
Copyright © 2018 Verum Software Tools BV

Refinement in Dezyne

formal methods for the masses

Paul Hoogendijk, Verum

Dutch Model Checking Day 2018

Copyright © 2018 Verum Software Tools BV

Challenges for software

Copyright © 2018 Verum Software Tools BV

Applying formal methods in industry

Common challenges:

1. Need to be expert in formal methods

 How to model my system and requirements?

 Does what I have modeled reflect my system/requirements?

 How to interpret model checking result for my application?

 …

2. Non-scalable due to state explosion

 Real world application are large (50K – 10M lines of code)

 Many variables; large state space

Copyright © 2018 Verum Software Tools BV

Dezyne: formal methods for the masses

Solution to the common challenges:

1. Two level approach:

 Dezyne language relates to common software engineers

 State machine + imperative language

 Model checker hidden for user

 Dezyne language translated to mCLR2 language

 Counter example translated back as sequence diagram in Dezyne

 Generate executable code from Dezyne code

2. Compositional solution

 Component based: interfaces + components

 Interfaces have behaviour (!)

 Component and its requires interfaces refine provides interfaces

Copyright © 2018 Verum Software Tools BV

dezyne

model

Two level approach

executable

code
model

checking

Generate

source code
Generate

formal model

Design

Errors

equivalent behaviours

Copyright © 2018 Verum Software Tools BV

Where is our tooling used?

Copyright © 2018 Verum Software Tools BV

Where is our tooling used?

Multiple projects

750K lines of code

500K lines of code

Multiple projects

Copyright © 2018 Verum Software Tools BV

DEMO

Copyright © 2018 Verum Software Tools BV

Refinement in Dezyne

 Dezyne provides interface compliance

≡

Refinement between component and provides interface

(restricted to alphabet of provides interface)

Some compliance examples in Dezyne:

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 behaviour {

 on p.e(): reply(true);

 }

}

interface I {

 in bool e();

 behaviour {

 on e: reply(false);

 on e: reply(true);

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 behaviour {

 on p.e(): {}

 }

}

interface I {

 in void e();

 behaviour {

 on e: {}

 on f: {}

 }

}

Interface I is incorrectly implemented by component C: ⊈

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 behaviour {

 on p.e(): {}

 on p.f(): illegal

 }

}

interface I {

 in void e();

 behaviour {

 on e: {}

 on f: {}

 }

}

Interface I is incorrectly implemented by component C: ⊈

Component is made complete:

non handled events are regarded as illegal.

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on p.e(): reply(!r.e());

 }

}

interface I {

 in bool e();

 behaviour {

 on e: reply(false);

 on e: reply(true);

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on p.e(): reply(!r.e());

 }

}

interface I {

 in bool e();

 behaviour {

 on e: reply(false);

 }

}

Interface I is incorrectly implemented by component C: ⊈

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on r.cb(): p.cb();

 }

}

interface I {

 out void cb();

 behaviour {

 on inevitable: cb;

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on r.cb(): {}

 }

}

interface I {

 out void cb();

 behaviour {

 on inevitable: cb;

 }

}

Interface I is incorrectly implemented by component C: ⊈

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on r.cb(): {}

 }

}

interface I {

 out void cb();

 behaviour {

 on optional: cb;

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Verification backend

 Previously FDR used in verification backend

 Started developing with mCLR2 end of 2014

 Tetracom project between Verum and TU/e

 mCRL2 replaced FDR as of release 2.7.0 (march 2018)

 FDR vs mCRL2:

 FDR: Failures-Divergences Refinement

 Impl ≤ Spec ≡ failures(Impl) ⊆ failures(Spec)

 failures(P) = { (tr, X) | tr ∊ traces(P), X ∊ refusals(P after tr) }

 FDR each assert expressed as refinement property

 FDR cannot handle fairness

 Using FDR for functional verification results in many livelocks which

hides refinement issue 

 mCLR2 does handle fairness 

Copyright © 2018 Verum Software Tools BV

Verification flow in mCRL2

 cat hello.dzn

| parse dzn -> ast

| codegen-mcrl2 ast -> mcrl2

| mcrl22lps mcrl2 -> lps (linear proc. spec)

| lps2lst lps -> lts

| ltsconvert lts -> lts (reduction)

| lts-check lts -> lts (add refusals+check)

> hello.lts

ltscompare –pweak-failures hello.lts intf.lts

Copyright © 2018 Verum Software Tools BV

Verification flow in mCRL2

 cat hello.dzn

| parse dzn -> ast

| codegen-mcrl2 ast -> mcrl2

| mcrl22lps mcrl2 -> lps (linear proc. spec)

| lps2lst lps -> lts

| ltsconvert lts -> lts (reduction)

| lts-check lts -> lts (add refusals+check)

> hello.lts

ltscompare –pweak-failures hello.lts intf.lts

mCRL2 tooling from TU/e, Jan Friso Groote e.a.

Copyright © 2018 Verum Software Tools BV

Verification flow in mCRL2

 cat hello.dzn

| parse dzn -> ast

| codegen-mcrl2 ast -> mcrl2

| mcrl22lps mcrl2 -> lps (linear proc. spec)

| lps2lst lps -> lts

| ltsconvert lts -> lts (reduction)

| lts-check lts -> lts (add refusals+check)

> hello.lts

ltscompare –pweak-failures hello.lts intf.lts

mCRL2 tooling from TU/e, Jan Friso Groote e.a.

Late introduction

of refusals for

optional events

Check on LTS:

•Non-determinism

•Illegal

•Deadlock

•Livelock

Failures Refinement between

component and requires interfaces

and

provides interfaces

Copyright © 2018 Verum Software Tools BV

Compositionality due to refinement

Model checker proves:

 I1 || C0 ≤ I0, I2 || C1 ≤ I1, C2 ≤ I2

 C0,C1,C2 free of deadlock, livelock,

illegal, and deterministic

From which we conclude

 C0 || C1 || C2 ≤ I0 due to monotonicity

of || w.r.t. failures refinement

 C0 || C1 || C2 free of livelock, illegal,

and deterministic (due to traces), and

deadlock (due to refusals)

I0

C0

I1

C1

I2

I1

C2

Interface

Interface

Interface

Component

Component

Component

Copyright © 2018 Verum Software Tools BV

Consistency verification & generated code

For each supported language:

For each component of test set:

 Code is generated plus test-stub

 Set of traces covering the component lts is generated

 Each trace is replayed on test executable of component:

 All in events are fed to test-stub around component

 Both in and out events are logged by stub:

 trace log of component needs to be the same as original trace

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on inevitable: { done; idle=true;}

 }

 }

}

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on inevitable: { done; idle=true;}

 }

 }

}

event “inevitable” relates to internal event of

underlying component, hence, is hidden.

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on optional: { done; idle=true;}

 }

 }

}

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on optional: { done; idle=true;}

 }

 }

}

Event “optional” may be refused, hence,

this interface deadlocks

Copyright © 2018 Verum Software Tools BV

Inevitable/optional: translation in mCRL2

 on inevitable: callback;

 on e: {}

versus

 on optional: callback;

 on e: {}

P = inevitable -> callback -> P

 | e -> return -> P

P = optional -> callback -> P

 | e -> return -> P

 | tau -> P’

P’ = e -> return -> P

Copyright © 2018 Verum Software Tools BV

Inevitable/optional: translation in mCRL2

 on inevitable: callback;

 on e: {}

versus

 on optional: callback;

 on e: {}

P = inevitable -> callback -> P

 | e -> return -> P

P = optional -> callback -> P

 | e -> return -> P

 | tau -> P’

P’ = e -> return -> P

tau transition to copy of state

where “optional” is removed.

Hence, event “optional”

can be refused in state P

Copyright © 2018 Verum Software Tools BV

Late introduction of refusals

 Having many “optionals” in requires interfaces leads to

state explosion during lts generation:
 mcrl22lts(

 mclr2(C)

 || mclr2-plus-refusals(I0) x2

 || mclr2-plus-refusals(I1) x2

 || mclr2-plus-refusals(I2) x2 = x8

) where mcrl2, mclr2-plus-refusals: dzn -> mcrl2

 Solution:

 Add refusals, i.e. duplicated states, as late as possible:

 add-refusals(ltsconvert(
 mcrl22lts(mclr2(C)||mclr2(I0)||mclr2(I1)||mclr2(I2)

)) where add-refusals: lts -> lts

thus, just before deadlock and compliance check, and after lts
reduction by ltsconvert

Copyright © 2018 Verum Software Tools BV

Late introduction of refusals

 Inspired by how FDR internally works:

 FDR constructs GLTS i.s.o. LTS: (G=Generalized)

GLTS, amongst others:

 LTS plus for each node, maximum refusal set.

 Whether event can be refused or not, does not increase size of

GLTS (!)

 Reduced verification time back from several minutes to

few seconds for some of our customer models.

 Now comparable to FDR based verification time

Copyright © 2018 Verum Software Tools BV

Conclusion

 Dezyne allows regular software engineers to construct

industrial size software systems while reaping the power

of formal methods.

 Two level approach,

 Compositionality (due to use of failures refinement)

 Introducing mCRL2 has been an pleasant and inspiring

journey

 Very pleasant cooperation with TU/e, real win/win.

 Using new back-end caused no visible change for users

 Performance is on-par, sometimes faster, than FDR

 Late introduction of refusals was essential in this.

 Enables extension towards functional & system verification

Copyright © 2018 Verum Software Tools BV

Thank You

Acknowledgments:

 mCRL2 team of TU/e:

 Jan Friso Groote

 Tim Willemse

 Wieger Wesselink

 Verum team

Questions?

