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Imperative process algebras

An imperative process algebra combines a process algebraic
language with instructions from imperative programming
languages, notably assignment.

Example:

P:u= 6|e|alexp,.... exp,) | P-Q| P+ Q| P|Q]|Ou(P)|m(P)
X(expy, ..., exp,) where X %' p
[var :=exp] |
while ¢ do P od |
if © then P else Q fi

exp :=0| 1| exp; +exp, | exp; +exp, | var (var € Vars)

@ = (expy=expy) [ 1 A2 | | Vvar.p

Example: Algebra of Wireless Networks (AWN) [Fehnker et al.'12]
Example: E-LOTOS [ISO'01] and LNT [Garavel et al.'17]




Semantics of imperative process algebras

A state is given by a pair of a process algebraic expression,
modelling the control state, and a valuation of the variables
maintained by represented process.

& a(exp).p 22l ¢ p

¢, [var := exp].P — &[var := &(exp)], P

This gives rise to a transition system of which the transitions are
labelled by actions, and the states by valuations.




Doubly labelled transition systems

An LTS (over Act and AP) [DV95] is a triple (S, —,.%) with
» S a set (of states),
» - CSx ActxS, and
» ¥ S — P(AP).

The special case that AP = () yields an LTS.

The special case that |Act| =1
yields a Kripke structure.

The transition systems that arise as the semantics of imperative
process algebras can be seen as L2TSs (S, —,.%) with states of
the form (&, P), and Z(&, P) = &.




Doubly labelled transition systems

An LTS (over Act and AP) [DV95] is a triple (S, —,.%) with
» S a set (of states),
» - CSx ActxS, and
» ¥ S — P(AP).

The special case that AP = () yields an LTS.

The special case that |Act| = 1 (and each state has an outgoing
transition) yields a Kripke structure.

The transition systems that arise as the semantics of imperative
process algebras can be seen as L2TSs (S, —,.%) with states of
the form (&, P), and Z(&, P) = &.




Branching bisimilarity

A branching bisimulation on an L?TS is a symmetric binary
relation Z C S x S such that

> if st and s -5 s’ then 3t ' with t = tPre (0L ¢/,
SAtP*® and s Zt,

> and if s#Zt then Z(s) = Z(t).

s and t are branching bisimilar, sy, t, if there exists a branching
bisimulation # with sZt.

Here = is the reflexive-transitive closure of —
and tﬂumeanst%u\/(a:T/\t:u).

Restricted to LTSs this is standard branching bisimilarity [GW96].
Restricted to Kripke str. this is divergence-blind stuttering equiv.




Divergence-preserving branching bisimilarity

A divergence-preserving branching bisimulation on an L?TS is a
symmetric binary relation Z C S x S such that

> if st and s -5 s’ then 3Pt/ with t —> tPre (O ¢/,
sAtP® and s’ A,

» and if sZt then Z(s) = Z(t),
> if sZt and s = 59 — 51 — 5o — ... then 3t with t /> t/
and s, Zt' for some k > 0.
s and t are divergence-preserving branching bisimilar, s<:>§ t, if
there exists a d-p branching bisimulation #Z with sZt.

Here = is the reflexive-transitive closure of —
and t {24 ; means t-=uV(ia=1TAt=u).

Restricted to LTSs this is standard d-p br. bis. [GW96,GLT09].
Restricted to Kripke str. this is standard stuttering equiv. [BCG88|.




Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.7.




Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.7.




Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.7.




Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.7.




Termination predicates versus temporal logic predicates

In standard process algebra (ACP, CSP): a = a.7.




LTL and CTL on LTSs
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Action versus state-based modelling
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LTL and CTL without next-state operator: LTL_, and CTL_,




Action versus state-based modelling

T T orange T

A
o
A

. .

LTL and CTL without next-state operator: LTL_, and CTL_,

On Kripke structures: s tiff Vo € CTL_x(s E o & t = ¢).




LTL and CTL on LTSs
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Converting LTSs to KSs
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Converting LTSs to KSs

De Nicola - Vaandrager translation:

Insert a fresh state halfway each visible transition; move its label to
that state.

Do not insert fresh states halfway 7-transitions; drop 7-labels.

Voorhoeve translation:

Unwind process graph (= LTS plus initial state) into a tree.

Label each state with the sequence of visible actions on the unique
path leading to that state.




Preservation of equivalence upon conversion LTS to KS

s t < npv(s) €5 nov(t)

s t < npv(s) b npv(t)
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Preservation of equivalence upon conversion LTS to KS

s t < npv(s) b npv(t)

sy t 4 npv(s) Sw npv(t)

seb t e ny(s) b nv(t)
s t < nv(s) b nu(t)

sy t S nv(s) w nv(t)




Converting L2TSs to KSs

Both translations work equally well for L>TSs.
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Blocking actions
X % coin.coffee.X
G(coin = Fcoffee) G(coffee = Fcoin)

Valid under progress assumption: one doesn't stop without reason.
Progress assumption built in in the definition of LTL/CTL

Conclusion: standard LTL / CTL not suitable for reactive systems
Solution: Postulate a set B of blocking actions

coin could be blocking, and coffee not, for instance

X =g G(coin = Fcoffee) X g G(coffee = Fcoin)

Instead of evaluating LTL / CTL formulas on infinite paths, use
complete paths.

Here a path is complete if it is infinite, or ends in a state whose

outEoing transitions all have labels from B.




Summary

This talk:

>

>

>

Proposed the concept of an imperative process algebra;
Pointed out its natural semantics is a L2TS;

Proposed a definition of (div.-pres) branching bisimilarity on
L2TSs

— it matches perfectly with CTL_, —;

Postulated that termination(-like) predicates should be
treated different from observable state-properties;

Reviewed 2 good ways to translate L2TSs to Kripke structures

— one preserves (div.-pres) branching bisimilarity; the other
all reasonable equivalence —;

Made CTL and LTL usable for analysing reactive systems.




