An *O*(*m* log *n*) algorithm for stuttering equivalence and branching bisimulation.

Jan Friso Groote, David Jansen, Jeroen Keiren, Anton Wijs

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Milner introduced weak bisimulation.

Weak bisimulation: 1980, Milner. Internal action τ .

Branching bisimulation: 1989, van Glabbeek and Weijland.

Weak bisimulation.

A relation *R* is a *weak bisimulation* relation iff

Symmetric case.

Branching bisimulation.

A relation R is a *branching bisimulation* relation iff

It is conceptually the best equivalence....

For all practical purposes branching bisimulation and weak bisimulation work equally well.

The algorithm for branching bisimulation outperforms the algorithms for all other equivalences!!

As branching bisimulation is finer than all other 'weak' equivalences, you want to reduce a transition system modulo branching bisimulation first.

Strong bisimulation

- Algorithm O(*mn*)
- Algorithm $O(m \log n)$
- Algorithm for weak bisimulation:

Milner, 1980 Kanellakis and Smolka, 1983 Paige and Tarjan, 1986

use strong bisimulation + transitive closure $O(n^3)$.

Branching bisimulation Stuttering equivalence

- -Algorithm O(*mn*)
- -Algorithm $\geq O(mn)$ Blom and Orzan 2003

-Algorithm $O(m \log n)$

van Glabbeek and Weijland, 1989 Browne, Clarke and Grumberg, 1988 Groote and Vaandrager, 1990 nd Orzan 2003

Transition systems/Kripke structures *m* number of transitions *n* number of states

Strong bisimulation

- Algorithm O(*mn*)
- Algorithm $O(m \log n)$
- Algorithm for weak bisimulation:

Milner, 1980 Kanellakis and Smolka, 1983 Paige and Tarjan, 1986

use strong bisimulation + transitive closure $O(n^3)$.

Branching bisimulationvan Glabbeek aStuttering equivalenceBrowne, Clarke-Algorithm O(mn)Groote and Vaa-Algorithm $\geqq O(mn)$ Blom and Dizal 2013

-Algorithm $O(m \log n)$

van Glabbeek and Weijland, 1989 Browne, Clarke and Grumberg, 1988 Groote and Vaandrager, 1990 and Orzan 2013

Transition systems/Kripke structures *m* number of transitions *n* number of states

Strong bisimulation

- Algorithm O(*mn*)
- Algorithm $O(m \log n)$
- Algorithm for weak bisimulation:

Milner 1980 Kanellakis and Smolka, 1983 Paige Tarjan, 1986

use strong bisimulation + transitive closure $O(n^3)$.

Branching bisimulation Stuttering equivalence van Glabbeek and Weijland, 1989 Browne, Clarke and Grumberg, 1988

Solved

/ Computer science

Transition systems/Kripke structures *m* number of transitions *n* number of states

Benchmarks.	Model	n	m	min: <i>n</i>	min: <i>m</i>	Groote/ Vaandrager	Blom/ Orzan	Groote/ Jansen/ Keiren/ Wijs
	Vasy40	40k	60k	20k	40k	24s	196s	0s
	Vasy66	66k	1 M	51k	1M	2s	9s	3s
Our new algorithm:	Vasy116	116k	369k	22k	88k	1s	бs	1s
	Vasy166	166k	651k	42k	197k	5s	3s	1s
Faster on large	CWI214	214k	684k	478	2k	1s	13s	1s
transition systems.	CWI2416	2M	18M	730	3k	30s	26s	19s
Memory usage: Comparable.	Vasy2581	3M	11M	704k	4M	700s	230s	31s
	Vasy4220	4M	14M	1M	7M	1ks	460s	38s
	Vasy4338	4M	16M	705k	4M	2ks	300s	41s
	Vasy6020	6M	19M	256	510	40s	41s	20s
	Vasy6120	6M	11M	3k	5k	130s	160s	24s
	CWI7838	7M	59M	62k	470k	260s	7ks	160s
	Vasy8082	8M	43M	290	680	100s	450s	57s
	Vasy11026	11M	25M	776k	3M	2ks	1ks	68s
	Vasy12323	12M	28M	876k	3M	3ks	1ks	77s
/ Computer science	1394-fin3	127M	276M	160k	539k	68ks	10ks	1ks

Kripke structure.

Definition. A *Kripke structure* is a four tuple $K=(S, AP, \rightarrow, L)$ where •*S* is a finite set of states •*AP* is a finite set of atomic propositions • $\rightarrow \subseteq S \times S$ is a total transition relation. •*L*: $S \rightarrow 2^{AP}$

Divergence blind stuttering equivalence.

A relation *R* is a *db-stuttering equivalence* relation iff *R* is symmetric for all states $s,t \in S$, L(s)=L(t) and

Two states s,t are *db-stuttering equivalent* iff there is a db-stuttering equivalence relation R such that sRt.

Partitioning algorithms.

Theorem.

If stable, states are in the same block iff they are db-stuttering equivalent.

Partitioning algorithms.

Partitioning algorithms.

Remove loops in a block.

Remove loops in a block.

Theorem (Groote/Vaandrager 1990). *B* splits *C* iff there is a transition from *C* to *B* and not all bottom states in *C* have a transition to *B*.

Paige-Tarjan O(mlogn) algorithm

Whenever a state is involved in detecting a splitter/splitting it does that as a member of a block half the size of the previous block.

ersity of Technology

/ Computer science

Constellation.

Constellation \boldsymbol{B} is a set of blocks such that each block is stable for $\cup \boldsymbol{B}$.

Constellation.

B

Splitting wrt. a block *B* in constellation *B*.

Select a *B* such that $|B| < 1/2 |\cup B|$.

Check whether C is splittable wrt. B.

Constellation.

Splitting wrt. a block B in constellation **B**. Select a *B* such that $|B| < 1/2 |\cup B|$. Check whether C is splittable wrt. B.

Check whether C_1 is splittable wrt. $\cup B \setminus B$.

Recall in every state how many transitions there are that state to constellation **B**.

sche Universiteit versity of Technology

Extend markings backward.

Extend nonmarkings backward.

Recall in each state the number of outgoing inert transitions.

Do both backward markings in parallel until one terminates or the marked block becomes larger than 1/2|C|.

Complication.

An unfortunately complex algorithm.

Algorithm is complex.

- 2 pages of data structures.
- 3 pages concise but precise description of the algorithm.

Two implementations, that took almost half a year to finish.

Implementation follows description precisely.

- Correctness and time complexity is proven for the core algorithm.
- Correctness of the implementation shown by extensive random testing against earlier implementations.
- Time complexity is verified by assigning time budgets in the algorithm.

And now people apply it to systems so big that memory is a problem. Hence, we are working on a variant that does not translate to Kripke structures.

Tim Willems/Bas Luttik

- The efficient algorithms for stuttering equivalence/branching bisimulation became even more efficient.
- 1. This is by far the most complex algorithm we ever encountered.
- 2. If you thank about implementing it, consider *stealing* the implementation from the mCRL2 toolset (www.mcrl2.org).

