Minimal Separating Sequences for All Pairs of States in $O(m \log n)$

Rick Smetsers

Joshua Moerman

Dutch Model Checking Day 2018

David N. Jansen

Separating Sequences

- Sequences which give different outputs on different states
- Minimal: no shorter separating sequence exists
- Motivation: black-box conformance testing

DOJ

... for All Pairs of States!

- Classic problem in automata theory ullet
- Doing bisimulation for all pairs would require $O(mn^2\alpha(n))$ \bullet
- Partition refinement gives O(mn) \bullet
- We extend Hopcroft's $O(m \log n)$ algorithm to return minimal sequences ullet
- n = |Q| is number of states • m = |I| * n is number of transitions

Mealy machines

- Deterministic
- Input-enabled
- Outputs on transitions
 - (Motivated by testing)

- States *s*, *t* are *equivalent* if $\llbracket s \rrbracket(w) = \llbracket t \rrbracket(w)$ for all *w*, where $\llbracket s \rrbracket: I^* \to O^*$
- We are interested in *inequivalence*!

Basic Partition Refinement

Roughly:

- Start with trivial partition
- Split classes if
 - 1. states have different output, or
 - 2. states transition to different classes.

Partition Refinement example

Key improvements

- Hopcroft's algorithm
 - Keep a queue of splitters
 - Skip the largest set in the splitter
 - (Note that we allow more than two outputs.)
- Minimality:
 - Queue in order of size
- Witnesses:
 - As linked list, copying suffix is too expensive

Hopcroft example

Why O(n log n)?

- Let *B* = nodes which are not the largest ullet
- Every state is in at most $\log n$ elements of Bullet
- => Every state is `touched` at $\log n * |I|$ times ullet
- => Gives $O(m \log n)$ bound •

Radboud University

Bookkeeping

- Pre-processing of δ^{-1} in O(m)
- Sorting in linear time (a la Dutch flag problem)
- Counters to determine largest child and to check whether a node is split
- Separating sequences stored as linked lists

End result

- Small data structure containing minimal separating sequences for all pairs ۲
- Space O(n)ullet
- Query time O(n)٠

Application: black-box conformance testing

- Problem: ullet
- Given a specification M and a **black-box** system X (both Mealy machines), Can we decide $X \approx M$ by performing an experiment?
- If X is too big, this is impossible, so we ask for an experiment deciding: ulletIf $|X| \leq |M|$, then $X \approx M$?
- Chow and Vasilevskii (independently) in ~1970 gave a experiment of polynomial size! lacksquare
- W-method: Test suite = $P \cdot W$ & drar. set A State Transtion State Transtion State Transtion•

Test suites

• W-method

Characterisation set = set containing a separating sequence for each pair. Constructible in $O(m \log n)$.

• Wp-method

Local state identifier for s = set containing a separatingsequence for each other t. Constructible in $O(m \log n + n^2)$.

• HSI-method

Same as Wp-method, but requires state identifiers to be *harmonised*. Our construction guarantees this. Now $O(m \log n + n^2)$, previous $O(mn^3)$.

• Typically we remove common prefixes: O(|W|) or $O(n^2)$.

0

b/0

Radboud University

Minimal Separating Sequences for All Pairs of States in $O(m \log n)$

Rick Smetsers

Joshua Moerman

Thanks for your attention!

David N. Jansen

