Prime-Event Structures for Partial-Order Reduction and Abstract Interpretation

César Rodríguez 1,2

¹Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, France

²Diffblue Ltd., Oxford, UK

Dutch Model Checking Day '18, Utrecht, 21 June 2018

R&D at Diffblue

- Mission: automate all traditional coding tasks
- Founded by Daniel Kroening (CBMC) and Peter Schrammel 2y ago
- Develop verification/testing tools by applying existing and new research

Four tools developed:

Deeptest	Security scanner	Semantic refactoring	Microservice regression testing
Automated generation of unit tests.	Automated detection of security vulnerabilities.	Modernizes old code via synthesis of equivalent code snippets.	Generates regression tests for distributed systems.

Microservice Regression Testing

- Challenge: very large systems, difficult to comprehend for developers
- Approaches: BMC, static and dynamic analyses, PORs, taint analysis, fuzz testing
- Constantly hiring!

Model Checking

Sources of state-space explosion

- Concurrency
- Nondeterminism
- Data
- Unboundedness...

Sources of state-space explosion

- Concurrency
- Nondeterminism
- Data
- Unboundedness...

Sources of state-space explosion

Concurrency

 \rightarrow Partial-order reduction and unfoldings

- Nondeterminism
- Data
- Unboundedness...

Sources of state-space exp	blosion	
Concurrency	→ Partial-order reduction and unfo	oldings
Nondeterminism	$\mathbf{\hat{z}}$	
Data	→ Abstract interpretation	
Unboundedness	7	
César Rodríguez (Paris 13 & Diffblue)	PES for POR and Al	4

Partial-Order Reductions (PORs) and Unfoldings

POR: large family of techniques, interleaving semantics

- Scope: explicit-state, independence-based PORs for reachability
- Stubborn sets [Valmari 91], ample sets [Peled 93], persistent sets [Godefroid 96]

Unfoldings: partial-order semantics + algorithms (from the 90s)

- Mainly for Petri nets
- Processes [Petri 66], event structures [Winskel 87], finite prefixes [McMillan 92]

Quite independent fields of research for the last 20 years

To what extent both algorithms

- exploit the same source of reduction?
- 2 can be used to mutually improve each other?

Independence

- A transition system is a tuple $M \coloneqq \langle \Sigma, \rightarrow, A, s_0 \rangle$ consisting on
 - \blacksquare Σ , a set of states
 - $\blacksquare \rightarrow \subseteq \Sigma \times A \times \Sigma$, a transition relation

- A, the set of actions
- s₀, the initial state

Independence

- A transition system is a tuple $M \coloneqq \langle \Sigma, \rightarrow, A, s_0 \rangle$ consisting on
 - \blacksquare $\Sigma,$ a set of states

A, the set of actions

 $\blacksquare \rightarrow \subseteq \Sigma \times A \times \Sigma$, a transition relation

s₀, the initial state

Definition (Independence)

Relation $\diamond \subseteq A \times A$ is an independence relation in *M* if it is symmetric, irreflexive and when $a \diamond b$, then:

- Firing action *a* neither enables nor disables action *b*, and vice versa.
- Firing *ab* and *ba* (if possible) produces the same state.

Let $\diamondsuit \subseteq A \times A$ be an independence relation on *A*.

Definition (Mazurkiewicz trace equivalence)

Given two strings $\sigma, \sigma' \in A^*$ we have that

 $\sigma \equiv_{\diamond} \sigma'$

if it is possible to rewrite σ into σ' by swapping adjacent actions related by \diamond .

Remark

If $\sigma \equiv_{\diamond} \sigma'$ then necessarily $state(\sigma) = state(\sigma')$.

Each equivalence class of \equiv_{\Diamond} uniquely corresponds some *A*-labelled partial-order.

Independence-based Partial-Order Reductions (conceptually)

Sound: explores at least one run within each equivalence class of ≡_◊

Optimal: explores no more than one such run

■ Each partial order corresponds to one equivalence class of ≡

How do we bound together multiple partial orders?

CONCUR'15

Prime-Event Structures (PES)

A labelled prime event structure is a tuple $(E, <, \#, \lambda)$ where	
E is the set of events, labelled by $\lambda: E \to A$	
• $e < e'$ iff e' occurs $\Rightarrow e$ occurs before	(causality)
• $e \# e'$ iff e and e' cannot occur in same execution	(conflict)
A configuration is any set $C \subseteq E$ s.t:	
■ if $e \in C$ and $e' < e$, then $e' \in C$	(causally closed)
no two events in C are in conflict	(conflict free)

Intuition: a configuration represents a (partially-ordered) execution of a system.

Unfolding Example

	<i>w</i> x=1	r y=x	<i>r'</i>	$A = \{w, r, r'\}$ $\Leftrightarrow = \{(r, r'), (r', r)\}$
w	1 r 2	+ r 4 [7 8	7 r' 7 r' 9 w	
r	r' r' 6	w B	10 <i>r</i>	

■ Some equivalence classes in \equiv_{\Diamond} are not singletons

Unfolding Example

■ Some equivalence classes in =_◊ are not singletons

So far: parametric definition of the PES semantics for M under \diamond .

Every execution of *M* is the interleaving of exactly 1 configuration of $\mathcal{U}_{M,\diamond}$.

So far: parametric definition of the PES semantics for M under \diamond .

Every execution of *M* is the interleaving of exactly 1 configuration of $\mathcal{U}_{M,\diamond}$.

Next: POR algorithm to construct $\mathcal{U}_{M,\diamondsuit}$, one configuration at a time.

Super-optimal: can explore fewer executions than Mazurkiewicz traces

Unfolding-based Optimal-POR

CONCUR'15

For terminating systems (acyclic state-space), the algorithm:

Always stops(termination)Explores at least once every maximal configuration of $\mathcal{U}_{M,\diamond}$ (completeness)Explores at most once any maximal configuration(optimality)

What about non-terminating systems?

- Next: we use cutoff events to prune infinite configurations
- This makes the algorithm super-optimal!

Cutoffs – Intuitions

while (1): lock(m) if (buf < MAX): buf++ unlock(m)

```
while (1):
    lock(m)
    if (buf > MIN): buf--
    unlock(m)
```


$$(m = 0, b = 1)$$

$$\overbrace{l, b+}^{Thread 1}$$

Cutoffs – Intuitions

while (1): lock(m) if (buf < MAX): buf++ unlock(m)

Benchmark		NI	DHUGG			Poet			
Name	P	b	I	B	t(s)	E	$ E_{\text{cut}} $	$ \Omega $	t(s)
Szymanski	3		103	0	0.07	1121	313	159	0.36
Dekker	3	10	199	0	0.11	217	14	21	0.07
LAMPORT	3	10	32	0	0.06	375	28	30	0.12
PETERSON	3	10	266	0	0.11	175	15	20	0.05
Pgsql	3	10	20	0	0.06	51	8	4	0.03
RWLOCK	5	10	2174	14	0.83	<7317	531	770	12.29
RWLOCK(2)*	5	2			7.88				0.40
PRODCONS	4	5	756756	0	332.62	3111	568	386	5.00
PRODCONS(2)	4	5	63504	0	38.49	640	25	15	1.61

Remarks:

- POET: complete verification; NIDHUGG: bounded verification
- Significant, sometimes dramatic, reduction in nr. of executions

PES for POR and AI

Overview so far: PES Semantics + Optimal POR Algorithm

So far:

- Parametric definition of the PES semantics for M under \diamond .
- Super-optimal POR algorithm to construct it.

Overview so far: PES Semantics + Optimal POR Algorithm

So far:

- Parametric definition of the PES semantics for M under \diamond .
- Super-optimal POR algorithm to construct it.

Observations:

[CAV'18]

- Computing alternatives (finding next branch) is NP-complete
- State-of-the-art, non-optimal Source DPOR [Abdulla et al. 14] rarely explores redundant executions

Example instance with n = 3:

writer 0	writer 1	writer 2	count	master
x[0] = 7	x[1] = 8	x[2] = 9	c = 1	i = c
			c = 2	x[i] = 1

When generalized to *n* writer threads:

- $\mathcal{O}(n)$ Mazurkiewicz traces, but SDPOR explores $\mathcal{O}(2^n)$ interleavings
- Reason: SDPOR disregards "coupled" races

Can we get polynomial-time alternatives and avoid the exponential blowup?

Yes, Quasi-Optimal POR!

Key idea: approximation algorithm via a user-defined constant *k*

- Compute *k*-partial alternatives, which revert at least *k* races (P-time)
- Experimentally: very low values of *k* suffice to achieve optimal exploration

Details are in the paper!

New tool DPU (Dynamic Program Unfolding)

- Deterministic C programs, POSIX threads
- Clang front-end, LLVM JIT engine

https://github.com/cesaro/dpu

Goals of the experiments:

- Evaluate the values of k necessary to achieve optimal exploration
- Compare with SDPOR
- Evaluate DPU on system code (two Debian packages) for bug finding

Experimental results:

- SDPOR performance can be strongly reduced by redundant executions
- QPOR more resilient to complex synchronization than SDPOR
- DPU can handle large codes (40KLOC)
- Orders of magnitude faster than state-of-the-art testing tools (Maple)

So far: PES Semantics + Optimal & Quasi-Optimal POR

So far:

	Unfolding-based	super-optimal	POR
--	-----------------	---------------	-----

Unfolding-based quasi-optimal POR

[CONCUR'15] [CAV'18]

So far: PES Semantics + Optimal & Quasi-Optimal POR

None of the above works tackle data explosion. Next:

Integration of abstract interpretation into the POR

[CAV'17]

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

How many Mazurkiewicz traces does this program have?

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

One iteration 1st thread, one iteration 2nd thread:

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

One iteration 1st thread, two iterations 2nd thread:

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

One iteration 1st thread, 150 iterations 2nd thread:

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

One iteration 1st thread, 150 iterations 2nd thread:

So how many Mazurkiewicz traces does the program have?

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

One iteration 1st thread, 150 iterations 2nd thread:

So how many Mazurkiewicz traces does the program have?

■ 100 local iterations × 150 local iterations × 2 ways for threads to interact.

while (++i < 100)	while (++j < 150)
if (*)	if (*)
break;	break;
k += i;	k += j;

Idea: merging the results of local computation before the global statements, mimicking the fixpoint analysis of an abstract interpreter.

Next: how to handle states via an abstraction domain.

 $M \coloneqq \langle \Sigma, \rightarrow, A, s_0 \rangle$ is a transition system:

- Σ: set of states
- $\blacksquare \rightarrow \subseteq \Sigma \times A \times \Sigma$: transition relation
- A: program statements
- s₀: initial state

 $M := \langle \Sigma, \rightarrow, A, s_0 \rangle$ is a transition system:

- Σ: set of states
- $\blacksquare \rightarrow \subseteq \Sigma \times A \times \Sigma$: transition relation
- A: program statements
- s₀: initial state

 $\mathcal{D} := \langle D, \subseteq, F, d_0 \rangle$ is an abstraction domain:

- D is a set of abstract states
- $\blacksquare \subseteq in D \times D is the abstraction order$
- $F \subseteq D \rightarrow D$ is a set of transformers
- $d_0 \in D$ is the abstract initial state

 $M := \langle \Sigma, \rightarrow, A, s_0 \rangle$ is a transition system:

- Σ: set of states
- $\blacksquare \rightarrow \subseteq \Sigma \times A \times \Sigma$: transition relation
- A: program statements
- *s*₀: initial state

 $C_M := \langle D, \subseteq, F, d_0 \rangle$ is the collecting semantics:

- $D \coloneqq 2^{\Sigma}$ are the concrete states
- $\blacksquare \subseteq := \subseteq \text{ is the lattice order}$
- F is the set of concrete transformers
- $d_0 := \{s_0\}$ is the initial state

For every statement $a \in A$, set *F* contains a concrete transformer

$$f_a(S) := \{ s' \in \Sigma : \text{ for some } s \in S \text{ we have } s \xrightarrow{a} s' \},\$$

 $M := \langle \Sigma, \rightarrow, A, s_0 \rangle$ is a transition system:

- Σ: set of states
- $\blacksquare \rightarrow \subseteq \Sigma \times A \times \Sigma$: transition relation
- A: program statements
- *s*₀: initial state

 $C_M := \langle D, \subseteq, F, d_0 \rangle$ is the collecting semantics:

- $D \coloneqq 2^{\Sigma}$ are the concrete states
- $\blacksquare \subseteq := \subseteq \text{ is the lattice order}$
- F is the set of concrete transformers
- $d_0 := \{s_0\}$ is the initial state

For every statement $a \in A$, set *F* contains a concrete transformer

$$f_a(S) := \{ s' \in \Sigma : \text{ for some } s \in S \text{ we have } s \xrightarrow{a} s' \},\$$

and $\mathcal{C}_M \xrightarrow{\gamma} \mathcal{D}$ is a Galois connection.

Weak Independence

Definition (Weak Independence)

A relation $\diamondsuit_1 \in F \times F$ on the set of transformers is a weak independence if it is symmetric, reflexive, and for any $f \diamondsuit_1 g$ we get

f(g(d)) = g(f(d))

for any abstract state $d \in D$ reachable in the domain.

Unfolding Domains instead of Transition Systems

Collecting semantics:

- Every execution σ of *M* has a unique representative configuration in $\mathcal{U}_{\mathcal{C}_M, \Diamond_1}$.
- Every interleaving of a configuration \mathcal{C} of $\mathcal{U}_{\mathcal{C}_M, \Diamond_1}$ s.t. $state(\mathcal{C}) \neq \bot$ is a run of M.

Abstract unfolding:

Every execution σ of M has a unique representative configuration in $\mathcal{U}_{\mathcal{D},\Diamond_2}$.

Thread-Local Analysis: the Collapsing Domain

Thread-Local Analysis: the Collapsing Domain

- For each global transformer f we define a collapsing transformer $\hat{f}: D \to D$ as:
 - Apply an off-the-shelf abstract interpreter restricted to local transformers.
 - Apply the global transformer *f*.

- For each global transformer f we define a collapsing transformer $\hat{f}: D \to D$ as:
 - Apply an off-the-shelf abstract interpreter restricted to local transformers.
 - Apply the global transformer *f*.

- For each global transformer f we define a collapsing transformer $\hat{f}: D \to D$ as:
 - Apply an off-the-shelf abstract interpreter restricted to local transformers.
 - Apply the global transformer *f*.

while (++i < 100)
 if (*)
 break;
k += i;
 k += j;
 while (++j < 150)
 if (*)
 break;
k += j;</pre>

Abstract intepreter on local code = thread-local fixpoint analysis = event merging

Experimental Results

Benchmark			APOET				ASTRE	ASTREEA IMPAR		IPARA		CBMC 5.6	
Name	Р	Α	t(s)	Ε	$E_{\rm cut}$	W	t(s)	W	V	t(s)	Ν	V	t(s)
ATGC(3)	4	7	5.78	432	0	1	1.69	2	_	ТО	-	S	6.6
ATGC(4)	5	7	132.08	7195	0	1	2.68	2	-	TO	-	S	20.22
COND	5	2	0.55	982	0	2	0.71	2	-	TO	-	S	34.39
FMAX(5,3)	2	8	0.56	85	11	0	1.50	2	-	TO	-	-	TO
FMAX(2,4)	2	8	3.38	277	43	0	<2	2	-	ТО	-	-	TO
FMAX(2,6)	2	8	45.82	1663	321	0	<2	2	-	ТО	-	-	TO
FMAX(2,7)	2	8	146.19	3709	769	0	1.87	2	-	ТО	_	-	TO
FMAX(4,7)	2	8	285.23	6966	671	0	<2	2	-	ТО	_	-	TO
LAZY	4	2	0.01	72	0	0	0.50	2	-	ТО	_	S	3.59
LAZY*	4	2	0.01	72	0	1	0.49	2	-	TO	-	U	3.50
SIGMA	5	5	2.62	7126	0	0	0.43	0	-	ТО	_	S	189.09
SIGMA*	5	5	2.64	7126	0	1	0.43	1	-	ТО	_	U	141.35
TPOLL(2)*	3	11	1.23	141	7	1	1.97	2	U	0.64	80	-	TO
TPOLL(3)*	4	11	109.22	1712	90	2	3.77	3	U	0.72	113	-	ТО

- ASTREEA: 6x false positives
- CBMC: TOs in 54% of the benchmarks
- IMPARA: TOs in 83% of the benchmarks

Marcelo Sousa

- Huyen Nguyen
- Subodh Sharma
- Vijay D'Silva

- Daniel Kroening
- Laure Petrucci
- Camille Coti

...

Summary and Concluding Remarks

Application to other models of computation

Combination with AI: foundations for symbolic execution

Extra Slides

Unfolding Example (Empty Independence)

■ All equivalence classes in =_◊ are singletons

Unfolding Example (Empty Independence)

All equivalence classes in \equiv_{\diamond} are singletons

Unfolding extension is NP-complete; POR extension is constant-time

César Rodríguez (Paris 13 & Diffblue)

PES for POR and AI

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamondsuit}$ can be exponentially larger than $\mathcal{U}_{M,\diamondsuit}$

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamond}$ can be exponentially larger than $\mathcal{U}_{M,\diamond}$
- Unfolding algorithms are inherently stateful; state-of-the-art DPORs are stateless
 - [Flanagan, Godefroid, POPL'05], [Abdulla et al., POPL'14]

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamondsuit}$ can be exponentially larger than $\mathcal{U}_{M,\diamondsuit}$
- Unfolding algorithms are inherently stateful; state-of-the-art DPORs are stateless
- 4 Dynamic POR: difficult to avoid repeated exploration of same states

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamondsuit}$ can be exponentially larger than $\mathcal{U}_{M,\diamondsuit}$
- Unfolding algorithms are inherently stateful; state-of-the-art DPORs are stateless
- 4 Dynamic POR: difficult to avoid repeated exploration of same states
- 5 Dynamic POR: difficult to handle non-terminating executions

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamond}$ can be exponentially larger than $\mathcal{U}_{M,\diamond}$
- Unfolding algorithms are inherently stateful; state-of-the-art DPORs are stateless
- 4 Dynamic POR: difficult to avoid repeated exploration of same states
- 5 Dynamic POR: difficult to handle non-terminating executions
- 6 Stateless PORs do not profit fom additional RAM

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamondsuit}$ can be exponentially larger than $\mathcal{U}_{M,\diamondsuit}$
- Unfolding algorithms are inherently stateful; state-of-the-art DPORs are stateless
- 4 Dynamic POR: difficult to avoid repeated exploration of same states
- 5 Dynamic POR: difficult to handle non-terminating executions
- Stateless PORs do not profit fom additional RAM

- Unfolding extension is NP-complete; POR extension is constant-time
- **2** $\mathcal{R}_{M,\diamondsuit}$ can be exponentially larger than $\mathcal{U}_{M,\diamondsuit}$
- Unfolding algorithms are inherently stateful; state-of-the-art DPORs are stateless
- 4 Dynamic POR: difficult to avoid repeated exploration of same states
- 5 Dynamic POR: difficult to handle non-terminating executions
- Stateless PORs do not profit fom additional RAM

Unfolding-based POR (next slide)

- A novel stateless POR exploration of unfolding semantics
 - Retains advantages of both approaches
 - (Super-)Optimal: can explore fewer executions than Mazurkiewicz traces
 - Addresses all above points except (2)

[CONCUR'15]

Procedure Explore (*C*, *D*, *A*)

```
if state(\mathcal{C}) enables no event return

e = \text{some event enabled by } state(\mathcal{C}), from A if possible

\text{Explore}(\mathcal{C} \cup \{e\}, D, A \setminus \{e\})

if there is some J \in \text{Alt}(\mathcal{C}, D \cup \{e\})

| \text{ Explore}(\mathcal{C}, D \cup \{e\}, J \setminus \mathcal{C})

end
```

The set Alt (\mathcal{C}, X) contains all configurations J such that:

```
\blacksquare J \cup C is a configuration
```

■ for all $e \in X$ there is some $e' \in J \cup C$ such that e # e'

Benchmark	<	NIDH	IUGG		Роет			
Name	P	I	B	t(s)	E	$ E_{\text{cut}} $	$ \Omega $	t(s)
STF	3	6	0	0.06	121	0	6	0.06
Stf*	3			0.05				0.03
Spin08	3	84	0	0.08	2974	0	84	2.93
Fib	3	8953	0	3.36	<185K	0	8953	704
FIB*	3			0.74				133
CCNF(9)	9	16	0	0.05	49	0	16	0.06
CCNF(19)	19	512	0	0.28	109	0	512	22.0
SSB(1)	5	22	14	0.06	237	4	23	0.11
SSB(4)	5	336	103	0.15	2179	74	142	2.07
SSB(8)	5	2014	327	0.85	<12K	240	470	32.1

Remarks:

- Narrow, deep, relatively small unfoldings
- Half of the benchmarks display no concurrency (STF, SPIN08, Fib)
- In SSB we achieve a super-optimal exploration

Experiments: QPOR vs SDPOR

Benchmark		DPU (k=1)		Dpu (k=2)		Dpu (k=3)		DPU (optimal)		NIDHUGG			
Name	Th	Confs	Time	SSB	Time	SSB	Time	SSB	Time	Mem	Time	Mem	SSB
DISP(5,4) DISP(5,5)	10 11	15K 151K	58.5 TO	105K -	16.4 476	6K 53K	10.3 280	213 2K	10.3 257	87 729	109 TO	33 33	115K -
MPAT(6) MPAT(7)	13 15	46K 645K	50.6 TO	0 -	N/A TO	_	N/A TO	_	73.2 TO	214 660	21.5 359	33 33	0 0
MPC(2,5) MPC(3,5) MPC(4,5) MPC(5,5)	8 9 10 11	60 3K 314K ?	0.6 26.5 TO TO	560 50K -	0.4 3.0 TO TO	0 3K -	1.7 391 TO	0 30K -	0.4 1.7 296 TO	38 38 239 834	2.0 70.7 TO TO	34 34 33 34	3K 90K –
PI(6) PI(8)	7 9	720 40K	0.7 48.1	0	N/A N/A		N/A N/A		0.7 42.9	39 246	123 TO	35 34	0
POL(7,3) POL(9,3) POL(11,3)	14 16 18	3K 5K 10K	48.5 464 TO	72K 592K -	2.9 9.5 27.2	1K 5K 12K	1.9 4.8 9.7	6 15 28	1.9 4.8 10.6	39 73 138	74.1 TO TO	33 33 33	90K - -

SDPOR performance can be strongly reduced by redundant executions

- More complex synchronization \implies higher k necessary for optimal exploration
- With few redundant executions QPOR can be faster than Optimal POR