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Model checking with mCRL2
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Parity Game

A parity game:

has two players: ♦ (even) and � (odd), who move a token;

is played on a directed graph;

every node has a priority.

Definition

A parity game is a graph (V ,→,Ω,P), where:

V is a set of nodes;

→⊆ V × V is a left-total transition relation;

Ω : V → N is a function that assigns a priority to nodes;

P : V → {♦,�} is a function that assigns players to nodes.
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Winning paths

Definition

An infinite path π, called a play, is winning for a player ♦ if the
minimal priority that occurs infinitely often on π is even.
Otherwise, it is winning for �.

Find winning plays:
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Strategies

Definition

A strategy Sp : V → V for a player p is a partial-function that is
only defined on the vertices of p.

Definition

A play π = v0v1 . . . is consistent with a strategy S iff for all vi
such that S(vi ) is defined, S(vi ) = vi+1.

Definition

A strategy S is a winning strategy in vertex v iff all plays starting
in v that are consistent with S are winning.

Definition

A vertex v is won by a player p iff there is a winning strategy for p
in v .



5/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Strategies

Definition

A strategy Sp : V → V for a player p is a partial-function that is
only defined on the vertices of p.

Definition

A play π = v0v1 . . . is consistent with a strategy S iff for all vi
such that S(vi ) is defined, S(vi ) = vi+1.

Definition

A strategy S is a winning strategy in vertex v iff all plays starting
in v that are consistent with S are winning.

Definition

A vertex v is won by a player p iff there is a winning strategy for p
in v .



5/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Strategies

Definition

A strategy Sp : V → V for a player p is a partial-function that is
only defined on the vertices of p.

Definition

A play π = v0v1 . . . is consistent with a strategy S iff for all vi
such that S(vi ) is defined, S(vi ) = vi+1.

Definition

A strategy S is a winning strategy in vertex v iff all plays starting
in v that are consistent with S are winning.

Definition

A vertex v is won by a player p iff there is a winning strategy for p
in v .



5/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Strategies

Definition

A strategy Sp : V → V for a player p is a partial-function that is
only defined on the vertices of p.

Definition

A play π = v0v1 . . . is consistent with a strategy S iff for all vi
such that S(vi ) is defined, S(vi ) = vi+1.

Definition

A strategy S is a winning strategy in vertex v iff all plays starting
in v that are consistent with S are winning.

Definition

A vertex v is won by a player p iff there is a winning strategy for p
in v .



6/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Examples

Find winning strategies:

0

v0

2

v2

3

v3

1v1 4 v4

0v0



6/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Examples

Find winning strategies:

0

v0

2

v2

3

v3

1v1 4 v4

0v0



7/ 18

Introduction PBES Minimising PBESs Finite proofs Results

From parity game to BES

A Boolean equation system is a sequence of fixpoint equations
over Boolean variables.

A BES in standard recursive form can be mapped directly to a
parity game:

One node for every equation;
One outgoing transition for every variable in the right-hand
side of an equation;
Priority is determined by the fixpoint;
Player is determined by the operand.

µX1 = X2

νX2 = X1 ∨ X3

νX3 = X3 ∧ X4

µX4 = X4
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Generalizing to PBES

Parameterised Boolean equation system: a BES with data

νX (b:B) = X (¬b)
instantiation−−−−−−−→ νXtrue = Xfalse

νXfalse = Xtrue

PBESs can also contain expressions over data:

µY (n:N) = n ≤ 2 ∧ Y (n + 1)
instantiation−−−−−−−→

νY0 = Y1

νY1 = Y2

νY2 = Y3

νY3 = false

νY4 = false

...
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The complete picture

mCRL2 LPS

µ-calculus formula

PBES PBES-SRF parity game
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Bisimulation for parity games

Definition

Let G = (V ,→,Ω,P) be a parity game. Then, a relation
R ⊆ V × V is a bisimulation relation if for all s R t:

Ω(s) = Ω(t) and P(s) = P(t);

for all s → s ′ there is a t → t ′ such that s ′ R t ′; and

for all t → t ′ there is a s → s ′ such that s ′ R t ′.

Two nodes s and t are bisimilar (s - t) iff there is an R such that
s R t.
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Bisimulation minimisation

0
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After merging bisimilar nodes:

0 3 2



11/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Bisimulation minimisation

0

0

3 2 2-

-

After merging bisimilar nodes:

0 3 2



12/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Minimal game generation

PBES

instantiation

minimization

E
minimal game

generation
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Some concepts

block: set of nodes

partition: set of pairwise disjunct blocks. The union over the
blocks is equal to V .
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Refinement algorithm

Every iteration: refine partition and remove unreachable blocks.
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Limitations

Partition refinement does not terminate when the bisimulation
quotient is infinite.

Only a small part of the system might be relevant as
witness/counter-example.

Solution: search for winning subgame, refine only those blocks.



16/ 18

Introduction PBES Minimising PBESs Finite proofs Results

Proof searching

Situation:

Partition is not yet stable;

The wining strategy for ♦ from the initial node does not
involve B3.
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Proof searching

Theorem

If a winning subgame is stable wrt to itself, then this subgame is a
valid witness/counter-example.
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Conclusion

Scalability increased through continuous searching for
evidence.

Approach is more generic than other symbolic approaches for
PBESs.

We can now model check all properties from the modal mu
calculus on systems with infinite data domains.

We can check equivalence of systems with infinite data
through lpsbisim2pbes.

Future investigation:

Find an optimal winning subgame.

Weaker equivalence relation: idempotence-identifying
bisimulation, simulation equivalence.
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Thank you
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Appendix

Abstraction on different levels

Sep 2016 to July 2017: on model level.

This talk: on problem level.

Timed LPS

Zone LPS

µ-calculus formula

PBES with reals

Finite LTS

Finite BES

abstraction

abstraction

abstraction
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Appendix

Parameterised Boolean Equation System

Definition

A PBES is a sequence of equations as defined by the following
grammar:

E ::= ∅ | (νX (d :D) = φ)E | (µX (d :D) = φ)E

where ∅ is the empty PBES and µ and ν denote the least and
greatest fixpoint, respectively. Each predicate variable X is an
element of some set of variables X and has type D → B. Lastly, d
is a parameter of type D.

Example:

νX (n:N) = X (n + 1) ∨ Y (true)

µY (b:B) = Y (¬b)

Solution: X (n) is true for all n ∈ N, Y (true) and Y (false) are
false.
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Appendix

Parallel worlds: generation/instantiation

LPS LTS

LPS:
P(d :D) =

∑
i∈I

∑
ei :Ei

ci (d , ei )→ ai (fi (d , ei )) · P(gi (d , ei ))

PBES-SRF parity game

disjunctive:
σX (d :D) =

∨
i∈I∃ei :Ei . ci (d , ei ) ∧ Xi (gi (d , ei ))

conjunctive:
σX (d :D) =

∧
i∈I∀ei :Ei . ci (d , ei )⇒ Xi (gi (d , ei ))
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Parallel worlds: generation/instantiation

LPS LTS action-based

LPS:
P(d :D) =

∑
i∈I

∑
ei :Ei

ci (d , ei )→ ai (fi (d , ei )) · P(gi (d , ei ))

PBES-SRF parity game state-based

disjunctive:
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Experiments

basic opt pbes-cvc4

PBES initial node/property solution |V | time |V | time time

ball game winning impossible false 13 1.04 11/13 0.98 0.27
infinitely often put ball true 2 0.01 1/2 0.01 t.o.

train gate go(1) at time 20 true 29 11.55 6/31 5.59 0.39
fairness true 19 22.67 5/34 4.91 7

Fischer (N=3) no deadlock true 65 72.90 64/65 62.66 7

Fischer (N=4) request must serve false o.o.m. 4/38 27.02 7

bakery no deadlock true 23 1.67 23/23 1.80 t.o.
request must serve false 123 62.69 13/81 12.97 0.44

Hesselink cache consistency false o.o.m. 20/2461 1849.82 7

all writes finish false o.o.m. 12/500 27.99 7

CABP receive infinitely often true 260 632.86 25/691 66.44 7

trading Xa(1,1) true 8 0.13 5/12 0.08 t.o.
McCarthy M(0,10) true 1633 1299.17 14/419 61.64 7

M(0,9) false 1633 1364.33 116/191 11.89 7

Takeuchi T(3,2,1,3) true o.o.m. 6/142 50.10 7

T(3,2,1,2) false o.o.m. 62/159 63.37 7

ABP+buffer branching bisimilar true 132 6.25 131/132 6.45 7
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