Static Detection of Design Patterns in Class Diagrams

Content

- Problem statement
- Design patterns
 - classifications
- Classifications of detection algorithms
- 3-tuples as respresentation of design patterns
- Feedback on elaborations of students
- Practical results
- Future work

Problem statement

The educational perspective

- Marking and giving feedback on elaboration of exercises is:
 - time-consuming
 - not a popular task
- Quality of marking and giving feedback may vary in time and between teachers.
- Students would like to have immediate feedback.

Design patterns

Definition: a software design pattern is a general, reusable solution to a commonly occurring problem within a given context in software design.

It is

- based on best practices
- a combination of text and diagrams
- not finished

There are 23 standard design patterns (Eric Gamma et. al)

Classification of design patterns

Classifications: Based on *using*

- Creational
- Behavior
- Structural

Based on *level of applying*

- Architectural
- Design of subsystems and components
- Idiom (programming level)

New classification

Focused on <u>detection</u>:

A design pattern is:

- *Static*, if it is completely defined by the names of their participating classes and their relationships.
- *Non-static*, if it needs more characteristics than names of their participating classes and relationships to be defined.

Classifications of detection algorithms

Based on *representation* of a design pattern

- Matrices
- Prolog clauses
- Decision trees
- •
- 4-tuples and <u>3-tuples</u>

Classifications of detection algorithms

Based on their *features*

A detection algorithm

 offers <u>static decidability</u>, if it can detect all <u>static</u> design patterns

• is *generally complete*, if it can detect all design patterns

Relations between the definitions

Set of detection algorithms

3-tuples

For *static* design patterns:

3-tuple (classname_A, classname_B, type of relationship)

Algorithm:

- Design pattern is defined by a template of 3-tuples.
- Software design is defined by a large set of 3-tuples.
- A depth first search tries to match the template with a part of the software design.

Example

Template of a pattern

System under consideration

Practical problems

- Multiple realizations of inheritance
- Abstract factory
- Report an instance of a design pattern only once.

Multiple realizations of inheritance

Non-duplicating

 A detection algorithm is <u>non-duplicating</u>, if it detects every occurrence of a design pattern only once.

Multiple realizations of inheritance

Abstract Factory:
2 factories and 2
products

Multiple realizations of inheritance: unsolved

Abstract Factory
2 factories and 3
products

Feedback

- Illegal relationship
 Example is shown in
 the bridge pattern
- Partial present
 Useful if the incomplete design pattern is a connected graph.

System contains a part of the DP

In practice

 ArgoUML is a drawing tool which output can be used by our prototype

 Detecting different design patterns during a search.

Practical results

• 13 different design patterns are detected in a class diagram, which contains 57 classes and 61 relationships within 1 second.

 33 classes and 49 relationships, 17 partially overlapping design patterns: 0.8 seconds

 There are 23 standard design patterns (Eric Gamma et. al) all 16 static patterns are detectable.

Not detectable by our prototype

Non-static pattern	Reason
Prototype	Operation clone is necessary
Singleton	Needs static attribute, static method and private constructor
Façade	See next sheet
State / Strategy	They are structural identical
Template Method	Operations have to be taken into account.
Visitor	Number of classes depends on the number of methods in the interface Visitor.

Façade pattern

Facade pattern in general

Specific Facade pattern

Future work

Specification of design patterns

- Detecting an abstract factory only once.
- Generally complete algorithm

Feedback on design

- Is the prototype of the tool useful?
- Metrics of quality aspects
- If design patterns are examples of high quality design, which values of the metrics do they have in common?
- Relations between subsets of metrics and abstract features like minimal coupling, maximal cohesion.

Contact

E.M.vanDoorn@hhs.nl

• Source code, jar-file, ArgoUML examples and templates: http://members.chello.nl/e.doorn1/DesignPatterns/static_decidability