
Learning unit 2

Requirements engineering and quality attributes

I N T R O D U C T I O N

Choosing the software architecture for a system is the first step towards
a system that fulfils the requirements. Software requirements, therefore,
are important to the field of software architecture. Software require-
ments engineering is needed to understand and define what problem
needs to be solved. We need to discover, understand, formulate, anal-
yse and agree on what problem should be solved, why such a problem
needs to be solved and who should bear the responsibility of solving
that problem [35].

In this learning unit, we will discuss the concepts of stakeholder and
concern, which are both important with respect to requirements. We
will discuss the different types of requirements and show how to cat-
egorise them. We will show you different ways to elicit requirements
from stakeholders, specify them and validate them. Use cases are of-
ten used for specification of software requirements, and we will discuss
them in more detail. We will also introduce tactics as a strategy to meet
quality requirements.

LEARNING GOALS

After having studied this learning unit, you will be expected to be able
to:
– explain the concepts of stakeholder and concerns
– summarise the different types of requirements
– state the steps to be taken in the requirements engineering process
– describe how use cases can be used to specify functional require-

ments
– describe why concerns have to be prioritised
– describe the relationship between tactics and requirements.

23

Open Universiteit Software Architecture

L E A R N I N G C O R E

1 Important concepts

1.1 STAKEHOLDERS AND CONCERNS

The concepts of stakeholder and concern are defined in the first learning
unit, in definitions 3 and 5.

The following are examples of stakeholders:
– Acquirers are those who decide which system to use.
– Assessors are those who check whether a given system conforms to

needs or constraints.
– Communicators are responsible for training and documentation.
– Developers develop the system.
– Contributors develop or write documentation.
– Committers take decisions in the development process.
– Maintainers fix bugs and evolve the system.
– Suppliers provide components.
– Supporters provide help to users.
– System administrators keep the system running, administer users

and configure the system.
– Testers test the system or parts of the system.
– Users use it.

Customers should be distinguished from end users. The customer paysCustomers
End users for the development; the end user uses the product. The customer is

concerned with costs, often to the point of compromising usability. In
many cases, it is useful to split some of those groups. Users of a content
management system, for instance, may be divided in users who enter
content and users who only consume content.

Concerns differ from requirements: requirements are expressed as prop-Concern
erties that the system should have, while concerns are expressed from
the point of view of a particular stakeholder. A concern may express
the interest that the stakeholder has in the system. The owner, for ex-
ample, may have the concern that using the system will increase his
or her profit. A concern may also express something that worries the
stakeholder. A user, for instance, may have the concern that the sys-
tem should not be more difficult or cumbersome to use than the current
system.

The concerns of different stakeholders are often mutually incompatible.
Examples of such incompatible concerns are users who want the system
to be fast and easy to use versus an owner who wants maximum secu-
rity. Sometimes, the concerns of the same stakeholder are incompatible,
as in the case of an owner who wants a system that is easy to modify
and, at the same time, is built for very low cost. The concerns of the
developing organisation are not the same as those of the customer. A
customer may have already invested in existing architectures, which
may result in constraints with respect to the architecture.

This means that the architecture of a system is usually a compromise or
trade-off that takes incompatible concerns into account. It is important

24

Learning unit 2 Requirements engineering and quality attributes

to document and explicitly prioritise concerns. An architecture is the
earliest artefact that allows the priorities among competing concerns to
be analysed.

Standard architectures and architectural patterns have well-known ef-
fects on the quality attributes of a system. This makes it possible to
reason about the effect of the chosen architecture on the qualities of the
system that are requested by the different stakeholders. Therefore, ar-
chitectural decisions can be analysed at an early stage (before design
starts), in order to determine their impact on the quality attributes of
the system. This analysis is worth doing because it is virtually impossi-
ble to change the architecture at a later stage of development.

1.2 SOFTWARE REQUIREMENTS

The definition of a software requirement given by the IEEE Standard
Glossary of Software Engineering Terminology [30] is:

Definition 10 (Requirement) A software requirement is a condition or
capacity needed by a user to solve a problem or achieve an objective.

Requirements come in three types: functional, non-functional and con-
straints:
– Functional requirements present what the system should do. TheFunctional requirements

rules of an online game are examples of functional requirements.
– Non-functional requirements specify specific qualities the system shouldNon-functional requirements

work with. A possible non-functional requirement for an online
game is that the game should provide an interface that is easy to
understand, or that the response to an action of the user should be
given within less than a certain maximum time.

– Constraints show the limits within which the system should be re-Constraints
alised. For an online game, a constraint could be that it should work
with both Firefox and Internet Explorer, without the need for a plu-
gin.

We will discuss these different types of requirements further on in this
learning unit.

1.3 REQUIREMENTS ENGINEERING

Requirements engineering is a cyclic process involving [35]:Requirements engineering
– domain understanding and elicitation
– evaluation and negotiation
– specification and documentation
– quality assurance: validation and verification.

The KAOS method [35] is a technique for requirements engineering as
a whole. The KAOS method offers techniques for modelling a systemsKAOS method
requirement in the form of goals, conceptual objects, agents, operations,
behaviour and the relations between those entities.

25

Open Universiteit Software Architecture

Definition 11 (Domain understanding) Domain understanding means
to acquire a good understanding of the domain in which the problem is rooted,
and of what the roots of the problem are. [35].

The following aspects are important for domain understanding:
– the organisation within which the current system (which may or

may not already be supported by software) is located (if applicable):
its structure, objective and so on

– the scope of the current system
– the set of stakeholders to be involved
– the strengths and weaknesses of the current system.

Definition 12 (Requirements elicitation) Requirements elicitation is
the activity of discovering candidate requirements and assumptions that will
shape the system-to-be, based on the weaknesses of the current system as they
emerge from domain understanding. [35].

Techniques for requirements elicitation are:
– asking: interview, (structured) brainstorm, questionnaire
– scenario-based analysis: ‘think aloud’, use case analysis, storyboards
– ethnography: active observation
– form and document analysis
– knowledge reuse: reuse requirements from similar systems
– starting from an existing system
– prototyping and mock-ups
– following your own insight.

None of these techniques guarantee ‘correct’ requirements. In fact, it
is impossible to formulate what constitutes a correct requirement. It is
generally advisable to use more than one technique.

Note that stakeholders have concerns that are formulated from their
point of view. These concerns have to be translated into requirements.

Definition 13 (Requirements evaluation) Requirements evaluation is
making informed decisions about issues raised during the elicitation process.
[35].

Negotiation may be required in order to reach a consensus.
– Conflicting requirements must be identified and resolved.
– The risks associated with the system must be assessed and resolved.
– Alternative options must be compared.
– Requirements must be prioritised.

Definition 14 (Requirements specification) Requirements specifica-
tion means rigorous modelling of requirements, to provide formal definitions
for various aspects of the system [41].

26

Learning unit 2 Requirements engineering and quality attributes

A requirements specification document should be:
– as precise as possible: it is the starting point for architecture and

design;
– as readable as possible: it should be understandable for the user.

A requirements specification should also preferably be correct, unam-
biguous, complete, consistent, ranked for importance, verifiable, modi-
fiable and traceable.

Among the techniques used for requirements specification are E-R mod-
eling (Entity-Relationship), the Structured Analysis and Design Tech-
nique (SADT), Finite State Machines, use cases and UML.
– E-R modelling is a semantic data modelling technique, developed asE-R modelling

an extension to the relational database model (to compensate for its
absence of typing and inadequate modelling of relations), not unlike
the UML class diagram.

– SADT was developed in the late 1970s by Ross [52]. It is based onSADT
a data-flow model that views the system as a set of interacting ac-
tivities. As notation it uses rectangles representing system activity,
with four arrows. An arrow from the left signifies input, an arrow
to the right signifies output, an arrow from above signifies control
or database and an arrow from below signifies a mechanism or al-
gorithm.

– Finite state machines show states and transitions, with guards and ac-Finite state machines
tions. A finite state machine models the different states the system
can be in, where a state is characterised by the actions that are en-
abled. Finite state machine modelling is part of UML, in the form of
state diagrams.

– UML incorporates class models, state diagrams and use cases, butUML
not data flow (data flow diagrams mix static and dynamic informa-
tion, and are replaced by activity and collaboration diagrams).

The previously mentioned KAOS method uses goal diagrams that are
based on UML. Use cases will be treated in more detail below.

Definition 15 (Requirements validation) Requirements validation is
concerned with checking the requirements document for consistency, complete-
ness and accuracy ([33]).

Requirements should be validated with stakeholders in order to pin-
point inadequacies with respect to actual needs. [35]

Requirements verification is something else: a mathematical analysis, pos-Requirements verification
sibly automated, of formal specifications for consistency. Verification
only checks consistency; completeness or accuracy cannot be checked
with mathematical analysis. You need user interaction to validate re-
quirements: the requirements document may not reflect the real re-
quirements.

Among the techniques used for requirements validation are:
– reviews (reading, checklists, discussion)

27

Open Universiteit Software Architecture

– prototyping (the process of constructing and evaluating working
models of a system in order to learn about certain aspects of the
required system and/or a potential solution)

– animation (the ability to graphically depict the dynamic behaviour
of a system by interactively going through specification fragments
to follow some scenario [8]).

2 Use cases

Use cases form a technique for specifying functional requirements: useUse cases
cases are helpful when it comes to specifying what the system should
do. A use case captures a contract with the stakeholders of a system
about its behaviour. A use case describes the system’s behaviour under
various conditions, as the system responds to a request from one of the
stakeholders, called the primary actor. Use cases are fundamentally a
description of usage scenarios in textual form.

The following is an example of a use case 1:

Name
Withdraw cash

Brief Description
This use case describes how the Bank Customer uses the ATM to

withdraw money to his/her bank account.

Actors
1 Bank Customer
2 Bank

Primary Actor
Bank Customer

Level
user goal

Stakeholders and Concerns
Users want to be certain that they can get their money, and

that they will not lose money. Bank owner wants to be
certain that no money is lost.

Preconditions
1 There is an active network connection to the Bank.
2 The ATM has cash available.

Main Success Scenario
1. The use case begins when Bank Customer inserts their Bank

Card.
2. Use Case: Validate User is performed.
3. The ATM displays the different alternatives that are

available on this unit. [See Supporting Requirement SR-xxx
for the list of alternatives]. In this case, the Bank
Customer always selects Withdraw Cash.

4. The ATM prompts for an account. [See Supporting Requirement
SR-yyy for account types that shall be supported.]

5. The Bank Customer selects an account.
6. The ATM prompts for an amount.
7. The Bank Customer enters an amount.

1from: http://epf.eclipse.org/wikis/openup/core.tech.common.
extend_supp/guidances/examples/use_case_spec_CD5DD9B1.html

28

Learning unit 2 Requirements engineering and quality attributes

8. Card ID, PIN, amount and account is sent to Bank as a
transaction. The Bank Consortium replies with a go/no go
reply, stating whether the transaction is OK.

9. Money is dispensed.
10. The Bank Card is returned.
11. The receipt is printed.
12. The use case ends successfully.

Extensions
1 Invalid User
If, in step 2 of the basic flow, the use case: Validate User is

not completed successfully, then
1.1. the use case ends with a failure condition.

2 Wrong account
If, in step 8 of the basic flow, the account selected by the

Bank Customer is not associated with this bank card, then
2.1. the ATM shall display the message ’Invalid Account,

please try again’
2.2. the use case resumes at step 4.

3 Wrong amount
If, in step 7 of the basic flow, the Bank Customer enters an

amount that cannot be created with the kind of cash in the
ATM [See Special Requirement WC-1 for valid amounts], then

3.1. the ATM shall display a message indicating that the
amount must be a multiple of the bills on hand, and ask
the Bank Customer to re-enter the amount

3.2. the use case resumes at step 7.
4 Amount Exceeds Withdrawal Limit
If, in step 7 of the basic flow, the Bank Customer enters an

amount that exceeds the withdrawal limit (See Special
Requirement WC-2 for the maximum amount), then

4.1. the ATM shall display a warning message, and ask the Bank
Customer to re-enter the amount

4.2. the use case resumes at step 7.
5 Amount Exceeds Daily Withdrawal Limit
If, in step 8 of the basic flow, the Bank response indicates

that the daily withdrawal limit has been exceeded (this is
determined by the Bank and depends on the specific account)
, then

5.1. the ATM shall display a warning message, and ask the Bank
Customer to re-enter the amount

5.2. the use case resumes at step 7.
6 Insufficient Cash
If, in step 7 of the basic flow, the Bank Customer enters an

amount that exceeds the amount of cash available in the ATM
, then

6.1. the ATM will display a warning message and ask the Bank
Customer to re-enter the amount

6.2. the use case resumes at step 7.
7 No Response from Bank
If, in step 8 of the basic flow, there is no response from the

Bank within three seconds, then
7.1. the ATM will re-try, up to three times
7.2. if there is still no response from the Bank, the ATM

shall display the message ’Work unavailable, try again
later’

7.3. the ATM shall return the card
7.4. the ATM shall indicate that it is closed
7.5. the use case ends with a failure condition.

8 Money Not Removed
If, in step 9 of the basic flow, the money is not removed from

the machine within 15 seconds, then
8.1. the ATM shall issue a warning sound and display the

message ’Please remove cash’
8.2. if there is still no response from the Bank Customer

within 15 seconds, the ATM will re-tract the money and

29

Open Universiteit Software Architecture

note the failure in the log
8.3. the use case ends with a failure condition.

9 Quit
If, at any point prior to step 8 of the basic flow, the Bank

Customer selects Quit, then
9.1. the ATM shall print a receipt indicating that the

transaction was cancelled
9.2. the ATM shall return the card
9.3. the use case ends.

Postconditions
1 Successful Completion
The user has received their cash and the internal logs have

been updated.
2 Failure Condition
The logs have been updated accordingly.

Special Requirements
[SpReq:WC-1] The ATM shall dispense cash in multiples of $20.
[SpReq2:WC-2] The maximum individual withdrawal is $500.
[SpReq:WC-1] The ATM shall keep a log, including date and time,

of all complete and incomplete transactions with the Bank.

The format of a use case description may vary. As you can see, the
format for this use case is the following:

Name:
<Preferably start with a verb>

Brief Description:
<the goal of the use case>

Level:
<user goal or sub-function>

Actors:
<the role names of the actors that are involved>

Actor:
<the one who calls on the system>

Stakeholders and Concerns:
<those who care about this use case, and why>

Preconditions:
<must be met before the use case can take place>

Main Success Scenario:
<the steps in the main case (also called the basic flow)>

Extensions:
<alternative flows>

Postconditions:
<conditions that are met after the use case has taken place>

Special Requirements:
<extra details>

Withdraw
cash

Check
balance

ATM

Customer Main banking
system

FIGURE 2.1 Use cases for an ATM

30

Learning unit 2 Requirements engineering and quality attributes

Several use cases may be combined in a use case diagram. Figure 2.1Use case diagram
shows an example. The line drawn between an actor and a use case is
an association: the participation of an actor in a use case. Instances of
the actor and instances of the use case communicate with each other.
This is the only relationship between actors and use cases.

An actor can be thought of as a role. In Figure 2.1, we see two actors:
the customer and the main banking system. Both actors are associated
with two use cases: withdraw cash and check balance.

Handle claim

Assign claim Register loss

Find policy
holder

<<include>> <<extend>>

<<include>>

FIGURE 2.2 Different levels in use cases

Use cases can be described at different levels:
– A use case at summary level involves multiple user goals and showsSummary level

the context of user goals, the life cycle of user goals or a table of
contents. A use case such as Handle an insurance claim (see
Figure 2.2) is an example of this.

– A use case at user goal level shows a primary actor’s goal in try-User goal level
ing to get work done. An example of a use case on the use level
is Register a loss.

– A sub-function is a step that is needed to carry out a user goal. AnSub-function
example is Find policy holder’s file.

In Figure 2.2, we see three annotations on the relationships between the
different levels. These are:
– An extend relation from a use case A to a use case B indicates that anExtend relation

instance of use case B may be augmented (subject to specific con-
ditions specified in the extension) by the behaviour specified by A.
The behaviour is inserted at the location defined by the extension
point in B, which is referenced by the extend relation.

– A generalisation from a use case C to a use case D indicates that C isGeneralisation
a specialisation of D.

– An include relation from a use case E to a use case F indicates that anInclude relation
instance of use case E will also contain the behaviour as specified by
F. The behaviour is included at the location which is defined in E.
(see [45]).

31

Open Universiteit Software Architecture

active voice and present tense, and describe an actor successfully
achieving a goal.

– Include sub-use cases where appropriate.
– Do not assume or describe specifics of the user interface.
– An actor is not the same as an organisational role: an actor is a per-

son, an organisation, or an external system that plays a role in one
or more interactions with the system.

– Use UML use case diagrams to visualise relations between actors
and use cases or among use cases. Use text to specify use cases
themselves!

– It is hard, and important, to keep track of the various use cases.

3 Three types of requirements

3.1 FUNCTIONAL REQUIREMENTS

The following are pitfalls with respect to functional requirements [37]:
– having an undefined or inconsistent system boundary. The system

boundary defines the scope of the system: what does or does not
belong to the system. The system boundary, therefore, determines
which problems the system should solve (and which problems be-
long to the world outside the system)

– describing use cases from the point of view of the system instead
of describing them from the point of view of the actor. The correct
point of view is that of the actor

– using inconsistent actor names: actors names should be consistent
throughout.

– creating spider webs of actor-to-use case relations: relations between
actors and use cases should be clear

– writing long, excessive, or confusing use case specifications that are
incomprehensible to the customer: use case descriptions should be
clear so that the customer can understand them.

Beware of:
– a ‘shopping cart’ mentality. Stakeholders often have the tendency to

treat requirements as items that can be put into a shopping cart. You
should always make clear that every requirement comes at a price

– the ‘all requirements are equal’ fallacy: architectural requirements
must be prioritised to indicate to the architect, or anyone else, which
requirements are most important to the finished system. No design
trade-offs can be made if all requirements are assigned the same
priority

– stakeholders who will not read use case descriptions because they
find them too technical or too complicated. It is important to ensure
that your stakeholders understand the value of taking the time to
understand the descriptions.

3.2 QUALITY REQUIREMENTS

Quality requirements are the main category of non-functional require-Quality requirements

32

Some advice on how to write use cases:
– A use case is a prose essay. Make the use cases easy to read using

Learning unit 2 Requirements engineering and quality attributes

ments. Quality requirements are important parameters for defining or
assessing an architecture. For example, the architecture of a safety-
critical system will differ from the architecture of a computer game.
Quality requirements may be specified using a software quality model.Software quality model
A software quality model serves as a discussion framework, a scheme
that allows users and developers to discuss different kinds of quality,
to prioritise different kinds of quality and to check the completeness of
quality requirements.

3.2.1 ISO 25010 quality model

The ISO 25010 quality model [31] is the international standard qualityISO 25010 quality model
model. The model classifies software quality in a structured set of fac-
tors.

Every factor is divided into a set of sub-characteristics.
– Functional suitability:

– Functional completeness
– Functional correctness
– Functional appropriateness

– Performance efficiency:
– Time behaviour
– Resource utilisation
– Capacity

– Compatibility:
– Coexistence
– Interoperability

– Usability:
– Appropriateness, recognisably
– Learnability
– Operability
– User error protection
– User interface aesthetics
– Accessibility

– Reliability:
– Maturity
– Availability
– Fault tolerance
– Recoverability

– Security:
– Confidentiality
– Integrity
– Non-repudiation
– Accountability
– Authenticity

33

Open Universiteit Software Architecture

– Modularity
– Reusability
– Analysability
– Modifiability
– Testability

– Portability:
– Adaptability
– Installability
– Replaceability

When using ISO 25010 as a software quality model, keep in mind that
not all 31 quality attributes are equally important. A requirements en-
gineer should prioritise the requirements.

Quality requirements should be measurable. For example, the require-
ment ‘The system should perform well’ is not measurable, but the re-
quirement ‘The response time in interactive use is less than 200 ms’ is
measurable.

3.2.2 Change scenarios

Some quality requirements concern other aspects of the system rather
than functionality. These quality requirements are mainly attributes
from the Maintainability and Portability group, such as Changeability
and Adaptability. These requirements cannot be linked to use cases.

Such quality requirements should be linked to specific change scenar-
ios. By doing that, you avoid being vague. For instance, instead of writ-
ing ‘The system should be very portable’, you should write ‘The soft-
ware can be installed on the Windows, Mac and Unix platforms with-
out changing the source code’. Instead of writing ‘The system should
be changeable’, you should write ‘Functionality that makes it possible
for users to transfer money from savings to a checking account can be
added to the ATM within one month’.

3.3 CONSTRAINTS

Although functional and quality requirements specify the goal, constraintsConstraints
limit the (architectural) solution space. Stakeholders should therefore
not only specify requirements, but also constraints.

The following are possible constraint categories:
– technical constraints, such as platform, reuse of existing systems

and components, use of standards
– financial constraints, such as budgets
– organisational constraints, such as processes, availability of customer
– time constraints, such as deadlines.

34

– Maintainability:

Learning unit 2 Requirements engineering and quality attributes

3.4 SUMMARY OF REQUIREMENTS ENGINEERING

To summarise: requirements engineering is a cyclic process involving
domain understanding and requirements elicitation, evaluation and ne-
gotiation, requirements specification documentation, and quality assur-
ance through requirements validation and verification. Use cases can be
used to describe interaction between actors and the system. ISO 25010
can be used to describe the quality requirements linked to usage sce-
narios (use cases) or change scenarios.

Requirements engineering is necessary to software architects to provide
them with descriptions of:
– the scope
– stakeholders, concerns and their relations
– functional requirements
– quality requirements
– a prioritisation of requirements
– constraints.

4 Tactics

Once determined, the quality requirements provide guidance for archi-
tectural decisions. An architectural decision that influences the qualities
of the product is sometimes called a tactic. Mutually connected tacticsTactic
are bundled together into architectural patterns: schemes for the struc-Architectural patterns
tural organisation of entire systems. We will discuss patterns in detail
in the learning unit about patterns.

As an example, several tactics to achieve recoverability (a sub-characteristicTactics to achieve recoverability
of the Reliability factor in ISO 25010) are shown below:
– Voting between processes running on redundant processors. This

tactic detects only processor faults, not algorithmic errors.
– In a hot restart, only a few processes will experience state loss. In a

cold restart, the entire system loses state and is completely reloaded.
In a hot restart model, the application saves state information about
the current activity of the system. The information is given to the
standby component so it is ready to take over quickly. There may
be redundant standby components that respond in parallel. The
first response is used, the others are discarded.

– Passive redundancy means switching to a standby backup on failure.
This tactic is often used in databases.

– Rollback: a consistent state is recorded in response to specific events,
which makes it possible to go back to the recorded state in case of
an error. This tactic is often used in databases, or with software
installation.

Some tactics for changeability (a sub-characteristic of Maintainability) are:Tactics for changeability
– maintaining semantic coherence: high cohesion within every module,

loose coupling to other modules
– hiding information. Provide public responsibilities through specified

interfaces that are maintained when the program evolves

35

Open Universiteit Software Architecture

producer and consumer; design patterns such as Facade, Mediator,
and Proxy translate syntax. Brokers hide identity.

D I S C U S S I O N Q U E S T I O N S

a Buildability is defined as the ease with which a desired system can be
constructed in a timely manner. Possible tactics include decomposi-
tion into modules with minimal coupling and assignment of mod-
ules to parallel development teams. This results in minimisation of
construction cost and time. Where in ISO 25010 would you locate
this quality?

b Where in ISO 25010 would you locate Scalability?
c Can you think of other important qualities that are not explicitly

mentioned in these models?
d What tactics would you advocate to promote the Authenticity sub-

characteristic?
e What tactics would you advocate to promote the Fault-tolerance sub-

characteristic?
f What tactics would you advocate to promote the Availability sub-

characteristic?

36

– using an intermediary. For example, a data repository uncouples

