
Static Detection of Design Patterns in Class
Diagrams

Ed van Doorn

Content

• Problem statement
• Design patterns

– classifications
• Classifications of detection algorithms
• 3-tuples as respresentation of design patterns
• Feedback on elaborations of students
• Practical results
• Future work

Problem statement

The educational perspective
• Marking and giving feedback on elaboration

of exercises is:
– time-consuming
– not a popular task

• Quality of marking and giving feedback may
vary in time and between teachers.

• Students would like to have immediate
feedback.

Design patterns

Definition: a software design pattern is a general, reusable solution to
a commonly occurring problem within a given context in software
design.

It is
• based on best practices
• a combination of text and diagrams
• not finished

There are 23 standard design patterns (Eric Gamma et. al)

Classification of design patterns

Classifications:
Based on using
• Creational
• Behavior
• Structural

Based on level of applying
• Architectural
• Design of subsystems and components
• Idiom (programming level)

New classification

Focused on detection:

A design pattern is:
• Static, if it is completely defined by the names of their

participating classes and their relationships.
• Non-static, if it needs more characteristics than names of their

participating classes and relationships to be defined.

Classifications of detection algorithms

Based on representation of a design pattern
• Matrices
• Prolog clauses
• Decision trees
• ……..
• 4-tuples and 3-tuples

Classifications of detection algorithms

Based on their features

A detection algorithm
• offers static decidability, if it can detect all static design

patterns

• is generally complete, if it can detect all design patterns

Relations between the definitions

3-tuples

For static design patterns:
3-tuple (classname_A, classname_B, type of relationship)

Algorithm:
• Design pattern is defined by a template of 3-tuples.
• Software design is defined by a large set of 3-tuples.
• A depth first search tries to match the template with a part of

the software design.

Example

Practical problems

• Multiple realizations of inheritance
• Abstract factory
• Report an instance of a design pattern only once.

Multiple realizations of inheritance

Non-duplicating

• A detection algorithm is non-duplicating, if it detects every
occurrence of a design pattern only once.

Multiple realizations of inheritance

Abstract Factory:
2 factories and 2

products

Multiple realizations of inheritance: unsolved

Abstract Factory
2 factories and 3
products

Feedback
• Illegal relationship

Example is shown in
the bridge pattern

• Partial present
Useful if the incomplete design
pattern is a connected graph.

In practice

• ArgoUML is a drawing tool
which output can be used
by our prototype

• Detecting different design
patterns
during a search.

Practical results

• 13 different design patterns are detected in a class diagram,
which contains 57 classes and 61 relationships within 1 second.

• 33 classes and 49 relationships, 17 partially overlapping design
patterns: 0.8 seconds

• There are 23 standard design patterns (Eric Gamma et. al)
all 16 static patterns are detectable.

Not detectable by our prototype

Non-static pattern Reason

Prototype Operation clone is necessary

Singleton Needs static attribute, static method and
private constructor

Façade See next sheet

State / Strategy They are structural identical

Template Method Operations have to be taken into account.

Visitor Number of classes depends on the number of
methods in the interface Visitor.

Façade pattern

Future work

Specification of design patterns
• Detecting an abstract factory only once.
• Generally complete algorithm

• Feedback on design
– Is the prototype of the tool useful?
– Metrics of quality aspects
– If design patterns are examples of high quality design, which values of the

metrics do they have in common?
– Relations between subsets of metrics and abstract features like minimal

coupling, maximal cohesion.

Contact

• E.M.vanDoorn@hhs.nl

• Source code, jar-file, ArgoUML examples and templates:
http://members.chello.nl/e.doorn1/DesignPatterns/static_decidability

	Static Detection of Design Patterns in Class Diagrams
	Content
	Problem statement
	Design patterns
	Classification of design patterns
	New classification
	Classifications of detection algorithms
	Classifications of detection algorithms
	Relations between the definitions
	3-tuples
	Example
	Practical problems
	Multiple realizations of inheritance
	Non-duplicating
	Multiple realizations of inheritance
	Multiple realizations of inheritance: unsolved
	Feedback
	In practice
	Practical results
	Not detectable by our prototype
	Façade pattern�
	Future work
	Contact

