
Contents 3

Architectural patterns

Introduction 39

1 Patterns 40
1.1 Why are patterns helpful? 40
1.2 Pattern schema or template 41
1.3 Design patterns and architectural patterns 41

2 Examples of architectural patterns 41
2.1 Layers pattern 42
2.2 Client-Server pattern 44
2.3 Master-Slave pattern 46
2.4 Pipe-Filter pattern 47
2.5 Broker pattern 49
2.6 Peer-to-Peer pattern 51
2.7 Event-Bus pattern 52
2.8 Model-View-Controller pattern 53
2.9 Blackboard pattern 55
2.10 Interpreter pattern 56

3 Applying patterns: KWIC example 56
3.1 Shared data 57
3.2 Layers pattern 57
3.3 Event-Bus 58
3.4 Pipe-filter 58

4 Architectural styles 59
4.1 Choosing a style or a pattern 59

Discussion questions 60

38



Learning unit 3

Architectural patterns

I N T R O D U C T I O N

Before major development starts, we need to choose an architecture that
will provide us with the desired quality attributes. Therefore we need
a way to discuss architectural options and their quality consequences
in advance, before they can be applied to a design. Our decisions at
this stage can only be based on experience with architectural choices in
previous systems. Such architectural experience, reduced to its essence
and no longer cluttered with the details of the systems that produced it,
is recorded in architectural patterns.

Many systems have a similar structure. Distributed systems, for in-
stance, can have a client-server structure, with clients making requests
and a server processing those requests and answering them. When we
observe a similarity, we want to know what is common among the so-
lutions and what variations are possible. We ask in what circumstances
an approach may be used, and how it should be used and customised
for a particular system. An architectural pattern provides an answer to
such questions.

This learning unit introduces architectural patterns and their relation
with design patterns. We will discuss several examples of architectural
patterns, but these examples do not include all architectural patterns:
we will discuss ways to classify them.

Using an example, we will show the effect of different patterns on the
same problem. The example makes clear that you need to be able to
choose the right pattern for a given situation. To make the right choice,
you need experience with different systems. Knowledge about patterns
will help you to expand upon what you learn through experience, be-
cause by learning about patterns, you learn from the experience of oth-
ers.

LEARNING GOALS

After having studied this learning unit, you will be expected to be able
to:
– describe the structure and function of the patterns which are cov-

ered in this unit
– describe the advantages and disadvantages of the patterns which

are covered in this unit
– explain the difference between a style and a pattern
– give examples of applications of the patterns covered in this unit
– name examples of patterns that fit a certain style.

39



Open Universiteit Software Architecture

L E A R N I N G C O R E

1 Patterns

Definition 16 (Architectural pattern) An architectural pattern is a
proven structural organisation schema for software systems.

A pattern is a description of a set of predefined subsystems and their re-
sponsibilities. In a system structured according to the Client-Server pat-
tern, for instance, two subsystems are distinguished: the client (which
can have many instances) and the server (which is unique). The re-
sponsibility of the client may be to show a user-interface to the user; the
responsibility of the server may be to process many questions and to
guard data that are of interest to the client.

A pattern also describes rules and guidelines for organising the rela-
tionships among the subsystems. The relationship between the client
and the server is that the client asks questions and the server answers
them.

Patterns are written by people with lots of experience. Knowledge
which could have remained hidden in the heads of these experienced
people is made explicit in the form of patterns. This enables others
to learn from that experience. Patterns are not constructed by a single
person: they reflect the experience of many developers. They capture
existing, well-proven solutions in software development and help to
promote good design practices.

Architectural patterns are also called Architectural styles, or standard ar-Architectural style
chitectures, but the word architectural style is more often used for a
concept that is less fine-grained than a pattern; several patterns may
therefore belong to the same architectural style. We will explain the
subtle differences later in this learning unit.

1.1 WHY ARE PATTERNS HELPFUL?

When a certain kind of problem is solved by many developers in a sim-
ilar way, and it is generally accepted that this way solves that prob-
lem well, it becomes a pattern. A pattern is therefore something that
addresses a recurring design problem for which a general solution is
known among experienced practitioners: a pattern documents existing
design solutions that have proved their worth.

By writing a pattern, it becomes easier to reuse the solution. Patterns
provide a common vocabulary and understanding of design solutions.
Pattern names become part of a widespread design language. They
remove the need to use a lengthy description to explain a solution to
a particular problem. Patterns are therefore a means for documenting
software architectures. They help maintain the original vision when the
architecture is extended and modified, or when the code is modified
(but they cannot guarantee it).

40



Learning unit 3 Architectural patterns

Patterns support the construction of software with defined properties.
When we design a client-server application, for instance, the server
should not be built in such a way that it initiates communication with
its clients.

Many patterns explicitly address non-functional requirements for soft-
ware systems. For example, the MVC (Model-View-Controller) pattern
supports changeability of user interfaces. Patterns may thus be seen as
building blocks for a more complicated design.

1.2 PATTERN SCHEMA OR TEMPLATE

Patterns are described using a pattern template or pattern schema. All ofPattern template
the many different templates have at least the following components:
– context: the situation giving rise to a problem
– problem: the recurring problem in that context. A solution to the prob-

lem should fulfil requirements, consider constraints and have desir-
able properties. These conditions are called forces. Forces may con-
flict with each other (performance may conflict with extensibility, for
instance). Forces differ in the degree to which they are negotiable

– solution: a proven solution for the problem. The solution is given as a
structure with components and relationships and as a description of
the run-time behaviour. The first description is a static model of the
solution; the second is a dynamic one.

1.3 DESIGN PATTERNS AND ARCHITECTURAL PATTERNS

What is the difference between design patterns and architectural pat-Design pattern
terns? Design patterns offer a common solution for a common prob-
lem in the form of classes working together. They are thus smaller in
scale than architectural patterns, where the components are subsystems
rather than classes.

Design patterns do not influence the fundamental structure of a soft-
ware system. They only affect a single subsystem. Design patterns may
help to implement an architectural pattern. For example, the Observer
pattern (a design pattern) is helpful when implementing a system ac-
cording to the MVC architectural pattern.

The concept of patterns was originally introduced by Christopher Alexan-
der in building architecture, in ‘A pattern language’ [3] (1977) and ‘The
timeless way of building’ [2] (1979). Design patterns first attracted at-
tention in software design and development (the Gang of Four book [22]).Gang of Four
Since then, patterns have been used in more disciplines: there are ana-
lysis patterns, user interface patterns, programming idioms, functional
design patterns and so on.

2 Examples of architectural patterns

In this section, we describe several architectural patterns. For each of
these, we describe the components and connections involved, give one
or more usage examples and discuss advantages, disadvantages and

41

other issues.



Open Universiteit Software Architecture

2.1 LAYERS PATTERN

Layer n  


Layer n - 1  


FIGURE 3.1 Layers of different abstraction levels

The Layers pattern (see Figure 3.1) helps to structure applications thatLayers pattern
can be decomposed into groups of subtasks, each of which is at a partic-
ular level of abstraction. Each layer provides services to the next higher
layer. Services in a layer are implemented using services from the next
lower layer. Service requests are frequently done by using synchronous
procedure calls.

In short, this pattern means that conceptually different issues are im-
plemented separately, and that layers of a higher abstraction level use
services of a lower abstraction level, and not the other way around.

This pattern has the following benefits:
– A lower layer can be used by different higher layers. The TCP layer

from TCP/IP connections, for instance, can be reused without changes
by various applications, such as telnet or FTP.

– Layers make standardisation easier: clearly defined and commonly
accepted levels of abstraction make it possible to develop standard-
ised tasks and interfaces.

– Dependencies are kept local. When a layer shows the agreed inter-
face to the layer above, and expects the agreed interface of the layer
below, changes can be made within the layer without affecting other
layers. This means a developer can test particular layers indepen-
dently of other layers, and can develop them independently as well:
this supports development by teams.

A result of the above is that layers may easily be replaced by a different
implementation.

Example: networking protocols

Figure 3.2 depicts the ISO Open System Interconnect seven layers pro-
tocol (the ISO/OSI protocol). TCP/IP is a simplified version of this pro-ISO/OSI protocol
tocol. FTP and HTTP are examples from the application layer; TCP is the
transport layer and IP is the network layer.

Some other examples of this pattern are:
– In the Java virtual machine, the application in Java consists of in-

structions for the Java virtual machine; the JVM uses services from
the operating system underneath.

42



Learning unit 3 Architectural patterns

Application 


Physical 


Data Link 


Network 


Transport 


Presentation 


Session 


Provides miscellaneous 

protocols for common 

activities 


Structures information and 

attaches semantics 


Provides dialog control 

and synchronization 

facilities 


Breaks messages into 

packets and guarantees 

delivery 


Selects a route from 

sender to receiver 


Detects and corrects 

errors in bit sequences 


Transmits bits 


FIGURE 3.2 Example: networking protocols

– The standard C library is built on Unix system calls.
– Web application systems often show four or more layers: presenta-

tion, application logic, domain logic and data.
– The microkernel architecture has layers on top of the microkernel:

The Mach operating system, the JBoss application server, Windows
NT and QNX are examples of the microkernel architecture.

Issues in the Layers pattern

The most stable abstractions are in the lower layer: a change in the be-
haviour of a layer has no effect on the layers below it. The opposite is
true as well: a change in the behaviour of a lower layer has an effect on
the layers above it, so this should be avoided.

Of course, changes in or additions to a layer without an effect on be-
haviour will not affect the layers above it. Layer services can therefore
be implemented in different ways (think of the Bridge pattern here,
where a dynamic link is maintained between abstraction and imple-
mentation).

Layers can be developed independently. However, defining an abstract
service interface is not an easy job. There may also be performance
overhead due to repeated transformations of data. Furthermore, the
lower layers may perform unnecessary work that is not required by the
higher layers.

There are several variants of the Layers pattern.
– In a Relaxed layered system, each layer may use the services of all layersRelaxed layered system

below it, not only of the next lower layer. This has efficiency benefits,
but leads to a loss of maintainability. Windows’ microkernel architec-

43



Open Universiteit Software Architecture

ture is an example of this variant. The user interface of Eclipse forms
another example: Eclipse makes use of the SWT (the Standard Widget
Toolkit, [16]) and JFace [15]. JFace is a layer on top of the SWT and
offers a higher level of abstraction than SWT, but it is possible to use
classes of both JFace and the SWT in the same application.

– Another variant is to allow callbacks for bottom-up communication:Callback
here, the upper layer registers a callback function with the lower
layer, as a result of which the upper layer is notified when an event
occurs.

2.2 CLIENT-SERVER PATTERN

Client


Server


TCP/IP


FIGURE 3.3 Client-Server pattern

In the Client-Server pattern (see Figure 3.3), a server component providesClient-Server pattern
services to multiple client components. A client component requests
services from the server component. Servers are permanently active,
listening for clients.

The requests are sent beyond process and machine boundaries. This
means that some inter-process communication mechanism is required:
clients and servers may reside on different machines, and thus in differ-
ent processes. In fact, you can see the Client-Server pattern as a variant
of the Layered pattern, crossing process or machine boundaries: clients
form the higher level and the server forms the lower level.

Examples

Examples of the Client-Server pattern are remote database access (client
applications request services from a database server), remote file sys-
tems (client systems access files, provided by the server system; appli-
cations access local and remote files in a transparent manner) or web-
based applications (browsers request data from a web server).

44



Learning unit 3 Architectural patterns

Issues in the Client-Server pattern

Requests are typically handled in separate threads on the server.

Inter-process communication causes overhead. Requests and result data
often have to be transformed or marshalled because they have a differ-
ent representation in client and server and because there is network
traffic.

Distributed systems with many servers with the same function should
be transparent for clients: there should be no need for clients to dif-
ferentiate between servers. When you type in the URL for Google, for
instance, you should not have to know the exact machine that is ac-
cessed (location transparency), the platform of the machine (platform
transparency), the route your request travels and so on. Intermediate
layers may be inserted for specific purposes: caching, security or load
balancing, for instance.

Sometimes, callbacks are needed for event notification. This can also be
seen as a transition to the Peer-to-Peer pattern.

State in the Client-Server pattern

Clients and servers are often involved in ‘sessions’. This can be achieved
in two different ways:
– With a stateless server, the session state is managed by the client. ThisStateless server

client state is sent along with each request. In a web application,
the session state may be stored as URL parameters, in hidden form
fields or by using cookies. This is mandatory for the REST architec-
tural style [18] for web applications, which is described in more detail
in this unit further down; see also the learning unit on REST.

– With a stateful server, the session state is maintained by the server andStateful server
is associated with a client ID.

In the Client-Server pattern, the state influences transactions, fault han-
dling and scalability. Transactions should be atomic, leave a consistent
state and be isolated (not affected by other requests) and durable. These
properties are hard to obtain in a distributed world.

With regard to fault handling, a state maintained by the client means,
for instance, that everything will be lost when the client fails. A client-
maintained state poses security issues as well, because sensitive data
must be sent to the server with each request. Scalability issues may arise
when you handle the server state in-memory: with many clients using
the server at the same time, many states have to be stored in memory at
the same time as well.

REST architecture

REST stands for Representational State Transfer. A REST architecture is
a client-server architecture where clients are separated from servers by
a uniform interface, servers offer addressable resources and commu-

45



Open Universiteit

nication is stateless. A server may be stateful, but in that case, each 
server-state should be addressable (for instance, by a URL). A REST ar-
chitecture is also a layered system: for a client, it is transparent whether 
it is directly connected to a server or through one or more intermedi-
aries.

Web applications with stateless communication follow the rules of this 
pattern.

2.3 MASTER-SLAVE PATTERN

master


slave 3
slave 2
slave 1


FIGURE 3.4 Master-Slave pattern

The Master-Slave pattern (see Figure 3.4) supports fault tolerance andMaster-Slave pattern
parallel computation. The master component distributes the work among
identical slave components and computes a final result from the results
the slaves return. Figure 3.5 shows a sequence diagram of a master dis-
tributing work between slaves.

The Master-Slave pattern is applied, for instance, in process control, in
embedded systems, in large-scale parallel computations and in fault-
tolerant systems.

Client


master
 slave 1
 slave 2


service

splitWork


callSlaves


subService


subService


combineResults


FIGURE 3.5 Sequence diagram for the Master-Slave pattern

46

Software Architecture



Learning unit 3 Architectural patterns

Examples

One application area for the Master-Slave pattern is fault tolerance: the
master delegates the job to be done to several slaves, receives their re-
sults and applies a strategy to decide which result to return to the client.
One possible strategy is to choose the result from the first slave that ter-
minates. Another strategy is to choose the result that the majority of
slaves have computed. This is fail-proof as far as the slaves are con-
cerned (the master can provide a valid result as long as not all slaves
fail), but not with respect to the master. Failure of slaves may be de-
tected by the master using time-outs. Failure of the master means the
system as a whole fails.

Another application area is parallel computing: the master divides a
complex task into a number of identical subtasks. Matrix computation
is an example of this: each row in the product matrix can be computed
by a separate slave.

A third application area is that of computational accuracy. The exe-
cution of a service is delegated to different slaves, with at least three
different implementations. The master waits for the results and then
applies a strategy for choosing the best result (the average, for instance,
or the majority).

Issues in the Master-Slave pattern

The Master-Slave pattern is an example of the divide-and-conquer prin-Divide-and-conquer
ciple. In this pattern, the aspect of coordination is separated from the
actual work: concerns are separated. The slaves are isolated: there is no
shared state. They operate in parallel.

The latency in the master-slave communication can be an issue, for
instance in real-time systems: master and slaves live in different pro-
cesses.

The pattern can only be applied to a problem that is decomposable.

2.4 PIPE-FILTER PATTERN

Filter Filter Source Sink 

FIGURE 3.6 Pipe-Filter pattern

The Pipe-Filter pattern (see Figure 3.6) provides a structure for systemsPipe-Filter pattern
that produce a stream of data. Each processing step is encapsulated in
a filter component (represented by a circle in Figure 3.6). Data is passed
through pipes (represented by the arrows between adjacent filters). The
pipes may be used for buffering or for synchronisation.

47



Open Universiteit Software Architecture

Examples

Unix shell commands are an example of the Pipe-Filter pattern, such as:Unix shell commands

cat file | grep xyz | sort | uniq > out

This pattern divides the task of a system into several sequential process-
ing steps. The steps are connected by the data flow through the system:
the output of one step is the input for the next one. In the example, the
cat filter reads the file and passes the contents of the file to the grep
filter. The grep filter selects lines containing xyz and passes these lines
to the sort filter. The sort filter sorts the lines and passes the sorted
lines to the uniq filter. The uniq filter removes duplicate lines and
passes the result to out.

A filter consumes and delivers data incrementally (another name for
the same concept is lazily): it produces output as soon as it becomes
available and does not wait until all input is consumed.

Another example of the Pipe-Filter pattern are compilers, where a lex-
ical analyser analyses the source file and sends the resulting tokens to
a parser, which sends the resulting parse tree to a semantic analyser,
which produces an augmented syntax tree. That augmented syntax tree
is then used by the code generator to produce code, which may be opti-
mised, and which is ultimately translated into machine code (there may
be more or fewer steps involved).

Lexical

analysis


Interpreter


Parser
 Optimization


Semantic

analysis


Code

generation


ASCII program text
 Machine code


token stream


abstract syntax tree
 bytecode


optimized bytecode


augmented syntax tree


FIGURE 3.7 A compiler

Figure 3.7 shows the components of a compiler. In practice, compil-
ers do not strictly follow the pattern: the steps share global data (the
symbol table).

Issues in the Pipe-Filter pattern

The Pipe-Filter pattern has several useful properties and some disad-
vantages. It is easy to add new filters: a system built according to the

48



Learning unit 3 Architectural patterns

Pipe-Filter pattern is easy to extend. Filters are reusable: it is possi-
ble to build different pipelines by recombining a given set of filters.
Because of the standard interface, filters can easily be developed sepa-
rately, which is another advantage. However, that same interface may
be the cause of overhead because of data transformation: when the in-
put and the output have the form of a string, for instance, and filters
are used to process real numbers, there is a lot of overhead from data
transformation.

Filters do not need to store intermediate results in files and do not need
to share state. Input and output can come from or go to different places.
Another advantage of the Pipe-Filter pattern is that it enables natural
concurrent processing, as input and output consist of streams and fil-
ters start computing when they receive data. Analysis of the behaviour
of a pipe-filter-based system is easy, as it is a simple composition of the
behaviours of the filters involved. When the input is called x, the be-
haviour of the first filter is described by function g, and the behaviour
of the second filter is described by function f, the result of the pipeline
can be described as:

f(g(x))

Because of this composition property, it is possible to analyse through-
put as well (throughput is determined by the slowest filter), and the
possibility of deadlocks. Deadlocks may occur when at least one of the
filters needs all data before producing output. In such a case, the size
of the buffer may be too small and the system may deadlock. The Unix
sort filter is an example of such a filter.

A disadvantage of the Pipe-Filter pattern, aside from the potential for
overhead due to data transformation, is that it is hard to use this pattern
for interactive applications.

2.5 BROKER PATTERN

The Broker pattern is used to structure distributed systems with decou-Broker pattern
pled components, which interact by remote service invocations. Such
systems are very inflexible when components have to know each other’s
location and other details (see Figure 3.8). A broker component is re-
sponsible for the coordination of communication among components:
it forwards requests and transmits results and exceptions.

Servers publish their capabilities (services and characteristics) to a bro-
ker. Clients request a service from the broker, and the broker then redi-
rects the client to a suitable service from its registry.

Using the Broker pattern means that no other component aside from
the broker needs to focus on low-level inter-process-communication.

Interface Definition Language (IDL)

An Interface Definition Language (IDL) is used to give a textual descrip-Interface Definition Language
tion of the interfaces a server offers. Some examples of IDLs are OMG-
IDL (Object Management Group, for CORBA), Open Service Interface

49



Open Universiteit

Definitions, M icrosoft . NET C IL ( Common I ntermediate L anguage) or 
WSDL (Web Service Description Language).

Alternate software may use a binary standard, like Microsoft OLE (Ob-
ject Linking and Embedding) or Universal Network Objects for the OpenOf-
fice s uite. Such a binary description consists of a table with pointers to 
method implementations. It allows clients to call methods indirectly, 
by using those pointers. A binary standard needs support from the 
programming language used.

Examples

UDDI registry


User

application


Web services

host


find


publish


invoke

(SOAP)


FIGURE 3.8 Web services

An example in which the Broker pattern is used is formed by web ser-Web service
vices. In a web services application, as shown in Figure 3.8, the server
with the UDDI registry is the Broker. UDDI stands for Universal Discov-UDDI registry
ery, Description and Integration. It is a repository of web services. The
IDL used for web services is WSDL. SOAP (Simple Object Access Proto-
col) is the transport protocol for messages, written in XML.

Another example of the Broker pattern is CORBA, for cooperation amongCORBA
heterogeneous object-oriented systems, and web services.

Issues in the Broker pattern

The Broker pattern allows dynamic change, addition, deletion and relo-
cation of objects, and it makes distribution transparent to the developer.
It requires standardisation of service descriptions. When two brokers
cooperate, bridges may be needed to hide implementation details, as in
Figure 3.9:

Broker A receives an incoming request for a certain service. It locates
the server responsible for executing the specified service by looking it
up in the repositories. Since the corresponding server is available at
another network node, the broker forwards the request to a remote bro-
ker. The message is passed from broker A to bridge A. This component
is responsible for converting the message from the protocol defined by

50

Software Architecture



Learning unit 3 Architectural patterns

Broker A
 Bridge A
 Bridge B


forward request


find server


Broker B


forward message

pack data


unpack data


find service


Process boundary


FIGURE 3.9 Two brokers cooperating

broker A into a network-specific but common protocol that is under-
standable to the two participating bridges. After the message has been
converted, bridge A transmits the message to bridge B. Bridge B maps
the incoming request from the network-specific format to a broker B-
specific format. Broker B then performs all the actions necessary when
a request arrives, as described in the first step of the scenario.

2.6 PEER-TO-PEER PATTERN

Peer (client 

and server) 


Peer (client 

and server) 


FIGURE 3.10 Peer-to-Peer pattern

The Peer-to-Peer pattern can be seen as a symmetric Client-server pat-Peer-to-Peer pattern
tern: peers may function both as a client, requesting services from other
peers, and as a server, providing services to other peers. A peer may act
as a client or as a server or as both, and it may change its role dynami-
cally.

Both clients and servers in the Peer-to-Peer pattern are typically mul-
tithreaded. The services may be implicit (by means of of a connecting
stream, for instance) instead of being requested by invocation.

Peers acting as a server may inform peers acting as a client of certain

51



Open Universiteit

events. Multiple clients may have to be informed, for instance using an 
event-bus.

Examples

The following are examples of the Peer-to-Peer pattern: the Domain 
Name System for the internet, the distributed search engine Sciencenet, 
multi-user applications like a drawing board and Peer-to-Peer file-sharing 
like Gnutella [60] or BitTorrent.

Issues in the Peer-to-Peer pattern

An advantage of the Peer-to-Peer pattern is that nodes may use the 
capacity of the whole, while bringing in only their own capacity. In 
other words, there is a low cost of ownership through sharing. Also, 
administrative overhead is low, because Peer-to-Peer networks are self-
organising.

The Peer-to-Peer pattern is scalable and resilient to failure of individual 
peers. Also, the configuration o f a  s ystem m ay c hange dynamically: 
peers may come and go while the system is running.

A disadvantage may be that there is no guarantee about quality of ser-
vice, as nodes cooperate voluntarily. For the same reason, security is 
difficult to g uarantee. Performance grows when the number of partic-
ipating nodes grows, which also means that it may be low when there 
are few nodes.

2.7 EVENT-BUS PATTERN

Channel
 Channel


Source
 Source


Listener
 Listener


Bus


FIGURE 3.11 Event-Bus pattern

The Event-Bus pattern is a pattern that deals with events. It works asEvent-Bus pattern
follows: event sources publish messages to particular channels on an
event bus. Event listeners subscribe to particular channels. Listeners areChannel
notified of messages that are published to a channel to which they have
subscribed.

Generation and notification of messages is asynchronous: an event source
simply generates a message and may then go on doing something else;
it does not wait until all event listeners have received the message.

52

Software Architecture



Learning unit 3 Architectural patterns

Channels may be implicit, using the event pattern which is implemented
in the Java event model, for instance. An explicit channel means that a
subscriber subscribes directly to a specific named publisher; an implicit
channel means that a subscriber subscribes to a specific named channel
(to a particular event type in the Java event model) and does not need
to know which producers produce for that channel.

Examples

Edit tool
 Build tool

Unit test

runner


Debug tool


Event bus


code

changed


code

changed


project

recompiled


unit test

ok


project

recompiled


FIGURE 3.12 Software development environment

The Event-Bus pattern is used in process monitoring, in trading systems
and in software development environments as shown in Figure 3.12.
Another example is real-time data distribution middleware like Open-
Splice [50].

Issues in the Event-Bus pattern

The Event-Bus pattern has the following characteristics. New publish-
ers, subscribers and connections can be added easily, possibly dynam-
ically. Delivery issues are important: for the developer of an event lis-
tener, it is important to realise that assumptions about ordering, distri-
bution and timeliness are hard to formulate. Scalability may also be a
problem, as all messages travel through the same event bus: with an
increase in the number of messages, the capacity of the event bus may
turn into a bottleneck.

The Event-Bus pattern also allows several variations. The bus can pro-
vide event transformation services, for instance, or the bus can provide
coordination to script specific tasks.

2.8 MODEL-VIEW-CONTROLLER PATTERN

Controller
 View


Model


input

events
 view control


update

model


change

notification


query

model


FIGURE 3.13 Model-View-Controller

53



Open Universiteit

Model-View-Controller pattern

Observer pattern

In the Model-View-Controller pattern, or MVC pattern (see Figure 3.13), an 
interactive application is divided into three parts: the model contains 
the core functionality and data, the view displays the information to the 
user (more than one view may be defined) and the controller handles 
the input from the user.

The MVC pattern is particularly suitable for multiple graphical user in-
terfaces (GUIs). The model does not depend on the number and kind of 
GUIs, so the pattern allows for easy changes to the ‘look and feel’.

Consistency between model and view is maintained through notifica-
tion. The MVC pattern often uses the Observer pattern. User input can 
invoke a change in the model and a subsequent change in what the 
view displays, as is shown in the sequence diagram of the MVC pattern 
in Figure 3.14.

:Controller
 :Model
 :View


handle  event

update  model


notify


query  model


update  view


display


FIGURE 3.14 Sequence diagram of the MVC pattern

Examples

The MVC pattern was introduced with the Smalltalk programming lan-
guage. It was called a paradigm then: the concept of patterns did not
yet exist.

Examples of the MVC pattern are web presentation (see the learning unit
on patterns for enterprise application architecture) and the document
view architecture of Windows applications, which enables users to, for
instance, see Word or PowerPoint documents in different views (think
of print layout, web layout, overview).

54

Software Architecture



Learning unit 3 Architectural patterns

Issues in the MVC pattern

The MVC pattern makes it easy to have multiple views of the same
model, which can be connected and disconnected at run-time. It is
possible to base an application framework on this pattern. Smalltalk
development environments already did this.

However, the MVC pattern increases complexity. Not all visible ele-
ments lend themselves for separation of model, views and control: menus
and simple text elements may be better off without the pattern. Also,
the pattern potentially leads to many unnecessary updates, where one
user action results in different updates.

View and control are separated, but are very closely related. In prac-
tice, they are often put together. Views and controllers are also closely
coupled to the model. In web applications, a change in the model (for
instance, adding an email address to data about persons) will lead to
a change in the view and controller as well (the web site will have to
show the property and the possibility to change the property should be
added as well).

2.9 BLACKBOARD PATTERN

The Blackboard pattern is useful for problems for which no deterministicBlackboard pattern
solution strategies are available. Several specialised subsystems assem-
ble their knowledge to build a possibly partial or approximate solution.

All components have access to a shared data store, the blackboard.
Components may produce new data objects that are added to the black-
board. Components look for particular kinds of data on the blackboard
and may find these by pattern matching.

KnowledgeSource


updateBlackboard()


Control


loop()

nextSource()


Blackboard


solutions


inspect()

update()


1..*


1


1..*


1


FIGURE 3.15 Blackboard pattern

Examples

Examples of problems to which the Blackboard pattern can be usefully
applied are speech recognition, submarine detection and inference of
the 3D structure of a molecule. Tuple Space systems, like JavaSpaces,
form another example of this pattern.

55



Open Universiteit

Issues in the Blackboard pattern

Adding new applications is easy. Extending the structure of the data 
space is easy as well, but modifying the structure of the data space is 
hard, as all applications are affected. Furthermore, processes have to 
agree on the structure of the shared data space. There may be a need 
for synchronisation and access control.

2.10 INTERPRETER PATTERN

The Interpreter pattern is used for designing a component that interpretsInterpreter pattern
programs written in a dedicated language. The interpreted program
can be replaced easily.

Examples

Rule-based systems such as expert systems, web scripting languages
such as JavaScript (client-side) or PHP (server-side) and Postscript are
examples of the interpreter pattern.

Issues in the Interpreter pattern

Because an interpreted language is generally slower than a compiled
one, performance may be an issue. Furthermore, the ease with which
an interpreted program may be replaced may cause a lack of testing:
stability and security may be at risk as well.

On the other hand, the Interpreter pattern enhances flexibility, because
replacing an interpreted program is indeed easy.

3 Applying patterns: KWIC example

A classic example to illustrate the differences between architectural pat-
terns is the KWIC problem: KeyWord In Context, introduced by Par-KeyWord In Context
nas [48]. In this section, we introduce this problem and show how dif-
ferent architectural patterns can be used to solve it [57].

The keyword in context problem takes a list of lines as input; a line is
composed of words. The output of the solution for the problem should
be all ‘circular shifts’ of all lines, sorted. A circular shift is done by
repeatedly removing the last word and appending it at the beginning
of the line. For example, with the input:

man eats dog

the output should be:

dog man eats
eats dog man
man eats dog

56

Software Architecture



Learning unit 3 Architectural patterns

3.1 SHARED DATA

input 

file 


output 

file 


Input 


Main 


Output 
Sort 
Circular shift 


line-table 
 index 
 index-2 


FIGURE 3.16 KWIC, the classical solution

Traditionally, the KWIC problem is solved using shared data and func-
tional decomposition. Figure 3.16 is a Yourdon structure chart [65] forYourdon structure chart
the classical solution to the KWIC problem. The processing elements are
subroutines and the arrows represent invocations. The small arrows
show which data is added to the shared data.

The Main subroutine invokes functions. The first invoked function
reads the input file and adds a table of lines to the shared data. The
second function performs the circular shift and adds the various shifted
lines to the shared data (as a series of indexes to indicate the order). The
third function then sorts all these lines and adds the resulting lines to
the shared data (once again using indexes). The last invoked function
writes the result to an output file.

3.2 LAYERS PATTERN

Input
 Circular shift
 Sorted Lines
 Output


Input file
 Line storage
 Output file


Main


FIGURE 3.17 KWIC, Layers pattern

An alternate solution to the KWIC problem uses the Layers pattern. In 
Figure 3.17, the elements are objects and the arrows denote method 
calls. No data is shared: communication of data happens exclusively 
through method calls.

The advantage of this solution is that the data is hidden inside the ob-
jects, which means that choices for data structures and algorithms are 
encapsulated in specific components and may therefore be more easily 
changed, by keeping the abstract interfaces as they are.

57



Open Universiteit Software Architecture

sively from objects in the same layer or in the layer directly beneath
them.

3.3 EVENT-BUS

Input
 Circular shift
 Sorter
 Output


Input file
 Output file


Bus


FIGURE 3.18 KWIC, Event Bus pattern

Another solution to the KWIC problem uses the Event-Bus architecture.
Components that are interested in certain events are notified when those
events become available. That means that components are called im-
plicitly.

Figure 3.18 is a dataflow diagram [66]. The elements are processes and
the arrows are data in transfer between processes. The shifter will be in-
voked after the input process has inserted the first line. Data should be
shared between the input process and the circular shift and among the
circular shift, the sorter and the output process. The sorter is invoked
each time the circular shifter has inserted a line in their shared data.

This solution does not offer the advantages of data hiding that the pre-
vious solution offered, but it can be quicker due to possible parallelism.
However, it is a complicated solution, with two shared data spaces and
an event bus.

3.4 PIPE-FILTER

Input
 Circular shift
 Sort
 Output


Input file
 Output file


FIGURE 3.19 KWIC, Pipe-filter pattern

Yet another possible solution to the KWIC problem uses the Pipe-filter
pattern. In this case, a chain of transformers is constructed. For this, we
need a uniform data format.

The same amount of parallelism as was achieved in the Event Bus solu-
tion is possible here, in a less complicated system.

58

The organisation in layers is based on objects calling methods exclu-



Learning unit 3 Architectural patterns

The same amount of data hiding as in the layered object-oriented solu-
tion is possible here as well, with the only drawback being that there is a
uniform data format for the pipes. This makes the filters easier to work
with. However, when different data structures are chosen inside the
filters, there may be overhead because of translation between different
data structures.

4 Architectural styles

Patterns have all been developed bottom-up: for a given problem, af-
ter a certain kind of solution has been used time and time again, this
solution is written down in the form of a pattern.

Architectural styles, on the other hand, have all been formulated top-Architectural styles
down: when you see a software system as a configuration of compo-
nents and connectors, you can classify them according to the nature of
the components and connectors. In general, patterns belong to one of
these styles.

Mary Shaw and Paul Clements have proposed a classification of styles [56],
based on the constituent parts (components and connectors), control is-
sues and data issues. This classification is as follows:
– Interacting processes have their own thread of control. CommunicationInteracting processes

may have the form of asynchronous message passing, implicit invo-
cation through events, or remote procedure calls. When the Event
Bus pattern is implemented with independent processes or with ob-
jects with their own thread of control, this pattern is an example of
this style. The Client-Server pattern and Peer-to-Peer pattern are ex-
amples as well.

– In the Dataflow style, data flows from one component to another, in aDataflow style
stream. The Pipe-filter pattern belongs to this style. Some instances of
the Client-Server pattern also belong to this style, for instance when
a client is used to receive and display streaming audio or video sent
by a server.

– The Data centred style involves central storage of data. An exampleData centred style
of this style is the Blackboard pattern. Again, instances of the Client-
Server pattern may belong to this style. For example, if the main
function of the server is to manage a database and clients are used to
access that database.

– In the Hierarchical style, the system is partitioned into subsystemsHierarchical style
with limited interaction. Patterns within this style are the Interpreter
pattern and the Layers pattern.

– The Call and return style makes the calling process wait for the returnCall and return style
of request. Patterns within this style are the Master-slave and, again,
the Layers pattern. Object-oriented systems without threads are also
an example of this style.

4.1 CHOOSING A STYLE OR A PATTERN

Which architectural pattern is best for a given situation depends on
which requirements have the highest priority, such as:
– Maintainability: how easy or difficult is it to add an additional pro-

59



Open Universiteit Software Architecture

cessing component, for instance to filter certain words? How easy
or difficult is it to change the input format, by adding line numbers,
for example? In the Pipe-Filter pattern for instance, adding a filter is
very easy, but changing the input format might be hard.

– Reusability: can individual components be reused in other systems?
In this case, the Pipe-and-Filter pattern enhances reusability because
of the uniform data format that is used.

– Performance: is the response time small enough? Is overall resource
behaviour (memory usage in this example) acceptable? Patterns that
make use of parallelism, such as the Pipe-Filter pattern and the Event-
Bus pattern, will have better performance. On the other hand, start-
ing a complex system like the Event Bus system, or transforming
data in every filter using a different data structure, may lower per-
formance.

– Explicitness: is it possible to provide feedback to the user? Per stage?
This is not possible in the Pipe-Filter pattern, for instance.

– Fault tolerance: for the KWIC example, there is no difference between
the different solutions, but fault-tolerance would have been enhanced
if a Master-slave pattern been applied.

The list of requirements and their priorities will vary for every system.
No rigid guidelines are available to tell you which pattern will be the
best in every case. Much also depends on the implementation of the
pattern. Independent processes, for example, may be implemented us-
ing threads or using processes on different machines. The balance be-
tween communication and computation, the capacity of the processors
involved and the speed of communication between machines, among
other things, will decide which implementation will have the best per-
formance.

D I S C U S S I O N Q U E S T I O N S

a In a previous learning unit, we introduced the name tactic for an
architectural decision that influences the quality of the product. Ar-
chitectural patterns can be viewed as being constructed from tactics.
Can you give some examples?

b Once a pattern has been used in an architectural design, the reason
for its use may be forgotten, and over time the design may start to
diverge from the pattern. Do you think this should be prevented? If
so, how?

c Design patterns often represent crosscutting concerns that can be
implemented using aspect-oriented programming or program trans-
formation techniques. Is the same true of architectural patterns?

60


