Minimal Separating Sequences for All Pairs of States in $O(m \log n)$

Rick Smetsers
Joshua Moerman
David N. Jansen

Dutch Model Checking Day 2018

Separating Sequences

- Sequences which give different outputs on different states
- Minimal: no shorter separating sequence exists
- Motivation: black-box conformance testing

... for All Pairs of States!

- Classic problem in automata theory
- Doing bisimulation for all pairs would require $O\left(m n^{2} \alpha(n)\right)$
- Partition refinement gives $O(m n)$
- We extend Hopcroft's $O(m \log n)$ algorithm to return minimal sequences
- $n=|Q|$ is number of states
$m=|I| * n$ is number of transitions

Mealy machines

- Deterministic
- Input-enabled
- Outputs on transitions
- (Motivated by testing)

- States s, t are equivalent if $\llbracket s \rrbracket(w)=\llbracket t \rrbracket(w)$ for all w, where $\llbracket s \rrbracket: I^{*} \rightarrow O^{*}$
- We are interested in inequivalence!

Basic Partition Refinement

Roughly:

- Start with trivial partition
- Split classes if

1. states have different output, or
2. states transition to different classes.

Partition Refinement example

Key improvements

- Hopcroft's algorithm
- Keep a queue of splitters
- Skip the largest set in the splitter
- (Note that we allow more than two outputs.)
- Minimality:
- Queue in order of size
- Witnesses:
- As linked list, copying suffix is too expensive

Hopcroft example

Why O(n $\log \mathrm{n})$?

- Let $B=$ nodes which are not the largest
- Every state is in at most $\log n$ elements of B
- => Every state is `touched` at $\log n *|I|$ times
- => Gives $O(m \log n)$ bound

s_{0}	s_{2}	s_{4}	s_{1}	s_{5}	s_{3}

Bookkeeping

- Pre-processing of δ^{-1} in $O(\mathrm{~m})$
- Sorting in linear time (a la Dutch flag problem)
- Counters to determine largest child and to check whether a node is split
- Separating sequences stored as linked lists

End result

- Small data structure containing minimal separating sequences for all pairs
- \quad Space $O(n)$
- Query time $O(n)$

Application: black-box conformance testing

- Problem:
- Given a specification M and a black-box system X (both Mealy machines), Can we decide $X \approx M$ by performing an experiment?
- If X is too big, this is impossible, so we ask for an experiment deciding: If $|\boldsymbol{X}| \leq|M|$, then $X \approx M$?
- Chow and Vasilevskii (independently) in ~1970 gave a experiment of polynomial size!
- W-method: Test suite $=P \cdot W$ \& Char. set

Test suites

- W-method

Characterisation set = set containing a separating sequence for each pair.
Constructible in $O(m \log n)$.

- Wp-method

Local state identifier for $s=$ set containing a separating sequence for each other t.
Constructible in $O\left(m \log n+n^{2}\right)$.

- HSI-method

Same as Wp-method, but requires state identifiers to be harmonised. Our construction guarantees this. Now $O\left(m \log n+n^{2}\right)$, previous $O\left(m n^{3}\right)$.

- Typically we remove common prefixes: $O(|W|)$ or $O\left(n^{2}\right)$.

Minimal Separating Sequences for All Pairs of States in $O(m \log n)$

Rick Smetsers
Joshua Moerman
David N. Jansen

Thanks for your attention!

