An $O(m \log n)$ algorithm for stuttering equivalence and branching bisimulation.

Jan Friso Groote, David Jansen, Jeroen Keiren, Anton Wijs

Milner introduced weak bisimulation.

Weak bisimulation: 1980, Milner. Internal action τ.

Branching bisimulation: 1989, van Glabbeek and Weijland.

Weak bisimulation.

A relation R is a weak bisimulation relation iff

Symmetric case.

Branching bisimulation.

A relation R is a branching bisimulation relation iff

TU/e

Why is branching bisimulation interesting?

It is conceptually the best equivalence....

For all practical purposes branching bisimulation and weak bisimulation work equally well.

The algorithm for branching bisimulation outperforms the algorithms for all other equivalences!!

As branching bisimulation is finer than all other 'weak' equivalences, you want to reduce a transition system modulo branching bisimulation first.

Some history of bisimulation and their algorithms

Strong bisimulation

- Algorithm O(mn)
- Algorithm $\mathrm{O}(m \log n)$

Algorithm for weak bisimulation: use strong bisimulation + transitive closure $\mathrm{O}\left(n^{3}\right)$.

Branching bisimulation Stuttering equivalence -Algorithm O(mn) -Algorithm $\geqq \mathrm{O}(m n) \quad$ Blom and Orzan 2003
-Algorithm $\mathrm{O}(m \log n)$

Milner, 1980
Kanellakis and Smolka, 1983
Paige and Tarjan, 1986

Some history of bisimulation and their algorithms

Strong bisimulation

- Algorithm O(mn)
- Algorithm $\mathrm{O}(m \log n)$

Algorithm for weak bisimulation: use strong bisimulation + transitive closure $\mathrm{O}\left(n^{3}\right)$.

Branching bisimulation Stuttering equivalence -Algorithm O(mn) -Algorithm $\geqq \mathrm{O}(m n) \quad$ Blom ard)rzar
-Algorithm $\mathrm{O}(m \log n)$ Transition systems/Kripke structures m number of transitions

Some history of bisimulation and their algorithms

Strong bisimulation

- Algorithm O(mn)
- Algorithm $\mathrm{O}(m \log n)$

Algorithm for weak bisimulation: use strong bisimulation + transitive closure $\mathrm{O}\left(n^{3}\right)$.

Branching bisimulation Stuttering equivalence

Milner 1980
Kanellakis and Smolka, 1983
Paige Tarjan, 1986
$-$
van Glabbeek and Weijland, 1989
Browne, Clarke and Grumberg, 1988
rransition systems/Kripke structures m number of transitions n number of states

Benchmarks.

Model	n	m	min: n	min: m	Groote/ Vaandrager	Blom/ Orzan	Groote/ Jansen/ Keiren/ Wijs
Vasy40	40 k	60 k	20 k	40 k	24 s	196 s	0s
Vasy66	66 k	1 M	51 k	1 M	2 s	9 s	3 s
Vasy116	116 k	369 k	22 k	88 k	1 s	6 s	1 s
Vasy166	166 k	651 k	42 k	197 k	5 s	3 s	1 s
CWI214	214 k	684 k	478	2 k	1 s	13 s	1 s
CWI2416	2 M	18 M	730	3 k	30 s	26 s	19 s
Vasy2581	3 M	11 M	704 k	4 M	700 s	230 s	31 s
Vasy4220	4 M	14 M	1 M	7 M	1 ks	460 s	38 s
Vasy4338	4 M	16 M	705 k	4 M	2 ks	300 s	41 s
Vasy6020	6 M	19 M	256	510	40 s	41 s	20 s
Vasy6120	6 M	11 M	3 k	5 k	130 s	160 s	24 s
CWI7838	7 M	59 M	62 k	470 k	260 s	7 ks	160 s
Vasy8082	8 M	43 M	290	680	100 s	450 s	57 s
Vasy11026	11 M	25 M	776 k	3 M	2 ks	1 ks	68 s
Vasy12323	12 M	28 M	876 k	3 M	3 ks	1 ks	77 s
$1394-f i n 3$	127 M	276 M	160 k	539 k	68 ks	10 ks	1 ks

Kripke structure.

Definition. A Kripke structure is a four tuple $K=(S, A P, \rightarrow, L)$ where
$\cdot S$ is a finite set of states

- $A P$ is a finite set of atomic propositions
$\bullet \subseteq \subseteq S \times S$ is a total transition relation.
$\cdot L: S \rightarrow 2^{A P}$

Divergence blind stuttering equivalence.

A relation R is a $d b$-stuttering equivalence relation iff R is symmetric for all states $s, t \in S, L(s)=L(t)$ and

Two states s, t are $d b$-stuttering equivalent iff there is a db -stuttering equivalence relation R such that $s R t$.

Partitioning algorithms.

Initially, s, t in the same block iff $L(s)=L(t)$

Inert transition

Theorem.

If stable, states are in the same block iff they are db-stuttering equivalent.

Partitioning algorithms.

Partitioning algorithms.

DB stuttering equivalence.

Remove loops in a block.

DB stuttering equivalence.

Remove loops in a block.

DB stuttering equivalence.

DB stuttering equivalence.

Theorem (Groote/Vaandrager 1990). B splits C iff there is a transition from C to B and not all bottom states in C have a transition to B.

Paige-Tarjan $O(m \log n)$ algorithm

Whenever a state is involved in detecting a splitter/splitting it does that as a member of a block half the size of the previous block.

When visiting a state we visit the in and outgoing transitions a constant number of times. Complexity is $\mathrm{O}(m \log n)$.

Constellation.

Constellation \boldsymbol{B} is a set of blocks such that each block is stable for $\cup B$.

Constellation.

C

Splitting wrt. a block B in constellation B.
Select a B such that $|B|<1 / 2|\cup B|$.
Check whether C is splittable wrt. B.

B

Constellation.

Extend markings backward.

Extend nonmarkings backward.

> Recall in each state the number of outgoing inert transitions.

Do both backward markings in parallel until one terminates or the marked block becomes larger than $1 / 2|C|$.

Complication.

Unpleasant property:
If C is split by B the new blocks of C are not stable anymore for constellation \boldsymbol{D}.

An unfortunately complex algorithm.

Algorithm is complex.

- 2 pages of data structures.
- 3 pages concise but precise description of the algorithm.

Two implementations, that took almost half a year to finish.
Implementation follows description precisely.

- Correctness and time complexity is proven for the core algorithm.
- Correctness of the implementation shown by extensive random testing against earlier implementations.
- Time complexity is verified by assigning time budgets in the algorithm.

And now people apply it to systems so big that memory is a problem. Hence, we are working on a variant that does not translate to Kripke structures.

Conclusion.

1. The efficient algorithms for stuttering equivalence/branching bisimulation became even more efficient.
2. This is by far the most complex algorithm we ever encountered.
3. If you thank about implementing it, consider stealing the implementation from the mCRL2 toolset (www.mcrl2.org).
