Reader

Eloquent JavaScript

Open Universiteit
Faculteit Management, Science & Technology

Cursusteam

ir. S. Stuurman, cursusteamleider en auteur
dr.ir. H.J.M. Passier, auteur

drs. H.J. Pootjes, auteur

Extern referent
prof. dr. ir. G.J. Houben (TU Delft)

Programmaleiding
prof. dr. M.C.J.D. van Eekelen

READER

Eloquent JavaScript

Open Universiteit
www.ou.nl

Productie
Open Universiteit

Redactie
Arnold van der Leer

Lay-out en illustraties
Maria Wienbréker-Kampermann

Omslag
Team Visuele communicatie, Open Universiteit

Druk- en bindwerk
OCE Business Services

© 2014 Open Universiteit, Heerlen

Behoudens uitzonderingen door de Wet
gesteld mag zonder schriftelijke toestemming
van de rechthebbende(n) op het auteursrecht
niets uit deze uitgave worden verveelvoudigd
en/of openbaar gemaakt door middel van
druk, fotokopie, microfilm of anderszins,
hetgeen ook van toepassing is op de gehele
of gedeeltelijke bewerking.

Save exceptions stated by the law no part of
this publication may be reproduced in any
form, by print, photoprint, microfilm or other
means, included a complete or partial
transcription, without the prior written
permission of the publisher.

Eerste druk: 2010
Tweede, gewijzigde druk: 2014

T58221_50089_14082014

ISBN 978 9491825415
ISBN 978 94 91825 44 6 (reader)

Cursuscode T.58.2.2.1

Structuur van de cursus Webapplicaties: de clientkant

Onderdeel Deel Blok Leereenheid Bladzijde
Werkboek 1 Introductie tot de cursus
1 1 Internet en het World Wide Web
De context
2 2 HTML
HTML en CSS 3 CSs
3 4 Inleiding JavaScript
JavaScript 5 Functies, objecten, arrays en exceptions
6 Functionele aspecten van JavaScript
7 Modulen en objecten in JavaScript
Lijst van Programmeeraanwijzingen
Lijst van Software design principes
Register
Werkboek 2 4 8 jQuery en de DOM
JavaScript voor het web 9 jQuery en events
10 Dynamische webapplicaties: client en server
11 Form-validatie
5
Software engineering 12 Software engineering
Lijst van Programmeeraanwijzingen
Lijst van Software design principes
Register
Reader De reader bevat een aantal hoofdstukken van de Engelstalige website Eloquent JavaScript van
Marijn Haverbeke (2014):
Chapter 1 Introduction 7
Chapter 2 Basic JavaScript: values, variables, and control flow 13
Chapter 3 Functions 31
Chapter 4 Data structures: Objects and Arrays 43
Chapter 5 Error Handling 63
Index 68
Cursusweb http://studienet.ou.nl

Eindtoets, bouwstenen voor opdrachten, weblinks, informatie over begeleiding en toetsing,

nieuws, errata, informatie over gebruikte tools, discussiegroep, schatting studielast per leereenheid.

Content chapter 1

Introduction

1 Programming 7
2 Programming languages 8
3 JavaScript 10

Chapter 1

Introduction

When personal computers were first introduced, most of them came equipped with
a simple programming language, usually a variant of BASIC. Interacting with the
computer was closely integrated with this language, and thus every computer-user,
whether he wanted to or not, would get a taste of it. Now that computers have
become plentiful and cheap, typical users don’t get much further than clicking things
with a mouse. For most people, this works very well. But for those of us with a
natural inclination towards technological tinkering, the removal of programming
from every-day computer use presents something of a barrier.

Fortunately, as an effect of developments in the World Wide Web, it so happens that
every computer equipped with a modern web-browser also has an environment for
programming JavaScript. In today’s spirit of not bothering the user with technical
details, it is kept well hidden, but a web-page can make it accessible, and use it as a
platform for learning to program.

That is what this (hyper-)book tries to do.

I do not enlighten those who are not eager to learn, nor arouse those
who are not anxious to give an explanation themselves. If I have pre-
sented one corner of the square and they cannot come back to me with
the other three, I should not go over the points again.

Confucius

1 Programming

Principles of pro- Besides explaining JavaScript, this book tries to be an introduction to the basic principles

gramming of programming. Programming, it turns out, is hard. The fundamental rules are, most
of the time, simple and clear. But programs, while built on top of these basic rules,
tend to become complex enough to introduce their own rules, their own complexity.
Because of this, programming is rarely simple or predictable. As Donald Knuth, who
is something of a founding father of the field, says, it is an art.

To get something out of this book, more than just passive reading is required. Try
to stay sharp, make an effort to solve the exercises, and only continue on when you
are reasonably sure you understand the material that came before. The computer
programimer is a creator of universes for which he alone is responsible.

Universes of virtually unlimited complexity can be created in the form
of computer programs.
Joseph Weizenbaum, Computer Power and Human Reason

A program is many things. It is a piece of text typed by a programmer, it is the
directing force that makes the computer do what it does, it is data in the computer’s
memory, yet it controls the actions performed on this same memory. Analogies that
try to compare programs to objects we are familiar with tend to fall short, but a
superficially fitting one is that of a machine. The gears of a mechanical watch fit
together ingeniously, and if the watchmaker was any good, it will accurately show

Open Universiteit

OO0 N T D N

Eloquent JavaScript

the time for many years. The elements of a program fit together in a similar way, and
if the programmer knows what he is doing, the program will run without crashing.

A computer is a machine built to act as a host for these immaterial machines. Com-
puters themselves can only do stupidly straightforward things. The reason they are
so useful is that they do these things at an incredibly high speed. A program can, by
ingeniously combining many of these simple actions, do very complicated things.

To some of us, writing computer programs is a fascinating game. A program is
a building of thought. It is costless to build, weightless, growing easily under our
typing hands. If we get carried away, its size and complexity will grow out of control,
confusing even the one who created it. This is the main problem of programming. It
is why so much of today’s software tends to crash, fail, screw up.

When a program works, it is beautiful. The art of programming is the skill of control-
ling complexity. The great program is subdued, made simple in its complexity. To-
day, many programimers believe that this complexity is best managed by using only
a small set of well-understood techniques in their programs. They have composed
strict rules about the form programs should have, and the more zealous among them
will denounce those who break these rules as bad programmers.

What hostility to the richness of programming! To try to reduce it to something
straightforward and predictable, to place a taboo on all the weird and beautiful pro-
grams. The landscape of programming techniques is enormous, fascinating in its
diversity, still largely unexplored. It is certainly littered with traps and snares, lur-
ing the inexperienced programmer into all kinds of horrible mistakes, but that only
means you should proceed with caution, keep your wits about you. As you learn,
there will always be new challenges, new territory to explore. The programmer who
refuses to keep exploring will surely stagnate, forget his joy, lose the will to program
(and become a manager).

As far as T am concerned, the definite criterion for a program is whether it is correct.
Efficiency, clarity, and size are also important, but how to balance these against each
other is always a matter of judgement, a judgement that each programmer must
make for himself. Rules of thumb are useful, but one should never be afraid to break
them.

2 Programming languages

In the heginning, at the birth of computing, there were no programming languages.
Programs looked something like this:.

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

That is a program to add the numbers from one to ten together, and print out the
result (1 + 2 + ... + 10 = 55). It could run on a very simple kind of com-
puter. To program early computers, it was necessary to set large arrays of switches
in the right position, or punch holes in strips of cardhoard and feed them to the com-

U= 2N =

Chapter 1 Introduction

puter. You can imagine how this was a tedious, error-prone procedure. Even the
writing of simple programs required much cleverness and discipline, complex ones
were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (which is what the 1s and
0s above are generally called) did give the programmer a profound sense of being
a mighty wizard. And that has to be worth something, in terms of job satisfaction.
Bach line of the program contains a single instruction. It could be written in English
like this:

a Store the number 0 in memory location 0

b Store the number 1 in memory location 1

¢ Store the value of memory location 1 in memory location 2

d Decrement the value in memory location 2 by the number 11

e [f the value in memory location 2 is the number 0, continue with instruction 8

f Increment the value in memory location 0 by the value in memory location 1

g Increment the value in memory location 1 by the number 1

h Continue with instruction 3

i Output the value of memory location 0

While that is more readable than the binary soup, it is still rather unpleasant. It might
help to use names instead of numbers for the instructions and memory locations:

Set ‘total’ teo O

Set ‘count’ to 1 [loop]

Set ‘compare’ to “count’

Subtract 11 from "compars’

If "compare’ 1s zero, ceontinue at [end]
Add ‘count’ teo “total’

Add 1 to “count”

Continue at [loop] [end]

Cutput "total”

At this point it is not too hard to see how the program works. Can you? The first
two lines give two memory locations their starting values: total will be used to build
up the result of the program, and count keeps track of the number that we are cur-
rently looking at. The lines using compare are probably the weirdest ones. What
the program wants to do is see if count is equal to 11, in order to decide whether it
can stop vet. Because the machine is so primitive, it can only test whether a number
is zero, and make a decision (jump) based on that. So it uses the memory location
labelled compare to compute the value of count -11, and makes a decision based on
that value. The next two lines add the value of count to the result, and increment
count by one every time the program has decided that it is not 11 yet.

Here is the same program in JavaScript:

var total = 0, count = 1;
while {count <= 10) {

total += count; count += 1;
i
print (total);

This gives us a few more improvements. Most importantly, there is no need to spec-
ify the way we want the program to jump back and forth anymore. The magic word
while takes care of that. It continues executing the lines below it as long as the condi-
tion it was given holds: count <= 10, which means “count is less than or equal to

Open Universiteit Eloquent JavaScript

10”. Apparently, there is no need anymore to create a temporary value and compare
that to zero. This was a stupid little detail, and the power of programming languages
is that they take care of stupid little details for us.

Finally, here is what the program could look like if we happened to have the conve-
nient operations range and sum available, which respectively create a collection of
numbers within a range and compute the sum of a collection of numbers:

1 |print (sum(rangs (1, 10}))); ‘

The moral of this story, then, is that the same program can be expressed in long and
short, unreadable and readable ways. The first version of the program was extremely
obscure, while this last one is almost English: print the sum of the range of numbers
from 1 to 10. (We will see in later chapters how to build things like sum and range.)

A good programming language helps the programmer by providing a more abstract
way to express himself. It hides uninteresting details, provides convenient building
blocks (such as the while construct), and, most of the time, allows the programmer
to add building blocks himself (such as the sum and range operations).

3 JavaScript

JavaScript JavaScript is the language that is, at the moment, mostly being used to do all kinds of
clever and horrible things with pages on the World Wide Web. Some people claim
that the next version of JavaScript will become an important language for other tasks
too. Tam unsure whether that will happen, but if you are interested in programming,
JavaScript is definitely a useful language to learn. Even if you do not end up doing
much web programming, the mind-bending programs I will show you in this book
will always stay with you, haunt you, and influence the programs you write in other
languages.

There are those who will say terrible things about JavaScript. Many of these things
are true. When [was for the first time required to write something in JavaScript, I
quickly came to despise the language. It would accept almost anything I typed, but
interpret it in a way that was completely different from what I meant. This had a lot
to do with the fact that T did not have a clue what I was doing, but there is also a
real issue here: JavaScript is ridiculously liberal in what it allows. The idea behind
this design was that it would make programming in JavaScript easier for beginners.
In actuality, it mostly makes finding problems in your programs harder, because the
system will not point them out to you.

However, the flexibility of the language is also an advantage. It leaves space for a
lot of techniques that are impossible in more rigid languages, and it can be used to
overcome some of JavaScript’s shortcomings. After learning it properly, and work-
ing with it for a while, [have really learned to like this language.

Contrary to what the name suggests, JavaScript has very little to do with the pro-
gramiming language named Java. The similar name was inspired by marketing con-
siderations, rather than good judgement. In 1995, when JavaScript was introduced
by Netscape, the Java language was being heavily marketed and gaining in pop-
ularity. Apparently, someone thought it a good idea to try and ride along on this
marketing. Now we are stuck with the name.

ECMAScript Related to JavaScript is a thing called ECMAScript. When brow sers other than Netscape
started to support JavaScript, or something that looked like it, a document was writ-

10

Chapter 1 Introduction

ten to describe precisely how the language should work. The language described in
this document is called ECMAScript, after the organisation that standardised it.

BCMAGScript describes a general-purpose programming language, and does not say
anything about the integration of this language in an Internet browser. JavaScript
is ECMAScript plus extra tools for dealing with Internet pages and browser win-
dows. A few other pieces of software use the language described in the ECMAScript
document. Most importantly, the ActionScript language used by Flash is based on
ECMAScript (though it does not precisely follow the standard). Flash is a system for
adding things that move and make lots of noise to web-pages. Knowing JavaScript
won’t hurt if you ever find yourself learning to build Flash movies.

JavaScript is still evolving. Since this book came out, ECMAScript 5 has been re-
leased, which is compatible with the version described here, but adds some of the
functionality we will be writing ourselves as built-in methods. The newest gene-
ration of browsers provides this expanded version of JavaScript. As of 2011, “EC-
MAScript harmony”, a more radical extension of the language, is in the process of
being standardised. You should not worry too much about these new versions ma-
king the things you learn from this book obsolete. For one thing, they will be an
extension of the language we have now, so almost everything written in this book
will still hold.

Most chapters in this book contain quite a lot of code. In my experience, reading
and writing code is an important part of learning to program. Try to not just glance
over these examples, but read them attentively and understand them. This can be
slow and confusing at first, but you will quickly get the hang of it. The same goes
for the exercises. Don’t assume you understand them until you've actually written a
working solution.

Because of the way the web works, it is always possible to look at the JavaScript pro-
grams that people put in their web-pages. This can be a good way to learn how some
things are done. Because most web programmers are not “professional” program-
mers, or consider JavaScript programming so uninteresting that they never properly
learned it, a lot of the code you can find like this is of a very bad quality. When
learning from ugly or incorrect code, the ugliness and confusion will propagate into
your own code, so be careful who you learn from.

11

Content chapter 2

Basic JavaScript: values, variables, and control flow

1 Numbers 13
11 Arythmetic operations 14
Strings 15
Operators 15
Booleans 16
Variables 17
Functions 18
6.1 Some useful functions 19
7 Control statements 20
71 While 20

N Ul B W DN

72 For 22
73 If 23
74 Break 24

Special values 25
9 Comments 26
10 More on values 26
Feedback 28

Answers to the exercises 28

12

Nusmeric values

Chapter 2

Basic JavaScript: values, variables, and control flow

Inside the computer’s world, there is only data. That which is not data, does not
exist. Although all data is in essence just a sequence of bitsl, and is thus fundamen-
tally alike, every piece of data plays its own role. In JavaScript’s system, most of
this data is neatly separated into things called values. Every value has a type, which
determines the kind of role it can play. There are six basic types of values: Numbers,
strings, booleans, objects, functions, and undefined values.

To create a value, one must merely invoke its name. This is very convenient. You
don’t have to gather building material for your values, or pay for them, you just call
for one and woosh, you have it. They are not created from thin air, of course. Every
value has to be stored somewhere, and if you want to use a gigantic number of them
at the same time you might run out of computer memory. Fortunately, this is only a
problem if you need them all simultaneously. As soon as you no longer use a value,
it will dissipate, leaving behind only a few bits. These bits are recycled to make the
next generation of values.

1 Numbers

Values of the type number are, as you might have deduced, numeric values. They are
written the way numbers are usually written as in:

‘144

Enter that in the console, and the same thing is printed in the output window. The
text you typed in gave rise to a number value, and the console took this number
and wrote it out to the screen again. In a case like this, that was a rather pointless
exercise, but soon we will be producing values in less straightforward ways, and it
can be useful to “try them out’ on the console to see what they produce.

This is what 14 4 looks like in bits:

0100000001100010000000000000000000000000D00000000000000000000Q000

The number above has ¢4 bits. Numbers in JavaScript always do. This has one im-
portant repercussion: There is a limited amount of different numbers that can be ex-
pressed. With three decimal digits, only the numbers 0 to 999 can be written, which
is 10% = 1000 different numbers. With 64 binary digits, 2% different numbers can
be written. This is a lot, more than 1019 (a one with nineteen zeroes).

Not all whole numbers below 10" fit in a JavaScript number though. For one, there
are also negative numbers, so one of the bits has to be used to store the sign of the
number. A bigger issue is that non-whole numbers must also be represented. To do
this, 11 hits are used to store the position of the fractional dot within the number.

That leaves 52 bits. Any whole number less than 252 (which is more than 101%) will
safely fit in a JavaScript number. In most cases, the numbers we are using stay well
below that, so we do not have to concern ourselves with bits at all. Which is good. 1
have nothing in particular against bits, but you do need a terrible lot of them to get
anything done. When at all possible, it is more pleasant to deal with bigger things.

13

Open Universiteit

Fractional numbers

Scientific notation

Integers

Arithmetic opera-
tions

Operator

Eloquent JavaScript

Fractional numbers are written by using a dot.

‘9,81

For very big or very small numbers, one can also use scientific notation by adding an
e, followed by the exponent of the number:

‘2,99898

Whichis2.998 = 10% = 299800000,

Calculations with whole numbers (also called integers) that fit in 52 bits are guaran-
teed to always be precise. Unfortunately, calculations with fractional numbers are
generally not. The same way that 7 (pi) can not be precisely expressed by a finite
amount of decimal digits, many numbers lose some precision when only 64 bits are
available to store them. This is a shame, but it only causes practical problems in
very specific situations. The important thing is to be aware of it, and treat fractional
digital numbers as approximations, not as precise values.

1.1 ARYTHMETIC OPERATIONS

The main thing to do with numbers is arithmetic. Arithmetic operations such as ad-
dition or multiplication take two number values and produce a new number from
them. This is what they look like in JavaScript:

100 + 4 » 11

The + and « symbols are called operators. The first stands for addition, and the second
for multiplication. Putting an operator between two values will apply it to those
values, and produce a new value.

Does the example mean “add 4 and 100, and multiply the result by 117, or is the
multiplication done before the adding? As you might have guessed, the multipli-
cation happens first. But, as in mathematics, this can be changed by wrapping the
addition in parentheses:

(100+4) = 11

For subtraction, there is the — operator, and division can be done with /. When op-
erators appear together without parentheses, the order in which they are applied is
determined by the precedence of the operators. The first example shows that mul-
tiplication has a higher precedence than addition. Division and multiplication al-
ways come before subtraction and addition. When multiple operators with the same
precedence appear next to each other (1-1+1) they are applied left-to-right.

Try to figure out what value this expression produces, and then run it to see if you
were correct...

115 » 4 -4 + 88 / 2

These rules of precedence are not something you should worry about. When in
doubt, just add parentheses.

There is one more arithmetic operator which is probably less familiar to you. The
% symbol is used to represent the remainder operation. X%Y is the remainder of
dividing % by ¥. For example 314 % 100is 14,10 % 3is1,and 144 % 121is 0.

14

Concatenate

Binary operator

Unary operator

Chapter 2 Basic JavaScript: values, variables, and control flow

Remainder has the same precedence as multiplication and division.

2 Strings

The next data type is the string. Its use is not as evident from its name as with
numbers, but it also fulfills a very basic role. Strings are used to represent text, the
name supposedly derives from the fact that it strings together a bunch of characters.
Strings are written by enclosing their content in :

"Patch my boat with chewing gum.”

Almost anything can be put between double quotes, and JavaScript will make a
string value out of it. But a few characters are tricky. You can imagine how putting
quotes between quotes might be hard. Newlines, the things you get when you press
enter, can also not be put between quotes, the string has to stay on a single line.

To be able to have such characters in a string, the following trick is used: Whenever
a backslash (4} is found inside quoted text, it indicates that the character after it has
a special meaning. A quote that is preceded by a backslash will not end the string,
but be part of it. When an “n” character occurs after a backslash, it is interpreted as
a newline. Similarly, a “t” after a backslash means a tab character.

"This is the first line’niAnd this is the second”

Note that if you type this into the console, it'll display it back in “source” form,
with the quotes and backslash escapes. To see only the actual text, you can type
print ("a\hnb"). What that does precisely will be clarified a little further on.

There are of course situations where you want a backslash in a string to be just a
backslash, not a special code. If two backslashes follow each other, they will collapse
right into each other, and only one will be left in the resulting string value.

"2 newline character is written like “\"\An\"."

Strings can not be divided, multiplied, or subtracted. The + operator can be used on
them. It does not add, but it concatenntes, it glues two strings together.

"ooan™ + "aat" + "a" 4 "pate’

3 Operators

There are more ways of manipulating strings, but these are discussed later. Not
all operators are symbols, some are written as words. For example, the typeof
operator, which produces a string value naming the type of the value you give it.

typeof 4.5

The other operators we saw all operated on two values, typeof takes only one.
Operators that use two values are called binary operators, while those that take one
are called unary operators. The minus operator can be used both as a binary and a
unary operator:

- (10 -2)

15

Open Universiteit

Boolean

Logical and

Logical or

Not

EXERCISE 2.1

Eloquent JavaScript

4 Booleans

Then there are values of the boolean type. There are only two of these: true and
false. Here is one way to produce a t rue value:

‘3>2

And false canbe produced like this:

‘3<2

I hope you have seen the > and < signs before. They mean, respectively, “is greater
than” and “is less than”. They are binary operators, and the result of applying them
is a boolean value that indicates whether they hold in this case.

Strings can be compared in the same way:

"hardvark" < "Zoroaster"

The way strings are ordered is more or less alphabetic. More or less... Uppercase
letters are always “less” than lowercase ones, so "2" < "a" (upper-case Z, lower-
case a) is true, and non-alphabetic characters (" ! ", "@", etc) are also included in the
ordering. The actual way in which the comparison is done is based on the Unicode
standard. This standard assigns a number to virtually every character one would
ever need, including characters from Greek, Arabic, Japanese, Tamil, and so on.
Having such numbers is practical for storing strings inside a computer . you can
represent them as a list of numbers. When comparing strings, JavaScript just com-
pares the numbers of the characters inside the string, from left to right.

Other similar operators are >= (“is greater than or equal to”), <= (“is less than or
equal to”), == (“is equal to”), and != ("is not equal to”).

"Ttchy™ != "Scratchy"
5e2 == 500

There are also some useful operations that can be applied to boolean values them-
selves. JavaScript supports three logical operators: and, or, and not. These can be
used to “reason” about booleans.

The && operator represents Jogical and. It is a binary operator, and its result is only
true if both of the values given to it are t rue.

‘true && false

| | is the logical or, it is t rue if either of the values given to it is true:

‘true || false

Not is written as an exclamation mark, !, it is a unary operator that flips the value
giventoit, !trueis false,and !falseistrue.

({4 >= &) || ("grass" [I= "green")) &&
T{(il2 = 2) == 144y && true)

16

Chapter 2 Basic JavaScript: values, variables, and control flow

Is this true? For readability, there are a lot of unnecessary parentheses in there. This simple version
means the same thing:

Precedence

Expression

Statement
Program

Side effect

Variable

—_

(4 »>= 6 || "grass" l= "gresn") && (12 » 2 == 144 && true)

Thope you noticed that "grass" != "green"is true. Grass may be green, but it
is not equal to green.

It is not always obvious when parentheses are needed. In practice, one can usually
get by with knowing that of the operators we have seen so far, || has the lowest
precedence, then comes & &, then the comparison operators (>, ==, etcetera), and then
the rest. This has been chosen in such a way that, in simple cases, as few parentheses
as possible are necessary.

5 Variables

All the examples so far have used the language like you would use a pocket calcu-
lator. Make some values and apply operators to them to get new values. Creating
values like this is an essential part of every JavaScript program, but it is only a part.
A piece of code that produces a value is called an expression. Every value that is writ-
ten directly (such as 22 or "psycheoanalysis™) is an expression. An expression
between parentheses is also an expression. And a binary operator applied to two
expressions, or a unary operator applied to one, is also an expression.

There are a few more ways of building expressions, which will be revealed when the
time is ripe.

There exists a unit thatis bigger than an expression. Itis called a statement. A program
is built as a list of statements. Most statements end with a semicolon (;). The sim-
plest kind of statement is an expression with a semicolon after it. This is a program:

1;
[false;

It is a useless program. An expression can be content to just produce a value, but
a statement only amounts to something if it somehow changes the world. It could
print something to the screen - that counts as changing the world - or it could change
the internal state of the program in a way that will affect the statements that come
after it. These changes are called “side effects”. The statements in the example above
just produce the values 1 and true, and then immediately throw them into the bit
bucket. This leaves no impression on the world at all, and is not a side effect.

How does a program keep an internal state? How does it remember things? We have
seen how to produce new values from old values, but this does not change the old
values, and the new value has to be immediately used or it will dissipate again. To
catch and hold values, JavaScript provides a thing called a variable.

var caught = 5 = 5;

A variable always has a name, and it can point at a value, holding on to it. The state-
ment above creates a variable called caught and uses it to grab hold of the number
that is produced by multiplying 5 by 5.

After running the above program, you can type the word caught into the console,
and it will retrieve the value 25 for you. The name of a variable is used to fetch its

17

Open Universiteit

war

Environment

Function

Eloquent JavaScript

value. caught + 1 also works. A variable name can be used as an expression, and
thus can be part of bigger expressions.

The keyword ar is used to create a new variable. After var, the name of the variable
follows. Variable names can be almost every word, but they may not include spaces.
Digits can be part of variable names, catch22 is a valid name, but the name must
not start with a digit. The characters “$” and “_" can be used in names as if they
were letters, so $_ 5 is a correct variable name.

If you want the new variable to immediately capture a value, which is often the case,
the = operator can be used to give it the value of some expression.

When a variable points at a value, that does not mean it is tied to that value forever.
At any time, the = operator can be used on existing variables to vank them away
from their current value and make them point to a new one.

caught = 4 = 4;

You should imagine variables as tentacles, rather than boxes. They do not contain
values, they grasp them - two variables can refer to the same value. Only the values
that the program still has a hold on can be accessed hy it. When you need to remem-
ber something, you grow a tentacle to hold on to it, or re-attach one of your existing
tentacles to a new value: To remember the amount of dollars that Luigi still owes
you, you could do...

‘var luigiDebt = 140;

Then, every time Luigi pays something back, this amount can be decremented by
giving the variable a new number:

‘luigiDebt = luligiDebt -35;

The cellection of variables and their values that exist at a given time is called the
environment. When a program starts up, this environment is not empty. It always
contains a number of standard variables. When your browser loads a page, it creates
a new environment and attaches these standard values to it. The variables created
and modified by programs on that page survive until the browser goes to a new

page.

[Functions

A lot of the values provided by the standard environment have the type “function”.
A function is a piece of program wrapped in a value. Generally, this piece of program
does something useful, which can be invoked using the function value that contains
it. In a browser environment, the variable alert holds a function that shows a little
dialog window with a message. It is used like this:

alert ("Avocados™);

Executing the code in a function is called invoking, calling, or applying it. The no-
tation for doing this uses parentheses. Every expression that produces a function
value can be invoked by putting parentheses after it. In the example, the value
"Evocados” is given to the function, which uses it as the text to show in the di-
alog window. Values given to functions are called parameters or arguments. alert

18

Chapter 2 Basic JavaScript: values, variables, and control flow

needs only one of them, but other functions might need a different number.

Showing a dialog window is a side effect. A lot of functions are useful because of
the side effects they produce. It is also possible for a function to produce a value, in
which case it does not need to have a side effect to be useful. For example, there is a
function Math . max, which takes any number of numeric arguments and gives back
the greatest:

alert (Math.max (2, 4));

When a function produces a value, it is said to return it. Because things that produce
values are always expressions in JavaScript, function calls can be used as a part of
bigger expressions:

alert (Math.min (2, 4) + 100} ;

Chapter 3 discusses writing your own functions.

6.1 SOME USEFUL FUNCTIONS

As the previous examples show, alert can be useful for showing the result of some
expression. Clicking away all those little windows can get on one’s nerves though, so
from now on we will prefer to use a similar function, called print, which does not
pop up a window, but just writes a value to the output area of the console. print is
not a standard JavaScript function, browsers do not provide it for you, but it is made
available by this book, so you can use it on these pages.

print ("N");

A similar function, also provided on these pages, is show. While print will display
its argument as flat text, show tries to display it the way it would look in a program,
which can give more information about the type of the value. For example, string
values keep their quotes when given to show:

show ("N") ;

The standard environment provided by browsers contains a few more functions for
popping up windows. You can ask the user an OK/Cancel question using confirm.
This returns a boolean, t rue if the user presses “OK”, and false if he presses “Can-
cel”.

show (confirm("sShall we, then?"));

prompt can be used to ask an “open” question. The first argument is the question,
the second one is the text that the user starts with. A line of text can be typed into
the window, and the function will return this as a string.

show (prompt ("Tell us evervthing vou know. ™, "..."));

It is possible to give almost every variable in the environment a new value. This
can be useful, but also dangerous. If you give print the value &, you won’t be able
to print things anymore. Fortunately, there is a big “Reset” button on the console,
which will reset the environment to its original state.

19

Open Universiteit

Number

Boolean

Loop

SO N =

NS Ny

—_

Eloquent JavaScript

7 Control statements

One-line programs are not very interesting. When you put more than one statement
into a program, the statements are, predictably, executed one at a time, from top to
bottom.

var theNumber = Wumber (prompt ("Pick a number™, ""));
print ("Your number is the sgquare root of " + (theNumber » theNumber));

The function Number converts a value to a number, which is needed in this case
because the result of prompt is a string value. There are similar functions called
string and Beolean which convert values to those types.

7.1 WHILE

Consider a program that prints out all even numbers from 0 to 12. One way to write
this is:

print (0
printi2
print 4
printi6
print (8
printil

(1

H

H

i

i

i

) r
print 1

)
)
)
)
)
0y
2

That works, but the idea of writing a program is to make something less work, not
more. If we needed all even numbers below 1000, the above would be unworkable.
What we need is a way to automatically repeat some code.

var currentNumber = 0;
while {currentNumber <= 12} {
print {currentNumber); currentNumber = currentNumber + 2;

}

You may have seen while in the introduction chapter. A statement starting with the
word while creates a loop. A loop is a disturbance in the sequence of statements
- it may cause the program to repeat some statements multiple times. In this case,
the word while is followed by an expression in parentheses (the parentheses are
compulsory here), which is used to determine whether the loop will loop or finish.
As long as the boolean value produced by this expression is true, the code in the
loop is repeated. As soon as it is false, the program goes to the bottom of the loop
and continues as normal.

The variable currentNumbe r demonstrates the way a variable can track the progress
of a program. Every time the loop repeats, it is incremented by 2, and at the begin-

ning of every repetition, it is compared with the number 12 to decide whether to

keep on looping.

The third part of a while statement is another statement. This is the body of the loop,
the action or actions that must take place multiple times. If we did not have to print
the numbers, the program could have been:

var currentNumber = 0;
while {currentNumber <= 12) currentMNumber = currentNumber + 2;

20

Chapter 2 Basic JavaScript: values, variables, and control flow

Here, currentNunber = currentNumber + 2; is the statement that forms the
body of the loop. We must also print the number, though, so the loop statement must
consist of more than one statement. Braces ({ and }) are used to group statements

Block into Blocks. To the world outside the block, a block counts as a single statement. In
the earlier example, this is used to include in the loop both the call to print and the
statement that updates currentNumber.

EXERCISE 2.2

Use the techniques shown so far to write a program that calculates and shows the value of 210 (2 to the
10th power). You are, obviously, not allowed to use a cheap trick like just writing 2 « 2 «

If you are having trouble with this, try to see it in terms of the even-numbers example. The program
must perform an action a certain amount of times. A counter variable with a while loop can be used
for that. Instead of printing the counter, the program must multiply something by 2. This something
should be another variable, in which the result value is built up.

Don’t worry if you don’t quite see how this would work yet. Even if you perfectly understand all the
techniques this chapter covers, it can be hard to apply them to a specific problem. Reading and writing
code will help develop a feeling for this, so study the solution, and try the next exercise.

EXERCISE 2.3

With some slight modifications, the solution to the previous exercise can be made to draw a triangle.
And when I say “draw a triangle” I mean “print out some text that almost looks like a triangle when
you squint”.

Print out ten lines. On the first line there is one "#” character. On the second there are two. And so on.

How does one get a string with X "#" characters in it? One way is to build it every time it is needed with
an “inner loop” - a loop inside a loop. A simpler way is to reuse the string that the previous iteration of
the loop used, and add one character to it.

You will have noticed the spaces I put in front of some statements. These are not
required: The computer will accept the program just fine without them. In fact, even
the line breaks in programs are optional. You could write them as a single long line

Indeniation if you felt like it. The role of the indentation inside blocks is to make the structure of
the code clearer to a reader. Because new blocks can be opened inside other blocks, it
can become hard to see where one block ends and another begins in a complex piece
of code. When lines are indented, the visual shape of a program corresponds to the
shape of the blocks inside it. I like to use two spaces for every open block, but tastes
differ.

The field in the console where you can type programs will help you by automatically
adding these spaces. This may seem annoying at first, but when you write a lot of
code it becomes a huge time-saver. Pressing the tab key will re-indent the line your
cursor is currently on.

Semicolon In some cases, JavaScript allows you to omit the semicolon at the end of a statement.
In other cases, it has to be there or strange things will happen. The rules for when
it can be safely omitted are complex and weird. In this book, [won't leave out any
sernicolons, and I strongly urge you to do the sarme in your own programs.

21

Open Universiteit

Constructor

Keywords

EXERCISE 2.4

Eloquent JavaScript

7.2 FOR

The uses of while we have seen so far all show the same pattern. First, a counter
variable is created. This variable tracks the progress of the loop. The while itself
contains a check, usually to see whether the counter has reached some boundary yet.
Then, at the end of the loop body, the counter is updated.

Alot of loops fall into this pattern. For this reason, JavaScript, and similar languages,
also provide a slightly shorter and more comprehensive form:

for (var number = 0; number <= 12; number = number + 2}
show (number) ;

This program is exactly equivalent to the earlier even-number-printing example. The
only change is that all the statements that are related to the “state” of the loop are
now on one line. The parentheses after the for should contain two semicolons. The
part before the first semicolon initialises the loop, usually by defining a variable. The
second part is the expression that checks whether the loop must still continue. The
final part updates the state of the loop. In most cases this is shorter and clearer than
a while construction.

I have been using some rather odd capitalisation in some variable names. Because
you can not have spaces in these names - the computer would read them as two
separate variables - your choices for a name that is made of several words are more
or less limited to the following: fuzzylittleturtle, fuzzy_little_turtle,
FuzzyLittleTurtle,or fuzzyLittleTurtle. The first oneis hard to read. Per-
sonally, I like the one with the underscores, though it is a little painful to type. How-
ever, the standard JavaScript functions, and most JavaScript programmers, follow
the last one. Itis not hard to get used to little things like that, so [will just follow the
crowd and capitalise the first letter of every word after the first.

In a few cases, such as the Number function, the first letter of a variable is also cap-
italised. This was done to mark this function as a constructor. What a constructor is
will become clear in chapter 8. For now, the important thing is not to be bothered hy
this apparent lack of consistency.

Note that names that have a special meaning, such as var, while, and for may not
be used as variable names. These are called keywords. There are also a number of
words which are “reserved for use” in future versions of JavaScript. These are also
officially not allowed to be used as variable names, though some browsers do allow
them. The full list is rather long:

abstract,boclean, break, byte, case, catch, char, class, const, continue,
debugger,default,delete,do,double,else, enum, export, extends, false,
final, finally, float, for, function, goto, 1if, implements, impoert, in,
instancect, int, interface, long, native, new, null, package, private,
protected, public, return, short, static, super, switch, synchronized,
this, throw, throws, transient, true, try, typeof, var, vold, valatile,
while, with

Don’t worry about memorising these for now, but remember that this might be the
problem when something does not work as expected. In my experience, char (to
store a one-character string) and class are the most common names to accidentally
use.

22

Chapter 2 Basic JavaScript: values, variables, and control flow

Rewrite the solutions of the previous two exercises to use for instead of while.

IR SR

SN L2 N

O U1 = 2N

A program often needs to “update” a variable with a value that is based on its previ-
ous value. For example counter = counter + 1.JavaScript provides a shortcut
for this: counter += 1. This also works for many other operators, for example

result == 2 to double the value of result, or ccunter -= 1 to count down-
wards.
For ccunter += landccounter —= 1thereareevenshorter versions: counter++

and counter—.

7.3 IF

Loops are said to affect the control flow of a program. They change the order in
which statements are executed. In many cases, another kind of flow is useful: skip-
ping statements.

We want to show all numbers below 20 which are divisible both by 3 and by 4.

for (var counter = 0; counter < 20; counter++) {
1f f{(counter % 3 == 0 && counter % 4 == 0)

show (counter) ;

}

The keyword 1f is not too different from the keyword while: It checks the condition
it is given (between parentheses), and executes the statement after it based on this
condition. But it does this only once, so that the statement is executed zero or one
time.

The trick with the remainder (%) operator is an easy way to test whether a number is
divisible by another number. If it is, the remainder of their division, which is what
remainder gives you, is zero.

If we wanted to print all numbers below 20, but put parentheses around the ones
that are not divisible by 4, we can do it like this:

for (var counter = 0; counter < 20; counter++) {
if (counter % 4 == 0)
print (counter);
if {(counter % 4 I= 0)
print ("i" + counter + ") ");

But now the program has to determine whether counter is divisible by 4 two times.
The same effect can be obtained by appending an e1se part after an 1 f statement.
The e1se statement is executed only when the 1 f's condition is false.

for (var counter = 0; counter < 20; counter++) {
if (counter % 4 == 0)
print {counter);
else
print ("i" + counter + "j");

To stretch this trivial example a bit further, we now want to print these same num-
bers, but add two stars after them when they are greater than 15, one star when they
are greater than 10 (but not greater than 15), and no stars otherwise.

23

Open Universiteit

EXERCISE 2.5

0o~ O A R LN

Eloquent JavaScript

for (var counter = 0; counter < 20; counter++) {
if (counter » 15}
print {(counter + "xx"];
elzse 1if (counter > 10}
print (counter + "+");
else
print {counter);
}

This demonstrates that you can chain if statermnents together. In this case, the program
first looks if counter is greater than 15. If it is, the two stars are printed and the
other tests are skipped. If it is not, we continue to check if counter is greater than
10. Only if counter is also not greater than 10 does it arrive at the last print
staternent.

Write a program to ask yvourself, using prompt, what the valueof 2 + 2 is. If theanswer is 4, use alert
to say something praising. If itis 3 or 5, say "Almcost ! ". In other cases, say something mean.

Lmpty statement

EXERCISE 2.6

o= N =

N =

7.4 BREAK

When a loop does not always have to go all the way through to its end, the break
keyword can be useful. It immediately jumps out of the current loop, continuing
after it. This program finds the first number that is greater than 20 and divisible by
7:

for (var current = 20; ; current++) {
if (current % 7 == 0)
break;

}

print {(current);

The for construct shown above does not have a part that checks for the end of the
loop. This means that it is dependent on the reak statement inside it to ever stop.
The same program could also have been written as simply...

for (var current = 20; current % 7 != 0; current++)

B
print {current);

In this case, the body of the loop is empty. A lone semicolon can be used to produce
an empty stutement. IHere, the only effect of the loop is to increment the variable cur-
rent to its desired value. But I needed an example that uses break, so pay attention
to the first version too.

Add a while and optionally a break to your solution for the previous exercise, so that it keeps repeat-
ing the question until a correct answer is given. Note that while (true) can be used to create a loop
that does not end on its own account. This is a bit silly, you ask the program to loop as long as true is
true, but it is a useful trick.

24

undefined

null

—_

1

[

[ENUI R

Chapter 2 Basic JavaScript: values, variables, and control flow

3 Special values

In the solution to the previous exercise there is a statement var answer;. This
creates a variable named answer, but does not give it a value. What happens when
you take the value of this variable?

var mysteryVariable;
show (mysteryVariable);

In terms of tentacles, this variable ends in thin air, it has nothing to grasp. When
you ask for the value of an empty place, you get a special value named undefined.
Functions which do not return an interesting value, such as print and alert, also
return an undefined value.

show(alert ("T am a side effect.”));

There is also a similar value, nulli, whose meaning is “this variable is defined, but it
does not have a value”. The difference in meaning between undefined and null
is mostly academic, and usually not very interesting. In practical programs, it is
often necessary to check whether something “has a value”. In these cases, the ex-
pression something == undefined may be used, because, even though they are
not exactly the same value, null == undefinedwill produce true.

Which brings us to another tricky subject...

show (false == 0);
show ("™ == 0);
show ("5" == 5);

All these give the value t rue. When comparing values that have different types,
JavaScript uses a complicated and confusing set of rules. I am not going to try to
explain them precisely, but in most cases it just tries to convert one of the values
to the type of the other value. However, when null or undefined occur, it only
produces true if both sides are null or undefined.

What if you want to test whether a variable refers to the value £alze? The rules for
converting strings and numbers to boolean values state that 0 and the empty string
count as false, while all the other values count as t rue. Because of this, the expres-
sion variable == false is also true when variable refers to 0 or "". For cases
like this, where you do not want any automatic type conversions to happen, there
are two extra operators: === and !==. The first tests whether a value is precisely
equal to the other, and the second tests whether it is not precisely equal.

show (null === undefined);
show (false === 0};

show ("" === 0);

show ("0" === 5);

All these are false.

Values given as the condition in an i f, while, or for statement do not have to be
booleans. They will be automatically converted to booleans before they are checked.
This means that the number 0, the empty string "" , null, undefined, and of
course falze, will all count as false.

The fact that all other values are converted to true in this case makes it possible to
leave out explicit comparisons in many situations. If a variable is known to contain

25

Open Universiteit

NaN

isNaN

NG

OO N O D N

TR

Eloquent JavaScript

either a string or nu11, one could check for this very simply...

var maybelNull = null;
/4 ... mystery code that might put a string into maybeNull ...
if (maybeNull)

print {"maybeNull has a valuea");

Except in the case where the mystery code givesmaybeNull the value "". Anempty
string is false, so nothing is printed. Depending on what you are trying to do, this
might be wrong. It is often a good idea to add an explicit === null or=== false
in cases like this to prevent subtle mistakes. The same occurs with number values
that might be 0.

9 Comments

The line that talks about “mystery code” in the previous example might have looked
a bit suspicious to you. It is often useful to include extra text in a program. The most
comimnon use for this is adding some explanations in human language to a program.

// The wvariable counter, which is about to be defined, is going

// to start with a value of 0, which is zero.

var counter = 0;

// Now, we are going to loop, hold on to your hat.

while (counter < 100 /+ counter is less than cone hundred =/)

/* Every time we loop, we INCREMENT the value of counter,
Seriously, we just add one to it. «/
counter++;

// Bnd then, we are done.

This kind of text is called a comment. The rules are like this; /« starts a comment
that goes on until a =/ is found. // starts another kind of comment, which goes on
until the end of the line.

As you can see, even the simplest programs can be made to look big, ugly, and
complicated by simply adding a lot of comments to them.

There are some other situations that cause automatic type conversions to happen.
If you add a non-string value to a string, the value is automatically converted to a
string before it is concatenated. If you multiply a number and a string, JavaScript
tries to make a number out of the string.

show ("hpollo™ + 5);
show (null + "ify™);
show ("0" « 8);

show ("strawberry" = 5);

10 More on values

The last staternent prints Nalv, which is a special value. It stands for “not a number”,
and is of type number (which might sound a little contradictory). In this case, it
refers to the fact that a strawberry is not a number. All arithmetic operations on the
value Nal result in Wall, which is why multiplying it by 5, as in the example, still
gives a NaN value. Also, and this can be disorienting at times, Nall == Nal equals
false, checking whether a value is NaN can be done with the 1snNaN function. NaN
is another (the last) value that counts as fal se when converted to a boolean.

26

&&

1

Chapter 2 Basic JavaScript: values, variables, and control flow

These automatic conversions can be very convenient, but they are also rather weird
and error prone. Even though + and = are both arithmetic operators, they behave
completely different in the example. In my own code, [use + to combine strings and
non-strings a lot, but make it a point not to use = and the other numeric operators
on string values. Converting a number to a string is always possible and straight-
forward, but converting a string to a number may not even work (as in the last line
of the example). We can use Number to explicitly convert the string to a number,
making it clear that we might run the risk of getting a NMal value.

show (Number ("5") = 5);

When we discussed the boolean operators ¢& and | | earlier, T claimed they pro-
duced boolean values. This turns out to be a bit of an oversimplification. If you
apply them to boolean values, they will indeed return booleans. But they can also
be applied to other kinds of values, in which case they will return one of their argu-
ments.

What |/ really does is this: Tt looks at the value to the left of it first. If converting
this value to a boolean would produce t rue, it returns this left value, otherwise it
returns the one on its right. Check for yourself that this does the correct thing when
the arguments are booleans. Why does it work like that? It turns out this is very
practical. Consider this example:

var input = prompt ("What is vour name?", "Kilgore Trout");
print ("Well hello " + (input || "dear"));

If the user presses “Cancel” or closes the prompt dialog in some other way with-
out giving a name, the variable input will hold the value null or "". Both of
these would give false when converted to a boolean. The expression input ||
"dear" can in this case be read as “the value of the variable input, or else the string
"dear"”. Itis an easy way to provide a “fallback” value.

The && operator works similarly, but the other way around. When the value to its
left is something that would give false when converted to a boolean, it returns that
value, otherwise it returns the value on its right.

Another property of these two operators is that the expression to their right is only
evaluated when necessary. In thecaseof true || X, nomatter what X is, the result
will be true, so X is never evaluated, and if it has side effects they never happen.
The same goes for false &4 X

false || alert ("I'm happening!™);
true || alert ("Not me.");

27

Open Universiteit

2.1

2.2

2.3

24

2.5

2.6

Eloquent JavaScript

FEEDBACK

Answers to the exercises

Yes, it is true. You can reduce it step by step like this:
(false || true) && !(false && true)
true && !false

true

var result = 1;

var counter = 0;

while {(counter < 10) {
result = result * 2;
counter = counter + 1;

}

show (result);

The counter could also start at 1 and check for <<= 10, but, for reasons that will
become apparent later on, it is a good idea to get used to counting from 0. Obviously,
your own solutions aren’t required to be precisely the same as mine. They should
work. And if they are very different, make sure you also understand my solution.

var line = "";
var counter = 0;

while (counter < 10) |

line = line + "#7";
print(line);
counter = counter + 1;
}
var result = 1;
for (var counter = 0; cocunter < 10; counter = cocunter + 1)
result = result *x 2;

show (result);

}

Note that even if no block is opened with a “{’, the statement in the loop is still
indented two spaces to make it clear that it “‘belongs’ to the line above it.

var line = "";
for (var counter = 0; counter < 10; counter = ccounter + 1) |
line = line + "#";

print(linej;

var answer = prompt("You! What is the value of 2 + 27", "");
if (answer == "4")
alert ("You must be a genius or something.");
else 1f (answer == "3" || answer == "5")
alert ("Almost! ™) ;
elge alert ("You’ re an embarrassment.");

Var answer;
while (true) {

28

Chapter 2 Basic JavaScript: values, variables, and control flow

angwer = prompt ("You! What is the value of 2 + 27", "");
if (answer == "4") |
alert ("You must be a genius or scmething.”);
break;
i
elae if (answer == "3"7 || answer == "L") {

alert ("Almost!1™);
H

else |
alert ("You’re an embarrassment.”);

}

Because the first 1£’s body now has two statements, I added braces around all the
bodies. This is a matter of taste. Having an 1 £ /e 1se chain where some of the bodies
are blocks and others are single statements looks a bit lopsided to me, but you can
make up your own mind about that.

Another solution, arguably nicer, but without break:

var value = null;
while (value 1= "47") |
value = prompt ("You! What 1is the wvalue of 2 + 27", "");
if (value == "4™M)
alert ("You must be a genius or scmething.”);
else 1f (value == "3" || wvalue == "5")
alert ("Almost ™) ;
else
alert ("You’re an embarrassment.);

29

Content chapter 3

Functions

1 Pure functions 31
2 Local environment 33
21 Inner functions 33
22 Block of code: no new environment 34
3 Closure 34
4 Recursion 35
41 Program stack 36
42 Indirect recursion 36
5 Timeline for function definitions 37
Anonymous functions 38
7 The number of arguments 38

Feedback 40

Answers to the exercises 40

30

Argument
Body

return

TSI

Chapter 3

Functions

A program often needs to do the same thing in different places. Repeating all the
necessary statements every time is tedious and error-prone. It would be better to
put them in one place, and have the program take a detour through there whenever
necessary. This is what functions were invented for: They are canned code that a pro-
gram can go through whenever it wants. Putting a string on the screen requires quite
a few statements, but when we have a print function we can just write print("Aleph™)
and be done with it.

To view functions merely as canned chunks of code doesn’t do them justice though.
When needed, they can play the role of pure functions, algorithms, indirections, ab-
stractions, decisions, modules, continuations, data structures, and more. Being able
to effectively use functions is a necessary skill for any kind of serious programming,.
This chapter provides an introduction into the subject, chapter 6 discusses the sub-
tleties of functions in more depth.

1 Pure functions

Pure functions, for a start, are the things that were called functions in the mathemat-
ics classes that I hope you have been subjected to at some point in your life. Taking
the cosine or the absolute value of a number is a pure function of one argument.
Addition is a pure function of two arguments.

The defining properties of pure functions are that they always return the same value
when given the same arguments, and never have side effects. They take some argu-
ments, return a value based on these arguments, and do not monkey around with
anything else.

In JavaScript, addition is an operator, but it could be wrapped in a function like this
(and as pointless as this looks, we will come across situations where it is actually
useful):

function add{a, b) {
return a + b;

i
show(add (2, 2));

add is the name of the function. a and b are the names of the two arguments. return
a + b; is the body of the function.

The keyword function is always used when creating a new function. When it is
followed by a variable name, the resulting function will be stored under this name.
After the name comes a list of argument names, and then finally the body of the
function. Unlike those around the body of while loops or if statements, the braces
around a function body are ohligatory.

The keyword return, followed by an expression, is used to determine the value
the function returns. When control comes across a return statement, it immediately
jumps out of the current function and gives the returned value to the code that called
the function. A return statement withoutan expression after it will cause the function
to return undefined.

31

Open Universiteit

Side effect

EXERCISE 3.1

R =S A S

Eloquent JavaScript

A body can, of course, have more than one statement in it. Here is a function for
computing powers (with positive, integer exponents):

function power (base, exponent) {
var result = 1;
for (var count = 0; count < exponent; count++)
result == base;
return result;
i
show (power (2, 10});

If you solved exercise 2.2, this technique for computing a power should look familiar.

Creating a variable (result) and updating it are side effects. Didn’t T just say pure
functions had no side effects?

A variable created inside a function exists only inside the function. This is fortunate,
or a programmer would have to come up with a different name for every variable he
needs throughout a program. Because result only exists inside power, the changes
to it only last until the function returns, and from the perspective of code that calls it
there are no side effects.

Write a function called absolute, which returns the absolute value of the number it is given as its
argument. The absolute value of a negative number is the positive version of that same number, and the
absolute value of a positive number (or zero) is that number itself.

Pure functions have two very nice properties. They are easy to think about, and they
are easy to re-use.

If a function is pure, a call to it can be seen as a thing in itself. When you are not
sure that it is working correctly, you can test it by calling it directly from the console,
which is simple because it does not depend on any context. It is easy to make these
tests automatic - to write a program that tests a specific function. Non-pure functions
might return different values based on all kinds of factors, and have side effects that
might be hard to test and think about.

Because pure functions are self-sufficient, they are likely to be useful and relevant
in a wider range of situations than non-pure ones. Take show, for example. This
function’s usefulness depends on the presence of a special place on the screen for
printing output. If that place is not there, the function is useless. We can imagine a
related function, let’s call it format, that takes a value as an argument and returns
a string that represents this value. This function is useful in more situations than
show,

Of course, format does not solve the same problem as show, and no pure function
is going to be able to solve that problem, because it requires a side effect. In many
cases, non-pure functions are precisely what you need. In other cases, a problem can
be solved with a pure function but the non-pure variant is much more convenient or
efficient.

Thus, when something can easily be expressed as a pure function, write it that way.
But never feel dirty for writing non-pure functions.

Functions with side effects do not have to contain a return statement. If no return
statement is encountered, the function returns undefined.

32

0 R =

= W N =

=R SR R = N L TS B S

—

W0 N Oy N

Chapter3 Functions

function vyell imessage) {
alert imessage + "[!");

i

yell ("Yow");

2 Local environment

The names of the arguments of a function are available as variables inside it. They
will refer to the values of the arguments the function is being called with, and like
normal variables created inside a function, they do not exist outside it. Aside from
the top-level environment, there are smaller, local environments created by function
calls. When looking up a variable inside a function, the local environment is checked
first, and only if the variable does not exist there is it looked up in the top-level
environment. This makes it possible for variables inside a function to “shadow”
top-level variables that have the same name.

function alertIsPrint (value) {
var alert = print;
alert (value);

}

alertIsPrint ("Troglodites");

The variables in this local environment are only visible to the code inside the func-
tion. If this function calls another function, the newly called function does not see
the variables inside the first function:

var variable = "top-level";
function printVariablei) {
print ("inside printVariable, the variable holds 7" + wvariable + "7 .7);
i
function test () {
var variable = "local";
print ("inside test, the wvariable holds " + wvariable + "7.");
printVariable ();
i
test ();

2.1 INNER FUNCTIONS

However, and this is a subtle but extremely useful phenomenon, when a function
is defined inside another function, its local environment will be based on the local
environment that surrounds it instead of the top-level environment.

var variable = "top-level";

functlicon parentFunctioni() {
var variable = "local™;
function childFunctioni() {

print (variable);

}

childFunctioni();
}

parentFunction() ;

What this comes down to is that which variables are visible inside a function is de-
termined by the place of that function in the program text. All variables that were
defined “above” a function’s definition are visible, which means both those in func-

33

Open Universiteit

Lexical scoping

O LN

[N SRS IS = N LR R R S

—

Closure

SN W N

Eloquent JavaScript

tion bodies that enclose it, and those at the top-level of the program. This approach
to variable visibility is called lexical scoping.

2.2 BLOCK OF CODE: NO NEW ENVIRONMENT

People who have experience with other programming languages might expect that
a block of code (between braces) also produces a new local environment. Not in
JavaScript. Functions are the only things that create a new scope. You are allowed to
use free-standing blocks like this...

var something = 1;
{
var something = 27
print ("Insids: " 4+ scmething);
i
print ("Outside: " + something);

... but the something insice the block refers to the same variable as the one outside
the block. In fact, although blocks like this are allowed, they are utterly pointless.
Most people agree that this is a bit of a design blunder by the designers of JavaScript,
and ECMAScript Harmony will add some way to define variables that stay inside
blocks (the 1et keyword).

3 Closure

Here is a case that might surprise you:

var variable = "top-level";
function parentFunctioni) {
var variable = "local™;
function childFunction() {
print (variable);
}
return childFunction;
i
var child = parentFunction();
childi();

parentFunction returns its internal function, and the code at the bottom calls
this function. Even though parentFunction has finished executing at this point,
the local environment where variable has the value "local” still exists, and
childFunction still uses it. This phenomenon is called closisre.

Apart from making it very easy to quickly see in which part of a program a variable
will be available by looking at the shape of the program text, lexical scoping also
allows us to “synthesise” functions. By using some of the variables from an enclosing
function, an inner function can be made to do different things. Imagine we need a
few different but similar functions, one that adds 2 to its argument, one that adds 5,
and so on.

function makedddFunction (amount) |
function add{number) {
return number + amount;
i
return add;

}

34

Chapter3 Functions

7 |var addTwo = makebAddFunction(2);
8 |var addFive = makeAddFunction(5);
9 | show(addTwo (1) + addFive(l));

To wrap your head around this, vou should consider functions to notjust package up
a computation, but also an environment. Top-level functions simply execute in the
top-level environment, that much is obvious. But a function defined inside another
function retains access to the environment that existed in that function at the point
when it was defined.

Thus, the add function in the above example, which is created whenmakeAddFunct ion
is called, captures an environment in which amount has a certain value. It packages
this environment, together with the computation return number + amount, into

a value, which is then returned from the outer function.

When this returned function (addTwo or addFiwve) is called, a new environment
(in which the variable number has a value) is created, as a sub-environment of the
captured environment (in which amount has a value). These two values are then
added, and the result is returned.

4 Recursion

On top of the fact that different functions can contain variables of the same name
without getting tangled up, these scoping rules also allow functions to call them-

Recursive selves without running into problems. A function that calls itself is called recursive.
Recursion allows for some interesting definitions. Look at this implementation of
power:

1 | function power (base, exponent) {

2 if (exponent ==

3 raturn 1;

4 else

5 return base » power(base, exponent -1);
6 |7

This is rather close to the way mathematicians define exponentiation, and to me it
looks a lot nicer than the earlier version. It sort of loops, but there isno while, for,
or even a local side effect to be seen. By calling itself, the function preduces the same
effect.

There is one important problem though: In most browsers, this second version is
about ten times slower than the first one. In JavaScript, running through a simple
loop is a lot cheaper than calling a function multiple times.

The dilemma of speed versus elegance is an interesting one. It not only occurs when
deciding for or against recursion. In many situations, an elegant, intuitive, and often
short solution can be replaced by a more convoluted but faster solution.

In the case of the power function above the un-elegant version is still sufficiently
simple and easy to read. It doesn’t make very much sense to replace it with the recur-
sive version. Often, though, the concepts a program is dealing with get so complex
that giving up some efficiency in order to make the program more straightforward
becomes an attractive choice.

The basic rule, which has been repeated by many programmers and with which I
wholeheartedly agree, is to not worry about efficiency until your program is prob-

35

Open Universiteit

Lfficiency

Stack

SO U N

Eloquent JavaScript

ably too slow. When it is, find out which parts are too slow, and start exchanging
elegance for efficiency in those parts.

Of course, the above rule doesn’t mean one should start ignoring performance alto-
gether. In many cases, like the powe r function, not much simplicity is gained by the
“elegant” approach. In other cases, an experienced programmer can see right away
that a simple approach is never going to be fast enough.

The reason] am making a big deal out of this is that surprisingly many programimers
focus fanatically on efficiericy, even in the smallest details. The result is bigger, more
complicated, and often less correct programs, which take longer to write than their
more straightforward equivalents and often run only marginally faster.

41 PROGRAM STACK

But I was talking about recursion. A concept closely related to recursion is a thing
called the stack. When a function is called, control is given to the body of that func-
tion. When that body returns, the code that called the function is resumed. While
the body is running, the computer must remember the context from which the func-
tion was called, so that it knows where to continue afterwards. The place where this
context is stored is called the stack.

The fact that it is called “stack” has to do with the fact that, as we saw, a function
body can again call a function. Every time a function is called, another context has
to be stored. One can visualise this as a stack of contexts. Every time a function is
called, the current context is thrown on top of the stack. When a function returns,
the context on top is taken off the stack and resumed.

This stack requires space in the computer’s memory to be stored. When the stack
grows too big, the computer will give up with a message like”out of stack space” or
“too much recursion”. This is something that has to be kept in mind when writing
recursive functions.

function chicken() {
return eggi);

i

function eggi() {
return chicken();

i

print {chicken{) + " came first.");

42 INDIRECT RECURSION

In addition to demonstrating a very interesting way of writing a broken program,
this example shows thata function does not have to call itself directly to be recursive.
If it calls another function which (directly or indirectly) calls the first function again,
it is still recursive.

Recursionis not always just a less-efficient alternative to looping. Some problems are
much easier to solve with recursion than with loops. Most often these are problems
that require exploring or processing several “branches”, each of which might branch
out again into more branches.

Consider this puzzle: By starting from the number 1 and repeatedly either adding
5 or multiplying by 3, an infinite amount of new numbers can be produced. How

36

OS] oD LN

O U N

EN S

Chapter3 Functions

would you write a function that, given a number, tries to find a sequence of additions
and multiplications that produce that number?

For example, the number 13 could be reached by first multiplying 1 by 3, and then
adding 5 twice. The number 15 can not be reached at all.

Here is the solution:

function findsSequence(gecal) {
function findi(start, history) {
if (start == goal)
return history;
else if (start > goal)
return null;

else
return find(start + 5, "(" + history + " + 5)") ||
find(start « 3, "(" + history + " = 3)");

}

return find (1, "1");

i
print (findSequence (24));

Note that it doesn’t necessarily find the shortest sequence of operations, it is satisfied
when it finds any sequence at all.

The inner find function, by calling itself in two different ways, explores both the
possibility of adding 5 to the current number and of multiplying it by 3. When
it finds the number, it returns the history string, which is used to record all the
operators that were performed to get to this number. It also checks whether the
current number is bigger than goal, because if it is, we should stop exploring this
branch, it is not going to give us our number.

The use of the | | operator in the example can be read as “return the solution found
by adding 5 to start, and if that fails, return the solution found by multiplying start
by 37, It could also have been written in a more wordy way like this:

else {
var found = find(start + 5, "(" 4+ history + " + 5)"};
if (found == null)
found = find(start = 3, "(" + history + " = 3)");
return found;
i
5 Timeline for function definitions

Even though function definitions occur as statements between the rest of the pro-
gram, they are not part of the same time-line:

print ("The future says: ", future());
function future() {

return "We STILL have no flying cars.";
i

What is happening is that the computer looks up all function definitions, and stores
the associated functions, before it starts executing the rest of the program. The same
happens with functions that are defined inside other functions. When the cuter func-
tion is called, the first thing that happens is that all inner functions are added to the
new environment.

37

Open Universiteit

Anonymous func-
tion

EXERCISE 3.2

LI

o= U2 N

Eloquent JavaScript

6 Anonymous functions

There is another way to define function values, which more closely resembles the
way other values are created. When the functicn keyword is used in a place where
an expression is expected, it is treated as an expression producing a function value.
Functions created in this way do not have to be given a name (though it is allowed
to give them one).

var add = functionta, b) {
return a + b;

Ti

show(add (5, 5));

Note the semicolon after the definition of add. Normal function definitions do not
need these, but this statement has the same general structure as var add = 22;,
and thus requires the semicolon.

This kind of function value is called an anonymous function, because it does not have a
name. Sometimes it is useless to give a function a name, likein themakeAddFuncticn
example we saw earlier:

function makeadddFunction (amount) {
return function (number) {
return number + amount;
Ti
i

Since the function named add in the first version of makeAddFunction was re-
ferred to only once, the name does not serve any purpose and we might as well
directly return the function value.

Write a function greaterThan, which takes one argument, a number, and returns a function that rep-
resents a test. When this returned function is called with a single number as argument, it returns a
boolean: t rue if the given number is greater than the number that was used to create the test function,
and false otherwise.

1

7 The number of arguments

Try the following:

alert ("Hello™, "
Good Evening", "How do you do?", "Goodbye'");

The function alert officially only accepts one argument. Yet when you call it like
this, the computer does not complain at all, but just ignores the other arguments.

show () ;

You can, apparently, even get away with passing too few arguments. When an argu-
ment is not passed, its value inside the function is undefined.

In the next chapter, we will see a way in which a function body can get at the exact
list of arguments that were passed to it. This can be useful, as it makes it possible to
have a function accept any number of arguments. print makes use of this:

38

Chapter3 Functions

1 |print ("R", 2, "D", 2);

Of course, the downside of this is that it is also possible to accidentally pass the
wrong number of arguments to functions that expect a fixed amount of them, like
alert, and never be told about it.

39

Open Universiteit Eloquent JavaScript

FEEDBACK

Answers to the exercises

3.1 function abasclute (number) |
if (number < 0)
return —number;
else
return number; } show(absclute(-144));

3.2 function greaterThan(x) {
return function(v) |
return y > %}
b
1
var greaterThanTen = greaterThan(10);
show (greaterThanTen (9)] ;

40

Content chapter 4

Data structures: Objects and Arrays

1 Properties 44

Objects 44

21 Values of objects 46

Arrays 46

Properties and methods of strings and arays 47
Elegant code 51

Date 52

The Cat program 54

Arguments 56

Math 57

O 0 N O U B~ W

Feedback 59

Answers to the exercises 59

42

Chapter 4

Data structures: Objects and Arrays

This chapter will he devoted to solving a few simple problems. In the process, we
will discuss two new types of values: arrays and objects, and look at some techniques
related to them.

Consider the following situation: Your crazy aunt Emily, who is rumoured to have
over fifty cats living with her (you never managed to count them), regularly sends
you e-mails to keep you up to date on her exploits. They usually look like this:

Dear nephew,

Your mother told me you have taken up skydiving. Is this true? You
watch yourself, young man! Remember what happened to my husband?
And that was only from the second floor!

Anyway, things are very exciting here. I have spent all week trying
to get the attention of Mr. Drake, the nice gentleman who moved in next
door, but T think he is afraid of cats. Or allergic to them? Tam going to try
putting Fat Igor on his shoulder next time I see him, very curious what
will happen.

Also, the scam I told you about is going better than expected. I have
already gotten back five “payments”, and only one complaint. It is start-
ing to make me feel a bit bad though. And you are right that itis probably
illegal in some way.

(... etc...)

Much love, Aunt Emily

died 27/04/2006: Black Leclere

born 05/04 /2006 (mother Lady Penelope): Red Lion, Doctor Hobbles
the 3rd, Little Iroquois

To humour the old dear, you would like to keep track of the genealogy of her cats,
so you can add things like”PS. I hope Doctor Hobbles the 2nd enjoyed his birthday
this Saturday!”, or “How is old Lady Fenelope doing? She’s five years old now,
isn't she?”, preferably without accidentally asking about dead cats. You are in the
possession of a large quantity of old e-mails from your aunt, and fortunately she is
very consistent in always putting information about the cats” births and deaths at
the end of her mails in precisely the same format.

You are hardly inclined to go through all those mails by hand. Fortunately, we were
just in need of an example problem, so we will try to work out a program that does
the work for us. For a start, we write a program that gives us a list of cats that are
still alive after the last e-mail.

Before you ask, at the start of the correspondence, aunt Emily had only a single cat:
Spot. (She was still rather conventional in those days.)

It usually pays to have some kind of clue what one’s program is going to do before
starting to type. Here’s a plan:

a Start with a set of cat names that has only“Spo” in it.
b Go over every e-mail in our archive, in chronological order.

¢ Look for paragraphs that start with “born” or “died”.

43

Open Universiteit

Propetties

Object

[

[

Eloquent JavaScript

FIGURE 4.1 The eyes of the cats

d Add the names from paragraphs that start with “born”™ to our set of names.
e Remove the names from paragraphs that start with “died” trom our set.
Where taking the names from a paragraph goes like this:

a Bind the colon in the paragraph.

b Take the part after this colon.

¢ Split thiz part into separate names by looking for commas.

It may require some suspension of disbelief to accept that aunt Emily always used
this exact format, and that she never forgotor mizspelled a name, but that iz just howr
your atint is.

1 Propetties

Eirst, let me tell you about properties. A lot of JavaScript values have other values
associated with them. These associations are called properties. Every string has a
property called length, which refers to a number, the amount of characters in that
string,

Properties can be accessed in two ways:

war text = "purple haze®;
show(text["length"]) ;
showitext.length);

The second way is a shorthand for the first, and it only works when the name of
the property would be a valid variable name - when it doesn't have any spaces or
sytmbols in it and does not start with a digit character.

The values null and undefined do not have any properties. Trying to read prop-
erties from such a value produces an error. Try the following code, if only to get an
idea about the kind of error-message your browser produces in such a case (which,
for some browsers, can be rather cryptic).

war nething = null:
showinething. length) ;

The properties of a string value can not be changed. There are quite a few more than
just length, as we will see, but you are not allowed to add or remove any.

Objects

This is different with values of the ty pe objeci. Their main roleis to hold other values.
They have, you could say, their own set of tentacles in the form of properties. You
are free to modify these, remove them, or add new ones,

44

delete

in

EXERCISE 4.1

G DN =

N =

o N =

NI N

Chapter 4 Data structures: Objects and Arrays

An object can be written like this:

var cat = {colour: "grey", name: "Spot", size: 46};
cat.gize = 47;

show (cat.size);

delete cat.size;

show (cat.size);

show (cat);

Like variables, each property attached to an object is labelled by a string. The first
statement creates an object in which the property colour holds the string "grey",
the property name is attached to the string "spot ", and the property s1ize refers to
the number 46. The second statement gives the property named size a new value,
which is done in the same way as modifying a variable.

The keyword delete cuts off properties. Trying to read a non-existent property
gives the value undefined. If a property that does not yet exist is set with the =
operator, it is added to the chject.

var empty = {};
empty.notReally = 1000;
show (empty.nctReally);

Properties whose names are not valid variable names have to be quoted when creat-
ing the object, and approached using brackets:

var thing = {"gabba gabba"™: "hey", "5": 10};
show (Lhing["5"]);

thing["6"] = 20;

show (thing[2 + 31);

delete thing["gabba gabba™];

As you can see, the part between the brackets can be any expression. It is converted
to a string to determine the property name it refers to. One can even use variables to
name properties:

var propertyMName = "length'™;
var text = "mainline";
show (Cext [propertylName]) ;

The operator in can be used to test whether an object has a certain property. It
produces a boolean.

var chineseBox = {};
chineseBox.content = chineseBox;

show ("content” in chineseRox);

show ("content™ in chineseBox.content);

When object values are shown on the console, they can be clicked to inspect their
properties. This changes the output window to an “inspect” window. The little “x”
at the top-right can be used to return to the output window, and the left-arrow can
be used to go back to the properties of the previously inspected object.

show (chineseBox) ;

The solution for the cat problem talks about a “set” of names. A set is a collection of values in which
no value may occur more than once. If names are strings, can you think of a way to use an object to

45

Open Universiteit

Eloquent JavaScript

represent a set of names?

Show how a name can be added to this set, how one can be removed, and how you can check whether

a name occurs in it.

LT = R A N

Object values, apparently, can change. The types of values discussed in chapter 2 are
all immutable, it is impessible to change an existing value of those types. You can
combine them and derive new values from them, but when you take a specific string
value, the text inside it can not change. With ohjects, on the other hand, the content
of a value can be modified by changing its properties.

2.1 VALUES OF OBJECTS

When we have two numbers, 120 and 120, they can for all practical purposes be
considered the precise same number. With objects, there is a difference between hav-
ing two references to the same object and having two different objects that contain
the same properties. Consider the following code:

var objectl
var objectl ok jectl;

var objecti {value: 10};
show (cbjectl == cbiject2);
show (cbjectl == cbiject3);
cbjectl.value = 15;

show (cbject2.value);

show (cbject3.value);

{value: 10};

objectland object?2 are twovariables grasping the same value. There is only one
actual object, which is why changing cbject1 also changes the value of object2.
The variable object 3 points to another object, which initially contains the same
properties as cbjectl, but lives a separate life.

JavaScript’s == operator, when comparing objects, will only return t rue if both val-
ues given to it are the precise same value. Comparing different objects with identical
contents will give false. This is useful in some situations, but impractical in others.

3 Arrays

Object values can play a lot of different roles. Behaving like a set is only one of those.
We will see a few other roles in this chapter, and chapter 8 shows another important
way of using objects.

In the plan for the cat problem - in fact, call it an algorithm, not a plan, that makes
it sound like we know what we are talking about - in the algorithim, it talks about
going over all the e-mails in an archive. What does this archive look like? And where
does it come from?

Do not worry about the second question for now. Chapter 14 talks about some ways
to import data into your programs, but for now you will find that the e-mails are just
magically there. Some magic is really easy, inside computers.

The way in which the archive is stored is still an interesting question. It contains a
number of e-mails. An e-mail can be a string, that should be obvious. The whole
archive could be put into one huge string, but that is hardly practical. What we want
is a collection of separate strings.

46

[h*)

LS R R S

arrays

[

EXERCISE 4.2

Chapter 4 Data structures: Objects and Arrays

Collections of things are what objects are used for. One could make an object like
this:

var mallArchive = {"the first e-mail”: "Dear nephew, ...",
"the zecond e-mail™: ™..."
/% and so on ... */};

But that makes it hard to go over the e-mails from start to end - how does the pro-
gram guess the name of these properties? This can be solved by more predictable
property names:

var mailarchive = {0: "Dear nephew, ... (mail number 1)",
1: "(mail number 237,
2: "(maill number 3)"};
for (var current = 0; current in mailArchive; current++)
print ("Processing e-mail #", current, ": ", mailArchive[current]);

Luck has it that there is a special kind of objects specifically for this kind of use. They
are called arrays, and they provide some conveniences, such as a length property
that contains the amount of values in the array, and a number of operations useful
for this kind of collection.

New arrays can be created using brackets ([and]):

var mailArchive = ["mail one", "mail two™, "mail three"];
for (var current = 0; current < mailBArchive.length; current++)
print ("Processing e-mail #", current, ": ", mailArchive[current]);

In this example, the numbers of the elements are not specified explicitly anymore.
The first one automatically gets the number 0, the second the number 1, and so on.

Why start at 07 People tend to start counting from 1. As unintuitive as it seems,
numbering the elements in a collection from 0 is often more practical. Just go with it
for now, it will grow on you.

Starting at element 0 also means that in a collection with X elements, the last element
can be found at position x-1. This is why the for loop in the example checks for
current < mailBArchive.length. Thereisno element at position
mailArchive.length, so as soon as current has that value, we stop looping.

Write a function range that takes one argument, a positive number, and returns an array containing all
numbers from 0 up to and including the given number.

An empty array can be created by simply typing []. Also remember that adding properties to an object,
and thus also to an array, can be done by assigning them a value with the = operator. The length property
is automatically updated when elements are added.

[

4 Properties and methods of strings and arays

Both string and array objects contain, in addition to the 1ength property, a number
of properties that refer to function values.

var deh = "Dch";
print {typecf doh.tolUpperCase);
print (doh.toUpperCase());

47

Open Universiteit

Methods

1O A N

(=21 BTSSR

Eloquent JavaScript

Every string has a toUpperCase property. When called, it will return a copy of
the string, in which all letters have been converted to uppercase. There is also
toLowerCase. Guess what that does.

Notice that, even though the call to toUpperCase does not pass any arguments, the
function does somehow have access to the string "Doh”, the value of which it is a
property. How this works precisely is described in chapter 8.

Properties that contain functions are generally called methods, as in “toUpperCase
is a method of a string object”.

var mack = [];
mack.push ("Mack");
mack.push{"the™);
mack.push ("Enife™);
show (mack.join (" "));
show (mack.pop ()] ;
show (mack);

The method push, which is associated with arrays, can be used to add values to it.
It could have been used in the last exercise, as an alternative to result [1] = 1.
Then there is pop, the opposite of push: it takes off and returns the last value in the
array. join builds a single big string from an array of strings. The parameter it is
given is pasted between the values in the array.

Coming back to those cats, we now know that an array would be a good way to store
the archive of e-mails. On this page, the function ret rieveMails can be used to
(magically) get hold of this array. Going over them to process them one after another
is not rocket science anymore either:

var mailArchive = retrieveMails();

for (var 1 = 0; 1 < mallZrchive,length; 1++) {
var emall = mailZrchive[i];
print {("Processing e-mail #7, 1);
// Do more things...

i

We have also decided on a way to represent the set of cats that are alive. The next
problem, then, is to find the paragraphs in an e-mail that start with”bor” or “died”.

The first question that comes up is what exactly a paragraph is. In this case, the string
value itself can’t help us much: JavaScript’s concept of text does not go any deeper
than the “sequernice of characters” idea, so we must define paragraphs in those terms.

Earlier, we saw that there is such a thing as a newline character. These are what most
people use to split paragraphs. We consider a paragraph, then, to be a part of an
e-mail that starts at a newline character or at the start of the content, and ends at the
next newline character or at the end of the content.

And we don’t even have to write the algorithm for splitting a string into paragraphs
ourselves. Strings already have a method named split, which is (almost) the op-
posite of the join method of arrays. It splits a string into an array, using the string
given as its argument to determine in which places to cut.

var words = "Cities of the Interior™;
show (words.split (" ")) ;

Thus, cutting on newlines ("
n™), can be used to split an e-mail into paragraphs.

48

EXERCISE 4.3

Chapter 4 Data structures: Objects and Arrays

split and join are not precisely each other’s inverse. string.split(x).Join(x) always pro-
duces the original value, but array.join(x) .split (x) does not. Can vou give an example of an
array where . join (" "] .split (" ") producesa different value?

EXERCISE 4.4

N =

1

Paragraphs that do not start with either “born” or”died” can be ignored by the pro-
gram. How do we test whether a string starts with a certain word? The method
charat can be used to get a specific character from a string. x.charat (0) gives
the first character, 1 is the second one, and so on. One way to check whether a string
starts with “born” is:

var paragraph = "born 15-11-2003 (mother Spot): White Fang';
show (paragraph.chardt (0) == "b" && paragraph.chardt (1) == "o" &&
paragraph.chart (2) == "r" && paragraph.charfAt(3) == "n");

But that gets a bit clumsy - imagine checking for a word of ten characters. There is
something to be learned here though: when a line gets ridiculously long, it can be
spread over multiple lines. The result can be made easier to read by lining up the
start of the new line with the first element on the original line that plays a similar
role.

Strings also have a method called s1ice. It copies out a piece of the string, starting
from the character at the position given by the first argument, and ending before
(not including) the character at the position given by the second one. This allows the
check to be written in a shorter way.

show (paragraph.slice {0, 4) == "born");

Write a function called startswith that takes two arguments, both strings. It returns true when the
first argument starts with the characters in the second argument, and false otherwise.

Corner cases

What happens when charit or slice are used to take a piece of a string that does
not exist? Will the startsWith I showed still work when the pattern is longer than
the string it is matched against?

show ("Pip".charat (250));
show ("llop™.slice (1, 10));

charat will return ™" when there is no character at the given position, and =slice
will simply leave out the part of the new string that does not exist.

Soyes, that version of st art sWith works. When startsWith ("Idiots", "Most
honoured colleagues”) iscalled, the call to s 1ice will, because string does not
have enough characters, always return a string that is shorter than pattern. Be-
cause of that, the comparison with == will return £alse, which is correct.

It helps to always take a moment to consider abnormal (but valid) inputs for a pro-
gram. These are usually called corner cases, and it is very common for programs that
work perfectly on all the “normal” inputs to screw up on corner cases.

The only part of the cat-problem that is still unsolved is the extraction of names from
a paragraph. The algorithm was this:

a Find the colon in the paragraph.

49

Open Universiteit Eloquent JavaScript

b Take the part after this colon.

¢ Split this part into separate names by looking for cornmas.

This has to happen both for paragraphs that start with “died”, and paragraphs that
start with “born”. It would be a good idea to put it into a function, so that the two
pieces of code that handle these different kinds of paragraphs can both use it.

EXERCISE 4.5

Can you write a function catNames that takes a paragraph as an argument and returns an array of
names?

Strings have an index0f method that can be used to find the (first) position of a character or sub-string
within that string. Also, when s1ice is given only one argument, it will return the part of the string
from the given position all the way to the end.

It can be helpful to use the console to “explore” functions. For example, type "foo: bar”.indexOf (": ")
and see what you get.

All that remains now is putting the pieces together. One way to do that looks like

this:
1 |var mailArchive = retrieveMails();
2 |var livingCats = {"Spot": true};
3 | for (var mail = 0; mail < mailBrchive.length; mail++) {
4 var paragraphs = mail2rchive[mail] .split ("\n"};
5 for (var paragraph = 0; paragraph < paragraphs.length; paragraph++) {
6 if (startsWith (paragraphs[paragraph]l, "born")) {
7 var names = catNames (paragraphs|[paragraph];;
8 for (var name = 0; name < names.length; name++)
9 livingCats [names[name]] = true;
10 1
11 else if (startsWith(paragraphs[paragraph], "died")) {
12 var names = catNames (paragraphs [paragraphl]);
13 for (var name = 0; name < names.length; name++)
14 delete livingCats [names[name]];
15 }
16 }
17 |1
18 | show (livingCats);

That is quite a big dense chunk of code. We'll look into making it a bit lighter in
a moment. But first let us look at our results. We know how to check whether a
speciﬁc cat survives:

1 |if ("spot™ in livingCats)
2 print ("Spot lLives!");

3 |else

4

print ("Good old Spot, may she rest in peace.");

But how do we list all the cats that are alive? The in keyword has a somewhat
different meaning when it is used together with for:

1 |for (var cat in livingCats) print (cat);

A loop like that will go over the names of the properties in an object, which allows
us to enurmerate all the names in our set.

50

[T I = S R N

SO 00N O N

—

=S R TR S

Chapter 4 Data structures: Objects and Arrays

5 Elegant code

Some pieces of code look like an impenetrable jungle. The example solution to the
cat problem suffers from this. One way to make some light shine through it is to just
add some strategic blank lines. This makes it look better, but doesn’t really solve the
problem.

What is needed here is to break the code up. We already wrote two helper functions,
startsWith and catNames, which both take care of a small, understandable part
of the problem. Let us continue doing this.

function addToSet (set, wvalues) {
for (var i = 0; 1 < wvalues.length; i++)
set [values[i]] = true;
i
function removeFromSet (set, wvalues) {
for (var i = 0; 1 < wvalues.length; i++)
delete set[values[i]];

These two functions take care of the adding and removing of names from the set.
That already cuts out the two most inner loops from the solution:

var livingCats = {Spot: true};
for (var mail = 0; mail < mailArchive.length; mail++) {
var paragraphs = mail2rchive[mail] .split ("™ \n");
for (var paragraph = 0; paragraph < paragraphs.length; paragraph++) {
if (startsWith (paragraphs|[paragraph], "born™))
addToSet (livingCats, catMNames (paragraphs|[paragraph]));
elze 1f (startsWith(paragraphs|[paragraph], "died"))
removeFromSet (1ivingCats, catNames iparagraphs [paragraphl]i);

Quite an improvement, if I may say so myself.

Why do addIoset and removeFromset take the set as an argument? They could
use the variable 1ivingCats directly, if they wanted to. The reason is that this way
they are not completely tied to our current problem. If addToSet directly changed
livingCats, it would have to be called addCat sToCatSet, or something similar.
The way it is now, it is a more generally useful tool.

Even if we are never going to use these functions for anything else, which is quite
probable, it is useful to write them like this. Because they are “self sufficient”, they
can be read and understood on their own, without needing to know about some
external variable called 1ivingCats.

The functions are not pure: They change the object passed as their set argument. This
makes them slightly trickier than real pure functions, but still a lot less confusing
than functions that run amok and change any value or variable they please.

We continue breaking the algorithm into pieces:

function findLivingCats () {
var maillArchive = retrieveMails();
var livingCats = {"Spot": true};
function handleParagraph (paragraph; {
1f (startsWith (paragraph, "born™))
addToSet (livingCats, catMNames (paragraph));
else 1f (startsWith(paragraph, "died"))

51

Open Universiteit

new

Constructor

Eloquent JavaScript

removeFromSet (livingCats, catlNames (paragraph));
i
for (var mail = 0; mail < mailArchive.length; mail++) {
var paragraphs = mailZrchive[mail].split ("\n™);
for (var 1 = 0; 1 < paragraphs.length; i++)
handleParagraph (paragraphs[i];;
i
return livingCats;

}

var howMany = 0;

for (var cat in findLivingCats())
howMany++;

print {"There are ", howMany, " cats.”™);

The whole algorithm is now encapsulated by a function. This means that it does
not leave a mess after it runs: 1ivingCats is now a local variable in the function,
instead of a top-level one, so it only exists while the function runs. The code that
needs this set can call findLivingCats and use the value it returns.

It seemed to me that making handleParagraph a separate function also cleared
things up. But this one is so closely tied to the cat-algorithm that it is meaningless
in any other situation. On top of that, it needs access to the 1ivingCats variable.
Thus, it is a perfect candidate to be a function-inside-a-function. When it lives inside
findLivingCats, it is clear that it is only relevant there, and it has access to the
variables of its parent function.

This solution is actually bigger than the previous one. Still, it is tidier and T hope
youw'll agree that it is easier to read.

[Date

The program still ignores a lot of the information that is contained in the e-mails.
There are birth-dates, dates of death, and the names of mothers in there.

To start with the dates: What would be a good way to store a date? We could make
an object with three properties, year, month, and day, and store numbers in them.

1 ‘Var when = {year: 1980, menth: 2, day: 1};

[

But JavaScript already provides a kind of object for this purpose. Such an object can
be created by using the keyword new:

var when = new Date (1980, 1, 1);
show (when) ;

Just like the notation with braces and colons we have already seen, new is a way
to create object values. Instead of specifying all the property names and values, a
function is used to build up the object. This makes it possible to define a kind of
standard procedure for creating objects. Functions like this are called constructors,
and in chapter 8 we will see how to write them.

The Date constructor can be used in different ways.

show (new Date());
show (new Date (1980, 1, 1));
show (new Date (2007, 2, 30, 8, 20, 30));

52

oSO A LN

OO N

[h*)

Chapter 4 Data structures: Objects and Arrays

As you can see, these objects can store a time of day as well as a date. When not
given any arguments, an object representing the current time and date is created.
Arguments can be given to ask for a specific date and time. The order of the argu-
ments is year, month, day, hour, minute, second, milliseconds. These last
four are optional, they become 0 when not given.

The month numbers these objects use go from 0 to 11, which can be confusing.
Bspecially since day numbers do start from 1.

The content of a Date object can be inspected with a number of get... methods.

var today = new Date();

print ("Year: ", today.getFullYear(), ",
month: ", today.getMonthi{y, ",
day: ", today.getDate());

print ("Hour: ", today.getHoursi(), ",
minutes: ", today.getMinutes(), ",
zeceonds: ", teoday.getSeconds());

print ("Day of week: ", today.getDayi());

All of these, except for getDay, also have a set... variant that can be used to change
the value of the date object.

Inside the object, a date is represented by the amount of milliseconds it is away from
January 1st 1970. You can imagine this is quite a large number.

var today = new Datel();
show (Loday.getTime ()) ;

A very useful thing to do with dates is comparing them.

var wallFall = new Date(198%, 10, 9);
var gqulfWartne = new Date (1800, &, 2);
show(wallFall < gulfWarCne);

show (wallFall == wallFall);

// but

show (wallFall == new Date(l1%8%9, 10, 9)1;

Comparing dates with <, >, <=, and >= does exactly what you would expect. When
a date object is compared to itself with == the result is t rue, which is also good. But
when == is used to compare a date object to a different, equal date object, we get
false. Huh?

As mentioned earlier, == will return false when comparing two different objects,
even if they contain the same properties. This is a bit clumsy and error-prone here,
since one would expect >= and == to behave in a more or less similar way. Testing
whether two dates are equal can be done like this:

var wallFalll = new Date(1%8%, 10, &),
wallFall?2 = new Date(198%, 10, 9);
show (wallFalll.getTime() == wallFallZ.getTime());

In addition to a date and time, Date objects also contain information about a time-
zone. When it is one o’clock in Amsterdam, it can, depending on the time of year,
be noon in London, and seven in the morning in New York. Such times can only be
compared when you take their time zones into account. The getTimezoneOffset
function of a Dat e can be used to find out how many minutes it differs from GMT
(Greenwich Mean Time).

53

Open Universiteit

EXERCISE 4.6

1
2

1

Eloquent JavaScript

var now = new Date();
print (now.getTimezoneOffset () ;

"died 27/04/2006: Black Lecléra™

The date part is always in the exact same place of a paragraph. How convenient. Write a function
extractDate that takes such a paragraph as its argument, extracts the date, and returns it as a date

object.

EXERCISE 4.7

=S 0 00 N O A 2N

— =

[=aRRS1 BRI S iy

7 The Cat program

Storing cats will work differently from now on. Instead of just putting the value
true into the set, we store an object with information about the cat. When a cat dies,
we do not remove it from the set, we just add a property death to the object to store
the date on which the creature died.

This means our addToSet and removeF romSet functions have become useless.
Something similar is needed, but it must also store birth-dates and, later, the mother’s
name.

function catRecord{name, birthdate, mother) {
return {name: name, birth: birthdate, mother: mother};
}
function addCats (set, names, birthdate, mother) {
for (var i = 0; 1 < names.length; i++)
set [names[i]] = catRecord({names[i], birthdate, mother);
i
function deadCats (set, names, deathdate) {
for (var 1 = 0; 1 < names.length; i++)
set [names[1i]] .death = deathdate;

catRecord is a separate function for creating these storage objects. It might be
useful in other situations, such as creating the object for Spot. “Record” is a term
often used for objects like this, which are used to group a limited number of values.

5o let us try to extract the names of the mother cats from the paragraphs.

"born 15/11/2003 (mother Spot): White Fang"

One way to do this would be...

functlion extractMother (paragraph) {
var start = paragraph.indexOf (" (mother ") + "(mother ".length;
var end = paragraph.indexOf (") ");
return paragraph.sliceistart, end);

i

show (extractMother ("born 15/11/2003 (mother Spot): White Fang™));

Notice how the start position has to be adjusted for the length of "(mother ", because
indexOf returns the position of the start of the pattern, not its end.

The thing that ext ractMother does can be expressed in a more general way. Writea function between

54

Chapter 4 Data structures: Objects and Arrays

that takes three arguments, all of which are strings. It will return the part of the first argument that occurs
between the patterns given by the second and the third arguments.

Sobetween ("beorn 15/11/2003 (mother Spot): White Fang”, "(mother ", ") ") gives
"Spot”'
between ("bu] boo [bah] gzz", "[", "]1") returns "bah".

To make that second test work, it can be useful to know that index0f can be given a second, optional
parameter that specifies at which point it should start searching.

Having between makes it possible to express ext ractMother in a simpler way:

1 | function extractMother (paragraph) {
2 return between (paragraph, "(mother ", ")7);
30
The new, improved cat-algorithm looks like this:
1 | function findCats() {
2 var maillikrchive = retrieveMails () ;
3 var cats = {
4 "Spot™: catRecord{"spot", new Date (1997, 2, 5, "unknown")
5 i
6 function handleParagraph (paragraph) {
7 if (startsWith (paragraph, "born™))
8 addCats (cats, catNames (paragraph), extractDate (paragraph), extractMother
(paragraph)); else if (startsWith(paragraph, "died"))
9 deadCats (cats, catlames (paragraph), extractDate (paragraphl);
10 }
11 for (var mail = 0; mail < mailldrchive.length; mail++) {
12 var paragraphs = maildrchive[mail] .split (" \n");
13 for (var 1 = 0; 1 < paragraphs.length; i++)
14 handleParagraph (paragraphs[i]);
15 }
16 return cats;
17 |1
18 |var catData = findCats();

Having that extra data allows us to finally have a clue about the cats aunt Emily talks
about. A function like this could be useful:

1 | function formatDate (date) {

2 return date.getDate() + "/" + (date.getMonth() + 1) + "/" + date.
getFullYear ();

301

4 | functien catInfo(data, name) {

5 if (!{name in data))

6

7

8

return "Wo cat by the name of "™ + name + " is known.";
var cat = datal[name];
var message = name + ", born " + formatDate (cat.birth) +
9 " from mother " + cat.mother;
10 if ("death" in cat)
11 message += ", died " + formatDate (cat.death);
12 return message + ".";
13 |}

14 |print (catInfo(catData, "Fat Tgor"));

The first return statement in catInfo is used as an escape hatch. If there is no
data about the given cat, the rest of the function is meaningless, so we immediately
return a value, which prevents the rest of the code from running.

Multiple return In the past, certain groups of programmers considered functions that contain multiple
statements

55

Open Universiteit

EXERCISE 4.8

Eloquent JavaScript

return statements sinful. The idea was that this made it hard to see which code was
executed and which code was not. Other techniques, which will be discussed in
chapter 5, have made the reasons behind this idea more or less obsolete, but vou
might still occasionally come across someone who will criticise the use of “shortcut”
return statements.

The formatDate function used by catInfo does not add a zero before the month and the day part
when these are only one digit long. Write a new version that does this.

EXERCISE 4.9

Write a function oldestCat which, given an object containing cats as its argument, returns the name
of the oldest living cat.

arguments

Default value

EXERCISE 4.10

[ENTCI

R =S R T S

8 Arguments

Now thatwe are familiar with arrays, I can show you something related. Whenever a
function is called, a special variable named argument s is added to the environment
in which the function body runs. This variable refers to an object that resembles an
array. It has a property 0 for the first argument, 1 for the second, and so on for every
argurmnent the function was given. It also has a length property.

This object is not a real array though, it does not have methods like push, and it does
not automatically update its Length property when you add something to it. Why
not, I never really found out, but this is something one needs to be aware of.

function argumentCounter () {
print ("You gave me ", arguments.length, " arguments.");

}

argumentCounter ("Death", "Famins", "Pestllence");

Some functions can take any number of arguments, like print does. These typically
loop over the values in the arguments object to do something with them. Others
can take optional arguments which, when not given by the caller, get some sensible
defirult value.

function add(number, howmuch) {
if (arguments.length < 2)
howmuch = 1;
return number + howmuch;
i
show(add({e));
show(add(o, 4));

Extend the range function from exercise 4.2 to take a second, optional argument. If only one argument
is given, it behaves as earlier and produces a range from 0 to the given number. If two arguments are
given, the first indicates the start of the range, the second the end.

EXERCISE 4.11

You may remermber this line of code from the introduction:

56

1

Chapter 4 Data structures: Objects and Arrays

print {sum{range(l, 10})));

We have range now. All we need to make this line work is a sum function. This function takes an array
of numbers, and returns their sum. Write it, it should be easy.

Math

—_

9 Math

Chapter 2 mentioned the functions Math . max and Math. min. With what you know
now, you will notice that these are really the properties max and min of the ohject
stored under the name Mat h. This is another role that objects can play: A warehouse
holding a number of related values.

There are quite a lot of values inside Mat h, if they would all have been placed directly
into the global environment they would, as it is called, pollute it. The more names
have been taken, the more likely one is to accidentally overwrite the value of some
variable. For example, it is not a far shot to want to name something mazx.

Most languages will stop you, or at least warn you, when vou are defining a variable
with a name that is already taken. Not JavaScript.

In any case, one can find a whole outfit of mathematical functions and constants in-
side Math. All the trigonometric functions are there - cos, sin, tan, acos, asin,
atan - @ and e, which are written with all capital letters (PT and E, which was, at
one time, a fashionable way to indicate something is a constant. pow is a good re-
placement for the power functions we have been writing, it also accepts negative
and fractional exponents. sqrt takes square roots. max and min can give the maxi-
mum or minimum of two values. round, flcer, and ceil will round numbers to
the closest whole number, the whole number below it, and the whole number above
it respectively.

There are a number of other values in M=th, but this text is an introduction, not a
reference. References are what you look at when you suspect something exists in
the language, but need to find out what it is called or how it works exactly. Un-
fortunately, there is no one comprehensive complete reference for JavaScript. This is
mostly because its current form is the result of a chaotic process of different browsers
adding different extensions at different times. The ECMA standard document that
was mentioned in the introduction provides a solid documentation of the basic lan-
guage, but is more or less unreadable. For most things, your best bet is the Mozilla
Developer Network.

Maybe you already thought of a way to find out what is available in the Math object:

for (var name in Math)
print iname) ;

But alas, nothing appears. Similarly, when you do this:

for (var name in ["Huesy", "Dewey", "Loul™])
print (name);

You only see 0, 1, and 2, not length, or pusgh, or join, which are definitely also
in there. Apparently, some properties of objects are hidden. There is a good reason
for this: All objects have a few methods, for example t oSt ring, which converts the
object into some kind of relevant string, and you do not want to see those when you

57

Open Universiteit

N =

Eloquent JavaScript

are, for example, looking for the cats that you stored in the object.

Why the properties of Math are hidden is unclear to me. Someone probably wanted
it to be a mysterious kind of object.

All properties your programs add to objects are visible. There is no way to make
them hidden, which is unfortunate because, as we will see in chapter 8, it would
be nice to be able to add methods to objects without having them show up in our
for/in loops.

Some properties are read-only, you can get their value but not change it. For exam-
ple, the properties of a string value are all read-only.

Other properties can be “active”. Changing them causes things to happen. For ex-
ample, lowering the length of an array causes excess elements to be discarded:

var array = ["Heaven", "Earth", "Man"];
array.length = Z;
show(array) ;

58

41

42

43

4.4

45

Chapter 4 Data structures: Objects and Arrays

FEEDBACK

Answers to the exercises

This can be done by storing the content of the set as the properties of an object.
Adding a name is done by setting a property by that name to a value, any value.
Removing a name is done by deleting this property. The in operator can be used to
determine whether a certain name is part of the set.

var set = "Spot": true;
S/ Add "White Fang" to the set
get ["White Fang"] = true;

// Remove "Spot”

delete set["Spot™];

// Bee if "Asoka" 1g in the set
show ("Ascka™ in set);

function range(upteo) {

var result = [];
for (var 1 = 0; 1 <= upto; 1++)
result[i] = 1;

return result; }
show (range (4)) ;

}

Instead of naming the loop variable counter or current, as I have been doing so far,
it is now called simply 1. Using single letters, usually i, 3, or k for loop variables
is a widely spread habit among programmers. [t has its origin mostly in laziness:
We'd rather type one character than seven, and names like counter and current do
not really clarify the meaning of the variable much.

If a program uses too many meaningless single-letter variables, it can become un-
believably confusing. In my own programs, I try to only do this in a few common
cases. Small loops are one of these cases. If the loop contains another loop, and that
one also uses a variable named i, the inner loop will modify the variable that the
outer loop is using, and everything will break. One could use 3 for the inner loop,
but in general, when the body of a loop is big, you should come up with a variable
name that has some clear meaning.

var array = [nan, “b", e d"];
show(array. join(™ ") .split (™ "));

function startsWith(string, pattern)
tabtol.%cmreturn string.slice (0, pattern.length) == pattern;

show (startsWith("rotaticon”, "rot"));

function catNames (paragraph) {

var colon = paragraph.indexOf (":7);
return paragraph.slice(colen + 2).split(”, ");
}
ghow (catNames ("born 20/09/2004 (mother Yellow Besz): " +

"Doctor Hebbles the 2nd, Noog™));

59

Open Universiteit

46

47

48

49

Eloquent JavaScript

The tricky part, which the original description of the algorithm ignored, is dealing
with spaces after the colon and the commas. The +2 used when slicing the string is
needed to leave out the colon itself and the space after it. The argument to split
contains both a comma and a space, because that is what the names are really sepa-
rated by, rather than just a comma.

This function does not do any checking for problems. We assume, in this case, that
the input is always correct.

function extractDate (paragraph) {
function numberAt (start, length) {
return Number (paragraph.slice(start, start + length));
i
return new Date (numberAt (11, 43,
nunmberAt (8, 2) -1,
numberdt (5, 2));
}
show (extractDate ("died 27-04-2006: Black Leclare™));

It would work without the calls to Number, but as mentioned earlier, [prefer not
to use strings as if they are numbers. The inner function was introduced to prevent
having to repeat the Number and s1ice part three times.

Note the -1 for the month number. Like most people, Aunt Emily counts her months
from 1, so we have to adjust the value before giving it to the Date constructor. (The
day number does not have this problem, since Date objects count days in the usual
hurman way.)

In chapter 10 we will see a more practical and robust way of extracting pieces from
strings that have a fixed structure.

function between(string, start, end) {
var startAt = string.indexOf(start) + start.length;
var endAt = gtring.indexOf (end, =ztartiAt);
return string.slice(startAt, endAt);

}

show (between ("bu] boo [bah 1 gzz", "[", " 1™},

function formatDate (date) |
function pad(number) {
if (number < 10)
return "0" + number;
else
return number;

return pad(date.getDate()) + "/" + pad(date.getMonth () + 1)
/" 4+ date.getFullYeart();
}
print (formatDate (new Date (2000, O, 1)));

function oldestCat (data) |
var oldest = null;

tabtol.5cmfor (var name in data) {

var cat = datalname];
if (! ("death™ in cat) &&
(oldest == null ||

60

+

Chapter 4 Data structures: Objects and Arrays

oldest.birth > cat.birth))
oldest = cat;
1
if (oldest == null)
return null;
elae
return oldest.name;
}
print (cldestCat (catData));
The condition in the 1 £ statement might seem a little intimidating. It can be read as
“only store the current cat in the variable oldest if it is not dead, and oldest is either
null or a cat that was born after the current cat”.
Note that this function returns null when there are no living cats in data. What

does your solution do in that case?

410 function range {start, end) |

if (arguments.length < 2) {
end = start;
start = 0;

1

var result = [];

for (var 1 = start; 1 <= end;
result.push(i);

return result;

1++)

}

show (range (4));

show (range (2, 4));

The optional argument does not work precisely like the one in the add example
above. When it is not given, the first argument takes the role of end, and start be-

comes 0.

411 function sum(numbers) |

var total = 0;
for (var 1 = 0; 1 < numbers.length; 1++)

total += numbers[i];
return total;

}

print (sum(range(l, 10)));

61

Content chapter 5

Error Handling

1 Programmer mistakes and genuine problems 63
11 Type problems 63
12 Value problems 63
2 Solutions 64
21 Return a special value 64
211 Problems with this solution 64
22 Exception handling 65

62

D1 M= L2 N =

Do U2 N

Chapter 5

Error Handling

Writing programs that work when everything goes as expected is a good start. Ma-
king your programs behave properly when encountering unexpected conditions is
where it really gets challenging.

1 Programmer mistakes and genuine problems

The problematic situations that a program can encounter fall into two categories:
Programmer mistakes and genuine problems. If someone forgets to pass a required
argument to a function, that is an example of the first kind of problem. On the other
hand, if a program asks the user to enter a name and it gets back an empty string,
that is something the programmer can not prevent.

In general, one deals with programmer errors by finding and fixing them, and with
genuine errors by having the code check for them and perform some suitable action
to remedy them (for example, asking for the name again), or at least fail in a well-
defined and clean way.

1.1 TYPE PROBLEMS

It is important to decide into which of these categories a certain problem falls. For
example, consider our old power function:

functicon power (base, exponent) |
var result = 1;
for (var count = 0; count < exponent; count++)
result «= base; return result;
I

When some geek tries to call power ("Rabbit", 4}, thatis quite obviously a pro-
grammer error, but how about power (9, 0.5)7 The function can not handle frac-
tional exponents, but, mathematically speaking, raising a number to the halfth power
is perfectly reasonable (Math . pow can handleit). Insituations where it is not entirely
clear what kind of input a function accepts, it is often a good idea to explicitly state
the kind of arguments that are acceptable in a comment.

1.2 VALUE PROBLEMS

If a function encounters a problem that it can not solve itself, what should it do? In
chapter 4 we wrote the function between:

function between (string, start, end) {
var starthAt = string.indexOf (start) + start.length;
var endAt = string.indexOf (end, startht);
return string.slice(startiAt, endit);

1

If the given start and end do not occur in the string, indexOf will return -1 and
this version of between will return a lot of nonsense: between ("Your mother!”,
m—r_ o r—my returns "our mother™.

63

Open Universiteit

[Tt IR B R L 2

[y

[N TCI

S U1 s L2 N

Eloquent JavaScript

When the program is running, and the function is called like that, the code that called
it will get a string value, as it expected, and happily continue doing something with
it. But the value is wrong, so whatever it ends up doing with it will also be wrong.
And if you are unlucky, this wrongness only causes a problem after having passed
through twenty other functions. In cases like that, it is extremely hard to find out
where the problem started.

In some cases, you will be so unconcerned about these problems that you don’t mind
the function misbehaving when given incorrect input. For example, if you know for
sure the function will only be called from a few places, and you can prove that these
places give it decent input, it is generally not worth the trouble to make the function
bigger and uglier so that it can handle problematic cases.

2 Solutions

2.1 RETURN A SPECIAL VALUE

But most of the time, functions that fail “silently” are hard to use, and even danger-
ous. What if the code calling between wants to know whether everything went well?
At the moment, it can not tell, except by re-doing all the work that between did and
checking the result of between with its own result. That is bad. One solution is to
make between return a special value, such as false or undefined, when it fails.

function between (string, start, end) {
var starthAt = string.indexOf (start);
if (startdt == -1
return undefined;
starthAt += start.length;
var endAt = string.indexOf (end, startht);
if (endat == -1)
return undefined;
return string.slice(startiAt, endit);

1

You can see that error checking does not generally make functions prettier. But now
code that calls between can do something like:

var input = prompt ("Tell me something™, "");
var parenthesized = between (input, "(", ")");
if (parenthesized != undefined)
print ("You parenthesized ", parenthesized, ".");

211 Problems with this solution

In many cases returning a special value is a perfectly fine way to indicate an error. It
does, however, have its downsides. Firstly, what if the function can already return
every possible kind of value? For example, consider this function that gets the last
element from an array:

functicn lastElement (array) {

if (array.length = 0)

return arraylarray.length -1];
alse

return undefined;

64

Chapter5 Error Handling

7 |show(lastElement([1, 2, undefined]));

Exception handling

throw
try
catch

CH SN O D1 e 2N

So did the array have a last element? Looking at the value lastElement returns, it is
impossible to say.

The second issue with returning special values is that it can sometimes lead to a
whole lot of clutter. If a piece of code calls between ten times, it has to check ten
times whether undefined was returned. Also, if a function calls between but does
not have a strategy to recover from a failure, it will have to check the return value
of between, and if it is undefined, this function can then return undefined or some
other special value to its caller, who in turn also checks for this value.

2.2 EXCEPTION HANDLING

Sometimes, when something strange occurs, it would be practical to just stop doing
what we are doing and immediately jump back to a place that knows how to handle
the problem.

Well, we are in luck, a lot of programming languages provide such a thing. Usually,
it is called exception handling.

The theory behind exception handling goes like this: It is possible for code to raise
(or throw) an exception, which is a value. Raising an exception somewhat resembles
a super-charged return from a function - it does not just jump out of the current
function, but also out of its callers, all the way up to the top-level call that started the
current execution. This is called unwinding the stack. You may remember the stack
of function calls that was mentioned in chapter 3. An exception zooms down this
stack, throwing away all the call contexts it encounters.

If they always zoomed right down to the base of the stack, exceptions would not
be of much use, they would just provide a novel way to blow up yvour program.
Fortunately, it is possible to set obstacles for exceptions along the stack. These “catch’
the exception as it is zooming down, and can do something with it, after which the
program continues running at the point where the exception was caught.

An example:

function lastElement (array) {
if (array.length > 0)
return arraylarray.length -1];
else throw "Can not take the last element of an empty array.";
1
function lastElementPlusTen (array)
return lastElement (array) + 10;
}
try {
print (lastElementPlusTen([]));
}
catch (error) {

print {"Something went wrong: ", error);

1

throw is the keyword that is used to raise an exception. The keyword try sets up
an obstacle for exceptions: When the code in the block after it raises an exception,
the cafch block will be executed. The variable named in parentheses after the word
catch is the name given to the exception value inside this block.

Note that the function lastElementPlusTen completely ignores the possibility

65

Open Universiteit

finally

OO~ O U U2 N

= SN 00N O s U2 N

— =

(=N) TSNP R

Eloquent JavaScript

that lastElement might go wrong. This is the big advantage of exceptions - error-
handling code is only necessary at the point where the error occurs, and the point
where it is handled. The functions in between can forget all about it.

Well, almost.

Consider the following: A function precessThing wants to set a top-level variable
currentThing to point to a specific thing while its body executes, so that other
functions can have access to that thing too. Normally you would of course just pass
the thing as an argument, but assume for a moment that that is not practical. When
the function finishes, current Thing should be set back to null.

var currentThing = null;
function processThingithing) {
if (currentThing != null)
throw "Ch no! We are already processing a thing!™;
currentThing = thing;
/= do complicated processing... =/
currentThing = null;

1

But what if the complicated processing raises an exception? In that case the call to
processThing will be thrown off the stack by the exception, and currentThing
will never be reset to null.

try statements can also be followed by a finally keyword, which means “no matter
what happens, run this code after trying to run the code in the try block”. If a func-
tion has to clean something up, the cleanup code should usually be put into a finally
block:

function processThing (thing) {
if (currentThing != null)
throw "Oh nc! We are already processing a thing!™;
currentThing = thing;
try {
J do complicated processing... =/
1
finally {
currentThing = null;
1
'

221 Exceptions in the JavaScript environment

A lot of errors in programs cause the JavaScript environment to raise an exception.
For example:

try {
print (Sasquatch);
}
catceh (error) {
print ("Caught: " + error.message);

}

In cases like this, special error objects are raised. These always have a mezsage
property containing a description of the problem. You can raise similar objects using
the new keyword and the Error constructor:

1 ‘throw new Error("Firel!™);

66

Chapter5 Error Handling

When an exception goes all the way to the bottom of the stack without being caught,
it gets handled by the environment. What this means differs between the different
browsers, sometimes a description of the error is written to some kind of log, some-
times a window pops up describing the error.

The errors produced by entering code in the console on this page are always caught
by the console, and displayed among the other output.

Throwing string values, as some of the examples in this chapter do, is rarely a good
idea, because it makes it hard to recognise the type of the exception. A better idea is
to introduce a new type of objects, as described in chapter 8.

67

Index

- operator, 14

% operator, 14
%% operator, 16
&&, 27

* operator, 14

/ operator, 14

+ operator, 14,15
<operator, 16
<=operator, 16
==operator, 16
> operator, 16
>=operator, 16

alert, 18

Anonymous function, 38
Argument, 31
arguments, 56
Arithmetic operations, 14
arrays, 47

Binary operator, 15
Block, 21

Body, 31

Boolean, 16,20
break, 24

catch, 65

charAt, 49
Closure, 34
comments, 26
Concatenate, 15
Constructor, 22,52
control statement, 20
Corner cases, 49

Default value, 56
delete, 45

ECMAScript, 10
Efficiency, 36

else, 23

Empty statement, 24
Environment, 18
Error, 66

Exception handling, 65
Expression, 17

finally, 66

for, 22

Fractional numbers, 14
Function, 18

function, 31

68

getDay, 53
getTimeZoneOffset, 53

if, 23

in, 45,50
Indentation, 21
indexOf, 50
inner function, 33
Integers, 14
isNaN, 26

JavaScript, 10
join, 48

Keywords, 22

let, 34

Lexical scoping, 34
local environment, 33
Logical and, 16
Logical or, 16
Loop, 20

Math, 57
Math.acos, 57
Math.asin, 57
Math.atan, 57
Math.ceil, 57
Math.cos, 57
Math.E, 57
Math.floor, 57
Math.max, 57
Math.min, 57
Math.PI, 57
Math.pow, 57
Math.round, 57
Math.sin, 57
Math.sqrt, 57
Math.tan, 57
Methods, 48

Multiple return statements,

NaN, 26

new, 52

Not, 16

null, 25

Number, 20
Numeric values, 13

Object, 44
Operator, 14

pop, 48

Precedence, 17
Principles of programming,
Program, 17

prompt, 19

Properties, 44

pure function, 31

push, 48

recursion, 35
Recursive, 35
return, 31

Scientific notation, 14
Semicolon, 21

Side effect, 17,32
slice, 49

split, 48

Stack, 36
Statement, 17

throw, 65
toString, 57
try, 65

typeof operator, 15

Unary operator, 15
undefined, 25, 31

var, 18
Variable, 17

while, 20

7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.320 841.920]
>> setpagedevice

