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Parity Game

A parity game:
@ has two players: ¢ (even) and O (odd), who move a token;
@ is played on a directed graph;
@ every node has a priority.
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A parity game:
@ has two players: ¢ (even) and O (odd), who move a token;
@ is played on a directed graph;
@ every node has a priority.

A parity game is a graph (V,—,Q,P), where:

@ V is a set of nodes;
@ —+C V x V is a left-total transition relation;

o Q:V — Nis a function that assigns a priority to nodes;

e P:V — {0,0} is a function that assigns players to nodes.
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Winning paths

Definition

An infinite path 7, called a play, is winning for a player ¢ if the
minimal priority that occurs infinitely often on 7 is even.
Otherwise, it is winning for [J.
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Find winning plays:
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Strategies

Definition
A strategy S, : V — V for a player p is a partial-function that is
only defined on the vertices of p.
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A play m = wvgv1 ... is consistent with a strategy S iff for all v;
such that S(v;) is defined, S(v;) = vit1.
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A strategy S is a winning strategy in vertex v iff all plays starting
in v that are consistent with S are winning.
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Strategies

Definition
A strategy S, : V — V for a player p is a partial-function that is
only defined on the vertices of p.

Definition

A play m = wvgv1 ... is consistent with a strategy S iff for all v;
such that S(v;) is defined, S(v;) = vit1.

Definition

| \

A strategy S is a winning strategy in vertex v iff all plays starting
in v that are consistent with S are winning.

Definition

| A

A vertex v is won by a player p iff there is a winning strategy for p
in v.
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Find winning strategies:
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From parity game to BES

@ A Boolean equation system is a sequence of fixpoint equations
over Boolean variables.
o A BES in standard recursive form can be mapped directly to a
parity game:
e One node for every equation;
e One outgoing transition for every variable in the right-hand
side of an equation;
o Priority is determined by the fixpoint;
o Player is determined by the operand.

1X1 = Xo O O

vX3=X3 A Xy X X5 X3 Xy
uXq = Xy

N
w




PBES
oeo

Generalizing to PBES

Parameterised Boolean equation system: a BES with data

VX(b:B) _ X(_|b) instantiation VXtrue = Xtalse
vXfalse = Xtrue

PBESs can also contain expressions over data:

Z/YO = Yl
l/Y1 = Y2
instantiation VY2 = Y3
MY(nN):n§2A Y(n+1) I/Y3:false

vYs = false
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The complete picture
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Bisimulation for parity games

Definition
Let G = (V,—,Q,P) be a parity game. Then, a relation
R C V x V is a bisimulation relation if for all s R t:

e Q(s) = Q(t) and P(s) = P(t);

o for all s — s’ there is a t — t’ such that s’ Rt’; and

o for all t — t’ there is a s — s’ such that s’ R¢t'.

Two nodes s and t are bisimilar (s < t) iff there is an R such that
sRt.
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Bisimulation minimisation
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Bisimulation minimisation

After merging bisimilar nodes:
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Minimal game generation

instantiation
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Some concepts

@ block: set of nodes

@ partition: set of pairwise disjunct blocks. The union over the
blocks is equal to V.
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Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4

B>




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4

B>




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Minimising PBESs
ooooe

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

%4




Finite proofs
[ 1)

Limitations

@ Partition refinement does not terminate when the bisimulation
quotient is infinite.

@ Only a small part of the system might be relevant as
witness/counter-example.

Solution: search for winning subgame, refine only those blocks.
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Proof searching

Situation:
@ Partition is not yet stable;

@ The wining strategy for { from the initial node does not
involve Bs.

%4




Finite proofs
oce

Proof searching

Situation:
@ Partition is not yet stable;
@ The wining strategy for ¢ from the initial node does not
involve Bs.

vV
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Proof searching

If a winning subgame is stable wrt to itself, then this subgame is a
valid witness/counter-example.
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Conclusion

@ Scalability increased through continuous searching for
evidence.

@ Approach is more generic than other symbolic approaches for
PBESs.

@ We can now model check all properties from the modal mu
calculus on systems with infinite data domains.

@ We can check equivalence of systems with infinite data
through lpsbisim2pbes.
Future investigation:
@ Find an optimal winning subgame.

o Weaker equivalence relation: idempotence-identifying
bisimulation, simulation equivalence.
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Abstraction on different levels

@ Sep 2016 to July 2017: on model level.
@ This talk: on problem level.

abstraction/ Zone LPS

Timed LPS - _abstraction _ -

Finite LTS
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Parameterised Boolean Equation System

Definition
A PBES is a sequence of equations as defined by the following
grammar:

Ex=0|wX(d:D)=¢)E | (uX(d:D) = ¢)E

where () is the empty PBES and p and v denote the least and
greatest fixpoint, respectively. Each predicate variable X is an
element of some set of variables X and has type D — B. Lastly, d
is a parameter of type D.

v

Example:
vX(mN) = X(n+ 1)V Y(true)
wY (b:B) = Y(—b)

Solution: X(n) is true for all n € N, Y(true) and Y(false) are
false.
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Parallel worlds: generation /instantiation

LPS LTS

disjunctive:

O'X(dZD) = \/I.G,He,-:E,-. C,'(C/7 e,-) N X,-(g,-(d, e,-))
conjunctive:

O'X(dZD) = /\ie,Ve,-:E,-. C,'(d, e,-) = X,-(g,-(d, e,-))
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Parallel worlds: generation /instantiation

LPS LTS

disjunctive:

aX(d:D):\/,E,He,-:E,-. /\X,-(g,-(d. e,-))
conjunctive:

O'X(dZD):/\ielVe,':E,'. :>X,-(g,-(d, e,-))
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Parallel worlds: generation /instantiation

LPS LTS action-based

PBES-SRF state-based

disjunctive:

aX(d:D):\/,E,He,-:E,-. /\X,-(g,-(d. e,-))
conjunctive:

O'X(dZD):/\ielVe,':E,'. :>X,-(g,-(d, e,-))
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Experiments

basic opt pbes-cvc4d

PBES initial node/property solution  |V/] time V| time time
ball game winning impossible false 13 1.04 11/13 0.98 0.27
infinitely often put_ball true 2 0.01 1/2 0.01 t.o.

train gate go(1) at time 20 true 29 11.55 6/31 5.59 0.39
fairness true 19 22.67 5/34 491 X

Fischer (N=3) no deadlock true 65 72.90 64/65 62.66 X
Fischer (N=4) request must serve false o.o.m. 4/38 27.02 X
bakery no deadlock true 23 1.67 23/23 1.80 t.o.
request must serve false 123 62.69 13/81 12.97 0.44

Hesselink cache consistency false o.o.m. 20/2461 1849.82 X
all writes finish false o.om. 12/500 27.99 X

CABP receive infinitely often  true 260 632.86  25/691 66.44 X
trading Xa(1,1) true 8 0.13 5/12 0.08 t.o.
McCarthy M(0,10) true 1633 1299.17  14/419 61.64 X
M(0,9) false 1633 1364.33 116/191 11.89 X

Takeuchi T(3,2,1,3) true o.o.m. 6/142 50.10 X
T(3,2,1,2) false o.om. 62/159 63.37 X

ABP-+buffer branching bisimilar true 132 6.25 131/132 6.45 X
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