
Contents 1

Introduction to software architecture

Introduction 7

1 What is software architecture? 8
1.1 A definition 8
1.2 Architecture in the life cycle 8
1.3 Why do we need software architecture? 9
1.4 Software architecture as a discipline 11
1.5 Scope and focus of architecture 11

2 Topics in software architecture 12
2.1 Stakeholders, concerns and requirements 12
2.2 The ISO 25010 quality framework 13
2.3 Describing architectures 14
2.4 Architecture and reuse 16

3 The architect versus the engineer 19
Discussion questions 19

6

Learning unit 1

Introduction to software architecture

I N T R O D U C T I O N

The subject of this course is software architecture. In this first learning
unit, we will explain what software architecture is. You will find out
why we need software architecture and you will see aspects of scien-
tific research that is done on software architecture. You will be intro-
duced to the several topics within the field of software architecture that
will be covered in this course: software architecture as a solution that
balances the concerns of different stakeholders, quality assurance, me-
thods to describe and evaluate architectures, the influence of architec-
ture on reuse, and the life cycle of a system and its architecture. This
learning unit concludes with a comparison between the professions of
software architect and software engineer.

All aspects of software architecture that are introduced in this learning
unit will be treated in more detail in individual learning units.

LEARNING GOALS

After having studied this learning unit, you will be expected to be able
to:
– describe the place of software architecture within the life cycle
– explain the need for an architecture
– describe the responsibilities of a software architect
– explain the relationship between stakeholders and a system’s ar-

chitecture
– describe the role of requirements in software architecture
– explain the role of compromise in creating an architecture
– explain the relationship between architecture and reuse

Study advice
The reading assignments for the textbook and the reader, for all course
units, can be found on the course website.

The course website also provides an indication of the number of hours
which, in our estimation, you will need for each course unit.

7

Open Universiteit Software Architecture

L E A R N I N G C O R E

1 What is software architecture?

1.1 A DEFINITION

Definition 1 (Software architecture) IEEE standard 1471 defines soft-
ware architecture as the fundamental organisation of a system embodied in
its components, their relationships to each other and to the environment and
the principles guiding its design and evolution.

An architecture embodies information about components and their in-
teraction, but omits information about components that does not per-
tain to their interaction. Thus, an architecture is foremost an abstraction
of a system that suppresses details of components that do not affect
the use, the relations and interactions of components. Private details
of components, details that have to do solely with internal implemen-
tation and are not externally visible, are not architectural. In short, an
architecture determines how components interact, not how they are im-
plemented.

Every system has an architecture, but it does not follow that the archi-
tecture is known to anyone. Perhaps the designers of the system are
long gone, perhaps documentation was never produced or perhaps the
source code has been lost.

This shows that an architecture is not the same as a description of an
architecture. While most learning units concern different aspects of ar-
chitectures, one of the learning units is explicitly dedicated to the de-
scription of architectures.

1.2 ARCHITECTURE IN THE LIFE CYCLE

Figure 1.1 shows the life cycle of a system and the place of architec-
ture in the life cycle. Software architecture links requirements analysis
with realisation, and it may be explored and defined incrementally. Its
existence allows one to predict quality aspects before realisation. The
architecture must be stable before major development starts.

An architecture can help evolutionary development, when evolution
is one of the requirements. A software architecture may be seen as a
blueprint and guideline for realisation.

Definition 2 (Architectural conformance) Architectural conformance
is the extent to which the architecture is actually used.

Conformance may be enforced by management. For optimal confor-
mance, an architecture should be well documented. An architecture

8

Learning unit 1 Introduction to software architecture

Demands

Domain model

Architecture
design

Design

Implementation

Production

Standard architectures
COTS software

Existing systems
Higher-level rules

Frameworks
Components

Patterns

Technology
Infrastructure

Configurations

Change requests
Enhancements

FIGURE 1.1 System life cycle

should also state clear principles, for instance, ‘no database access from
the servlet layer’. Architectural conformance should also be maintained
over time.

Architectural decay is the opposite of architectural conformance over time:Architectural decay
it is often the case that software drifts from the original architecture
through maintenance and change operations.

1.3 WHY DO WE NEED SOFTWARE ARCHITECTURE?

Applications are becoming larger and more integrated and are imple-
mented using a wide variety of technologies. The various technologies
and disciplines need to be orchestrated to ensure product quality. Qual-
ity attributes like reliability or usability cannot be analysed at the code
level, but they can be analysed at the software architectural level.

Software architecture has several functions, which we describe below.

1.3.1 Software architecture as a means for communication

In the first place, we need an architecture as a means for communication
among stakeholders.

Definition 3 (Stakeholder) A stakeholder is anyone with a legitimate in-
terest in the construction of a software system. Stakeholders include the cus-
tomer, the end users, the developers, project management and the maintainers,
among others. Stakeholders are representatives from all stages of development,
usage and support.

9

Open Universiteit Software Architecture

stakeholders. A software architecture represents a common high-level
abstraction of a system that can be used by all of the system’s stakehold-
ers as a basis for creating mutual understanding, forming consensus
and communicating with each other [7].

1.3.2 Software architecture as a representation of early design decisions

A second function of software architecture is that it is a representation
of early design decisions. A software architecture is the documentation ofEarly design decisions
the earliest design decisions about a system, and these early decisions
carry weight far out of proportion to their individual gravity with re-
spect to the system’s remaining development, its deployment and its
maintenance life. It is also the earliest point at which the system to be
built can be analysed.

1.3.3 Software architecture as a basis for a work-breakdown structure

Software architecture does not only prescribe the structure of the system
being developed. That structure also becomes engraved in the struc-
ture of the development project. Because the architecture includes the
highest-level decomposition of the system, it is typically used as the
basis for the work-breakdown structure. This dictates units of planning,Work-breakdown
scheduling and budget, and effectively freezes the architecture. De-
velopment groups typically resent relinquishing responsibilities, which
means that it is very difficult to change the architecture once these units
have begun their work.

1.3.4 Software architecture as a means to evaluate quality attributes

It is possible to determine whether the appropriate architectural choices
have been made (i.e. that the system will exhibit its required quality
attributes) before the system is fully developed and deployed, as soft-
ware architecture allows one to predict system qualities. This is further
explained in the learning unit dedicated to architecture evaluation.

1.3.5 Software architecture as a unit of reuse

Another function of software architecture is that it is a transferable ab-
straction of a system. A software architecture constitutes a relatively
small, intellectually graspable model of the structure of a system and
the way in which its components work together. This model is trans-
ferable across systems. In particular, it can be applied to other systems
exhibiting similar requirements and can promote large-scale reuse.

An example of how software architecture promotes large-scale reuse is
the construction of product lines. A software product line is a family ofSoftware product line
software systems that shares a common architecture. The product line
approach is a way to gain quality and save labour.

10

Customers, users, developers as well as maintainers, all are considered

Learning unit 1 Introduction to software architecture

Another example of how software architecture promotes large-scale reuse
is component-based development. Software architecture complements
component-based and services-based development.

Many software engineering methods focus on programming as the prime
activity, with the progress measured in lines of code. Architecture-
based development often focuses on composing or assembling compo-
nents that are likely to have been developed separately or even inde-
pendently from each other.

1.4 SOFTWARE ARCHITECTURE AS A DISCIPLINE

Mary Shaw made software architecture into a discipline with her 1989
article ‘Larger Scale Systems Require Higher Level Abstractions’ [55].
She showed that organising systems on the subsystem and module level
is different from organising code.

The field of software architecture has taken inspiration from other engi-
neering domains, such as architecture and electronics. The concepts of
stakeholders and concerns, analysis and validation, styles and views,
standardisation and reuse, best practices and certification are all well-
known in these domains. However, software is different from the pro-
ducts in all other engineering disciplines. Rather than delivering a fi-
nal product, delivery of software means delivering a blueprint for pro-
ducts. Computers can be seen as fully automatic factories that accept
such blueprints and instantiate them.

The main consequence is that plans can be parameterised, applied re-
cursively, scaled and instantiated any number of times. There are no
reproduction costs. Unfortunately, invisible complexity may lead to un-
reasonable assumptions, for instance about flexibility.

1.5 SCOPE AND FOCUS OF ARCHITECTURE

Scope and focus are two dimensions of software architectures.

Definition 4 (Scope) The scope of a software architecture concerns the
range of applications to which it pertains.

An architecture describes at least a single system or product, such as
a specific version of Microsoft Word. A more general scope is that of a
system family. An example of a system family is the software for medi-
cal imaging used by companies like Philips Medical Systems. This fam-
ily consists of various products that produce images on various media
(computer monitor, photographic film) by means of various techniques
(X-ray, ultrasound, MRI scan), but all of these products are built along
similar architectural lines. The scope may be that of a business unit, of
an organisation or enterprise as a whole or of a domain, or the scope
may be generic.

An example of a domain architecture is a compiler. A compiler gen-
erally consists of several basic elements (the front end, back end, sym-
bol table and such) that behave in a well-known way and are intercon-

11

Open Universiteit Software Architecture

nected in a regular fashion. A person designing a compiler would not
start from scratch, but would begin with this basic domain architecture
in mind when defining the software architecture of this new compiler.

Another aspect in which architectures differ is their focus:Focus
– An application architecture is a blueprint for individual applications,Application architecture

their interactions and their relationships to the business processes of
the organisation. It is built on top of the IT architecture.

– Information architecture is concerned with logical and physical dataInformation architecture
assets and data management resources.

– An IT architecture defines the hardware and software building blocksIT architecture
that make up the overall information system of the organisation. The
business architecture is mapped to the IT architecture. The purpose
of an IT architecture is to enable the company to manage its IT in-
vestment in a way that meets its business needs. It includes hard-
ware and software infrastructure, including database and middle-
ware technologies.

– A business architecture defines the business strategy, governance, or-Business architecture
ganisation and key business processes within an enterprise. The field
of business process reengineering (BPR) focuses on the analysis and
design of business processes; these are not necessarily represented in
an IT system.

2 Topics in software architecture

Topics within the field of software architecture are:
– definition of the solution structure. The solution structure is defined

using concepts such as components and connectors, contracts, frame-
works and services.

– quality assurance, in relation to stakeholders and their concerns. A
rationale explains how a certain decision is related to concerns of
stakeholders. You can use analysis, validation or assessment for this.

– describing architectures. Relevant concepts are viewpoints, models
and views. You can use languages, notations and visualisation.

– architecture and reuse. Relevant concepts are reusable architectures,
architectural styles and patterns. Specification and connection of com-
ponents, standardisation, commercial off-the-shelf (COTS) components,
product lines, redesign of legacy systems and service-oriented archi-
tectures are all related to reuse.

– architecture in the life cycle of a system: a methodology for mainte-
nance and evolution of the architecture is required.

We will introduce these topics in this learning unit; you will read about
them in more detail in later learning units.

2.1 STAKEHOLDERS, CONCERNS AND REQUIREMENTS

Stakeholders
Customers, end users, developers, the developer’s organisation and
those who maintain the system are all examples of stakeholders. An ar-
chitecture must balance the concerns of the different stakeholders.

12

Learning unit 1 Introduction to software architecture

want a system that is easy to understand and performs well on a partic-
ular piece of hardware. Marketing people want to achieve a short time
to market, a low cost of development and an easily customised system.

Definition 5 (Concern) A concern is an interest related to the development,
operation, use or evolution of a system. A concern may be related to function-
ality, quality areas, costs, technology and so forth. A concern is expressed from
the point of view of a stakeholder.

Concerns are translated into requirements. The following are examples
of requirements: providing a certain behaviour at run-time, performing
well on a particular piece of hardware, being easy to customise, achiev-
ing a short time to market, low cost of development and gainfully em-
ploying programmers who have a particular specialty. Requirements
are preferably measurable.

Requirements are very important: it is costly or impossible to repair or
ignore them. Requirements may be contradictory. Speed, flexibility and
reliability for instance, may ask for different solutions. It is therefore
important to prioritise.

The trade-offs between performance and security, between maintain-
ability and reliability and between the cost of initial development and
the cost of future developments, are all manifested in the architecture.
The system’s behaviour on these quality issues is the result of structural
trade-offs made by the developers, and is traditionally undocumented!

Architects must identify and actively engage the stakeholders to so-
licit their needs and expectations. Without such active engagement,
the stakeholders will, at some point, explain to the architects why a
proposed architecture is unacceptable, thus delaying the project. Early
engagement allows architects to understand the constraints of the task,
manage expectations and negotiate priorities.

The architect must understand the nature, source, and priority of these
constraints. This places the architect in a better position to make trade-
offs when conflicts among competing constraints arise, as they inevitably
will.

The architect needs more than just technical skills. Stakeholders will
have to be informed on a continuing basis of why priorities have been
chosen and why some expectations cannot be met. Diplomacy, negoti-
ation and communications skills are essential.

2.2 THE ISO 25010 QUALITY FRAMEWORK

Definition 6 (Quality framework) A quality framework establishes a
terminology for quality attributes (as a common language for negotiation with
and among stakeholders) and also establishes measures for these attributes.

13

All stakeholders have their own concerns. Customers, for example,

Open Universiteit Software Architecture

FIGURE 1.2 Parameters of quality

Figure 1.2 presents the properties that are used as parameters of qual-
ity. Quality must be considered at all phases of design, implementation
and deployment, but different qualities manifest themselves differently
during these phases. For instance, many aspects of usability are not ar-
chitectural: making the user interface clear and easy to use is primarily
a matter of getting the details correct (radio button or checkbox?). These
details matter tremendously to the end user, but they are not architec-
tural.

The quality properties that are important to the requirements are as-
sessed on the basis of the description of an architecture. When analysis
of the description shows that the desired properties will not be fulfilled,
improvements to the architecture are needed. Properties cannot always
be automatically analysed. Sometimes, they cannot be analysed at all or
simply cannot be analysed at this early stage of system design. There-
fore, reviews by experts are also an important method for quality assur-
ance.

The following are techniques for quality assurance: applying specificQuality assurance
measures to design, technology, process and so on, building architec-
tural prototypes, reviews by experts, assessment methods and methods
for automatic analysis (which require suitable models and descriptions).

2.3 DESCRIBING ARCHITECTURES

Quality assessment of architectural decisions requires descriptions of
architectures. An important concept in architecture description is the
notion of viewpoint. Different stakeholders require descriptions of theViewpoint
architecture from different viewpoints: developers, maintainers, end
users, project managers, service engineers, auditors and other architects

14

are interested in different aspects of the architecture.

Models

View

Learning unit 1 Introduction to software architecture

There are several reference models for architectural descriptions that
use different viewpoints, such as the Kruchten 4+1 model [34], the view-
types of Clements et al. [10] or the viewpoints and perspectives of Rozan-
ski and Woods [53].

Several languages are used to describe architectures. Natural languages
and the Unified Modelling Language (UML) [46] are often used, as are
pictures without a formal basis. More formal notations are also used:
Module Interconnection Languages (MILs) and Architecture Descrip-
tion Languages (ADLs). These are names for classes of languages. Some
of these languages will be discussed in the learning unit on describing
and evaluating architectures.

An architecture can be characterized as a set of models. We build mod-
els of complex systems because we cannot comprehend such a system
in its entirety: a model is a simplification o f r eality. We b uild mod-
els to understand the system we are building. Models can be used for
visualisation or specification, as a template for construction or for doc-
umenting decisions. Every model can be expressed at different levels
of precision.

A view is a projection of a model, omitting entities that are irrelevant
from a certain perspective or vantage point. No single model suffices.
Systems are best approached through a small set of nearly independent
models with multiple views.
– Views belonging to the functional viewpoint describe the system’s run-Functional viewpoint

time functional elements and their responsibilities, interfaces and pri-
mary interactions. The functional view of a system defines the archi-
tectural elements that deliver the system’s functionality. These views
document the system’s functional structure—including the key func-
tional elements, their responsibilities, the interfaces they expose and
the interactions between them. Diagrams used in these views model
elements, connectors, interfaces, responsibilities and interactions, for
instance using UML component diagrams.

– Views belonging to the information viewpoint describe the way in whichInformation viewpoint
the architecture stores, manipulates, manages and distributes infor-
mation. This viewpoint concerns both the information structure and
the information flow. DFD’s (Data Flow Diagrams), UML Class dia-
grams, ER (entity-relation) diagrams and so on, for instance are used
as diagrams for these views.

– Views belonging to the concurrency viewpoint describe the concurrencyConcurrency viewpoint
structure of the system, mapping functional elements to concurrency
units to clearly identify the parts of the system that can execute con-
currently, and to show how the model is coordinated and controlled.
This viewpoint considers the systems concurrency and state-related
structure and constraints. UML state diagrams or UML component
diagrams, for instance, can be used as diagrams for these views.

– Views belonging to the development viewpoint describe the architec-Development viewpoint
ture that supports the software development process. Module organ-
isation, standardisation of design and testing, instrumentation, code
structure, dependencies and configuration management are aspects
of this. UML component diagrams with packages, for instance, are

15

used as diagrams for this view.

Open Universiteit Software Architecture

– Views belong to the deployment viewpoint describe the environmentDeployment viewpoint
into which the system will be deployed, including the dependen-
cies the system has on its run-time environment. Specifications of
required hardware, of required software or of network requirements
are aspects of this viewpoint. UML deployment diagrams are used as
diagrams for this view.

– Views belonging to the operational viewpoint describe how the systemOperational viewpoint
will be operated, administered and supported when it is running in
its production environment. Installation and upgrade, functional mi-
gration, data migration, monitoring and control, backup, configura-
tion management and so on are aspects in this viewpoint.

Depending on the nature of the system, some views may be more im-
portant than others. In data-intensive systems, views addressing the in-
formation viewpoint will dominate. In systems which will have many
short release cycles, the deployment viewpoint and the views belonging
to it will be important. In real-time systems, the concurrency viewpoint
will be important.

The choice of what models to create has a profound influence on how
a problem is tackled and a solution is shaped. The models you choose
greatly affect your worldview. If you build a system through the eyes of
a database developer, you will likely focus on entity-relationship mod-
els. If you build a system through the eyes of a structured analyst, you
will likely end up with models that are algorithm-centric, with data
flowing from process to process. If you build a system through the
eyes of an object-oriented developer, you will end up with a system
with an architecture centred around classes and their interactions. Each
worldview leads to a different kind of system, with different costs and
benefits.

2.4 ARCHITECTURE AND REUSE

Architectures are reusable artefacts. Reuse comes in different forms. Ar-
chitectural patterns and styles may be reused. Commercial frameworks
and platforms with infrastructural support are another way of reuse.
One example of a framework is the Struts framework for web applica-
tions using the Model-view-controller pattern [4]. The J2EE platform is
an example of a platform [61].

To enable reuse, architecture standards are necessary, with clear com-
ponent roles. These standards may be aimed at a specific domain, or at
a specific technology.

2.4.1 Product lines

Product lines form an example of reuse-driven development. Figure 1.3Product lines
shows the number of product variants from left to right and the number
of sales per variant from below to above. It shows how the production
of individual cars using traditional craftsmanship (Bugatti) has evolved
into mass production of a single model (Ford Model T), and later to

16

Learning unit 1 Introduction to software architecture

BugattiT-Ford BMW
product variants

sales/variant
CraftsmanshipMass production

Mass customization

FIGURE 1.3 Towards product lines within the automotive industry

mass production and mass customisation, which makes it possible to
produce multiple models in great quantities. Mass customisation in
the automotive industry is comparable to product lines in the software
industry.

Definition 7 (Software product line) A software product line (SPL) is a
set of software-intensive systems that share a common, managed set of func-
tional modules and non-functional features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed manner [9].

Software product line

In other words, a software product line is a family of similar systems.
The commonality of the systems is called the commonality; the variationsCommonality
are called the variability. Requirements for products within a productVariability
line are modelled in a feature model (where feature stands for a re-
quirement from a user’s perspective), which makes it possible to dis-
cern common features for all products within the product line and to
discern features that vary among different products.

Common components or a framework offer the common features; the
variability is offered by application-specific extensions. Domain engi-
neering addresses the systematic creation of domain models and archi-
tectures, leading to common components or frameworks. Application
engineering uses the models and architectures (and the common com-
ponents and frameworks) to build systems.

In the words of the Carnegie Mellon Software Engineering Institute
(SEI) [9]:

What is a Software Product Line?
A software product line (SPL) is a set of software-intensive
systems that share a common, managed set of features that
satisfy the specific needs of a particular market segment or

17

Open Universiteit Software Architecture

mission and that are developed from a common set of core
assets in a prescribed manner.

Why are Software Product Lines Important?
Software product lines are rapidly emerging as a viable and
important software development paradigm that allows com-
panies to realise order-of-magnitude improvements in time
to market, cost, productivity, quality and other business drivers.
Software product line engineering can also enable rapid mar-
ket entry and flexible response and can provide a capability
for mass customisation.

2.4.2 Reverse engineering

Development often involves legacy systems that need to be reused, and
sometimes need to be reorganised.

Definition 8 (Legacy system) A legacy system is an existing computer
system or application program which continues to be used because the user
(typically an organisation) does not want to replace or redesign it.

When we deal with a legacy system, we rarely have up-to-date docu-
mentation. The architecture models often need to be recovered, the data
types transformed and the source code refactored.

Definition 9 (Reverse engineering) The process of recovering the architec-
ture of a legacy system is called reverse engineering.

Reverse engineering is a process of examination; the software system un-Reverse engineering
der consideration is not modified. Doing the latter would make it re-Re-engineering
engineering.

Refactoring means modifying source code without changing its exter-Refactoring
nal behaviour. Refactoring does not fix bugs or add new functionality.
The goal of refactoring is to improve the understandability of the code,
change its structure and design, remove dead code or make it easier to
maintain the code in the future.

An example of a trivial refactoring is changing a variable name into
one that conveys more information, such as from a single character ’i’
to ’interestRate’. A more complex refactoring is to turn code within an
if-block into a subroutine.

Reverse engineering is based on either human cognition or technical
approaches.
– Cognitive strategies are based on how humans understand software.

A human might take a top-down approach to understanding soft-
ware (start at the highest level of abstraction and recursively fill in

18

Learning unit 1 Introduction to software architecture

understanding of the sub parts), a bottom-up approach (start by un-
derstanding the lowest-level components and how these work to-
gether), a model-based approach (if the investigator already has a
mental model of how the system works and tries to deepen the un-
derstanding of certain areas) or an opportunistic approach (any com-
bination of these approaches).

– Technical approaches centre on extracting information from the sys-
tem’s artefacts, including source code, comments, user documenta-
tion, executable models, system descriptions and so forth. Successful
techniques of reverse engineering include extracting cross-reference
information using compiler technology, data flow analysis, profil-
ing to determine execution behaviour, natural language analysis and
source code pattern matching at the architectural level.

3 The architect versus the engineer

Software architecture is a separate domain that requires professionals:
software architects. Whereas an engineer analyses the precise require-
ments of a system, develops a detailed solution and ensures proper im-
plementation and working of a system or a part of a system, a software
architect creates a vision (an architecture), manages stakeholders’ ex-
pectations and maintains the vision.

D I S C U S S I O N Q U E S T I O N S

a Discuss the role of software architecture in open source develop-
ment.

b Do all stakeholder concerns carry equal weight? If not, what criteria
exist for arbitrating among them?

c Where does the analogy between software architecture and building
architecture break down?

d Discuss the role of software architecture with respect to agile me-
thods such as Extreme Programming.

e Figure 1.4 shows an overview of the software architecture of the
OpenOffice suite [47] as it is shown in the documentation. Discuss
which viewpoint(s) this view belongs to.

19

Open Universiteit Software Architecture

FIGURE 1.4 Architecture Overview

20

