
Branching bisimulation
reduction of imperative
process algebras

Rob van Glabbeek (Data61 & UNSW)

21 June 2018

Imperative process algebras

An imperative process algebra combines a process algebraic
language with instructions from imperative programming
languages, notably assignment.

Example:

P ::= δ | ε | a(exp1, . . . , expn) | P·Q | P + Q | P‖Q | ∂H(P) | τI (P)

X (exp1, . . . , expn) where X
def
= P

[[var := exp]] |
while ϕ do P od |
if ϕ then P else Q fi

exp ::= 0 | 1 | exp1 + exp2 | exp1 + exp2 | var (var ∈ Vars)
ϕ ::= (exp1=exp2) | ϕ1 ∧ ϕ2 | ¬ϕ | ∀var.ϕ

Example: Algebra of Wireless Networks (AWN) [Fehnker et al.’12]
Example: E-LOTOS [ISO’01] and LNT [Garavel et al.’17]

2 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Semantics of imperative process algebras

A state is given by a pair of a process algebraic expression,
modelling the control state, and a valuation of the variables
maintained by represented process.

ξ, a(exp).P
a(ξ(exp))−−−−−→ ξ,P

ξ, [[var := exp]].P
τ−→ ξ[var := ξ(exp)],P

This gives rise to a transition system of which the transitions are
labelled by actions, and the states by valuations.

3 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Doubly labelled transition systems

An L2TS (over Act and AP) [DV95] is a triple (S ,→,L) with

I S a set (of states),

I → ⊆ S × Act × S , and

I L : S →P(AP).

The special case that AP = ∅ yields an LTS.
The special case that |Act| = 1

(and each state has an outgoing
transition)

yields a Kripke structure.

The transition systems that arise as the semantics of imperative
process algebras can be seen as L2TSs (S ,→,L) with states of
the form (ξ,P), and L (ξ,P) = ξ.

4 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Doubly labelled transition systems

An L2TS (over Act and AP) [DV95] is a triple (S ,→,L) with

I S a set (of states),

I → ⊆ S × Act × S , and

I L : S →P(AP).

The special case that AP = ∅ yields an LTS.
The special case that |Act| = 1 (and each state has an outgoing
transition) yields a Kripke structure.

The transition systems that arise as the semantics of imperative
process algebras can be seen as L2TSs (S ,→,L) with states of
the form (ξ,P), and L (ξ,P) = ξ.

4 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Branching bisimilarity

A branching bisimulation on an L2TS is a symmetric binary
relation R ⊆ S × S such that

I if sRt and s
α−→ s ′ then ∃tpre, t ′ with t =⇒ tpre

(α)−−→ t ′,
sRtpre and s ′Rt ′,

I and if sRt then L (s) = L (t).

s and t are branching bisimilar, s↔b t, if there exists a branching
bisimulation R with sRt.

Here =⇒ is the reflexive-transitive closure of
τ−→

and t
(α)−−→ u means t

α−→ u ∨ (α = τ ∧ t = u).

Restricted to LTSs this is standard branching bisimilarity [GW96].
Restricted to Kripke str. this is divergence-blind stuttering equiv.

5 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Divergence-preserving branching bisimilarity

A divergence-preserving branching bisimulation on an L2TS is a
symmetric binary relation R ⊆ S × S such that

I if sRt and s
α−→ s ′ then ∃tpre, t ′ with t =⇒ tpre

(α)−−→ t ′,
sRtpre and s ′Rt ′,

I and if sRt then L (s) = L (t),

I if sRt and s = s0
τ−→ s1

τ−→ s2
τ−→ . . . then ∃t ′ with t

τ−→ t ′

and skRt ′ for some k ≥ 0.

s and t are divergence-preserving branching bisimilar, s↔∆
b t, if

there exists a d-p branching bisimulation R with sRt.

Here =⇒ is the reflexive-transitive closure of
τ−→

and t
(α)−−→ u means t

α−→ u ∨ (α = τ ∧ t = u).

Restricted to LTSs this is standard d-p br. bis. [GW96,GLT09].
Restricted to Kripke str. this is standard stuttering equiv. [BCG88].

6 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.τ .

1 2
a

3
τ

4 5
a

√

√

.

7 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.τ .

1 2
a

3
τ

4 5
a

√

√

.

7 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.τ .

1 2
a

3
τ

4 5
a

√

√

.

7 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.τ .

1 2
a

3
τ

4 5
a

√

√

.

7 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.τ .

1 2
a

3
τ

4 5
a

√

√

.

7 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

LTL and CTL on LTSs

LTS KS
η

|= ϕ

.

s |=η ϕ

8 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Action versus state-based modelling

• •τ •τ •orange •τ

•
red

• τ• τ• τ• τ

green

.

LTL and CTL without next-state operator: LTL−X and CTL−X

On Kripke structures: s↔∆
b t iff ∀ϕ ∈ CTL−X (s |= ϕ⇔ t |= ϕ).

9 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Action versus state-based modelling

• •τ •τ •orange •τ

•
red

• τ• τ• τ• τ

green

.

LTL and CTL without next-state operator: LTL−X and CTL−X

On Kripke structures: s↔∆
b t iff ∀ϕ ∈ CTL−X (s |= ϕ⇔ t |= ϕ).

9 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Action versus state-based modelling

• •τ •τ •orange •τ

•
red

• τ• τ• τ• τ

green

.

LTL and CTL without next-state operator: LTL−X and CTL−X

On Kripke structures: s↔∆
b t iff ∀ϕ ∈ CTL−X (s |= ϕ⇔ t |= ϕ).

9 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

LTL and CTL on LTSs

LTS KS
η

|= ϕ

.

s |=η ϕ

η should be such that s↔∆
b t ⇔ η(s)↔∆

b η(t).

10 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Converting LTSs to KSs

1 2
a

3
a

4
a

moving right:

1 2

a
3

a
4

a

[DV95]:

1

a
2

a
3

a
4

[vGV06]:

1

ε
2

a
3

aa
4

aaa

.

11 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Converting LTSs to KSs

1 2
a

3
a

4
a

moving right:

1 2

a
3

a
4

a

[DV95]:

1

a
2

a
3

a
4

[vGV06]:

1

ε
2

a
3

aa
4

aaa

.

11 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Converting LTSs to KSs

1 2
a

3
a

4
a

moving right:

1 2

a
3

a
4

a

[DV95]:

1

a
2

a
3

a
4

[vGV06]:

1

ε
2

a
3

aa
4

aaa

.

11 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Converting LTSs to KSs

De Nicola - Vaandrager translation:
Insert a fresh state halfway each visible transition; move its label to
that state.
Do not insert fresh states halfway τ -transitions; drop τ -labels.

Voorhoeve translation:
Unwind process graph (= LTS plus initial state) into a tree.
Label each state with the sequence of visible actions on the unique
path leading to that state.

12 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Preservation of equivalence upon conversion LTS to KS

s↔∆
b t ⇔ ηDV (s)↔∆

b ηDV (t)

s↔b t ⇔ ηDV (s)↔b ηDV (t)

s↔w t 6⇔ ηDV (s)↔w ηDV (t)

s↔∆
b t ⇔ ηV (s)↔∆

b ηV (t)

s↔b t ⇔ ηV (s)↔b ηV (t)

s↔w t ⇔ ηV (s)↔w ηV (t)

13 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Preservation of equivalence upon conversion LTS to KS

s↔∆
b t ⇔ ηDV (s)↔∆

b ηDV (t)

s↔b t ⇔ ηDV (s)↔b ηDV (t)

s↔w t 6⇔ ηDV (s)↔w ηDV (t)

s↔∆
b t ⇔ ηV (s)↔∆

b ηV (t)

s↔b t ⇔ ηV (s)↔b ηV (t)

s↔w t ⇔ ηV (s)↔w ηV (t)

13 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Preservation of equivalence upon conversion LTS to KS

s↔∆
b t ⇔ ηDV (s)↔∆

b ηDV (t)

s↔b t ⇔ ηDV (s)↔b ηDV (t)

s↔w t 6⇔ ηDV (s)↔w ηDV (t)

s↔∆
b t ⇔ ηV (s)↔∆

b ηV (t)

s↔b t ⇔ ηV (s)↔b ηV (t)

s↔w t ⇔ ηV (s)↔w ηV (t)

13 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Converting L2TSs to KSs

Both translations work equally well for L2TSs.

14 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee)

G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee)

G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.

Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee)

G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee) G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee) G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee) G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee) G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee) G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Blocking actions

X
def
= coin.coffee.X

G(coin⇒ Fcoffee) G(coffee⇒ Fcoin)

Valid under progress assumption: one doesn’t stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems

Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X |=B G(coin⇒ Fcoffee) X 6|=B G(coffee⇒ Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose
outgoing transitions all have labels from B.

15 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

Summary

This talk:

I Proposed the concept of an imperative process algebra;

I Pointed out its natural semantics is a L2TS;

I Proposed a definition of (div.-pres) branching bisimilarity on
L2TSs

I — it matches perfectly with CTL−X —;

I Postulated that termination(-like) predicates should be
treated different from observable state-properties;

I Reviewed 2 good ways to translate L2TSs to Kripke structures

I — one preserves (div.-pres) branching bisimilarity; the other
all reasonable equivalence —;

I Made CTL and LTL usable for analysing reactive systems.

16 | Branching bisimulation reduction of imperative process algebras | Rob van Glabbeek (Data61 & UNSW)

