| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
|              |      |                  |               |         |

## Solving infinite parity games through bisimulation quotienting Dutch Model Checking Day

### Thomas Neele Joint work with: Tim Willemse and Jan Friso Groote

June 21st, 2018







< □ > < @ > < E > < E > E = のへで 2/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 0●000        | 000  | 00000            | 00            | 00      |
| Parity Game  |      |                  |               |         |

#### A parity game:

- has two players:  $\Diamond$  (even) and  $\Box$  (odd), who move a token;
- is played on a directed graph;
- every node has a priority.

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 0●000        | 000  |                  | 00            | 00      |
| Parity Game  |      |                  |               |         |

- A parity game:
  - has two players:  $\Diamond$  (even) and  $\Box$  (odd), who move a token;
  - is played on a directed graph;
  - every node has a priority.

A parity game is a graph  $(V, \rightarrow, \Omega, \mathcal{P})$ , where:

- V is a set of nodes;
- $\rightarrow \subseteq V \times V$  is a left-total transition relation;
- $\Omega: V \to \mathbb{N}$  is a function that assigns a priority to nodes;
- $\mathcal{P}: \mathcal{V} \to \{\Diamond, \Box\}$  is a function that assigns players to nodes.



・ロト ・ 日本 ・ モト ・ モト 三日本 のへで 3/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 00000            | 00            | 00      |
| Winning pat  | hs   |                  |               |         |

An infinite path  $\pi$ , called a *play*, is winning for a player  $\Diamond$  if the minimal priority that occurs infinitely often on  $\pi$  is even. Otherwise, it is winning for  $\Box$ .

4 日 ト 4 日 ト 4 王 ト 4 王 ト 王 王 9 9 9 4/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 00000            | 00            | 00      |
| Winning pa   | ths  |                  |               |         |

An infinite path  $\pi$ , called a *play*, is winning for a player  $\Diamond$  if the minimal priority that occurs infinitely often on  $\pi$  is even. Otherwise, it is winning for  $\Box$ .

Find winning plays:





| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  |                  | 00            | 00      |
| Strategies   |      |                  |               |         |

A strategy  $S_p: V \to V$  for a player p is a partial-function that is only defined on the vertices of p.

< □ > < @ > < E > < E > E = のへで 5/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 000●0        | 000  | 00000            | 00            | 00      |
| Strategies   |      |                  |               |         |

A strategy  $S_p: V \to V$  for a player p is a partial-function that is only defined on the vertices of p.

#### Definition

A play  $\pi = v_0 v_1 \dots$  is *consistent* with a strategy S iff for all  $v_i$  such that  $S(v_i)$  is defined,  $S(v_i) = v_{i+1}$ .

< □ > < @ > < 볼 > < 볼 > 트림을 오오 5/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 000●0        | 000  | 00000            | 00            | 00      |
| Strategies   |      |                  |               |         |

A strategy  $S_p: V \to V$  for a player p is a partial-function that is only defined on the vertices of p.

#### Definition

A play  $\pi = v_0 v_1 \dots$  is *consistent* with a strategy S iff for all  $v_i$  such that  $S(v_i)$  is defined,  $S(v_i) = v_{i+1}$ .

#### Definition

A strategy S is a winning strategy in vertex v iff all plays starting in v that are consistent with S are winning.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ■ ● ○ ○ 5/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 00000            | 00            | 00      |
| Strategies   |      |                  |               |         |

A strategy  $S_p: V \to V$  for a player p is a partial-function that is only defined on the vertices of p.

#### Definition

A play  $\pi = v_0 v_1 \dots$  is *consistent* with a strategy S iff for all  $v_i$  such that  $S(v_i)$  is defined,  $S(v_i) = v_{i+1}$ .

#### Definition

A strategy S is a winning strategy in vertex v iff all plays starting in v that are consistent with S are winning.

#### Definition

A vertex v is won by a player p iff there is a winning strategy for p in v.

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 0000●        | 000  | 00000            | 00            | 00      |
| Examples     |      |                  |               |         |

Find winning strategies:





<ロ > < 母 > < 臣 > < 臣 > 王目目 のへで 6/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 0000●        | 000  | 00000            | 00            | 00      |
| Examples     |      |                  |               |         |

Find winning strategies:





<ロト < 母 > < 臣 > < 臣 > 王目 の Q の 6/18



- A *Boolean equation system* is a sequence of fixpoint equations over Boolean variables.
- A BES in *standard recursive form* can be mapped directly to a parity game:
  - One node for every equation;
  - One outgoing transition for every variable in the right-hand side of an equation;
  - Priority is determined by the fixpoint;
  - Player is determined by the operand.





Parameterised Boolean equation system: a BES with data

 $\nu X(b:\mathbb{B}) = X(\neg b) \xrightarrow{instantiation} \nu X_{true} = X_{false}$   $\nu X_{false} = X_{true}$ PBESs can also contain expressions over data:

$$\mu Y(n:\mathbb{N}) = n \leq 2 \wedge Y(n+1) \xrightarrow{\text{instantiation}} \begin{array}{c} \nu Y_0 = Y_1 \\ \nu Y_1 = Y_2 \\ \nu Y_2 = Y_3 \\ \nu Y_3 = \text{false} \\ \nu Y_4 = \text{false} \\ \vdots \end{array}$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 E つ Q C 8/18

|              | loto picture |                  |               |         |
|--------------|--------------|------------------|---------------|---------|
|              | 000          |                  |               |         |
| Introduction | PBES         | Minimising PBESs | Finite proofs | Results |





<ロト < 母 > < 臣 > < 臣 > 王目 の Q の g/ 18

| Introduction<br>00000 |  | PBES<br>000 | Minimising PBESs<br>●0000 | Finite proofs<br>00 | Results<br>00 |
|-----------------------|--|-------------|---------------------------|---------------------|---------------|
|                       |  | <u> </u>    |                           |                     |               |

### Bisimulation for parity games

#### Definition

Let  $G = (V, \rightarrow, \Omega, \mathcal{P})$  be a parity game. Then, a relation  $R \subseteq V \times V$  is a bisimulation relation if for all *s* R *t*:

• 
$$\Omega(s) = \Omega(t)$$
 and  $\mathcal{P}(s) = \mathcal{P}(t)$ ;

- for all  $s \rightarrow s'$  there is a  $t \rightarrow t'$  such that s' R t'; and
- for all  $t \to t'$  there is a  $s \to s'$  such that s' R t'.

Two nodes s and t are bisimilar  $(s \Leftrightarrow t)$  iff there is an R such that s R t.

| Distantian minimization |      |                  |               |         |  |  |
|-------------------------|------|------------------|---------------|---------|--|--|
| Introduction            | PBES | Minimising PBESs | Finite proofs | Results |  |  |
| 00000                   | 000  | o●ooo            | 00            | 00      |  |  |

#### Bisimulation minimisation



<ロ><(回)><(目)><(目)><(目)><(目)><(目)><(日)><(日)><(日)><(1)/18

| Ricimulation minimization |      |                  |               |         |  |  |
|---------------------------|------|------------------|---------------|---------|--|--|
| 00000                     | 000  | 00000            | 00            | 00      |  |  |
| Introduction              | PBES | Minimising PBESs | Finite proofs | Results |  |  |





After merging bisimilar nodes:



| Minimal g    | ame genera | ation            |               |         |
|--------------|------------|------------------|---------------|---------|
| Introduction | PBES       | Minimising PBESs | Finite proofs | Results |
| 00000        | 000        | 00●00            | 00            | 00      |



|              | game genera |                  |               |         |
|--------------|-------------|------------------|---------------|---------|
| Introduction | PBES        | Minimising PBESs | Finite proofs | Results |
| 00000        | 000         | 00●00            | 00            | 00      |



|              | game genera |                  |               |         |
|--------------|-------------|------------------|---------------|---------|
| Introduction | PBES        | Minimising PBESs | Finite proofs | Results |
| 00000        | 000         | 00●00            | 00            | 00      |



|              | game genera |                  |               |         |
|--------------|-------------|------------------|---------------|---------|
| Introduction | PBES        | Minimising PBESs | Finite proofs | Results |
| 00000        | 000         | 00●00            | 00            | 00      |



| Introduction | PBES       | Minimising PBESs | Finite proofs | Results |
|--------------|------------|------------------|---------------|---------|
| 00000        | 000        | 00●00            | 00            | 00      |
| Minimal g    | ame genera | ation            |               |         |



| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 000●0            | 00            | 00      |
| Some conce   | pts  |                  |               |         |

- block: set of nodes
- partition: set of pairwise disjunct blocks. The union over the blocks is equal to *V*.

| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |

V

< □ > < @ > < ≧ > < ≧ > ■目目 のへで 14/18

| Introduction | PBES        | Minimising PBESs | Finite proofs | Results |
|--------------|-------------|------------------|---------------|---------|
| 00000        | 000         | 0000●            |               | 00      |
| Refinement   | algorithm : | 1                |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES      | Minimising PBESs | Finite proofs | Results |
|--------------|-----------|------------------|---------------|---------|
| 00000        | 000       | 0000●            | 00            | 00      |
| Refinement   | algorithm |                  |               |         |



| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  |                  | ●0            | 00      |
| Limitations  |      |                  |               |         |

• Partition refinement does not terminate when the bisimulation quotient is infinite.

<ロ > < 回 > < 臣 > < 臣 > 王 = の Q C 15/18

• Only a small part of the system might be relevant as witness/counter-example.

Solution: search for winning subgame, refine only those blocks.

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 00000            | ⊙●            | 00      |
| Proof searcl | ning |                  |               |         |

Situation:

- Partition is not yet stable;
- The wining strategy for ◊ from the initial node does not involve B<sub>3</sub>.



16/18

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 00000            | ⊙●            | 00      |
| Proof searcl | ning |                  |               |         |

Situation:

- Partition is not yet stable;
- The wining strategy for ◊ from the initial node does not involve B<sub>3</sub>.



| Introduction | PBES  | Minimising PBESs | Finite proofs | Results |
|--------------|-------|------------------|---------------|---------|
| 00000        | 000   | 00000            | ⊙●            | 00      |
| Proof searc  | ching |                  |               |         |

#### Theorem

If a winning subgame is stable wrt to itself, then this subgame is a valid witness/counter-example.



| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
| 00000        | 000  | 00000            | 00            | ●○      |
| Conclusion   |      |                  |               |         |

- Scalability increased through continuous searching for evidence.
- Approach is more generic than other symbolic approaches for PBESs.
- We can now model check all properties from the modal mu calculus on systems with infinite data domains.
- We can check equivalence of systems with infinite data through lpsbisim2pbes.

Future investigation:

- Find an optimal winning subgame.
- Weaker equivalence relation: idempotence-identifying bisimulation, simulation equivalence.

| Introduction | PBES | Minimising PBESs | Finite proofs | Results |
|--------------|------|------------------|---------------|---------|
|              |      |                  |               | 00      |

# Thank you

### Abstraction on different levels

Appendix

- Sep 2016 to July 2017: on model level.
- This talk: on problem level.



### Parameterised Boolean Equation System

#### Definition

A PBES is a sequence of equations as defined by the following grammar:

$$\mathcal{E} ::= \emptyset \mid (\nu X(d:D) = \phi) \mathcal{E} \mid (\mu X(d:D) = \phi) \mathcal{E}$$

where  $\emptyset$  is the empty PBES and  $\mu$  and  $\nu$  denote the least and greatest fixpoint, respectively. Each *predicate variable X* is an element of some set of variables  $\mathcal{X}$  and has type  $D \rightarrow B$ . Lastly, d is a parameter of type D.

Example:

$$u X(n:\mathbb{N}) = X(n+1) \lor Y(true)$$
  
 $\mu Y(b:\mathbb{B}) = Y(\neg b)$ 

Solution: X(n) is true for all  $n \in \mathbb{N}$ , Y(true) and Y(false) are false.

#### Appendix 00●0

### Parallel worlds: generation/instantiation



#### LPS:

 $P(d:D) = \sum_{i \in I} \sum_{e_i: E_i} c_i(d, e_i) \rightarrow a_i(f_i(d, e_i)) \cdot P(g_i(d, e_i))$ 

・ ・ ● ・ ・ E ・ E = の へ 21/18

### Parallel worlds: generation/instantiation



LPS:

 $P(d:D) = \sum_{i \in I} \sum_{e_i: E_i} c_i(d, e_i) \rightarrow a_i(f_i(d, e_i)) \cdot P(g_i(d, e_i))$ 

disjunctive:

$$\sigma X(d:D) = \bigvee_{i \in I} \exists e_i: E_i. c_i(d, e_i) \land X_i(g_i(d, e_i))$$
  
conjunctive:

$$\sigma X(d:D) = \bigwedge_{i \in I} \forall e_i: E_i. c_i(d, e_i) \Rightarrow X_i(g_i(d, e_i))$$

・ ・ ● ・ ・ E ・ E = の へ 21/18

### Parallel worlds: generation/instantiation



LPS:

 $P(d:D) = \sum_{i \in I} \sum_{e_i: E_i} c_i(d, e_i) \to a_i(f_i(d, e_i)) \cdot P(g_i(d, e_i))$ 

disjunctive:

 $\sigma X(d:D) = \bigvee_{i \in I} \exists e_i : E_i . c_i(d, e_i) \land X_i(g_i(d, e_i))$ conjunctive:

 $\sigma X(d:D) = \bigwedge_{i \in I} \forall e_i: E_i. c_i(d, e_i) \Rightarrow X_i(g_i(d, e_i))$ 

・ ・ ● ・ ・ E ・ E = の へ 21/18

### Parallel worlds: generation/instantiation



・ ・ ● ・ ・ E ・ E = の へ 21/18

disjunctive:

 $\sigma X(d:D) = \bigvee_{i \in I} \exists e_i: E_i. c_i(d, e_i) \land X_i(g_i(d, e_i))$ conjunctive:

 $\sigma X(d:D) = \bigwedge_{i \in I} \forall e_i: E_i. c_i(d, e_i) \Rightarrow X_i(g_i(d, e_i))$ 

### Experiments

| PBES          | initial node/property     | solution | basic |         | opt     |         | pbes-cvc4 |
|---------------|---------------------------|----------|-------|---------|---------|---------|-----------|
|               |                           |          | V     | time    | V       | time    | time      |
| ball game     | winning impossible        | false    | 13    | 1.04    | 11/13   | 0.98    | 0.27      |
|               | infinitely often put_ball | true     | 2     | 0.01    | 1/2     | 0.01    | t.o.      |
| train gate    | go(1) at time 20          | true     | 29    | 11.55   | 6/31    | 5.59    | 0.39      |
|               | fairness                  | true     | 19    | 22.67   | 5/34    | 4.91    | X         |
| Fischer (N=3) | no deadlock               | true     | 65    | 72.90   | 64/65   | 62.66   | X         |
| Fischer (N=4) | request must serve        | false    |       | o.o.m.  | 4/38    | 27.02   | X         |
| bakery        | no deadlock               | true     | 23    | 1.67    | 23/23   | 1.80    | t.o.      |
|               | request must serve        | false    | 123   | 62.69   | 13/81   | 12.97   | 0.44      |
| Hesselink     | cache consistency         | false    |       | o.o.m.  | 20/2461 | 1849.82 | X         |
|               | all writes finish         | false    |       | o.o.m.  | 12/500  | 27.99   | X         |
| CABP          | receive infinitely often  | true     | 260   | 632.86  | 25/691  | 66.44   | X         |
| trading       | Xa(1,1)                   | true     | 8     | 0.13    | 5/12    | 0.08    | t.o.      |
| McCarthy      | M(0,10)                   | true     | 1633  | 1299.17 | 14/419  | 61.64   | X         |
|               | M(0,9)                    | false    | 1633  | 1364.33 | 116/191 | 11.89   | X         |
| Takeuchi      | T(3,2,1,3)                | true     |       | o.o.m.  | 6/142   | 50.10   | X         |
|               | T(3,2,1,2)                | false    |       | o.o.m.  | 62/159  | 63.37   | ×         |
| ABP+buffer    | branching bisimilar       | true     | 132   | 6.25    | 131/132 | 6.45    | ×         |