming is covered extensively in
other books (Colyer et al., 2005; Gradecki and Lezeiki, 2003; Laddad, 2003b).

If you have followed an aspect-oriented approach to designing your system, you
will already have identified the core functionality and the extensions to that function-
ality to be implemented as cross-cutting aspects. The focus of the programming
process should then be to write code implementing the core and extension function-
ality and, critically, to specify the pointcuts in the aspects so that the aspect advice is
woven into the base code at the correct places.

Correctly specifying pointcuts is very important as these define where the aspect
advice will be composed with the core functionality. If you make a mistake in point-
cut specification, then the aspect advice will be woven into the program in the wrong
place. This could lead to unexpected and unpredictable program behavior.
Adherence to the naming standards established during system design is essential.
You also have to review all of the aspects to ensure that aspect interference will not
occur if two or more aspects are woven into the core system at the same join point.
In general, it is best to avoid this completely but, occasionally, it might be the best
way to implement a concern. In those circumstances, you have to ensure that the
aspects are completely independent. The program’s behavior should not depend on
the order that the aspects are woven into the program.

21.3.3 Verification and validation

As I discussed in Chapter 8, verification and validation is the process of demonstrating
that a program meets its specification (verification) and meets the real needs of its
stakeholders (validation). Static verification techniques focus on manual or automated

«aspect»
Maintenance

Pointcuts
viewMain = call getItemInfo (..)
mainco = call removeItem (..)
mainci = call addItem (..)

Class Extensions

ViewMaintenance History

<viewItem> {after (<viewMain>)displayHistory}

More Extensions HereFigure 21.15 Part of a
model of an aspect

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 584

21.3 ■ Software engineering with aspects 585

analysis of the source code of the program. Dynamic validation or testing is used to
discover defects in the program or to demonstrate that the program meets its require-
ments. When defect detection is the objective, the testing process may be guided by
knowledge of the program’s source code. Test coverage metrics show the effectiveness
of tests in causing source code statements to be executed.

For aspect-oriented systems, the processes of validation testing are no different
than for any other system. The final executable program is treated as a black box
and tests are devised to show whether or not the system meets its requirements.
However, the use of aspects causes real problems with program inspections and white-
box testing, where the program source code is used to identify potential defect tests.

Program inspections, which I describe in Chapter 24, involve a team of readers
looking at the source code of a program to discover defects that have been intro-
duced by the programmer. It is a very effective technique of defect discovery.
However, aspect-oriented programs cannot be read sequentially (i.e., from top to
bottom). They are therefore more difficult for people to understand.

A general guideline for program understandability is that a reader should be able
to read a program from left to right, top to bottom without having to switch attention
to other parts of the code. This makes it easier for readers and also makes it less
likely that programmers will make mistakes as their attention is focused on a single
section of code. Improving program readability was a key reason for the introduction
of structured programming (Dijkstra et al., 1972) and the elimination of uncondi-
tional branch (go-to) statements from high-level programming languages.

In an aspect-oriented system, sequential code reading is impossible. The reader
has to examine each aspect, understand its pointcuts (which may be patterns). and
the join point model of the aspect-oriented language. When reading the program, he
or she then has to identify every potential join point and switch attention to the
aspect code to see if it may be woven at that point. Their attention then returns to
the main flow of control of the base code. In reality, this is cognitively impossible
and the only possible way to inspect an aspect-oriented program is through the use
of code-reading tools.

Code-reading tools can be written that ‘flatten’ an aspect-oriented program and
present a program to the reader with the aspects ‘woven’ into the program at the
specified join points. However, this is not a complete solution to the code-reading
problem. The join point model in an aspect-oriented programming language may be
dynamic rather than static and it may be impossible to demonstrate that the flattened
program will behave in exactly the same way as the program that will execute.
Furthermore, because it is possible for different aspects to have the same pointcut
specification, the program-reading tool must know how the aspect weaver handles
these ‘competing’ aspects and how the composition will be ordered.

White-box or structural testing is a systematic approach to testing where knowl-
edge of the program source code is used to design defect tests. The aim is to design
tests that provide some level of program coverage. That is, the set of tests should
ensure that every logical path through the program is executed, with the consequence
that each program statement is executed at least once. Program execution analyzers
may be used to demonstrate that this level of test coverage has been achieved.

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 585

586 Chapter 21 ■ Aspect-oriented software engineering

In an aspect-oriented system, there are two problems with this approach:

1. How can knowledge of the program code be used to systematically derive pro-
gram tests?

2. What exactly does test coverage mean?

To design tests in a structured program (e.g., tests of the code of a method) with-
out unconditional branches, you can derive a program flow graph, which reveals
every logical execution path through that program. You then examine the code and,
for each path through the flow graph, choose input values that will cause that path to
be executed.

However, an aspect-oriented program is not a structured program. The flow of
control is interrupted by ‘come from’ statements (Constantinos et al., 2004). At
some join point in the execution of the base code, an aspect may be executed. I am
not sure that it is possible to construct a structured flow diagram in such a situation.
It is therefore difficult to systematically design program tests that ensure that all
combinations of base code and aspects are executed.

In an aspect-oriented program, there is also the problem of deciding what ‘test
coverage’ means. Does it mean that the code of each aspect is executed at least once?
This is a very weak condition because of the interaction between aspects and the
base code at the join points where the aspects are woven. Should the idea of test cov-
erage be extended so that the code of the aspect is executed at least once at every join
point specified in the aspect pointcut? In such situations, what happens if different
aspects define the same pointcut? These are both theoretical and practical problems.
We need tools to support aspect-oriented program testing which will help assess the
extent of test coverage of a system.

As I discuss in Chapter 24, large projects normally have a separate quality assur-
ance team who set testing standards and who require a formal assurance that pro-
gram reviews and testing have been completed to these standards. The problems of
inspecting and deriving tests for aspect-oriented programs are a significant barrier
to the adoption of aspect-oriented software development in such large software
projects.

As well as problems with inspections and white-box testing, Katz (2005) identi-
fied additional problems in testing aspect-oriented programs:

1. How should aspects be specified so that tests for these aspects may be derived?

2. How can aspects be tested independently of the base system with which they
should be woven?

3. How can aspect interference be tested? As I have discussed, aspect interference
occurs when two or more aspects use the same pointcut specification.

4. How can tests be designed so that all program join points are executed and
appropriate aspect tests applied?

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 586

Chapter 21 ■ Further reading 587

Fundamentally, these testing problems occur because aspects are tightly rather
than loosely integrated with the base code of a system. They are therefore difficult to
test in isolation. Because they may be woven into a program in many different
places, you can’t be sure that an aspect that works successfully at one join point will
necessarily work at all join points. All of these remain research problems for aspect-
oriented software development.

K E Y P O I N T S

■ The main benefit of an aspect-oriented approach to software development is that it supports the
separation of concerns. By representing cross-cutting concerns as aspects, individual concerns
can be understood, reused, and modified without changing other parts of the program.

■ Tangling occurs when a module in a system includes code that implements different system
requirements. The related phenomenon of scattering occurs when the implementation of a
single concern is scattered across several components in a program.

■ Aspects include a pointcut—a statement that defines where the aspect will be woven into the
program, and advice—the code to implement the cross-cutting concern. Join points are the
events that can be referenced in a pointcut.

■ To ensure the separation of concerns, systems can be designed as a core system that
implements the primary concerns of stakeholders, and a set of extensions that implement
secondary concerns.

■ To identify concerns, you may use a viewpoint-oriented approach to requirements engineering
to elicit stakeholder requirements and to identify cross-cutting quality of service and policy
concerns.

■ The transition from requirements to design can be made by identifying use cases, where each
use case represents a stakeholder concern. The design may be modeled using an extended
version of the UML with aspect stereotypes.

■ The problems of inspecting and deriving tests for aspect-oriented programs are a significant
barrier to the adoption of aspect-oriented software development in large software projects.

F U RT H E R R E A D I N G

‘Aspect-oriented programming’. This special issue of the CACM has a number of articles for a
general audience, which are a good starting point for reading about aspect-oriented programming
(Comm. ACM, 4444 (10), October 2001.) http://dx.doi.org/10.1145/383845.383846.

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 587

588 Chapter 21 ■ Aspect-oriented software engineering

Aspect-oriented Software Development. A multiauthor book with a wide range of papers on aspect-
oriented software development, written by many of the leading researchers in the field. (R. E.
Filman, T. Elrad, S. Clarke and M. Aksit, Addison-Wesley, 2005.)

Aspect-oriented Software Development with Use cases. This is a practical book for software
designers. The authors discuss how to use use cases to manage the separation of concerns, and to
use these as the basis of an aspect-oriented design. (I. Jacobsen and P. Ng, Addison-Wesley, 2005.)

E X E R C I S E S

21.1. What are the different types of stakeholder concern that may arise in a large system? How
can aspects support the implementation of each of these types of concern?

21.2. Summarize what is meant by tangling and scattering. Using examples, explain why tangling
and scattering can cause problems when system requirements change.

21.3. What is the difference between a join point and a pointcut? Explain how these facilitate the
weaving of code into a program to handle cross-cutting concerns.

21.4. What assumptions underlie the idea that a system should be organized as a core system
that implements the essential requirements, plus extensions that implement additional
functionality? Can you think of systems where this model would not be appropriate?

21.5. What viewpoints should be considered when developing a requirements specification for the
MHC-PMS? What are likely to be the most important cross-cutting concerns?

21.6. Using the outline functionality for each viewpoint shown in Figure 21.9, identify six further
use cases for the equipment inventory system, in addition to those shown in Figure 21.11.
Where appropriate, show how some of these might be organized as extension use cases.

21.7. Using the aspect stereotype notation illustrated in Figure 21.15, develop in more detail the
Ordering and Monitor aspects, shown in Figure 21.14.

21.8. Explain how aspect interference can arise and suggest what should be done during the
system design process to reduce the problems of aspect interference.

21.9. Explain why expressing pointcut specifications as patterns increases the problems of testing
aspect-oriented programs. To answer this, think about how program testing normally
involves comparing the expected output to the actual output produced by a program.

21.10. Suggest how you could use aspects to simplify the debugging of programs.

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 588

R E F E R E N C E S

Birrer, I., Pasetti, A. and Rohlik, O. (2005). ‘The XWeaver Project: Aspect-oriented Programming
for On-Board Applications’. http://control.ee.ethz.ch/index.cgi?page=publications;action=
details;id=2361

Clark, S. and Baniassad, E. (2005). Aspect-Oriented Analysis and Design: The Theme Approach.
Harlow, UK: Addison-Wesley.

Colyer, A. and Clement, A. (2005). ‘Aspect-oriented programming with AspectJ’. IBM Systems J.,
44 (2), 301–8.

Colyer, A., Clement, A., Harley, G. and Webster, M. (2005). eclipse AspectJ. Upper Saddle River,
NJ: Addison-Wesley.

Constantinos, C., Skotiniotis, T. and Stoerzer, T. (2004). ‘AOP considered harmful’. European
Interactive Workshop on Aspects in Software (EIWAS’04), Berlin, Germany.

Dijkstra, E. W., Dahl, O. J. and Hoare, C. A. R. (1972). Structured Programming. London:
Academic Press.

Easterbrook, S. and Nuseibeh, B. (1996). ‘Using ViewPoints for inconsistency management’.
BCS/IEE Software Eng. J., 11 (1), 31–43.

Finkelstein, A., Kramer, J., Nuseibeh, B. and Goedicke, M. (1992). ‘Viewpoints: A Framework for
Integrating Multiple Perspectives in System Development’. Int. J. of Software Engineering and
Knowledge Engineering, 2 (1), 31–58.

Gradecki, J. D. and Lezeiki, N. (2003). Mastering AspectJ: Aspect-Oriented Programming in Java.
New York: John Wiley & Sons.

Jacobsen, I. and Ng, P-W. (2004). Aspect-oriented Software Development with Use Cases.
Boston: Addison-Wesley.

Katz, S. (2005). ‘A Survey of Verification and Static Analysis for Aspects’. http://www.aosd-europe.net/
documents/verificM81.pdf

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. G. (2001). ‘Getting
Started with AspectJ’. Comm. ACM, 44 (10), 59–65.

Kotonya, G. and Sommerville, I. (1996). ‘Requirements engineering with viewpoints’.
BCS/IEE Software Eng. J., 11 (1), 5–18.

Laddad, R. (2003a). AspectJ in Action. Greenwich, Conn.: Manning Publications Co.

Laddad, R. (2003b). AspectJ in Action: Practical Aspect-Oriented Programming. Greenwich,
Conn.: Manning Publications.

Sommerville, I. and Sawyer, P. (1997). ‘Viewpoints: principles, problems and a practical approach
to requirements engineering’. Annals of Software Engineering, 3 101–30.

Sommerville, I., Sawyer, P. and Viller, S. (1998). ‘Viewpoints for requirements elicitation: a practical
approach’. 3rd Int. Conf. on Requirements Engineering. Colorado: IEEE Computer Society Press, 74–81.

Chapter 21 ■ References 589

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 589

M21_SOMM5152_09_SE_C21.qxd 1/7/10 2:31 PM Page 590

