] l red\ P"”“ g
‘.jl\/leth@do op) E@L‘,Q@ c:_umeﬁ Freigs

- i\

n - (f ';3'—-.. s .v - " TR .

sq - A _ m——)

'....... S U A "
SliE X B) Isma é§ F' NE— uur-K E)s

U‘!me Passiep® [Harold Pootjes — Sjaak Smetser§

u—\/rllu.fmon C Hal

:

NN

--,__,__..__ -

= ‘ -
2 m slppilinies
e — :

ersity f Radboud UmvEmty
c

Ven Um rsity of Techinology

CSERC 2019
| 8 November — lLanarca

S S S G G M e A
j estHuZING =RuuraHammE -~
Harold Pootjes — Sjaak Smetsers ===

OpgmtUniversity i Radboud University C
iffoven U gy

'A
|

ni\(.rsity of Technology -

CSERC 2019
| 8 November — lLanarca

T i o Q’H m "‘

OIS T

* First year university course on OO programming

- Students have knowledge of classes, interfaces, inheritance, basic
familiarity with UML

« Concurrency part introduces threads, time-slicing, non-determinism,
atomicity, race condition, synchronization, locking and deadlock

Eindhoven University of Technology — Kees Huizing

SOINCURRENT PROGRAMIMEINE

+ Notoriously difficult

« familiar constructs get new semantics:

x :=x+1 may result iIn X not changing value

B OBjects miay be accessed In Inconsistent state

¢ hoh-deterministic

Eindhoven University of Technology — Kees Huizing

DllFpG o=

» sequential execution model is well understood (after some time)
straightforward relation between execution steps to statements

» concurrent execution model (interleaving) more complex and
relation between execution and program Is much less direct

« = harder to track bugs and harder to derive program
from intended execution

Eindhoven University of Technology — Kees Huizing

0\ SEQUENCE IN EDUCHRIG

» students get stuck while programming or are wildly trying

« = don't complete the exercises = learning-by-doing falls

* non-determinism = errors in the program may go unnoticed =

learning by doing fails

s viclous circle

Eindhoven University of Technology — Kees Huizing

s RO CH: PROCEDURAL GUIEZESEE

 prevent students getting stuck by providing them with a step-wise
construction approach (Merriénboer & Kirschner: supportive

iInformation)
& ot/ siep produces an artifact
& dlliing eacn step one design Issue Is solved

Elooram Is developed during the process

Eindhoven University of Technology — Kees Huizing

@NE SiEes

® | Andlysis
8 e cion decision
3. Implementation or other artifact, documenting result of step

4. Reflection

Eindhoven University of Technology — Kees Huizing

RUINNING EXANMEIES

@iotihe example of the exBerlificiit

» System for booking seats In airplanes

* with concurrent simulation

Eindhoven University of Technology — Kees Huizing

SEE |

Simulation

Plane

+ doSteps()

&0 sifucturing of the

problem domain

Passenger

- hame

.1

+ bookSeat(row, aisle, name):boolean
- getSeat(row,aisle):Seat

seats

Seat

+ Passenger(name)

Eindhoven / Radboud / Open University — Kees Huizing et al.

- row: int
- aisle: char

+ isEmpty():boolean
+ getPassenger():Passenger
+ setPassenger(passenger):void

s C ONCU
WiEE PROBLE

« does concurrency apply here!

» identify concurrent activities

® tnPlement the dctive classes

active class pattern —>

RENC

Eindhoven / Radboud / Open University — Kees Huizing et al.

Simulation

Plane

+ doSteps()

Simulation

<<Interface>>
Runnable

A

+ startThreads()

Simulation

Sequential structure for book seats

Thing

+ run()

(Thingfunner]
=

Active Class Pattern

<<Interface>>
Runnable

A

+ startThreads()

Plane

+ run()

(Booking w
(=)

Instance Active Class Pattern

s C ONCL
WEE PROBLE

« does concurrency apply here!

» identify concurrent activities

® tnPlement the dctive classes

active class pattern —>

Eindhoven / Radboud / Open University — Kees F

Simulation

| nuliavic |

ThingRunner

Thing

+ startThreads()

+ run()

Active Class Pattern

<<Interface>>
Runnable

/\

Simulation

Booking

Plane

+ startThreads()

+ run()

Instance Active Class Pattern

s (I IPLEMENTATION)

public class Booking implements Runnable {

@0verride
* Instances of Booking will run public void run() {
CC)ﬂClJFFerﬂjy boolean success = plane.bookSeat(row, aisle, name);

if (success) {

}
}

public boolean bookSeat(int row, char aisle, String name) {
Seat seat = seats.getSeat(row, aisle);
if (seat.isEmpty()) {
seat.setPassenger(new Passenger(name));
return true;
} else {
return false;
}
}

Eindhoven / Radboud / Open University — Kees Huizing et al.

ERER S
= EEC ONDITIONS

- analyze using extended activity diagram

« with swim lanes denoting threads

* threads accessing same variables in
shared objects

* have all access & modification to shared
objects In synchronized methods

Eindhoven / Radboud / Open University — Kees Huizing et al.

thread 1

main thread

| create threads

3 Ef = \l/
! non critical "I ® 00
\ statements
-~ VII‘.i ',“ o
isEmpty() k\ access
2 (&%
_ : =B 3seat

N

| setPassenger() ."modify | modify | setPassenger() |

shared objecté

thread 2

sescespeassesssseastsssenssussenrssafesatanstsroversantuasasnsanctespenssesieesensesnsasssesseassesnensoenPia]

[non critical
\ statements

.-".-- .lll ‘ "" A‘"‘a

iIsEmpty()

\ S
\ S

"

®

S ER 4
CEECK-THSE

another thread may |
 thread checks a vari grab1fmaseathere Seat seat = seats.getSeat(row, aisle);

and then changes it B2

public boolean bookSeat(
int row, char aisle, String name) {

if (seat.isEmpty()) {

condition seat.setPassenger(
new Passenger(name)
* no guarantee that condition still holding);
at change, due to other threads return true;
} else {
» reorganize check and change into one) return false;

synchronized method or block

Eindhoven / Radboud / Open University — Kees Huizing et al.

S ER 4
CEECK-THSE

another thread can not

. : rab the seat here Seat seat = seats.getSeat(row, aisle);
thread checks a varies eynchronizedC seat 3 1

if (seat.isEmpty()) {

public boolean bookSeat(
int row, char aisle, String name) {

and then changes it B2

condition seat.setPassenger(
new Passenger(name)

* no guarantee that condition still holding);

at change, due to other threads return true;

} else {

* reorganize check and change into one) return false;

synchronized method or block 1

}

Eindhoven / Radboud / Open University — Kees Huizing et al.

ENIEE
REREECON ON PREVIOUS STERS

* concurrent programs are not showing their bugs easily

» critical evaluation of the decisions
* synchronization on the right objects?
» Is there enough concurrency!?

s elc.

Eindhoven University of Technology — Kees Huizing

OVERVIEW

topic result

STEP I OO Structuring of problem domain class diagram

- enhanced activity diagram

EEE) I oncurrency of the problem , ,
- active classes implemented as threads

STEP 3 |Race conditions synchronized methods

STEP 4 Check-then act cods reciednzetlleS
synchronized methods or blocks

S[FEE 5 [Reflection results ol reiterated sieps

Eindhoven University of Technology — Kees Huizing

RESEARCH QUESFIGINE

» What problems did the students encounter with the Steps Plan
(related to i1ssues with the steps or combinations of steps)!?

* What problems remain after the Steps Plan (general issues with
concurrency)?

Eindhoven University of Technology — Kees Huizing

EERELE

 Simulation of taxi service at a station. Passengers arrive by train and
take taxis.

* A sequential solution is provided, students should turn this into a
concurrent solution (with taxis being threads, etc.)

Eindhoven University of Technology — Kees Huizing

B COLLECTION AND ANAIEEE

- students make exercise (three institutes)

« think-aloud sessions recorded on video
* In-depth interviews with students

* analysed with qualitative techniques

* pair coding

* categorizing codes

Eindhoven University of Technology — Kees Huizing

NESULT OF ANALTESIS

category observations
Concepts
Synchronization Synchronizing the wrong code; synchronizing too much or too little

Shared resources
Race conditions

code.

Identifying the wrong object as shared.

Misunderstanding the concept of race condition and/or of check-then-
act.

Correctness
Testing Assuming that concurrent programs are deterministic and that tests
are reproducible.
Input/Output analysis Assuming the program is correct once it produces some output.
Procedural guidance

Active Class design pattern
Following the steps

Performing the steps

Misunderstanding the design pattern: failure to identify actor; referring
to the design pattern at the wrong time.

Starting a next step before the preceding one has been completed;
taking the steps in the wrong order.

Confusing the active class with the class that creates the thread; being
unable to perform the refactoring required by a correctly identified
check-then-act situation; unclear how the domain model classes corre-
spond to the thread model.

IPEES OF [550ES

» Steps Plan weaknesses

* Problems with understanding concurrency

Eindhoven University of Technology — Kees Huizing

RESUIT OF ANALTSIS e

 category

observations

Implementation

Emphasis on code

Sequential simulation

Inspecting code rather than design; ignoring the procedure and starting

on the code right away.
Reproducing the limitations of the sequential simulation in the prob-
lem statement; trying to adapt the sequential simulation rather than

designing afresh.

Other (unexpected) activities

Anthropomorphisms

Unsuccessful approaches

Ascribing human motives to threads and objects; detection of final

state by observing prolonged inaction.
Trial and error, (random) googling; having no plan at all; just respond-
ing to IDE error messages

EAVAMIELE |

 tldent
“The thread has to be created afresh every time. | just happen to know
@ [l dre four taxis and there will never be more. BUE cdeiiichi
inserted into a thread as a task, and when it is finished its work it should go
for a new ride. Then you should start a new thread, hence also create one.”

* Issue: Steps Plan too high level (active class identification and thread
creation not clearly separated).

Eindhoven University of Technology — Kees Huizing

EXAAMIEILE

Student A:
“Why don't you make the whole thing synchronized?”

Student B:
"Because the synchronized part should not be made too large.”

Student A:
“What's too large?”

Student B:
“You should not sleep within the synchronized block. Because there may be no people waiting at the
station.”

Student A:
“Let's measure how long the sleep lasts.”

« |ssue: Struggle with concurrency granularity. General problems with concurrency.

Eindhoven University of Technology — Kees Huizing

EXAIRLE S

» Passengers are waiting, many taxis are created, but no passenger
s taken. Nevertheless program produces some output In the
right form and students seem satisfied.

e |ssue: Incorrectness not observed.

Eindhoven University of Technology — Kees Huizing

X AMPLE 2B
Student A:

“While not station is closed, ... well,But, in that case he should close.
The train will close the station ... Look at this!”

il [dent B
"All passengers have been transported.”

EEUEeE A
‘I think it is ok so. We finished the job. We have to write our report.”

& e Correctness not properly checked.

Eindhoven University of Technology — Kees Huizing

EAAMIEILE 4

Eeliclent
‘I 234 | 2. Heyl How is that possible/ That is strange. Why didn't

it do that a moment ago?”

* Issue: Not aware of consequences of non-determinism. General
concurrency problems.

Eindhoven University of Technology — Kees Huizing

AV MIELE ©

Student;

8 ldi I Wiong. [nere should be something ... Indeed. [T @
you say that after a number of taxi rides he simply stops? Or, that

dfter a long time of waiting, in case he has waited ten times and
there still aren’t passengers there, he goes home?”

* Possible issue: anthropomorphism.

Eindhoven University of Technology — Kees Huizing

SN EEIROPONMOREFISE

» anthropomorphism: important faculty of human coginition (my
view)

* nevertheless here possibly detrimental:
objects In context of concurrency lead too easlly too
anthropomorphic miscinceptions?

Eindhoven University of Technology — Kees Huizing

BONCUSIONS / LESS@INE

Sequential solution to be concurrified was not helpful. Better (if we want
to give them a flying start): provide a framework of domain classes

L icloe {0 be more specific about which activities to be conetifiehi

Steps Plan should separate task defintion (active classes) and task
creation

Steps of Plan to be refined into micro steps when needed (use adaptivity)

Eindhoven University of Technology — Kees Huizing

BONCUSIONS / LESS@INE

* Amount of concurrency (nr. of threads and granularity) is a struggle for
the students. Exercise needs to find a balance between giving away and
letting students swim.

& Sl CGiincal attitude should be elicited: Reflection step of Plan talbe
extended with means of how to check the output for correctness

» Exercises should be realistic (ideally, concurrency should be implied by
the problem). (Taxi exercise had its problems.)

Eindhoven University of Technology — Kees Huizing

E@ONCEUSIONE

» Steps Plan does help students (evidence in results)
» overall structuring in steps and structured approach per step

* A Steps Plan helps in education analysis, since it makes the structure
of the exercise solving process more explicit and uniform

B il nelps the teacher In her student support

Eindhoven University of Technology — Kees Huizing

EUEEORE VGRS

refine the procedure, deal with weaknesses that appeared
larger practice runs and evaluation with new exercises
extend with more advanced concurrency constructs

long-term goal: comprehensive procedural guidance with rules,
notation, and steps; supporting analysis and program design

Eindhoven University of Technology — Kees Huizing

