
An O(m log n) algorithm for
stuttering equivalence and
branching bisimulation.

Jan Friso Groote, David Jansen,
Jeroen Keiren, Anton Wijs

Milner introduced weak bisimulation.

/ Computer Science

Weak bisimulation: 1980,
Milner. Internal action 𝜏𝜏.

Branching bisimulation: 1989,
van Glabbeek and Weijland.

Weak bisimulation.

a

sʹ

s t

R

R

𝜏𝜏
R𝜏𝜏

sʹ

R

s t

A relation R is a weak bisimulation relation iff

𝜏𝜏

tʹ

Symmetric case.

...

a

...

Branching bisimulation.

a

sʹ

s t

R

R

𝜏𝜏

tʹ

𝜏𝜏

...
R

a
tʹʹ

R𝜏𝜏

sʹ

R

s t

A relation R is a branching bisimulation relation iff

Why is branching bisimulation interesting?

/ Computer science PAGE 4

It is conceptually the best equivalence....

For all practical purposes branching bisimulation and
weak bisimulation work equally well.

The algorithm for branching bisimulation outperforms
the algorithms for all other equivalences!!

As branching bisimulation is finer than all other ‘weak’
equivalences, you want to reduce a transition system modulo
branching bisimulation first.

😟😟

Some history of bisimulation and their algorithms

/ Computer science PAGE 5

Strong bisimulation Milner, 1980
- Algorithm O(mn) Kanellakis and Smolka, 1983
- Algorithm O(m log n) Paige and Tarjan, 1986
Algorithm for weak bisimulation:

use strong bisimulation + transitive closure O(n3).

Transition systems/Kripke structures
m number of transitions
n number of states

Branching bisimulation van Glabbeek and Weijland, 1989
Stuttering equivalence Browne, Clarke and Grumberg, 1988
-Algorithm O(mn) Groote and Vaandrager, 1990
-Algorithm ≧O(mn) Blom and Orzan 2003
-Algorithm O(m log n) ????????

Some history of bisimulation and their algorithms

/ Computer science PAGE 6

Strong bisimulation Milner, 1980
- Algorithm O(mn) Kanellakis and Smolka, 1983
- Algorithm O(m log n) Paige and Tarjan, 1986
Algorithm for weak bisimulation:

use strong bisimulation + transitive closure O(n3).

Transition systems/Kripke structures
m number of transitions
n number of states

Branching bisimulation van Glabbeek and Weijland, 1989
Stuttering equivalence Browne, Clarke and Grumberg, 1988
-Algorithm O(mn) Groote and Vaandrager, 1990
-Algorithm ≧O(mn) Blom and Orzan 2003
-Algorithm O(m log n) ??????

Some history of bisimulation and their algorithms

/ Computer science PAGE 7

Strong bisimulation Milner 1980
- Algorithm O(mn) Kanellakis and Smolka, 1983
- Algorithm O(m log n) Paige Tarjan, 1986
Algorithm for weak bisimulation:

use strong bisimulation + transitive closure O(n3).

Transition systems/Kripke structures
m number of transitions
n number of states

Branching bisimulation van Glabbeek and Weijland, 1989
Stuttering equivalence Browne, Clarke and Grumberg, 1988
- Algorithm O(mn) Groote and Vaandrager, 1990
- Algorithm >O(mn) Blom and Orzan 2003
- Algorithm O(m log n)Solved

Benchmarks.

/ Computer science PAGE 8

Model n m min: n min: m Groote/
Vaandrager

Blom/
Orzan

Groote/
Jansen/
Keiren/
Wijs

Vasy40 40k 60k 20k 40k 24s 196s 0s

Vasy66 66k 1M 51k 1M 2s 9s 3s

Vasy116 116k 369k 22k 88k 1s 6s 1s

Vasy166 166k 651k 42k 197k 5s 3s 1s

CWI214 214k 684k 478 2k 1s 13s 1s

CWI2416 2M 18M 730 3k 30s 26s 19s

Vasy2581 3M 11M 704k 4M 700s 230s 31s

Vasy4220 4M 14M 1M 7M 1ks 460s 38s

Vasy4338 4M 16M 705k 4M 2ks 300s 41s

Vasy6020 6M 19M 256 510 40s 41s 20s

Vasy6120 6M 11M 3k 5k 130s 160s 24s

CWI7838 7M 59M 62k 470k 260s 7ks 160s

Vasy8082 8M 43M 290 680 100s 450s 57s

Vasy11026 11M 25M 776k 3M 2ks 1ks 68s

Vasy12323 12M 28M 876k 3M 3ks 1ks 77s

1394-fin3 127M 276M 160k 539k 68ks 10ks 1ks

Our new algorithm:

Faster on large
transition systems.

Memory usage:
Comparable.

Kripke structure.

/ Computer science PAGE 9

Definition. A Kripke structure is a four tuple K=(S, AP, →, L) where
•S is a finite set of states
•AP is a finite set of atomic propositions
•→⊆S⨉S is a total transition relation.
•L:S→2AP

Divergence blind stuttering equivalence.

sʹ

s t

R

R

tʹ

...R

tʹʹ

A relation R is a db-stuttering equivalence relation iff
R is symmetric for all states s,t∈S, L(s)=L(t) and

R

R

Two states s,t are db-stuttering equivalent iff there is a
db-stuttering equivalence relation R such that sRt.

Partitioning algorithms.

/ Computer Science

Theorem.
If stable, states are in the same block iff they are db-stuttering equivalent.

Initially, s, t in the same block iff L(s)=L(t)
Inert transition Stable block

Partitioning algorithms.

/ Computer science PAGE 12

C

B

Partitioning algorithms.

/ Computer science PAGE 13

B

C

DB stuttering equivalence.

/ Computer science PAGE 14

Remove loops in a block.

DB stuttering equivalence.

/ Computer science PAGE 15

Remove loops in a block.

DB stuttering equivalence.

/ Computer science PAGE 16

B

C

Bottom states

DB stuttering equivalence.

/ Computer science PAGE 17

B

C Theorem (Groote/Vaandrager 1990).
B splits C iff there is a transition from C
to B and not all bottom states in C have a
transition to B.

Bottom states

Paige-Tarjan O(mlogn) algorithm

/ Computer science PAGE 18

Whenever a state is involved in detecting a splitter/splitting
it does that as a member of a block half the size of the previous block.

<log(n) steps
When visiting a state we visit the in and outgoing transitions a constant number of
times. Complexity is O(m log n).

Constellation.

/ Computer science PAGE 19

Constellation B is a set of blocks
such that each block is stable
for ∪B.

Constellation.

/ Computer science PAGE 20

Splitting wrt. a block B in constellation B.

Select a B such that |B|<1/2|∪B|.

Check whether C is splittable wrt. B.

B

B

C

Constellation.

/ Computer science PAGE 21

Splitting wrt. a block B in constellation B.

Select a B such that |B|<1/2|∪B|.

Check whether C is splittable wrt. B.

Check whether C1 is splittable wrt. ∪B\B.

B

B

C1 C2

Recall in every state how many
transitions there are that state to
constellation B.

0 1 1
1 2

C

Extend markings backward.

/ Computer science PAGE 24

C

Extend nonmarkings backward.

/ Computer science PAGE 25

2

1
2

1
Recall in each state
the number of outgoing
inert transitions.

1
10

0

Do both backward markings
in parallel until one terminates
or the marked block becomes
larger than 1/2|C|.

C

Complication.

/ Computer science PAGE 28

C

B

D

Unpleasant property:
If C is split by B the new blocks of C
are not stable anymore for constellation D.

An unfortunately complex algorithm.

/ Computer science PAGE 31

Algorithm is complex.
- 2 pages of data structures.
- 3 pages concise but precise description of the algorithm.

Two implementations, that took almost half a year to finish.

Implementation follows description precisely.
- Correctness and time complexity is proven for the core algorithm.
- Correctness of the implementation shown by extensive random testing

against earlier implementations.
- Time complexity is verified by assigning time budgets in the algorithm.

And now people apply it to systems so big that memory is a problem.
Hence, we are working on a variant that does not translate to Kripke structures.

Tim Willems/Bas Luttik 😟😟 😟😟 😟😟 😟😟😟😟

Conclusion.

/ Computer science PAGE 32

1. The efficient algorithms for
stuttering equivalence/branching bisimulation
became even more efficient.

1. This is by far the most complex algorithm we
ever encountered.

2. If you thank about implementing it, consider
stealing the implementation from the mCRL2
toolset (www.mcrl2.org).

	An O(m log n) algorithm for stuttering equivalence and branching bisimulation.
	Milner introduced weak bisimulation.
	Weak bisimulation.
	Branching bisimulation.
	Why is branching bisimulation interesting?
	Some history of bisimulation and their algorithms	
	Some history of bisimulation and their algorithms	
	Some history of bisimulation and their algorithms	
	Benchmarks.
	Kripke structure.
	Divergence blind stuttering equivalence.
	Partitioning algorithms.
	Partitioning algorithms.
	Partitioning algorithms.
	DB stuttering equivalence.
	DB stuttering equivalence.
	DB stuttering equivalence.
	DB stuttering equivalence.
	Paige-Tarjan O(mlogn) algorithm
	Constellation.
	Constellation.
	Constellation.
	Extend markings backward.
	Extend nonmarkings backward.
	Complication.
	An unfortunately complex algorithm.
	Conclusion.

