Let's stick together

Digitally ensuring physical proximity

Sjouke Mauw University of luxembourg

(joint work with Rolando Trujillo-Rasua)

TouW Informatica Symposium, Amsterdam, November 19, 2016

University of Luxembourg

- ► Founded in 2003.
- Trilingual: French, German and English.
- \sim 6000 students, \sim 250 professors.
- ▶ Three faculties, three interdisciplinary centers.

▶ Overall: 178

▶ Young universities (under 50 year): 14

Most international universities: 2

Computer science: 58

Outline

- Disruptive developments.
- From Physical to Digital.
 - Digital money
 - Electronic voting
 - Smart keys
- Achieving physical properties in a digital world.
 - Distance bounding
 - Grouping

Disruptive developments

- The world's largest taxi firm, Uber, owns no cars.
- ► The world's most popular media company, Facebook, creates no content.
- ▶ The world's most valuable retailer, Alibaba, carries no stock.
- And the world's largest accommodation provider, Airbnb, owns no property.

(Tom Goodwin)

Long-term trend on the path of disruption

From Physical to Digital

Examples

- 1. Digital money
- 2. Electronic voting
- 3. Smart keys
- 4. ...

Example 1: Digital money

Long before bitcoin: DigiCash (ecash).

- ▶ 1983 ground breaking paper by David Chaum (Berkely, CWI).
- ▶ Idea based on blind signatures.
- ▶ 1990 founded company Digicash.
- ▶ Huge commercial interest, e.g., Bill Gates wanted to integrate ecash in every copy of Windows95 for 100 million dollars.
- ▶ 1998 DigiCash bankrupt alledgely due to mismanagement.
- Current focus on distributed digital currencies (e.g. BitCoin).

Traditional vs. digital money

Traditional money:

- Can be spent only once (transferrable object).
- ▶ Untraceable (object decoupled from owner).
- Unforgeable.

Digicash:

- Detection of double spending.
- Privacy and authentication through blind signatures.

Bitcoin:

- Block chain.
- Decentralized.

Example 2: Electronic voting

- ▶ 1981 first proposal of an electronic voting system that is end-to-end verifiable by David Chaum.
- Idea based on Mixes.
- Currently abundent collection of e-voting systems.
- Used in real elections (Estonia).

Traditional vs. electronic voting

Traditional voting:

- Privacy (voting booth, after voting ballot decoupled from voter).
- Auditable ((re-)counting ballots, observers).
- Voter can vote only once (authentication).
- No coercion (forbidden to take selfie in vote booth).

Electronic voting:

- Privacy (blind signatures, shuffling of votes through Mixes).
- Verifiability (bulletin board).
- No coercion (no digital receipt, last submitted vote counts).

Example 3: Smart keys

► From traditional keys to transponder keys to smart keys.

Traditional vs. smart keys

Traditional keys:

- ► Can't open lock without key (next speaker will disagree).
- Key can't be copied.
- Proximity.

Smart keys:

- Secrecy of cryptographic key.
- Authentication protocol to prove possession of key.
- Distance-bounding protocol.

Traditional vs. smart keys

Traditional keys:

- Can't open lock without key (next speaker will disagree).
- Key can't be copied.
- Proximity.

Smart keys:

- Secrecy of cryptographic key.
- Authentication protocol to prove possession of key.
- Distance-bounding protocol.

(Note: 1993 First distance-bounding protocol by David Chaum.)

Distance Bounding

- ► To prove proximity.
- ► E.g. to prevent relay attacks (man-in-the-middle attacks).

Chip & Pin relay attack

(Murdoch & Drimer 2007)

Chip & Pin relay attack

(Murdoch & Drimer 2007)

Many more practical attacks, e.g.

- ► Passive keyless entry and start systems used in modern cars (Francillon 2012)
- Google Wallet Relay Attack (Roland 2013)

RFID (Radio Frequency IDentification)

Properties of RFID

- Communication is contactless.
- Line-of-sight is not necessary.
- Messages are broadcast.
- Limited resources
 (memory, processor speed, energy, interaction time).

Problem: Relay attacks

Definition (Relay attack)

A relay attack is a man-in-the-middle attack where the adversary manipulates the communication by only relaying the verbatim messages between reader and the tag.

Problem: Relay attacks

Definition (Relay attack)

A relay attack is a man-in-the-middle attack where the adversary manipulates the communication by only relaying the verbatim messages between reader and the tag.

Note that relaying is not always an attack (e.g. store-and-forward in communication network).

Solution: Distance bounding protocols

Definition (Distance Bounding)

A distance bounding protocol is an authentication protocol that in addition checks the distance between tag and reader. The computed distance is an upper-bound on their actual distance.

Attacks on distance-bounding protocols

We will focus on, so-called, Mafia fraud attacks.

Definition (Mafia fraud)

A mafia fraud attack is an attack where an adversary defeats a distance bounding protocol using a man-in-the-middle between the reader and an honest tag located outside the neighborhood.

A few distance bounding protocols

- Brands and Chaum (Fiat-Shamir)
- Brands and Chaum (Schnorr)
- Brands and Chaum (signature)
- Bussard and Bagga
- ▶ CRCS
- Hancke and Kuhn
- Hitomi
- ► KA2
- Kuhn, Luecken, Tippenhauer
- ► MAD
- Meadows et al. for $F(\cdots) = \langle NV, NP \oplus P \rangle$
- Munilla and Peinado
- Noise resilient MAD
- Poulidor
- Reid et al.
- Swiss-Knife
- Tree
- ▶ WSBC+DB
- WSBC+DB Noent

Many of them have been broken

- Brands and Chaum (Fiat-Shamir)
- ► Brands and Chaum (Schnorr)
- Brands and Chaum (signature)
- Bussard and Bagga
- CRCS
- Hancke and Kuhn
- Hitomi
- ► KA2
- Kuhn, Luecken, Tippenhauer
- ► MAD
- Meadows et al. for $F(\cdots) = \langle NV, NP \oplus P \rangle$
- Munilla and Peinado
- Noise resilient MAD
- Poulidor
- Reid et al.
- Swiss-Knife
- ▶ Tree
- ▶ WSBC+DB
- ▶ WSBC+DB Noent

How to measure distance?

- Reader sends a challenge.
- ▶ Tag provides correct response.
- ► Reader measures the round-trip-time and accepts if this is "fast enough".

How to measure distance?

- Reader sends a challenge.
- ► Tag provides correct response.
- ► Reader measures the round-trip-time and accepts if this is "fast enough".
- RF communication at the speed of light.
- Need very short processing time at the tag (otherwise the adversary could overclock the tag).
- ▶ A timing error of 1 ns corresponds to a distance error of 15 cm.

How to measure distance?

- Reader sends a challenge.
- ▶ Tag provides correct response.
- Reader measures the round-trip-time and accepts if this is "fast enough".
- RF communication at the speed of light.
- Need very short processing time at the tag (otherwise the adversary could overclock the tag).
- ► A timing error of 1 ns corresponds to a distance error of 15 cm.
- Slow phase: generation of random values, exchange of parameters, preparation of data structures.
- ► Fast phase: 1-bit messages, tag performs at most lookup/and/xor/...; repeat this *n* times.

One challenge-response round

Hancke and Kuhn's proposal (2005)

P (Tag) V (Reader) secret x secret x

Random response attack

- Attacker is near the reader, so he can reply in time.
- ▶ But he doesn't know the correct responses.
- So sends random responses.
- ► Success probability for one round: $\frac{1}{2}$
- ▶ For *n* rounds: $\left(\frac{1}{2}\right)^n$
- ► E.g. for n = 10: 0.00098

Random response attack

- Attacker is near the reader, so he can reply in time.
- ▶ But he doesn't know the correct responses.
- So sends random responses.
- ► Success probability for one round: $\frac{1}{2}$
- For *n* rounds: $\left(\frac{1}{2}\right)^n$
- ► E.g. for n = 10: 0.00098

Can the attacker do better?

After the slow phase & Before the fast phase

Α

After the slow phase & Before the fast phase $\xrightarrow{0} P \text{ (tag)}$

For n = 10: 0.056

Time to think

Can this protocol be improved?

Security analyis

	Mafia Fraud	
HK protocol	$\left(\frac{3}{4}\right)^n$	
AT protocol	$\frac{1}{2^n}(1+\frac{n}{2})$	

Security analyis

	Mafia Fraud	Memory usage
HK protocol	$\left(\frac{3}{4}\right)^n$	linear in number of rounds
AT protocol	$\frac{1}{2^n}(1+\frac{n}{2})$	exponential in number of rounds

- 1. Can we define the class of lookup-based distance-bounding protocols and perform a generic analysis for its elements.
- 2. Is there a graph-based protocol that beats AT: $\frac{1}{2^n}(1+\frac{n}{2})$?
- 3. Do we need an exponential memory to achieve $\frac{1}{2^n}(1+\frac{n}{2})$?

- Can we define the class of lookup-based distance-bounding protocols and perform a generic analysis for its elements.
 Yes, using finite automata
- 2. Is there a graph-based protocol that beats AT: $\frac{1}{2^n}(1+\frac{n}{2})$?
- 3. Do we need an exponential memory to achieve $\frac{1}{2^n}(1+\frac{n}{2})$?

- Can we define the class of lookup-based distance-bounding protocols and perform a generic analysis for its elements.
 Yes, using finite automata
- 2. Is there a graph-based protocol that beats AT: $\frac{1}{2^n}(1+\frac{n}{2})$? No, AT is optimal
- 3. Do we need an exponential memory to achieve $\frac{1}{2^n}(1+\frac{n}{2})$?

- Can we define the class of lookup-based distance-bounding protocols and perform a generic analysis for its elements.
 Yes, using finite automata
- 2. Is there a graph-based protocol that beats AT: $\frac{1}{2^n}(1+\frac{n}{2})$? No, AT is optimal
- 3. Do we need an exponential memory to achieve $\frac{1}{2^n}(1+\frac{n}{2})$? Yes, we do.

- Can we define the class of lookup-based distance-bounding protocols and perform a generic analysis for its elements.
 Yes, using finite automata
- 2. Is there a graph-based protocol that beats AT: $\frac{1}{2^n}(1+\frac{n}{2})$? No, AT is optimal
- 3. Do we need an exponential memory to achieve $\frac{1}{2^n}(1+\frac{n}{2})$? Yes, we do.
 - But, we can approximate it without exponential memory.

Generalizing distance bounding: One-to-many

Generalizing distance bounding: Many-to-many

Platooning

Six Platoons Of Self-Driving Trucks Just Drove Thousands Of Kilometers Across Europe

20.3K f Share on Facebook Share on Twitter -

Security challenges

- Secure communication
- Is everybody there? (distance bounding)
- No intruders? (authentication)
- What if objects are moving fast?
- What if the group is dynamic?

Security challenges

- Secure communication
- Is everybody there? (distance bounding)
- No intruders? (authentication)
- What if objects are moving fast?
- What if the group is dynamic?

We have studied published grouping protocols and the majority is flawed.

Security challenges

- Secure communication
- Is everybody there? (distance bounding)
- No intruders? (authentication)
- What if objects are moving fast?
- What if the group is dynamic?

We have studied published grouping protocols and the majority is flawed.

Current objective: distance-bounding grouping protocols.

- Requirements
- Design of novel protocols
- Formal verification

Summary

- Our physical technology has evolved such that security properties are obvious.
- ▶ With the transition to the digital world, these properties are not straightforwardly true.
- ▶ Don't forget that our physical world largely depends on trust, which is harder to achieve in the digital world.
- Practice: technology first, security later.
- Challenge to combine features (grouping, distance bounding).

Thanks for your attention!