Solving infinite parity games through bisimulation quotienting

Dutch Model Checking Day

Thomas Neele
Joint work with: Tim Willemse and Jan Friso Groote

June 21st, 2018

Model checking with mCRL2

Parity Game

A parity game:

- has two players: \diamond (even) and \square (odd), who move a token;
- is played on a directed graph;
- every node has a priority.

Parity Game

A parity game:

- has two players: \diamond (even) and \square (odd), who move a token;
- is played on a directed graph;
- every node has a priority.

Definition

A parity game is a graph $(V, \rightarrow, \Omega, \mathcal{P})$, where:

- V is a set of nodes;
- $\rightarrow \subseteq V \times V$ is a left-total transition relation;
- $\Omega: V \rightarrow \mathbb{N}$ is a function that assigns a priority to nodes;
- $\mathcal{P}: V \rightarrow\{\diamond, \square\}$ is a function that assigns players to nodes.

Winning paths

Definition

An infinite path π, called a play, is winning for a player \diamond if the minimal priority that occurs infinitely often on π is even. Otherwise, it is winning for \square.

Winning paths

Definition

An infinite path π, called a play, is winning for a player \diamond if the minimal priority that occurs infinitely often on π is even.
Otherwise, it is winning for \square.

Find winning plays:

Strategies

Definition

A strategy $S_{p}: V \rightarrow V$ for a player p is a partial-function that is only defined on the vertices of p.

Strategies

Definition

A strategy $S_{p}: V \rightarrow V$ for a player p is a partial-function that is only defined on the vertices of p.

Definition

A play $\pi=v_{0} v_{1} \ldots$ is consistent with a strategy S iff for all v_{i} such that $S\left(v_{i}\right)$ is defined, $S\left(v_{i}\right)=v_{i+1}$.

Strategies

Definition

A strategy $S_{p}: V \rightarrow V$ for a player p is a partial-function that is only defined on the vertices of p.

Definition

A play $\pi=v_{0} v_{1} \ldots$ is consistent with a strategy S iff for all v_{i} such that $S\left(v_{i}\right)$ is defined, $S\left(v_{i}\right)=v_{i+1}$.

Definition

A strategy S is a winning strategy in vertex v iff all plays starting in v that are consistent with S are winning.

Strategies

Definition

A strategy $S_{p}: V \rightarrow V$ for a player p is a partial-function that is only defined on the vertices of p.

Definition

A play $\pi=v_{0} v_{1} \ldots$ is consistent with a strategy S iff for all v_{i} such that $S\left(v_{i}\right)$ is defined, $S\left(v_{i}\right)=v_{i+1}$.

Definition

A strategy S is a winning strategy in vertex v iff all plays starting in v that are consistent with S are winning.

Definition

A vertex v is won by a player p iff there is a winning strategy for p in V.

Examples

Find winning strategies:

Examples

Find winning strategies:

From parity game to BES

- A Boolean equation system is a sequence of fixpoint equations over Boolean variables.
- A BES in standard recursive form can be mapped directly to a parity game:
- One node for every equation;
- One outgoing transition for every variable in the right-hand side of an equation;
- Priority is determined by the fixpoint;
- Player is determined by the operand.

$$
\begin{aligned}
\mu X_{1} & =X_{2} \\
\nu X_{2} & =X_{1} \vee X_{3} \\
\nu X_{3} & =X_{3} \wedge X_{4} \\
\mu X_{4} & =X_{4}
\end{aligned}
$$

Generalizing to PBES

Parameterised Boolean equation system: a BES with data

$$
\nu X(b: \mathbb{B})=X(\neg b) \quad \xrightarrow{\text { instantiation }} \quad \begin{aligned}
& \nu X_{\text {true }}=X_{\text {false }} \\
& \nu X_{\text {false }}=X_{\text {true }}
\end{aligned}
$$

PBESs can also contain expressions over data:

$$
\mu Y(n: \mathbb{N})=n \leq 2 \wedge Y(n+1) \xrightarrow{ } \xrightarrow{\nu Y_{0}}=Y_{1}, ~ \begin{aligned}
& \nu Y_{1}=Y_{2} \\
& \\
& \\
& \nu Y_{2}=Y_{3} \\
& \nu Y_{3}=\text { false } \\
& \\
& \\
& \nu Y_{4}=\text { false }
\end{aligned}
$$

The complete picture

Bisimulation for parity games

Definition

Let $G=(V, \rightarrow, \Omega, \mathcal{P})$ be a parity game. Then, a relation $R \subseteq V \times V$ is a bisimulation relation if for all $s R t$:

- $\Omega(s)=\Omega(t)$ and $\mathcal{P}(s)=\mathcal{P}(t) ;$
- for all $s \rightarrow s^{\prime}$ there is a $t \rightarrow t^{\prime}$ such that $s^{\prime} R t^{\prime}$; and
- for all $t \rightarrow t^{\prime}$ there is a $s \rightarrow s^{\prime}$ such that $s^{\prime} R t^{\prime}$.

Two nodes s and t are bisimilar ($s \leftrightarrows t$) iff there is an R such that s $R t$.

Bisimulation minimisation

Bisimulation minimisation

After merging bisimilar nodes:

Minimal game generation

Some concepts

- block: set of nodes
- partition: set of pairwise disjunct blocks. The union over the blocks is equal to V.

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.
V

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.
V

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.
V

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.

Limitations

- Partition refinement does not terminate when the bisimulation quotient is infinite.
- Only a small part of the system might be relevant as witness/counter-example.

Solution: search for winning subgame, refine only those blocks.

Proof searching

Situation:

- Partition is not yet stable;
- The wining strategy for \diamond from the initial node does not involve B_{3}.

Proof searching

Situation:

- Partition is not yet stable;
- The wining strategy for \diamond from the initial node does not involve B_{3}.

Proof searching

Theorem

If a winning subgame is stable wrt to itself, then this subgame is a valid witness/counter-example.

Conclusion

- Scalability increased through continuous searching for evidence.
- Approach is more generic than other symbolic approaches for PBESs.
- We can now model check all properties from the modal mu calculus on systems with infinite data domains.
- We can check equivalence of systems with infinite data through lpsbisim2pbes.

Future investigation:

- Find an optimal winning subgame.
- Weaker equivalence relation: idempotence-identifying bisimulation, simulation equivalence.

Thank you

Abstraction on different levels

- Sep 2016 to July 2017: on model level.
- This talk: on problem level.

Parameterised Boolean Equation System

Definition

A PBES is a sequence of equations as defined by the following grammar:

$$
\mathcal{E}::=\emptyset|(\nu X(d: D)=\phi) \mathcal{E}|(\mu X(d: D)=\phi) \mathcal{E}
$$

where \emptyset is the empty PBES and μ and ν denote the least and greatest fixpoint, respectively. Each predicate variable X is an element of some set of variables \mathcal{X} and has type $D \rightarrow B$. Lastly, d is a parameter of type D.

Example:

$$
\begin{aligned}
& \nu X(n: \mathbb{N})=X(n+1) \vee Y(\text { true }) \\
& \mu Y(b: \mathbb{B})=Y(\neg b)
\end{aligned}
$$

Solution: $X(n)$ is true for all $n \in \mathbb{N}, Y($ true $)$ and $Y($ false $)$ are false.

Parallel worlds: generation/instantiation

LPS:
$P(d: D)=\sum_{i \in I} \sum_{e_{i}: E_{i}} c_{i}\left(d, e_{i}\right) \rightarrow a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \cdot P\left(g_{i}\left(d, e_{i}\right)\right)$

Parallel worlds: generation/instantiation

LPS:
$P(d: D)=\sum_{i \in I} \sum_{e_{i}: E_{i}} c_{i}\left(d, e_{i}\right) \rightarrow a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \cdot P\left(g_{i}\left(d, e_{i}\right)\right)$

disjunctive:
$\sigma X(d: D)=\bigvee_{i \in I} \exists e_{i}: E_{i} . c_{i}\left(d, e_{i}\right) \wedge X_{i}\left(g_{i}\left(d, e_{i}\right)\right)$
conjunctive:
$\sigma X(d: D)=\bigwedge_{i \in I} \forall e_{i}: E_{i} . c_{i}\left(d, e_{i}\right) \Rightarrow X_{i}\left(g_{i}\left(d, e_{i}\right)\right)$

Parallel worlds: generation/instantiation

LPS:
$P(d: D)=\sum_{i \in I} \sum_{e_{i}: E_{i}} c_{i}\left(d, e_{i}\right) \rightarrow a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \cdot P\left(g_{i}\left(d, e_{i}\right)\right)$

disjunctive:
$\sigma X(d: D)=\bigvee_{i \in I} \exists e_{i}: E_{i} \cdot c_{i}\left(d, e_{i}\right) \wedge X_{i}\left(g_{i}\left(d, e_{i}\right)\right)$
conjunctive:
$\sigma X(d: D)=\bigwedge_{i \in I} \forall e_{i}: E_{i} \cdot c_{i}\left(d, e_{i}\right) \Rightarrow X_{i}\left(g_{i}\left(d, e_{i}\right)\right)$

Parallel worlds: generation/instantiation

$$
\begin{aligned}
& \text { LPS LTS } \\
& \text { action-based } \\
& \text { LPS: } \\
& P(d: D)=\sum_{i \in I} \sum_{e_{i}: E_{i}} c_{i}\left(d, e_{i}\right) \rightarrow a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \cdot P\left(g_{i}\left(d, e_{i}\right)\right)
\end{aligned}
$$

disjunctive:
$\sigma X(d: D)=\bigvee_{i \in I} \exists e_{i}: E_{i} \cdot c_{i}\left(d, e_{i}\right) \wedge X_{i}\left(g_{i}\left(d, e_{i}\right)\right)$
conjunctive:
$\sigma X(d: D)=\bigwedge_{i \in I} \forall e_{i}: E_{i} \cdot c_{i}\left(d, e_{i}\right) \Rightarrow X_{i}\left(g_{i}\left(d, e_{i}\right)\right)$

Experiments

PBES	initial node/property	solution	basic		opt		$\frac{\text { pbes-cvc } 4}{\text { time }}$		
			\|V		time	\|V		time	
ball game	winning impossible	false	13	1.04	11/13	0.98	0.27		
	infinitely often put_ball	true	2	0.01	1/2	0.01	t.o.		
train gate	go(1) at time 20	true	29	11.55	6/31	5.59	0.39		
	fairness	true	19	22.67	5/34	4.91	x		
Fischer ($\mathrm{N}=3$)	no deadlock	true	65	72.90	64/65	62.66	x		
Fischer ($\mathrm{N}=4$)	request must serve	false		o.o.m.	4/38	27.02	x		
bakery	no deadlock	true	23	1.67	23/23	1.80	t.o.		
	request must serve	false	123	62.69	13/81	12.97	0.44		
Hesselink	cache consistency	false		o.o.m.	20/2461	1849.82	x		
	all writes finish	false		o.o.m.	12/500	27.99	x		
CABP	receive infinitely often	true	260	632.86	25/691	66.44	x		
trading	$\mathrm{Xa}(1,1)$	true	8	0.13	5/12	0.08	t.o.		
McCarthy	$\mathrm{M}(0,10)$	true	1633	1299.17	14/419	61.64	x		
	$\mathrm{M}(0,9)$	false	1633	1364.33	116/191	11.89	x		
Takeuchi	T($3,2,1,3$)	true		o.o.m.	6/142	50.10	x		
	T(3,2,1,2)	false		o.o.m.	62/159	63.37	x		
ABP+buffer	branching bisimilar	true	132	6.25	131/132	6.45	x		

