
Evaluation Of A Structured Design
Methodology For Concurrent Programming

Lex Bijlsma – Kees Huizing – Ruurd Kuiper
Harrie Passier – Harold Pootjes – Sjaak Smetsers

Open University – Radboud University
Eindhoven University of Technology

CSERC 2019
18 November – Lanarca

Evaluation Of A Structured Design
Methodology For Concurrent Programming

Lex Bijlsma – Kees Huizing – Ruurd Kuiper
Harrie Passier – Harold Pootjes – Sjaak Smetsers

Open University – Radboud University
Eindhoven University of Technology

CSERC 2019
18 November – Lanarca

Eindhoven University of Technology – Kees Huizing

CONTEXT

• First year university course on OO programming

• Students have knowledge of classes, interfaces, inheritance, basic
familiarity with UML

• Concurrency part introduces threads, time-slicing, non-determinism,
atomicity, race condition, synchronization, locking and deadlock

Eindhoven University of Technology – Kees Huizing

CONCURRENT PROGRAMMING

• Notoriously difficult

• familiar constructs get new semantics:  
x:=x+1 may result in x not changing value

• objects may be accessed in inconsistent state

• non-deterministic

Eindhoven University of Technology – Kees Huizing

DIFFICULTIES
• sequential execution model is well understood (after some time)  

straightforward relation between execution steps to statements

• concurrent execution model (interleaving) more complex and  
relation between execution and program is much less direct

• harder to track bugs and harder to derive program  
from intended execution
⇒

Eindhoven University of Technology – Kees Huizing

CONSEQUENCE IN EDUCATION
• students get stuck while programming or are wildly trying

• ⇒ don't complete the exercises ⇒ learning-by-doing fails

• non-determinism ⇒ errors in the program may go unnoticed ⇒

learning by doing fails

• vicious circle

Eindhoven University of Technology – Kees Huizing

APPROACH: PROCEDURAL GUIDANCE
• prevent students getting stuck by providing them with a step-wise

construction approach (Merriënboer & Kirschner: supportive
information)

• every step produces an artifact

• during each step one design issue is solved

• program is developed during the process

Eindhoven University of Technology – Kees Huizing

ONE STEP

1. Analysis

2. Design decision

3. Implementation or other artifact, documenting result of step

4. Reflection

Eindhoven University of Technology – Kees Huizing

RUNNING EXAMPLE
(not the example of the experiment)

• System for booking seats in airplanes

• with concurrent simulation

Eindhoven / Radboud / Open University – Kees Huizing et al.

STEP 1

• OO structuring of the
problem domain

Eindhoven / Radboud / Open University – Kees Huizing et al.

• does concurrency apply here?

• identify concurrent activities

• implement the active classes

 active class pattern

STEP 2: CONCURRENCY
OF THE PROBLEM

Eindhoven / Radboud / Open University – Kees Huizing et al.

STEP 2: CONCURRENCY
OF THE PROBLEM
• does concurrency apply here?

• identify concurrent activities

• implement the active classes

active class pattern

Eindhoven / Radboud / Open University – Kees Huizing et al.

STEP 2: (IMPLEMENTATION)

• instances of Booking will run
concurrently

Eindhoven / Radboud / Open University – Kees Huizing et al.

STEP 3:
RACE CONDITIONS
• analyze using extended activity diagram

• with swim lanes denoting threads

• threads accessing same variables in
shared objects

• have all access & modification to shared
objects in synchronized methods

shared object

a seat

Eindhoven / Radboud / Open University – Kees Huizing et al.

STEP 4:
CHECK-THEN-ACT
• thread checks a variable for a condition

and then changes it based upon that
condition

• no guarantee that condition still holding
at change, due to other threads

• reorganize check and change into one
synchronized method or block

another thread may
grab the seat here

Eindhoven / Radboud / Open University – Kees Huizing et al.

STEP 4:
CHECK-THEN-ACT
• thread checks a variable for a condition

and then changes it based upon that
condition

• no guarantee that condition still holding
at change, due to other threads

• reorganize check and change into one
synchronized method or block

another thread can not
grab the seat here

Eindhoven University of Technology – Kees Huizing

STEP 5:
REFLECTION ON PREVIOUS STEPS
• concurrent programs are not showing their bugs easily

• critical evaluation of the decisions

• synchronization on the right objects?

• is there enough concurrency?

• etc.

Eindhoven University of Technology – Kees Huizing

OVERVIEW
step topic result

STEP I OO Structuring of problem domain class diagram

STEP 2 Concurrency of the problem - enhanced activity diagram
- active classes implemented as threads

STEP 3 Race conditions synchronized methods

STEP 4 Check-then act code reorganized into
synchronized methods or blocks

STEP 5 Reflection results of reiterated steps

Eindhoven University of Technology – Kees Huizing

RESEARCH QUESTIONS

• What problems did the students encounter with the Steps Plan
(related to issues with the steps or combinations of steps)?

• What problems remain after the Steps Plan (general issues with
concurrency)?

Eindhoven University of Technology – Kees Huizing

EXERCISE

• Simulation of taxi service at a station. Passengers arrive by train and
take taxis.

• A sequential solution is provided, students should turn this into a
concurrent solution (with taxis being threads, etc.)

Eindhoven University of Technology – Kees Huizing

DATA COLLECTION AND ANALYSIS
• students make exercise (three institutes)

• think-aloud sessions recorded on video

• in-depth interviews with students

• analysed with qualitative techniques

• pair coding

• categorizing codes

RESULT OF ANALYSIS

Eindhoven University of Technology – Kees Huizing

TYPES OF ISSUES

• Steps Plan weaknesses

• Problems with understanding concurrency

RESULT OF ANALYSIS CTD

Eindhoven University of Technology – Kees Huizing

EXAMPLE 1

• Student: 
“The thread has to be created afresh every time. I just happen to know
that. […] There are four taxis and there will never be more. But each taxi is
inserted into a thread as a task, and when it is finished its work it should go
for a new ride. Then you should start a new thread, hence also create one.”

• Issue: Steps Plan too high level (active class identification and thread
creation not clearly separated).

Eindhoven University of Technology – Kees Huizing

EXAMPLE 2
Student A: 
“Why don't you make the whole thing synchronized?”

Student B: 
“Because the synchronized part should not be made too large.”

Student A: 
“What's too large?”

Student B: 
“You should not sleep within the synchronized block. Because there may be no people waiting at the
station.”

Student A: 
“Let's measure how long the sleep lasts.”

• Issue: Struggle with concurrency granularity. General problems with concurrency.

Eindhoven University of Technology – Kees Huizing

EXAMPLE 3A

• Passengers are waiting, many taxis are created, but no passenger
is taken. Nevertheless program produces some output in the
right form and students seem satisfied.

• Issue: Incorrectness not observed.

Eindhoven University of Technology – Kees Huizing

EXAMPLE 3B
Student A: 
“While not station is closed, ... well,But, in that case he should close.
The train will close the station ... Look at this!”

Student B: 
“All passengers have been transported.”

Student A: 
“I think it is ok so. We finished the job. We have to write our report.”

• Issue: Correctness not properly checked.

Eindhoven University of Technology – Kees Huizing

EXAMPLE 4

Student : 
“1 2 3 4 1 2. Hey! How is that possible? That is strange. Why didn't
it do that a moment ago?”

• Issue: Not aware of consequences of non-determinism. General
concurrency problems.

Eindhoven University of Technology – Kees Huizing

EXAMPLE 5

Student: 
“Yes, that is wrong. There should be something … indeed. […] Can
you say that after a number of taxi rides he simply stops? Or, that
after a long time of waiting, in case he has waited ten times and
there still aren’t passengers there, he goes home?”

• Possible issue: anthropomorphism.

Eindhoven University of Technology – Kees Huizing

ANTHROPOMORPHISM

• anthropomorphism: important faculty of human coginition (my
view)

• nevertheless here possibly detrimental:  
objects in context of concurrency lead too easily too
anthropomorphic miscinceptions?

Eindhoven University of Technology – Kees Huizing

CONCLUSIONS / LESSONS

• Sequential solution to be concurrified was not helpful. Better (if we want
to give them a flying start): provide a framework of domain classes

• Exercise to be more specific about which activities to be concurrent

• Steps Plan should separate task defintion (active classes) and task
creation

• Steps of Plan to be refined into micro steps when needed (use adaptivity)

Eindhoven University of Technology – Kees Huizing

CONCLUSIONS / LESSONS
• Amount of concurrency (nr. of threads and granularity) is a struggle for

the students. Exercise needs to find a balance between giving away and
letting students swim.

• Self-critical attitude should be elicited: Reflection step of Plan to be
extended with means of how to check the output for correctness

• Exercises should be realistic (ideally, concurrency should be implied by
the problem). (Taxi exercise had its problems.)

Eindhoven University of Technology – Kees Huizing

CONCLUSIONS

• Steps Plan does help students (evidence in results)

• overall structuring in steps and structured approach per step

• A Steps Plan helps in education analysis, since it makes the structure
of the exercise solving process more explicit and uniform

• and helps the teacher in her student support

Eindhoven University of Technology – Kees Huizing

FUTURE WORK

• refine the procedure, deal with weaknesses that appeared

• larger practice runs and evaluation with new exercises

• extend with more advanced concurrency constructs

• long-term goal: comprehensive procedural guidance with rules,
notation, and steps; supporting analysis and program design

