
Copyright © 2018 Verum Software Tools BV

Refinement in Dezyne

formal methods for the masses

Paul Hoogendijk, Verum

Dutch Model Checking Day 2018

Copyright © 2018 Verum Software Tools BV

Challenges for software

Copyright © 2018 Verum Software Tools BV

Applying formal methods in industry

Common challenges:

1. Need to be expert in formal methods

 How to model my system and requirements?

 Does what I have modeled reflect my system/requirements?

 How to interpret model checking result for my application?

 …

2. Non-scalable due to state explosion

 Real world application are large (50K – 10M lines of code)

 Many variables; large state space

Copyright © 2018 Verum Software Tools BV

Dezyne: formal methods for the masses

Solution to the common challenges:

1. Two level approach:

 Dezyne language relates to common software engineers

 State machine + imperative language

 Model checker hidden for user

 Dezyne language translated to mCLR2 language

 Counter example translated back as sequence diagram in Dezyne

 Generate executable code from Dezyne code

2. Compositional solution

 Component based: interfaces + components

 Interfaces have behaviour (!)

 Component and its requires interfaces refine provides interfaces

Copyright © 2018 Verum Software Tools BV

dezyne

model

Two level approach

executable

code
model

checking

Generate

source code
Generate

formal model

Design

Errors

equivalent behaviours

Copyright © 2018 Verum Software Tools BV

Where is our tooling used?

Copyright © 2018 Verum Software Tools BV

Where is our tooling used?

Multiple projects

750K lines of code

500K lines of code

Multiple projects

Copyright © 2018 Verum Software Tools BV

DEMO

Copyright © 2018 Verum Software Tools BV

Refinement in Dezyne

 Dezyne provides interface compliance

≡

Refinement between component and provides interface

(restricted to alphabet of provides interface)

Some compliance examples in Dezyne:

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 behaviour {

 on p.e(): reply(true);

 }

}

interface I {

 in bool e();

 behaviour {

 on e: reply(false);

 on e: reply(true);

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 behaviour {

 on p.e(): {}

 }

}

interface I {

 in void e();

 behaviour {

 on e: {}

 on f: {}

 }

}

Interface I is incorrectly implemented by component C: ⊈

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 behaviour {

 on p.e(): {}

 on p.f(): illegal

 }

}

interface I {

 in void e();

 behaviour {

 on e: {}

 on f: {}

 }

}

Interface I is incorrectly implemented by component C: ⊈

Component is made complete:

non handled events are regarded as illegal.

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on p.e(): reply(!r.e());

 }

}

interface I {

 in bool e();

 behaviour {

 on e: reply(false);

 on e: reply(true);

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on p.e(): reply(!r.e());

 }

}

interface I {

 in bool e();

 behaviour {

 on e: reply(false);

 }

}

Interface I is incorrectly implemented by component C: ⊈

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on r.cb(): p.cb();

 }

}

interface I {

 out void cb();

 behaviour {

 on inevitable: cb;

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on r.cb(): {}

 }

}

interface I {

 out void cb();

 behaviour {

 on inevitable: cb;

 }

}

Interface I is incorrectly implemented by component C: ⊈

Copyright © 2018 Verum Software Tools BV

Interface compliance examples:

component C {

 provides I p;

 requires I r;

 behaviour {

 on r.cb(): {}

 }

}

interface I {

 out void cb();

 behaviour {

 on optional: cb;

 }

}

Interface I is correctly implemented by component C: ⊆

Copyright © 2018 Verum Software Tools BV

Verification backend

 Previously FDR used in verification backend

 Started developing with mCLR2 end of 2014

 Tetracom project between Verum and TU/e

 mCRL2 replaced FDR as of release 2.7.0 (march 2018)

 FDR vs mCRL2:

 FDR: Failures-Divergences Refinement

 Impl ≤ Spec ≡ failures(Impl) ⊆ failures(Spec)

 failures(P) = { (tr, X) | tr ∊ traces(P), X ∊ refusals(P after tr) }

 FDR each assert expressed as refinement property

 FDR cannot handle fairness

 Using FDR for functional verification results in many livelocks which

hides refinement issue

 mCLR2 does handle fairness

Copyright © 2018 Verum Software Tools BV

Verification flow in mCRL2

 cat hello.dzn

| parse dzn -> ast

| codegen-mcrl2 ast -> mcrl2

| mcrl22lps mcrl2 -> lps (linear proc. spec)

| lps2lst lps -> lts

| ltsconvert lts -> lts (reduction)

| lts-check lts -> lts (add refusals+check)

> hello.lts

ltscompare –pweak-failures hello.lts intf.lts

Copyright © 2018 Verum Software Tools BV

Verification flow in mCRL2

 cat hello.dzn

| parse dzn -> ast

| codegen-mcrl2 ast -> mcrl2

| mcrl22lps mcrl2 -> lps (linear proc. spec)

| lps2lst lps -> lts

| ltsconvert lts -> lts (reduction)

| lts-check lts -> lts (add refusals+check)

> hello.lts

ltscompare –pweak-failures hello.lts intf.lts

mCRL2 tooling from TU/e, Jan Friso Groote e.a.

Copyright © 2018 Verum Software Tools BV

Verification flow in mCRL2

 cat hello.dzn

| parse dzn -> ast

| codegen-mcrl2 ast -> mcrl2

| mcrl22lps mcrl2 -> lps (linear proc. spec)

| lps2lst lps -> lts

| ltsconvert lts -> lts (reduction)

| lts-check lts -> lts (add refusals+check)

> hello.lts

ltscompare –pweak-failures hello.lts intf.lts

mCRL2 tooling from TU/e, Jan Friso Groote e.a.

Late introduction

of refusals for

optional events

Check on LTS:

•Non-determinism

•Illegal

•Deadlock

•Livelock

Failures Refinement between

component and requires interfaces

and

provides interfaces

Copyright © 2018 Verum Software Tools BV

Compositionality due to refinement

Model checker proves:

 I1 || C0 ≤ I0, I2 || C1 ≤ I1, C2 ≤ I2

 C0,C1,C2 free of deadlock, livelock,

illegal, and deterministic

From which we conclude

 C0 || C1 || C2 ≤ I0 due to monotonicity

of || w.r.t. failures refinement

 C0 || C1 || C2 free of livelock, illegal,

and deterministic (due to traces), and

deadlock (due to refusals)

I0

C0

I1

C1

I2

I1

C2

Interface

Interface

Interface

Component

Component

Component

Copyright © 2018 Verum Software Tools BV

Consistency verification & generated code

For each supported language:

For each component of test set:

 Code is generated plus test-stub

 Set of traces covering the component lts is generated

 Each trace is replayed on test executable of component:

 All in events are fed to test-stub around component

 Both in and out events are logged by stub:

 trace log of component needs to be the same as original trace

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on inevitable: { done; idle=true;}

 }

 }

}

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on inevitable: { done; idle=true;}

 }

 }

}

event “inevitable” relates to internal event of

underlying component, hence, is hidden.

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on optional: { done; idle=true;}

 }

 }

}

Copyright © 2018 Verum Software Tools BV

Optional/inevitable: asynchronous events

interface async {

 in void doit();

 out void done();

 behaviour {

 bool idle = true;

 [idle] on doit: idle=false;

 [!idle] {

 on optional: { done; idle=true;}

 }

 }

}

Event “optional” may be refused, hence,

this interface deadlocks

Copyright © 2018 Verum Software Tools BV

Inevitable/optional: translation in mCRL2

 on inevitable: callback;

 on e: {}

versus

 on optional: callback;

 on e: {}

P = inevitable -> callback -> P

 | e -> return -> P

P = optional -> callback -> P

 | e -> return -> P

 | tau -> P’

P’ = e -> return -> P

Copyright © 2018 Verum Software Tools BV

Inevitable/optional: translation in mCRL2

 on inevitable: callback;

 on e: {}

versus

 on optional: callback;

 on e: {}

P = inevitable -> callback -> P

 | e -> return -> P

P = optional -> callback -> P

 | e -> return -> P

 | tau -> P’

P’ = e -> return -> P

tau transition to copy of state

where “optional” is removed.

Hence, event “optional”

can be refused in state P

Copyright © 2018 Verum Software Tools BV

Late introduction of refusals

 Having many “optionals” in requires interfaces leads to

state explosion during lts generation:
 mcrl22lts(

 mclr2(C)

 || mclr2-plus-refusals(I0) x2

 || mclr2-plus-refusals(I1) x2

 || mclr2-plus-refusals(I2) x2 = x8

) where mcrl2, mclr2-plus-refusals: dzn -> mcrl2

 Solution:

 Add refusals, i.e. duplicated states, as late as possible:

 add-refusals(ltsconvert(
 mcrl22lts(mclr2(C)||mclr2(I0)||mclr2(I1)||mclr2(I2)

)) where add-refusals: lts -> lts

thus, just before deadlock and compliance check, and after lts
reduction by ltsconvert

Copyright © 2018 Verum Software Tools BV

Late introduction of refusals

 Inspired by how FDR internally works:

 FDR constructs GLTS i.s.o. LTS: (G=Generalized)

GLTS, amongst others:

 LTS plus for each node, maximum refusal set.

 Whether event can be refused or not, does not increase size of

GLTS (!)

 Reduced verification time back from several minutes to

few seconds for some of our customer models.

 Now comparable to FDR based verification time

Copyright © 2018 Verum Software Tools BV

Conclusion

 Dezyne allows regular software engineers to construct

industrial size software systems while reaping the power

of formal methods.

 Two level approach,

 Compositionality (due to use of failures refinement)

 Introducing mCRL2 has been an pleasant and inspiring

journey

 Very pleasant cooperation with TU/e, real win/win.

 Using new back-end caused no visible change for users

 Performance is on-par, sometimes faster, than FDR

 Late introduction of refusals was essential in this.

 Enables extension towards functional & system verification

Copyright © 2018 Verum Software Tools BV

Thank You

Acknowledgments:

 mCRL2 team of TU/e:

 Jan Friso Groote

 Tim Willemse

 Wieger Wesselink

 Verum team

Questions?

