18 - 20 November 2019 - Larnaca, Cyprus

The collection of the CSERC submissions 2019

This package contains the submissions for CSERC 2019. It contains the submissions that
were accepted for paper presentation as well as the poster presentation.

Please note that CSERC publishes post-proceedings. This means that not all the reviewers’
comments are processed yet.

Program Chairs
Ebrahim Rahimi, Open University, The Netherlands
Dave Stikkolorum, University of Leiden, The Netherlands

Table of Contents

Monday 18 November - Paper Session (2) [10:30 - 12:30]

Experience Report: Creating Tutorial Materials by Integrating Drawing Tablet and Video
Capturing/Sharing
Chen-Wei Wang

Keep Calm and Code on Your Phone: A Pilot of SuaCode, an Online Smartphone-Based
Coding Course
George Boateng, Victor Wumbor-Apin Kumbol and Prince Annor

Autism: Implications for Inclusive Education
Sylvia Stuurman, Harrie Passier, Frédérieke Geven and Erik Barendsen

Programming for teachers: Reflections on the design of a course supporting flexible
learning trajectories
Majid Rouhani, Monica Divitini, Vojislav Vujosevi¢, Sondre Stai and Hege Anette Olstad

Peer Assessment by Ranks
David C. Moffat

Monday 18 November - Paper Session (3) [14:00 - 15:35][

Programming, Research and... Coffee? An Analysis of Workplace Activities by Computing
Interns
Huib Aldewereld and Esther van der Stappen

Is Deductive Program Verification Mature Enough to be Taught to Software Engineers?
Marc Schoolderman, Sjaak Smetsers and Marko van Eekelen

Evaluation of a structured design methodology for concurrent programming
Harrie Passier, Lex Bijlsma, Cornelis Huizing, Ruurd Kuiper, Harold Pootjes and Sjaak Smetsers

A class project to prepare software engineering students for their capstone projects
Justus Posthuma, Vreda Pieterse and Stacey Baror

Monday 18 November - Poster Session (4) [16:00 - 17:30]

E-Advise: An Adaptive Visual Toolset to Support Academic Advising
Hicham Hallal, Fadi Aloul and Sameer Alawneh

DI2 Co-Innovation Lab - Teaching software development in and for real business
situations
Holger Guenzel , Lars Brehm, Hans-Juergen Haak, Mira Gronvall and Anne-Mari Sainio

A Flipped Classroom Experiment - The implementation of Semi-Synchronous Learning
Hani Alers, Marcella Veldthuis, Tim Cocx and Aleksandra Malinowska

10

16

27

38

45

56

63

71

83

88

97

Reducing teamwork failures by tying ethics to teamwork training
Alan Sprague and Raquel Diaz-Sprague

Project Tomo: immediate feedback enabling service in teaching programming
Matija Lokar

Tuesday 19 November - Paper Session (6) [10:30 - 12:30]

Static Detection of Design Patterns in Class Diagrams
Ed van Doorn, Marko van Eekelen and Sylvia Stuurman

Design decisions under object-oriented approach: A thematic analysis from the
abstraction point of view
Pamela Flores, Jenny Torres and Rigoberto Fonseca-Delgado

Teaching Data Structures through Group Based Collaborative Peer Interactions
Sajid Nazir, Stephen Naicken and James Paterson

DaST: An Online Platform for Automated Exercise Generation and Solving in the Data

Science Domain

Charis Kotsiopoulos, loannis Doudoumis, Paraskevi Raftopoulou and Christos Tryfonopoulos

DigitallS: a visual Verilog simulator for teaching
Marek Materzok

102

105

111

121

129

135

141

Experience Report: Creating Tutorial Materials
by Integrating Drawing Tablet and Video Capturing/Sharing

ABSTRACT

We report the experience of adopting an innovative technique for
creating tutorial videos which complement lectures and facilitate
students’ learning. Our technique relies on: 1) preparing starter
pages consisting of code fragments or writings/figures on a draw-
ing tablet; 2) illustrating complex ideas on the drawing tablet; 3)
recording all computer desktop activities (e.g., development of code
on a programming IDE, illustration on the drawing tablet); and 4)
sharing the recorded tutorial videos with students online. Our tech-
nique has been adopted in creating tutorial series for four Computer
Science and Engineering courses, ranging from the first year to the
third year. Analytics of these online tutorial videos is presented to
show the average amount of time which each registered student
spent on watching them. Course evaluation results indicate that our
technique is perceived as effective for achieving the course learning
outcomes. Comparison of students’ performance on complex topics
(arrays and loops) also indicates a positive impact of our approach.

KEYWORDS

Large Class; Laboratory Assignments; Tutorial Videos; Computa-
tional Thinking; Instructional Technologies

1 INTRODUCTION

It is challenging to teach complex computational thinking [13, 19,
20, 28] (e.g., arrays, loops, object-oriented thinking) and software
design principles (e.g., design by contract, object-oriented design
patterns leveraging polymorphism and dynamic binding) in un-
dergraduate courses, where: students have limited prior exposure
to the course content; and the class size is typically large (e.g.,
400+ for first-year courses, 150+ for second-year courses, and 100+
for third-year courses in our home department). On the one hand,
many students encounter obstacles to full comprehension of course
content because the class size restricts the instructor’s intentional
pauses and student interactions during lectures.

On the other hand, it is very common for a Computer Science (CS)
or Engineering course to have a weekly laboratory (lab) component,
but there is a significant gap between lecture materials and the
pre-requisites (on concepts and skills) for completing the weekly
lab assignments. There are two inherent limitations of in-class
instructions, making it difficult to implement, among lectures, a
logical decomposition of the taught subjects. First, lecture hours

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CSERC’19, November 2019, Larnaca, Cyprus

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-Xxxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

are fixed, so that very often we have to interrupt the discussion
simply because the class time has run out. Second, lecture hours
are limited, so that in-depth discussion and illustrations of certain
technical insight cannot be accommodated in class.

How can we make the in-depth and detailed illustrations accessi-
ble to students for their self-paced study outside the classroom, so
as to help them complete the weekly lab assignments? We propose
to address the two limitations of lectures by creating series of tuto-
rial videos, each of which: 1) being sequentialized according to the
suitable logical order (as judged by the instructor); and 2) making
in-depth remarks and illustrations on concepts and examples. For
2), such remarks and illustrations reflect the instructor’s insight
into the taught subjects, and are thus a valuable aid to student
learning. To create these tutorial videos, we have adopted, in four
undergraduate CS and Engineering courses, the integrated use of:
1) a drawing tablet for illustrating concepts and code examples; 2) a
program for recording all desktop activities, such as the slide presen-
tation as well as illustrations on the tablet and programming IDEs;
3) a high-end studio microphone ensuring decent sound quality of
the tutorial videos; and 4) online access to recordings and notes for
students to review before attempting their lab assignments.

The main contribution of this paper is a technique for creating
tutorials videos on complex ideas. Our proposed technique is much
more than recording the occasional and lightweight annotations
on a slide show. Instead, our technique requires the instructor to
plan and prepare starter artifacts (e.g., code fragments, figures)
on the drawing tablet prior to starting the recording, which is
more effective than setting up these artifacts on a conventional
in-class/in-office blackboard or whiteboard “on the fly”. Our pro-
posed technique is novel in that it relies heavily on explaining and
illustrating complex ideas on a drawing tablet, and that it relies on
recording the process of building up complex examples (e.g., static
software architecture, dynamic runtime execution) from scratch.
Such explanations and illustrations represent the insight into the
taught subjects, as well as its thinking process which, thanks to
the recording, students can review as needed and thereby learn
from. As an example, Figure 1b (p2) shows an annotated fragment
of object-oriented code at the end of our illustration. The reasoning
process of moving from Figure 1a to Figure 1b, through recording,
can be reviewed by students whenever they need.

The rest of the paper is organized as follows. Section 2 sum-
marizes topics of the courses in which we adopted the proposed
approach. Section 3 introduces our proposed approach. Section 4
summarizes the tutorial series created using our approach. Sec-
tion 5 proposes a general pattern for structuring tutorial videos and
gives an example. Section 6 outlines the equipment requirements.
Section 7 presents analytics of our online tutorial videos, as well as
performance comparison and student feedback. Section 8 discusses
the related works. Section 9 concludes the paper.

CSERC’19, November 2019, Larnaca, Cyprus

[FTEe<Toss Stedeat T

Tinat dat WX e G =5

T = ew T
CourseRecord cr2 = new CourseRecord(*1021%);
ouRses

Coursehecord!] courses;

CourseRecord cr3 = new CourseRecord(*3311%);

Student s1 = new Student(“Heeyeon"),
i st st) ¢ System.out.printia(s after creating s1°);
ame; stem.out.println(sl.getDescription());
This covrses = s CourseRecord DAK M COURSES)
B frer adding crl to s1.courses™);

Systes.out.| prm(ln(s) 9!!&5:“9!10«())

STagacourselers

RO ¢ Syitea ovt printla(ems after adding cr2 to sl.courses”);
this.noc +o; Systea.out.printla(sl.getDescription());

¥

== after adding cr3 to s1.courses”);
Systes.out.println(s1.getDescription());

his.name + = has registered * + hisoc + - coursesrry
)<

public String getdescriptionl) {
st

| | |
PReLlor

cvl/ﬂ t [Uz/ il t. |

|0 . | 0

T el T [l

Peblic class Student {
i ;

final int MAX NUM_COURSES =
“PCourseRecord(] courses;
int noc; =

CourseRecord cr1 = new CourseRecora(~2030");
CourseRecord <r2 = new CourseRecord(”1621°);
® 4 e

 stugent
Systes.out.printl

Heeyeon");
after creating s1°);
stes.out.priatl

getbescription()); €—

;
i
%
§
M

3 iy ystes. out.pr fter adding crl to sl.courses");
M ol bugesto) Sty 2y i getbescription()) ;e

?’a‘m :Lﬁ:f?“m‘m"*‘"’” €3 Sysle- out -brin \n(2ec= after adding cr2 to sl.courses*);
this.. 00 \ jetDescription());

ystes. wt priat \n(after adding cr3 to s1.courses”);
0;

(s.n0c + - coursest\n;

mﬂ- 0e35
i,,ﬁ.hﬁfd"@ s ,,Q,(,f T0s
J 1< vo('s Tet >

will 4 Gl rec—|

A,

ALl Etad
gl puesfe t @ [+ ‘| @& [t |8
STieee8 (1) KWWSDA] 0 w0 ~qin
ol ies L) L] Llodl K]

(a) Before Annotations Began (26:33)

(b) After Annotations Ended (1:17:50)

Figure 1: Illustrating a Code Fragment on a Drawing Tablet (26:33 — 1:17:50 of https://youtu.be/gsZo6XyzJ6s)

2 TEACHING CONTEXT

We adopted our approach in four undergraduate CS and Engineer-
ing courses in the academic years of 2017 to 2019. Examples course
topics are summarized below.

CS1A Mobile Computing and CS1B OOP: From Sensors To Ac-
tuators are the second-semester courses for, respectively, CS and
Engineering! students at the first year. There are 400+ students reg-
istered in each of the two courses. In both CS1A and CS1B, students
learn about basic computational thinking and object orientation,
but through different means. In CS1A, students develop Android
mobile apps using the Android Studio IDE (Integrated Development
Environment), and visualize the effects of their Java programs on
physical tablets. In CS1B, students use Phidget interface boards
connected to hardware equipment such an LED light bulb and
Theremin glove. Example topics covered in both courses are: 1)
elementary programming (variables, data types, assignments); 2)
conditionals; 3) loops; 4) primitive 1D/2D arrays; and 5) object
orientation (attributes, methods, classes, and class associations).

CS2 Advanced Object Oriented Programming (with 150+ students)
is the first-semester course for both CS and engineering students at
the second year. Students in CS2 are required to develop, test, and
debug Java programs in the Eclipse IDE. Example topics covered in
CS2 are: 1) unit testing; 2) code reuse and subtyping via inheritance;
3) polymorphic assignments and dynamic binding; 4) recursion; and
5) asymptotic upper bounds (i.e., the big-O notation) of programs.

CS3 Software Design (with 100+ students) is a required course
for third-year CS and Software Engineering students. Example
topics covered in CS3 are: 1) the Design-by-Contract (DbC) method
for constructing object-oriented software (using loop invariants
and variants, method preconditions and postconditions, and class
invariants); 2) the information hiding design principle (exemplified
by the Iterator design pattern); 3) object-oriented design patterns

!The majority of students in CS1B are from Computer Engineering and Software
Engineering, whereas others are from Mechanical Engineering and Civil Engineering

leveraging polymorphism and dynamic binding (e.g., composite,
visitor, observer); and 4) introduction to program verification.

3 THE PROPOSED APPROACH

We propose an approach as visualized in Figure 2 for preparing self-
paced tutorial materials (i.e., videos, illustration notes, and program
source code) which facilitate both the instructor’s teaching and
students’ learning of complex ideas (e.g., computational, design,
abstract). We discuss the proposed approach from two perspectives.

——» information flow

- Recording
- Illustration Notes
- Source Code

recorded & uploaded re-iterated on demand

~

Computer Desktop Screen
- Slide Show
- Code Demos on Programming IDE
- [llustrations on Drawing Tablet

\

\

|

present T |
I

I

I

!

-~
~

- -

\ instructor

outside-class, pre-lab outside-class

Figure 2: Approach: Effective Outside-Class Learning

First, the instructor chooses a set of relevant topics and creates a
series of tutorial videos by presenting and illustrating those topics
on their personal computer. Formats of presentation and illustration
include the conventional slide show, code demonstrations on some

Drawing Tablet and Video Capturing/Sharing for Tutorials

programming IDE, as well as tracing runtime execution of program
code and explaining complex logic on a drawing tablet. The entire
presentation and illustration occur as various desktop activities,
which are are recorded, edited, and uploaded to an online sharing
platform accessible to students (e.g., before attempting their weekly
lab assignments). Given that illustrations on the connected drawing
tablet become part of the desktop activities, the instructor is able
to record thorough discussion of pre-selected topics (e.g., a code
fragment, an example to be solved from scratch) using coloured
annotations. The use of a drawing tablet for illustration, although
analogous to the in-class use of a whiteboard or blackboard, has the
advantages of greater visibility and being “re-playable” by students.

Second, students follow the tablet-focused presentation on the
screen of a computer or a mobile device. This means that visibility
is ensured (as opposed to the case of a whiteboard or blackboard
which may have limited visibility due to the size of classroom,
the position of students’ seats, etc.). Students may also download
the notes from the instructor’s drawing tablet (exported as PDF
documents) to review the illustration process.

4 TUTORIAL SERIES

In this section, we summarize how the proposed technique was
adopted to create tutorial materials for the four undergraduate
courses (see Section 2 for examples of the topics and learning out-
comes of the course). Twelve series of 148 tutorial videos (with
a total duration of approximately 59.5 hours) have been created
for the purpose of students’ learning. For each tutorial series, the
ordering of videos with various lengths corresponds to a logical
decomposition of the taught topics.

We divide these tutorial series into two categories: 1) study mate-
rials for lab assignments (Section 4.1); and 2) preparation materials
for lab tests (Section 4.2). For completeness and review, all of our tu-
torial videos have been anonymized and re-uploaded to this channel:
https://www.youtube.com/channel/UC60va_3A9A-iOb9vtpoZyzg/
playlists. Links to specific playlists and videos will be referenced in
the following two subsections.

4.1 Study Materials for Lab Assignments

Each of the four undergraduate courses has scheduled weekly lab
sessions: CS1A and CS1B have 3 hours, whereas CS2 and CS3 have
1.5 hours. Weekly lab assignments are meant for students to acquire
the required practical skills (e.g., programming, object-oriented
thinking, design patterns). Thus, the level of difficulty of these
weekly assignments should not target on any single scheduled
session. Instead, challenging assignments are released at least one
week before their due dates.

However, given the limited number of lecture hours?, it is chal-
lenging to fill the conceptual gap between the covered topics in
class and the pre-requisites of each lab assignment. Our proposed
approach attempts to solve this problem by creating self-contained
tutorials on the relevant topics:

e For CS1A, students are exposed to the Android Studio pro-
gramming environment on Day One of the semester to de-
velop working apps deployable on a tablet. Assuming that

2There are two lecture hours per week for CS1A and CS1B, and three lecture hours
per week for CS2 and CS3.

CSERC’19, November 2019, Larnaca, Cyprus

students have no prior experience on programming in Java,
we created the first tutorial series [3], which uses the de-
velopment of a simple Body Mass Index (BMI) calculator
to illustrate aspects of an event-driven controller, a graph-
ical user interface (with simple buttons and menu boxes),
and an object-oriented model. As we progress the course,
three further tutorial series were created to elaborate on: 1)
separating controller and model [4]; 2) declaring a reference-
typed attribute [8]; and 3) declaring an array whose element
is reference-typed [7].
For CS1B, students are given weekly programming assign-
ments, expected to be completed prior to their scheduled
lab sessions. Each week students are assigned four to five
tutorial videos to study (each of which guiding them through
the reasoning process of developing fragments of code). The
lab assignments are designed in such a way that students fin-
ishing the assigned videos are able to complete the actual lab
assignments independently (or with minor assistance from
the TAs or online forum). The tutorial series [12] contains
46 videos with the following design of roadmap:
- Lab 1 (Videos 01 to 08): Simple Console Applications using
Primitive Variable Assignments
- Lab 2 (Videos 09 to 17): Simple If-Statements using the
Boolean Data Type and Logical Operations
— Lab 3 (Videos 18 to 19): A Simple Bank Account Applica-
tion using Nested If-Statements
- Lab 4 (Videos 20 to 24): Syntax and Semantics of for-Loops
and while-Loops, Using Breakpoints and Debugger in the
Programming IDE to Reveal Defects
— Lab 5 (Videos 25 to 28): Basics of Arrays — Initialization
using Loops and Tracing
— Lab 6 (Videos 29 to 33): Deciding if Array Elements Uni-
versally/Existentially Satisfy Given Properties
— Lab 7 (Videos 34 to 39): Object Orientation — Classes, Meth-
ods, Object Creations, and Method Calls
— Lab 8 (Videos 40 to 46): Understanding and Implementing
Associations between Classes
For CS2, lab assignments require the use of classes from
the Java collection library. To help students gain hands-on
experience, as well as understanding the data structures of
these collections (e.g., ArrayList, HashTable), we created a
tutorial series [5] for them to review before attempting the
lab assignments.
For CS3, the composite/visitor design patterns are expected
to be used in one of the labs and projects. Due to the limited
number of lecture hours, we cannot guide students through
the process of implementing these two advanced design
patterns. Instead, we created a tutorial series [2] which im-
plements and debugs a simple language processor using the
two design patterns. For some labs and the project, we adopt
a programming framework [23] which restricts all students
to work under a given AP, while being allowed to design
their own programming modules that implement the com-
mon API This programming framework is challenging for
students to use due to its sophisticated architecture. To help
students get started, we created a tutorial series [10] which

CSERC’19, November 2019, Larnaca, Cyprus

guides them through the use of the framework: architecture,
extension, regression testing, and debugging.

In all CS1B, CS2, and CS3, we require students to apply the
common software engineering practice of managing their projects
using a revision control system such as Github. We created a tutorial
series [6] to help them initiate a private account and workspace on
their computers, as well as understand the workflow of common
operations (e.g., clone, commit, push, pull).

4.2 Preparation Materials for Lab Tests

An important learning outcome of CS1A, CS1B, and CS2 is being
able to write runnable programs (upon which students are assessed
through automated unit tests). We emphasize to students that when
they write an essay;, if there are grammatical mistakes, it can still
be interpreted by a human. Computer programs, on the other hand,
just cannot be run (and hence unknown runtime behaviour) when
they contain compile-time syntax or type errors.

In order to help students (especially those in CS1A and CS1B
who have little prior programming experience and discipline) write
compilable code during in-lab computer tests, we created a tutorial
series [11] to guide them through the process. For CS1A and CS1B,
we show how to write valid Java methods, given: 1) an API 2) a
console application tester; and 3) expected console outputs. For
CS2, we show how to write valid classes/methods, given a set of
unit tests.

Furthermore, in order to help students apply the above code-
writing process to solve real problems:

o For CS1A and CS1B, we created a tutorial series [9] on going
through the code and thinking process for solving twelve
practice problems (involving arrays and loops).

e For CS2, we created a tutorial series [1] on developing a com-
plete Birthday Book application (using two parallel arrays
with methods for insertions, removals, and lookups).

5 A PATTERN FOR TUTORIALS

The majority of our tutorial videos (Section 4) conform to the fol-
lowing general pattern:

(1) Present the Problem. This can be done by using slide show
to present the general problem to be solved, by using a
programming IDE to demonstrate what is ultimately ex-
pected from the final (e.g,. software) product, or even by just
pointing to what has been achieved in the previous tutorial
video(s).

Sketch the Solution. This part emphasizes the high-level

thinking process, which can be illustrated on the drawing

tablet, which may be pre-set with starter pages containing,

e.g., code fragments, formulas, writings, figures.

Develop the Solution. This is typically done in a program-

ming IDE, or any software tool that is applicable to the course

being taught.

(4) Discuss the Solution. This is to be done on starter pages on
the drawing tablet. These starter pages may be set up either
before the recording starts, or after Step 3% (by copying and
pasting snapshots of parts of the solution developed). As the

(2

-

3

=

3This alternative would require editing of the recordings.

discussion progresses, we annotate on the starter pages to
gradually build towards the solutions or conclusions.

The above pattern requires the instructor to determine what
concepts/examples they will illustrate in the same series of tutorial
videos, and then created the starter pages on the drawing tablet
accordingly. Some steps (except tablet illustrations) may be omitted,
and the order of choreographing these components may be adjusted
according to the subject being taught.

As an example of instantiating the above pattern, consider Video
42 from the Java Tutorial Series for CS1B [12]: https://youtu.be/
2sZ06XyzJ6s. This tutorial video shows how to implement Student
objects, each of which storing an array of CourseRecord objects:

® [00:00 — 03:03 | Summarize classes and methods developed

in the previous videos, and briefly mention the extension to
be completed in the current tutorial video.

: Delay the sketching of solution and develop

the programming solution on Eclipse right away.
: On the drawing tablet, trace the developed
code line by line, by visualizing object creations and method
calls. This part was actually recorded separately and ap-
pended to the previous recording, so that it was possible
to take snapshots of the code developed between 03:04 and
26:32, and to paste them to starter pages on the tablet.

47:06 — 50:49 |: On Eclipse, extend the code by introducing

a second version of the implemented methods.

50:50 — 58:04 |: On the drawing tablet, sketch the idea about

the second version of implementation.

58:05 — 59:57 |: On Eclipse, execute the second version of

implementation, faulty due to a null pointer.
: On the drawing tablet, illustrate how the
runtime exception occurs and go back to Eclipse to fix the
code accordingly.

: On the drawing tablet, justify why the final
implementation works in two boundary cases: empty array
vs. fully-occupied array.

Contrast Figure 1a with Figure 1b on page 2 to see how much
illustrations of complex ideas has been performed in the above tuto-
rial video. There are many more instantiations of the above pattern
that can be found from our series of tutorials videos (Section 4).

6 ADOPTING THE APPROACH

Figure 3 summarizes how to assemble the various equipment to
implement the proposed approach. Here we describe what we use,
but the interested reader may choose other equipment with the
same functionality.

Install the following software programs on your teaching com-
puter (e.g., a MacBook): 1) a presentation program (e.g., a PDF or
PowerPoint reader) for your slides; 2) a programming IDE as ap-
plicable to your course (e.g., Android Studio, Eclipse); 3) a screen
recording program (e.g., Active Presenter [24] for recording all
desktop activities on the computer; and 4) a program for projecting
the screen of your drawing tablet (e.g., the free QuickTime Player).

Connect the following hardware to your computer: 1) a high-end
studio microphone (e.g., Blue Yeti [14]) using a USB cable; and 2) a
drawing tablet (e.g., iPad Pro) installed with an app for annotations

Drawing Tablet and Video Capturing/Sharing for Tutorials

CSERC’19, November 2019, Larnaca, Cyprus

COURSE ‘ SERIES ‘ AvG. WarcH TiME (MIN) H Completion Rate

——» connected to
Tablet
Projection — e uploaded to

Figure 3: Adopting the Approach: Schematic View

(e.g., GoodNotes, Notability). For 2), a wired connection to the
USB port is recommended for stability throughout the recording
session. To project the screen of the drawing tablet to your computer
desktop, if you use the QuickTime player and an iPad Pro, start a
“New Movie Recording” and select your iPad as the camera.

When ready to start your tutorial recording, start the screen
recording program and choose the connected microphone as the in-
put device. When each recording session is finished, stop the screen
recording, export it to an acceptable form (e.g., MP4), upload it to an
online video sharing platform (e.g., YouTube), add it to the relevant
playlist, and publish the link to students. The annotation app on
your drawing tablet should allow you to export the annotated notes
(e.g., Figure 1b, p2) as a PDF file.

7 EVALUATIONS
7.1 Student Engagement

Table 1 summarizes on YouTube, as of April 2019 when all courses
were completed: 1) the average number of minutes which each
registered student spent watching the videos?; and 2) the average
completion rate (i.e., the ratio of average watch time to the duration
of the tutorial series in question) accordingly. The average time is
calculated based on one iteration of CS1A (Winter 2018 with 357
students®), one iteration of CS1B (Winter 2019 with 459 students),
two iterations of CS2 (Fall 2017 with 99 students and Fall 2018 with
134 students), and three iterations of CS3 (Fall 2017 with 82 students,
Fall 2018 with 88 students, and Winter 2019 with 95 students).

In Table 1, the measures of average watch times, and of com-
pletion rates accordingly, are arguably underestimates: apathetic
students (e.g., those who never watched any of the videos) are not
excluded. Consequently, a “good” student (e.g., those who attempted
to watch these videos) in these courses should have a higher com-
pletion rate. Such engagement is confirmed by the majority of
students in the (informal) midterm and (formal) end-of-semester
course evaluations, expressing that these tutorial videos are helpful.

4We exclude [11], which is not directly related to computational thinking.
5There was an abnormal drop on the number of students due to a labour disruption.

© software Online hardware [3] 304.58 86.52%
Sharing [4] 42.48 45.34%
Platform CS1A [8] 31.25 65.04%
Presentation [7] 75.83 18.33%
High-End Stdio CS1B [12] 365.36 21.15%
USB Microphone CS1AB [9] 35.33 14.23%
e s] 108.67 41.21%
Personal [5] 28.00 34.50%
Computer [10] 58.9 48.59%
_wi . .59%
Sc . CS3
] 251 22.807%
g . installed S CS1B23 | [6] 35.06 43.62%
. rawing Tl Table 1: Average Watch Time and Completion Rates

7.2 Improvement on Performance

Our proposed approach to making tutorial videos is meant for
helping students understand complex computational thinking. One
example is writing procedural code (in Java) using primitive arrays
and loops. Table 2 shows the results of two in-lab computer tests
in Winter 2018° from CS1A (taught by us, and our tutorial series
on practice test solution [9] was supplied prior to the lab test) and
CS1B (not taught by us, and no tutorial videos were supplied).

[Coursk | TuToriaLs? | # oF STuDENTs || Avg. Performance |

CS1A Yes 201 57.7%
CS1B No 439 43.75%

Table 2: Performance Comparison: Arrays and Loops

As can be observed from Table 2, our tutorial solutions [9] had a
positive impact on CS1A students. Although the two tests in Table 2
used different questions, the level of difficulty of tasks in CS1A (e.g.,
given as inputs two sorted arrays, return a new sorted array that
merge them) is significantly higher than that of tasks in CS1B (e.g.,
given as inputs a list of numbers and an integer n, return a sublist
whose values are larger than or equal to n).

7.3 Student Feedback

The anonymized online course evaluations’ of CS1A, CS1B, CS2,
and CS3 indicate that our tutorial videos (Section 4 and Section 5),
despite their length, are perceived by students as being effective:
e “.. Personally, coming into the course knowing nothing about java,
his online tutorials allowed me to understand the course material to
the best of my ability. It was easy to follow, very in-depth with the
explanations and most importantly, had relevance to the lab and course
syllabus.” [CS1B]
“... He [the author] puts in a lot of effort to get the students involved in
the course material and also makes very long tutorial videos for us to
really understand and concepts.” [CS1B]

The lab test for CS1B had more participants because it was taken prior to a labour
disruption, whereas the lab test for CS1A was taken during the remediation period.
"We do not include numerical ratings because it is hard to distinguish between the
impact of our in-class instruction and that of our tutorial series.

CSERC’19, November 2019, Larnaca, Cyprus

“[The best things about this course are] Just the way he explains
everything in the tutorial videos. Tracing code line by line makes it
so helpful and easy to understand[.]” [CS1B]
“... video tutorials are extremely useful (although very long and time
consuming to watch), and he took the time to explain concepts thor-
oughly and in detail which was helpful to complete labs and further
my understanding.” [CS1A]
“The tutorial videos were also great because he led us step by step of the
way of a very new and complicated android application development
process.” [CS1A]
“The instructor did his best for understanding the course materials.
Specially, all of his tutorial videos were very helpful to me to fulfill
learning outcomes.” [CS1A]
“The tutorial series and the recording system help me a lot in this
course.” [CS2]
o “..really great to have the tutorial videos for the labs, it really helped
us to where we needed to start for the lab.” [CS3]

8 RELATED WORKS

We report a novel technique for creating tutorial videos which
complement lectures and facilitate students’ learning. Some rec-
ommendations for creating engaging tutorial videos from [16] —
“continuous visual flow” and “the instructor speaks ... with high
enthusiasm” — correspond to the guiding principles of creating our
tutorial series. However, also as indicated in [16], videos shorter
than six minutes are more effective for students’ engagement. Some
students in CS1B (close to 20% of those who completed the on-
line evaluation) complained that the lengthy videos increased their
course workload. Nonetheless, it was only a much smaller group of
students (less than 5%) expressing that these videos are unnecessary
or useless for them to achieve the course learning outcomes.

Our tutorial videos offer new, more sophisticated examples,
which cannot be completed in class, rather than repeating demon-
strations done in class [25]. Consequently, given that our tutorial
videos are meant for thoroughly demonstrating sophisticated ex-
amples, they are not comparable to short “podcast highlights” to
full-length lecture footage [21]. Moreover, unlike many other at-
tempts of making better tutorial videos [17, 18, 22], our approach is
meant for teaching heavy-weighted complex computational think-
ing [13, 19, 20, 28] by requiring the careful setup of starter artifacts
(e.g., code fragments, figures, writings) on a drawing tablet for il-
lustrations, which are recorded for students to review outside class.
Our videos were perceived as effective (see Section 7.3 for examples)
by the majority (more than 60%) of students in CS1B.

Stanford Online [27], designed for online distance learning, offers
similar tutorial support. The use of a drawing tablets for intensive
illustrations, as well as constant switches between the various desk-
top activities, is not typical for courses there. Similar to Stanford
Online are the online course repositories such as Coursera [15]
and Udemy [26], but these are meant to be commercial, unlike our
intention. Moreover, the use of intensive tablet illustrations is also
not typical in these commercial courses.

9 CONCLUSION

As future work, we will: 1) distribute a questionnaire specific to
the learning experience of our tutorial videos; 2) conduct more
performance comparison on other subjects; and 3) reflect on the

proposed pattern (Section 5) by creating tutorials for other CS or
Engineering courses (e.g., a course on the introduction to theory of

computation).

REFERENCES

[1] The Author. 2017. Birthday Book Application in Java. https://www.youtube.

com/playlist?list=PLxmJie0 AEbu5iEysK101QBoi_CfQ8bpsm.

[2] The Author. 2017. Composite and Visitor Patterns. https://www.youtube.com/

playlist?list=PLxmJie0AEbu4frG95BmvYyH8m1vg0obU%e.

[3] The Author. 2018. BMI Calculator: Model, View, Controller. https://www.

youtube.com/playlist?list=PLxmJie0AEbu4VukLpZ_T-pdNyqvcIR]NA.

[4] The Author. 2018. Even-Driven Controller vs. Object-Oriented Model. https:

//www.youtube.com/playlist?list=PLxm]Jie0 AEbu4sQkggQj3k_TPF4Bb2sms_.

[5] The Author. 2018. Java Collection Library. https://www.youtube.com/playlist?

list=PLxmJie0AEbu7HTCOo0e60HvFmVeXVQblzk.

[6] The Author. 2018. Managing Software Projects Using Github. https://www.

youtube.com/playlist?list=PLxmJie0AEbu4cdt_7H1owO2-n6C_FXcmk.

[7] The Author. 2018. OOP: Array-Typed Attributes. https://www.youtube.com/

playlist?list=PLxmJie0AEbu5ayf3scPtAS4SZ6R9OFDxq.

[8] The Author. 2018. OOP: Reference-Typed Attributes. https://www.youtube.com/

playlist?list=PLxmJie0AEbu4C51luKqRvKYSIZqX12joD.

The Author. 2018. Solutions to Practice Test on Arrays and Loops. https:

//www.youtube.com/playlist?list=PLxm]Jie0 AEbu7H1SQb6xXkZsDkDqsEayHv.

[10] The Author. 2018. Use of the Eiffel Testing Framework (ETF). https://www.
youtube.com/playlist?list=PLxm]Jie0 AEbu4frG95BmvYyH8m1vg0bU9e.

[11] The Author. 2018. Writing Java Code Based on Given Tests. https://www.
youtube.com/playlist?list=PLxmJie0AEbu6Em3P7Y9ROjxeS4iseSKZ].

[12] The Author. 2019. Java Tutorial Series for CS1B Labs. https://www.youtube.
com/playlist?list=PLxmJie0AEbu6rQFQILGmb9thT48mGLk64.

[13] Jens Bennedsen, Michael E. Caspersen, and Michael Klling. 2008. Reflections on
the Teaching of Programming: Methods and Implementations (1 ed.). Springer
Publishing Company, Incorporated.

[14] Blue. [n. d.]. Blue Yeti: Professional Multi-Pattern USB Mic for Recording and
Streaming. https://www.bluedesigns.com/products/yeti/.

[15] Coursera. [n. d.]. https://www.coursera.org/.

[16] Philip J. Guo, Juho Kim, and Rob Rubin. 2014. How Video Production Affects
Student Engagement: An Empirical Study of MOOC Videos. In Proceedings of the
First ACM Conference on Learning @ Scale Conference (L@S '14). ACM, New York,
NY, USA, 41-50. https://doi.org/10.1145/2556325.2566239

[17] Juho Kim. 2013. Toolscape: Enhancing the Learning Experience of How-to Videos.
In CHI 13 Extended Abstracts on Human Factors in Computing Systems (CHI EA
’13). ACM, 2707-2712. https://doi.org/10.1145/2468356.2479497

[18] Benjamin Lafreniere, Tovi Grossman, and George Fitzmaurice. 2013. Commu-
nity Enhanced Tutorials: Improving Tutorials with Multiple Demonstrations. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 1779-1788. https://doi.org/10.1145/2470654.
2466235

[19] Anna Lamprou and Alexander Repenning. 2018. Teaching How to Teach Compu-
tational Thinking. In Proceedings of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE 2018). ACM, New York,
NY, USA, 69-74. https://doi.org/10.1145/3197091.3197120

[20] James Lockwood and Aidan Mooney. 2017. Computational Thinking in Education:
Where does it Fit? A systematic literary review. CoRR abs/1703.07659 (2017).
arXiv:1703.07659 http://arxiv.org/abs/1703.07659

[21] Mia Minnes, Christine Alvarado, Max Geislinger, and Joyce Fang. 2019. Pod-
cast Highlights: Targeted Educational Videos From Repurposed Lecture-capture
Footage. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19). ACM, 365-371. https://doi.org/10.1145/3287324.3287465

[22] Cuong Nguyen and Feng Liu. 2015. Making Software Tutorial Video Responsive.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI °15). ACM, 1565-1568. https://doi.org/10.1145/2702123.2702209

[23] J.S. Ostroff and C. Wang. 2018. Modelling and Testing Requirements via Ex-
ecutable Abstract State Machines. In 2018 IEEE 8th International Model-Driven
Requirements Engineering Workshop (MoDRE). 1-10. https://doi.org/10.1109/
MoDRE.2018.00007

[24] Active Presenter. Version 7. All-in-one Screen Recorder, Video Editor & eLearning
Authoring Software. https://atomisystems.com/activepresenter/

[25] Ben Stephenson. 2019. Coding Demonstration Videos for CS1. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, 105-111. https://doi.org/10.1145/3287324.3287445

[26] Udemy. [n. d.]. https://www.udemy.com/.

[27] Stanford University. [n. d.]. Stanford Online. https://online.stanford.edu/courses.

[28] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35. https://doi.org/10.1145/1118178.1118215

=

Keep Calm and Code on Your Phone: A Pilot of SuaCode, an
Online Smartphone-Based Coding Course

Anonymous Author(s)*

ABSTRACT

Africa lags behind the rest of the world in terms of digital literacy
skills with less than one percent of African children leaving school
with basic coding skills. One cause of this gap is poor access to
equipment such as computers for teaching and learning. Yet, there
is a proliferation of smartphones in Africa. Seeking to leverage this
opportunity, we developed SuaCode, an online smartphone-based
coding course to teach programming fundamentals to Africans. We
designed the course to teach coding in a visual, interactive and
fun way through the building of a pong game using Processing (a
Java-based programming language). In this work, we describe our
experience delivering the course online to 30 Ghanaian high school
and college students. At the end of the course, 7 of the 30 students
completed the first part of the course, building the pong game. The
reflection essays from our students showed that they enjoyed the
course and coding on a smartphone was not a barrier to completing
the assignments. Improvements such as having more mentors and
automated feedback on the coding assignments will improve the
quality of the course. Given the difficulty in accessing computers
in Africa, our work shows that smartphones can be leveraged to
effectively introduce students to programming concepts via an
online course. We are excited about the results of this pilot and see
the potential to scale the course to eventually bring coding skills
within arm’s reach of millions across Africa, literally into their
palms thereby bridging Africa’s digital divide.

CCS CONCEPTS

+ Applied computing — Distance learning; E-learning; Learn-
ing management systems.

KEYWORDS

smartphones, mobile phones, online course, coding, introductory
programming, Processing, Ghana, Africa

1 INTRODUCTION

Africa lags behind the rest of the world in terms of digital literacy
skills, with less than one percent of children leaving school with
basic coding skills [13]. One cause of this gap is poor access to
equipment such as computers for teaching and learning, which
hampers efforts to promote digital learning among the general pop-
ulation [9] . For example, Ghana’s national student to computer
ratio stood at 42:1 in 2010 [17]. Hence, computer literacy remains
the preserve of the elite who can afford computers and opportuni-
ties to gain this education. Fortunately, there is a proliferation of
smartphones in Africa. According to research firm Ovum, Africa’s
smartphone penetration rate will grow at 52.9% year-on-year [15].
In 2016, there were 293.8 million smartphone users and there is
projected to be 929.9 million smartphones by the year 2021 [15].
Hence, smartphones provide a unique means to provide coding
skills to the youth of Africa. Additionally, coding on a phone gives

a huge opportunity to be very innovative with reference to teaching
students how to code. For example, the coding curriculum can be
designed around students building mobile-first programs such as
games, which has been shown to be a more exciting and effective
way to introduce programming[4, 12].

In this paper, we describe our experience running a pilot of
SuaCode, an online smartphone-based coding course to teach pro-
gramming fundamentals to a cohort of primarily Ghanaian students
(Figure 1). In our previous work, we introduced students to coding
in-person using smartphones (a first of its kind in Ghana) [2]. Build-
ing upon that work, we sought to assess the feasibility of students
learning remotely using smartphone to scale the reach and impact
of our course. Therefore, we gathered students’ feedback in this
study to assess this approach. This experience report describes the
process of creating and running the course along with a discussion
of lessons learned. The rest of the paper is organized as follows:
we give an overview of our coding curriculum, describe the pilot
experience, followed by the findings and discussion, related work
and conclusion.

= skelch 2010007,

sketch
-PaddieReight,

(xBal] +
" 1 diameter/s < 0)
FightScore =
xBal] =

}

rightSco,
Tyl R

(xBal] . digmeter/s .

Figure 1: Snapshot of Code on Phone

2 OVERVIEW OF SUACODE

The pilot of SuaCode was implemented as an 8-week online course
for high school and college students in Africa by Nsesa Foundation,
an education non-profit in Ghana. The course ran from from May
to June, 2018. We invited high school and college students all over
Ghana to apply to take part in the SuaCode pilot via advertisements
on social media (Figure 2).

Students were asked to respond to the question "Why do you
want to take part in the SuaCode pilot?" The response to this ques-
tion was used to select students. Specifically, two people rated the

responses on a scale of one to five and the average of the two ratings
were used to select the students. A total of 117 applications were
received, out of which 30 students were selected based on their
motivation essays. The 30 students were all Ghanaian except one
student who was from Ethiopia with (76%) being college students
and 50% being female.

Nsesa Foundation

/bxcscm.lb g1

1 ex

=

Sus=>Code />

A mobile-based programming course

Learr

Sign Up at

bi€.ly/SuaCode
Q= @

Figure 2: Poster used for advertising the SuaCode program

3 OVERVIEW OF THE CODING
CURRICULUM

We designed the curriculum of our custom smartphone-based course
to introduce fundamental programming concepts to students with
little or no programming experience. Our curriculum was previ-
ously used in an in-person coding course in which there was a
significant improvement in perceived understanding of program-
ming concepts. The curriculum was inspired primarily by Dart-
mouth College’s Introduction to Programming course (CS 1) [6].
We also based our curriculum on Dartmouth’s computer science
course, "Programming for Interactive Audio-Visual Arts" [7], and
"the Coding Train" a set of programming tutorials, both of which
use Processing for instruction [19].
The objectives of our SuaCode course were as follows:

(1) Introduce students to fundamental programming concepts
(2) Develop critical thinking and problem-solving skills.

Our course teaches programming fundamentals in a visual, inter-
active and fun way through game development using the Processing
programming language [18] on the smartphone-based program-
ming environments APDE for Android [3] or Processing iCompiler
for i0S [8] with which to run the code on phones. Processing is an
open-source, Java-based language which we chose to use because

it enables learning of programming in a fun way since it can be
used to easily create visual and interactive programs.

We also chose to use a game development paradigm because
several studies have shown that it is an engaging, motivating and
effective way to teach programming [4, 5, 11, 12]. Specifically, the
course was structured such that students will build a pong game at
the end of the course (Figure 3). This game has 2 paddles, one for
each player and a ball. Once the ball starts moving, each player has
one goal; to prevent the ball from exiting the vertical wall on his
side. If that happens, the opponent’s score increases.

Figure 3: Pong game

Our curriculum consists of 6 lessons and it is divided into two
parts. The first part introduces basic programming concepts (such
as variables and functions) and the second introduces more ad-
vanced concepts (such as classes and objects). Each topic has a
corresponding lesson note containing programming exercises and
an end-of-lesson assignment, which incrementally built a com-
ponent of the game. This arrangement was chosen to make the
progression through the course more engaging. The contents of
the lessons and assignments are openly available for others to use
here: !

Completion of "Part 1" results in the building of the pong game.
Part 1 consists of lessons 1, 2, 3, and 4. Lesson 1 introduces students
to the Processing language and gives examples of various programs
that have been created with it. The students learned how to draw
and color various shapes such as line, ellipse and rectangle and fill
them with colors. The assignment at the end creates an interface
of the pong game consisting of different shapes and colors. Lesson
2 introduces students to variables, enabling them to move objects
on the screen. At the end of the lesson, the assignment makes use
of variables to represent the shapes in the pong interface from
the previous assignment and then make the ball move. Lesson 3
introduces students to conditionals, enabling various actions to
be performed if certain conditions are not met. At the end of the
lesson, the assignment was to build upon the previous assignment
and make the ball bounce if it hits the top and bottom walls of
the game environment. Lesson 4 introduces students to functions,
enabling them to reuse blocks of code without rewriting them. To
practice, students were asked to take the previous assignment and
reorganize various blocks of code with functions, and then to write

!https://github.com/Suacode-app/Suacode/blob/master/README.md

functions to move the 2 paddles and also make the ball bounce off
them.

Completion of "Part 2" results in adding more features to the
pong game such as having several balls on the screen to make
the game more interesting, or optionally adding obstacles. Lesson
5 introduces students to classes, objects and object oriented pro-
gramming (OOP) enabling them to write code in a much cleaner
and more intuitive manner. The lesson’s assignment entailed re-
organizing assignment 4 using classes and objects and including
an additional ball in the game. Lesson 6 concludes the course and
introduces students to loops and arrays, enabling them to easily
manipulate several objects. The corresponding assignment was to
build upon assignment 5 and add at least 5 balls to game. Students
at this point had the options to add several features to the game to
make it more interesting such as increasing the speed of the ball
slightly when it bounces off the paddle, changing the color of the
ball randomly as it moves or when it bounces of the paddle, varying
the size of the ball from its size to zero as it moves, etc.

Table 1: Programming Curriculum

Lesson ‘ Topic ‘ Assignment
PART 1
1 00 Intr.O duction . . Make Interface
1.0 Basic Concepts in Processing
2.0 Variables Move Ball
3.0 Conditionals Bounce Ball
4.0 Functions Move Paddles
PART 2
5 5.0 Classes and Objects Add Extra Ball
6 6.0 Loops and Arrays Add More Balls

4 COURSE LOGISTICS AND EXPERIENCE

We hosted and delivered the course online via Google classroom, a
free learning management system (LMS) (Figure 3). We chose to
use Google classroom among several options which we considered
and tried out such as Moodle, Teachable etc. because it is the only
LMS that satisfied these key requirements:

(1) Free to use both for teachers and students
(2) Course notes are accessible offline

(3) Fully functional Android and iOS apps

(4) No need to set up our server, database etc.
(5) Assignments can be assigned grades

(6) Simple to use

For each lesson, the corresponding lesson note and assignment
were made available as Google docs which were accessible in Google
Classroom (Figure 4). Each week, students read the week’s lesson
note and also completed the corresponding assignment. Students
read the lesson notes using the Google classroom iOS and Android
apps. They then wrote their code for the assignments using APDE
(Figure 4) or Processing iCompiler apps. We did not use videos as
instruction materials but only lesson notes because Internet data is
very expensive in Africa, and more so for our target population [1],
students living in Africa.

@ Seach e TE 10:07 PM

X Filter to topic Teacher

D T—

Course Outline

0.0 Introduction
0.1 Processing Reference
1.0 Basic concepts in Processing

2.0 Variables
6.0 Classes and Objects

3.0 Conditionals
Bl 60 casses and ovjects

4.0 Functions

5.0 Loops & Arrays

Bl sotoorstamys

5.0 Classes and Objects

6.0 Loops & Arrays

4.0 Functions

= R

Assignments

Figure 4: Snapshot of Course

Students posted questions in Google Classroom. We had two
facilitators for the this pilot that answered students’ questions as
well as graded their assignments gave feedback for improvement.
For each assignment submission, the students included a reflection
essay describing among several things whether that week’s lesson
and it’s corresponding assignment was fun, challenging, etc. They
also described their experience coding the assignment with their
smartphones.

B &L A0%M 74T AM

> |}

° Assignment1

© Assignment2

(0, o, /2, /2);

© Assignment3 14)

/2, /4,
(30, /2, 10,20);
4 . 20,

° Assignment4
0 AssignmentS
© Assignmenté
° CircleSquare

© ConcentricCircles_
for

© ConcentricCircles_
while

° Grid

@ haince ball

Figure 5: Snapshot of APDE Coding Environment

5 FINDINGS AND DISCUSSION

One of the main challenges we had was that students would sub-
mit their code for the assignments without checking if it met all
the specifications outlined for the assignment. Because we were
concerned with competency-based learning in which students are

expected to master concepts before moving to the next module, we
ended up giving feedback on their code with the opportunity to
resubmit. This back and forth went on generally for about three to
four times for the assignments before the students’ code met all the
necessary specifications. This process was very labor intensive, but
we felt it was necessary to ensure they understood all the concepts
in each lesson. Because of this experience, we are now exploring an
automatic approach for giving feedback on assignments, and plan
to develop that for subsequent iterations of the course. We intend
to develop some algorithms and code that will automatically review
the assignment submissions of students and give feedback about
the changes needed to be made, especially if their code submissions
do not meet all the requirements. This solution when implemented
will aid in scaling the program to more students as we plan to run
more pilots.

Additionally, out of the 30 students who were selected and invited
to take the course, we had 11 students making submissions for the
first assignment, and mainly 7 students consistently completing
the assignments. Specifically, the 7 students completed part 1 of the
course (consisting of four assignments), resulting in the building
of a fully functional pong game. Unfortunately, only 1 student
completed assignment 5 and no student completed the second part
of the course (consisting of two assignments), which sought to teach
more advanced programming concepts. For those 7 students, that
completed the first part of the course, it took two months rather
than the previously planned one-month period. For this pilot, we
use completion of part 1 as the metric for completing the course
since students built the intended pong game after completing it
and also we offered part 2 as an optional next step. That puts our
completion rate of 23% which is above the completion rates of
online course which are mostly under 10% and on average 6.5%
[10]. Nonetheless, we would like to improve on the completion
rates.

We sent an email to find out the reason students were not com-
pleting assignments. It ended up being that most students were
taking their examinations during the time the pilot was running,
making it difficult to dedicate time to completing the assignments.
This insight was useful because it showed that it is necessary to
make sure the program does not run during the examination pe-
riod. Additionally, in the future, we plan to have mentors assigned
to students to check up on them especially when they are falling
behind schedule. Also, our 1-month estimate for the completion
was an underestimate of the time needed to complete the course.
Hence, for future sessions, the deadlines of the assignments will be
planned around an 8-week time period.

Also, there were a few issues with the APDE app. Some students
reported that the app crashed sometimes and they lost their code.
Debugging the issue revealed that it was happening on phones
running on older Android versions. We have been in touch with the
developer of the APDE app andcollaborated with him to fix issues
that were encountered during the program. We plan on advising
our students to keep a backup of their code in a Google doc for
worst case scenarios like this. Also, when code is ran, the APDE
app builds and install an Android apk which takes a long time and
takes up memory for the phone since several "apps" are installed
with every code run. We communicated this issue with the APDE
app developer and a preview mode which avoid this process and

runs the code in a much shorter time has been built into the newly
updated version of the app.

Additionally, students reported that coding on a phone was a bit
challenging because of the small screen size, but it was nonetheless
an exciting and enjoyable experience mainly because of the conve-
nience and accessibility it offered. Also, they said it got easier over
time. This summary can be seen from the following excerpts from
the reflection essays on the coding experience:

e "Coding on my phone was very fun and convenient since I had
my phone all the time and I could easily work on my code."
"It is very exciting coding on phone but sometimes very chal-
lenging because of the screen size."

"One problem that I have identified is not being able to have
a wider screen to work on. This would have made it easier for
me to see the code in its entirety. This might just be a matter of
getting used to using my phone to work on my assignments."
"It was really convenient, honestly. I didn’t have to necessarily
sit behind a desk to do it so I could do it when I was on my bed,
eating, even using the bathroom. So it was fun and convenient
coding on my phone."

"It wasn’t very different from doing it on a computer. In fact, it
was more convenient as I didn’t have to worry about carrying
a computer everywhere."

"It was really cool actually. Initially, it was not comfortable
because I am used to working on my PC. However, once I started
working on it, I released that it was very convenient since I can
work anywhere even when I am taking a taxi, at home, work
anywhere. So it was really cool. It is much better than being
on social media."

"T have gotten more used us my phone to code so it is no longer
a difficulty."

"In terms of writing the code, I found it easier than in a laptop
because I could type faster. However, the small screen size
doesn’t allow one to view a large portion of the code at once so
there’s a lot of scrolling going on and that could be distracting."

"This has been a very exciting experience, and I look forward
to more challenging assignments.”

o "So while reviewing the material, I found it quite interesting
and easy to understand. I'm really learning a lot! And I love
this course."

"The material was detailed enough and easy for me to un-
derstand with a good outline. Thank you very much for this
opportunity to write my first code."

Finally, we were successful in developing students’ critical think-
ing, problem solving, and basic coding skills as evidenced by stu-
dents completing the assignments in part 1 of the course which
resulted in them building a fully fledged and functioning pong game.
Also, the acquiring of these skills were confirmed in the following
feedback from three of the students about the course:

o "Suacode has been a very great experience for me. I got to learn
processing and actually code on my phone. I also had help from
the tutors and my fellow course mates which made it easier. I
learnt a lot and I'm glad I had the opportunity to be part of
the first batch of suacode initiative"

"I'd also like to say I'm very glad I participated in the course,
it gave me a good head start in Programming which helped

me a lot in my intro programming class. The course was phe-
nomenal!"

"SuaCode helped improve my algorithmic thought process. I
had lots of practice with thinking in a step by step process and
working through challenges.”

6 RELATED WORK

There have been a number of previous works that sought to in-
troduce students to fundamental coding concepts via mobile pro-
gramming [14, 16, 20]. Nonetheless, our approach is unique for
two reasons. First, we introduce students with no or very limited
prior experience to programming using the smartphone as a coding
environment. Secondly, we deliver our course online rather than in-
person. Therefore our approach presents an interesting opportunity
to scale the reach and impact mobile programming initiatives.

In a study by Tillman and coauthors [20], a mobile programming
environment, TouchDevelop was developed to introduce middle
and high school students to programming. However, TouchDevelop
was designed for Windows Phones. This is a limitation since 87.5%
of smartphones worldwide operate on the Android OS [21] and
also as our survey revealed that 90% of our study participants used
Android phones. Our work, on the other hand, utilizes apps on i0S
and Android which allow students with these smartphones to code
with our course which is a useful advantage. In the same study, the
authors also noted that in programming on a smartphone, actions
that require fine navigation such as making structural corrections
are awkward on a touchscreen where precision is limited by the size
of a finger [20]. This is a challenge which students in our program
also reported. Other limitations such as the smaller screen, limited
battery life and relatively slower processors affect the smartphone-
based programming experience [2, 20]. These challenges will need
to be addressed to improve the learning experience of smartphone
users.

In another study [16] the authors developed a scaffolding to
support programming by university students in Kenya and South
Africa who were taking an introductory course in programming us-
ing Java. In contrast to our approach, the participants in this study
used desktop computers in their classroom learning and only tran-
sitioned to a mobile programming interface during the experiments.
Thus it did not capture the true experience of learning programming
on a phone. Besides, Mahmoud and Popowicz advocate for the use
of mobile phones to teach introductory programming to computer
science students [14] and our approach serves this purpose.

Another innovation in our program is the delivery of the course
remotely via an online system. A study by Wang [22] identified that
lack of instant instructor feedback as one of the key challenges to
learning programming online. We tried to mitigate this by having
facilitators provide feedback to students on assignments during the
course. Wang further recommends two solutions, among others, to
improve the online learning experience. First, by adding multimedia
content such as videos to make the instruction more engaging and
understandable. Second, to create a sense of community among
students to help them support each other. These suggestions can
be found in our pilot in various forms. We do not include videos
in our materials as stated earlier because Internet data is expen-
sive in Africa [1], . Nonetheless, our lesson notes contain images

where necessary to better explain concepts which is the next best
option. Also, we encouraged students to help other students and
we saw that happening but not as strongly as we hoped. We plan
to encourage that more in subsequent runs of the program.

7 CONCLUSION

In this work, we described our experience delivering a smartphone-
based coding course online to 30 students primarily based in Ghana.
Seven of the 30 students completed the first part of the course. The
reflection essays from our students showed that they enjoyed the
course. Additionally, the seven students built the pong game and
coding on the smartphone was not a hindrance. However, improve-
ments such as having more mentors for the students and automated
feedback will significantly improve the quality of the course and
potentially improve the course completion rate. Overall, the course
met the objectives of introducing students to fundamental coding
concepts, critical thinking and problem solving skills. We are ex-
cited about the results of this pilot and we see the potential to scale
the course to eventually bring coding skills within arm’s reach of
millions across Africa, literally into their palms thereby bridging
Africa’s digital divide.

REFERENCES

[1] Quartz Africa. 2019. The cost of internet access is dropping globally but not
fast enough in Africa. Retrieved June, 2019 from https://qz.com/africa/1577429/
how-much-is-1gb- of-mobile-data-in-africa/
Annonymous. 2018. Project iSWEST: Promoting a culture of innovation in
Africa through STEM. In 2018 IEEE Integrated STEM Education Conference (ISEC).
104-111. https://doi.org/10.1109/ISECon.2018.8340459
[3] APDE [n. d.]. APDE - Android Processing IDE. Retrieved Jan, 2019 from
https://play.google.com/store/apps/details?id=com.calsignlabs.apde
[4] Tiffany Barnes, Eve Powell, Amanda Chaffin, and Heather Lipford. 2008.
Game2Learn: Improving the Motivation of CS1 Students. In Proceedings of the 3rd
International Conference on Game Development in Computer Science Education (GD-
CSE '08). ACM, New York, NY, USA, 1-5. https://doi.org/10.1145/1463673.1463674
[5] Jessica D. Bayliss and Sean Strout. 2006. Games As a "Flavor" of CS1. In Proceedings
of the 37th SIGCSE Technical Symposium on Computer Science Education (SIGCSE
'06). ACM, New York, NY, USA, 500-504. https://doi.org/10.1145/1121341.1121498
[6] CS1[n.d.]. Dartmouth CS 1. Retrieved Jan, 2019 from http://www.cs.dartmouth.
edu/~cs1
[7] CS2 [n.d.]. Programming for Interactive Audio-Visual Arts. Retrieved Jan, 2019
from http://aum.dartmouth.edu/~mcasey/cs2/
[8] iCompiler [n. d.]. Processing iCompiler. Retrieved Jan, 2019 from https://itunes.
apple.com/us/app/processing-icompiler/id648955851?mt=8
[9] ITU 2018. ITU releases 2018 global and regional ICT estimates. Retrieved Jan,
2019 from https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
[10] Katy Jordan. 2014. Initial trends in enrolment and completion of massive open
online courses. The International Review of Research in Open and Distributed
Learning 15, 1 (Jan. 2014). https://doi.org/10.19173/irrodl.v15i1.1651
[11] Stan Kurkovsky. 2009. Engaging Students Through Mobile Game Development. In

[2

Proceedings of the 40th ACM Technical Symyp on Computer Science Education
(SIGCSE °09). ACM, New York, NY, USA, 44-48. https://doi.org/10.1145/1508865.
1508881

[12] Scott Leutenegger and Jeffrey Edgington. 2007. A Games First Approach to
Teaching Introductory Programming. In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE *07). ACM, New York, NY,
USA, 115-118. https://doi.org/10.1145/1227310.1227352

[13] Digitalist Magazine. 2015. Africa Skills Gap: Rising To Meet The Digital Challenge.
Retrieved Dec, 2017 from http://www.digitalistmag.com/improving-lives/2015/
08/19/africa-skills- gap-meet-digital-challenge- 03292180

[14] Qusay H. Mahmoud and Pawel Popowicz. 2010. A mobile application develop-
ment approach to teaching introductory programming. In 2010 IEEE Frontiers in
Education Conference (FIE), Vol. 00. T4F-1-T4F-6. https://doi.org/10.1109/FIE.
2010.5673608

[15] Vincent Matinde. 2016. Africa 2017: Smartphone penetration,
Open Data and less online freedom,. Retrieved Jan, 2019
from https://www.idgconnect.com/idgconnect/opinion/1022805/
africa-2017-smartphone-penetration-online-freedom

[16] Chao Mbogo, Edwin Blake, and Hussein Suleman. 2016. Design and Use of

Static Scaffolding Techniques to Support Java Programming on a Mobile Phone.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 314-319.
https://doi.org/10.1145/2899415.2899456

Ghana Ministry of Education. 2010. Education Sector Performance Report 2010.
Processing [n. d.]. Processing Foundation. Retrieved Jan, 2019 from https:
/Iprocessing.org/

The Coding Train [n. d.]. The Coding Train. Retrieved Jan, 2019 from http:
//thecodingtrain.com/

Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, Manuel Fahndrich, Judith
Bishop, Arjmand Samuel, and Tao Xie. 2012. The Future of Teaching Programming

is on Mobile Devices. In Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE °12). ACM, New
York, NY, USA, 156-161. https://doi.org/10.1145/2325296.2325336

Derek Walter. 2016. Report: Nearly 90 percent of smartphones worldwide run
Android. Retrieved Jan, 2019 from https://www.greenbot.com/article/3138394/
android/report-nearly-90-percent- of-smartphones-worldwide-run-android.
html

Wendy Wang. 2011. Teaching programming online. International conference on
the future of education. In Internation Conference on Future of Education. Florence,
Ttaly.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

S. Stuurman et al.

Autism: Implications for Inclusive Education

with respect to Software Engineering

Sylvia Stuurman
Sylvia.Stuurman@ou.nl
Open Universiteit, the Netherlands

Frédérique Geven
Frederique.Geven@senevita.nl
Senevita, the Netherlands

ABSTRACT

Within Computer science and Software engineering, the prevalence
of students with a diagnosis of autism spectrum disorder is relatively
high. Ideally, education should be inclusive, with which we mean
that education must be given in such a way that additional support
is needed as little as possible.

In this paper, we present an overview on what is known about
the cognitive style of autistic individuals and compare that cognitive
thinking style with computational thinking, thinking as an engineer,
and with academic thinking. We illustrate the cognitive style of
autistic students with anecdotes from our students.

From the comparison, we derive a set of guidelines for inclusive
education, and we present ideas for future work.

CCS CONCEPTS

« Social and professional topics — People with disabilities; «
Applied computing — Education.

KEYWORDS

Autism, Inclusive education, Cognitive thinking style

ACM Reference Format:

Sylvia Stuurman, Harrie J.M. Passier, Frédérique Geven, and Erik Barendsen.
2019. Autism: Implications for Inclusive Education: with respect to Software
Engineering. In Proceedings of CSERC’19. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Inclusive education will only work when education benefits all
students, as opposed to education for who is not disabled, with
additional programs for the disabled [54]. This statement has impli-
cations for software engineering education with respect to autistic
students. In this paper, we explore these implications.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Harrie J.M. Passier
Harrie.Passier@ou.nl
Open Universiteit, the Netherlands

Erik Barendsen
E.Barendsen@cs.ru.nl
Radboud University, the Netherlands

Need for inclusive education. The prevalence of autism continues
to rise. In the usa for instance, between 2000 and 2014, the preva-
lence of autism increased from 1 in 150 (about 0.67%) to 1 in 59!
(almost 1.7%). It is difficult to interpret these numbers, because there
is no standardization of autism survey methodology. Also, it is an
open question whether autism is more often diagnosed because of
shifting definitions, because of more attention, because of a society
that becomes more difficult to live in for who is autistic, or because
there are more environmental factors that cause autism. The rising
prevalence of autism is probably due to the rising numbers of indi-
viduals with high functioning autism, who are most able to go to
university [66]. We may therefore conclude that we will continue
to see a rising number of university students with a diagnosis in
the autism spectrum.

Students with a form of autism often need support to achieve
success at universities, while they do not lack intellectual capac-
ities [11]. In the us and Australia, youth with autism have the
highest risk of being completely disengaged from any kind of post-
secondary education or employment [43]. Compared with other
disabilities, youth with autism have the lowest rates of employment
and education participation. Similar figures were found in Sweden
and Canada [43]. These figures are even more startling when one
realizes that one of the theories about autism is that it represents
high, imbalanced intelligence, a ‘disorder of high intelligence’ [12].
Moreover, IT companies begin to see the advantages of autistic per-
sonel 2. Therefore, it is really worthwhile to investigate how we can
make education more inclusive with respect to autistic students.

More and more, autism is seen as ‘being different’ as opposed to
a disorder [28]:

In our opinion, high-functioning autism should nei-
ther be regarded as a disorder or a disability nor as an
undesirable condition per se, but rather as a condition
with a particular vulnerability. Autism can also have
desirable and enabling consequences, both to the in-
dividual and to society....For what are now disabling
traits of these people, may, in a differently constructed
social environment, become ‘neutral’ characteristics.

Inclusive education that helps autistic students, therefore, is not
only needed because of the rising number of autistic students (who
really need support of some kind), but it would have benefits for

Uhttps://www.cdc.gov/ncbddd/autism/data.html
Zsee, for instance CEO’s finally get it. Staff on the autism spectrum are a huge asset,
Wired, https://www.wired.co.uk/article/companies-employing-autistic-individuals

Autism: Implications for Inclusive Education

all: inclusive education would promote a specific kind of diver-
sity, and diversity has a positive outcome on cognitive skills for
all students [7]. This need for diversity has, for instance, also been
explained with respect to personality type [10, 62]). Especially im-
portant is that successful teams show diversity in personality [46].

With respect to diversity, we want to stress that increasing the
possibilities for autistic students to successfully finish their studies
does not have a negative impact on the number of women, in our
opinion. The low number of women in Computer science has been
attributed to the ‘masculine culture’ that Computer science has
been ‘drenched’ into [15]. This ‘male culture’ is often associated
with autism [29]. The diagnosis of autism however, is itself heavily
‘gendered’, in such a way that researchers payed much attention
to everything considered ‘male’, discarding everything considered
‘female’ [29]. As a result, more males received a diagnosis, and a sex
ratio with far more males than females was considered the ‘natural’
ratio. More and more, implicit biases in the process of diagnosing
and measuring autistic traits have been made explicit, and more
and more, women are diagnosed too. The ratio male-female is now
considered to be 2:1, and still, autistic females may be missed by
current diagnostic procedures, which would bring the ‘real’ ratio
closer to 1:1 [50].

In fact, one could say that the same mechanism that associ-
ated Computer science with ‘masculine’ did associate autism with
‘masculine’, and both associations form a disadvantage for women.
Therefore, we do not make Computer science more ‘masculine’
by addressing the cognitive style of autism in Computer science
education. In fact, we hope to help in ‘de-gendering’ both autism
and Computer science by the type of inclusiveness we adrress.

Cognitive aspect of inclusive education. Autism is characterized
by a different cognitive style (which we elaborate on in Section 5).
On the one hand, this different cognitive style has advantages. For
instance, one can see an increasing demand for people within the
autism spectrum, from, for instance, 1T firms [3]. On the other
hand, because Software engineering education is geared to a ‘non-
autistic’ cognitive style, it might be more difficult than necessary for
students with an autistic cognitive style to complete their education.
A really inclusive education would be geared to both autistic and
non-autistic students.

Mismatches between cognitive skills for Software engineering
and the autistic cognitive style, often are skills that whoever is
not autistic will take for granted. As such, they form ‘blind gaps’
that educators in Software engineering might have with respect
to autistic students. With ‘blind gaps’, we mean to take a skill for
granted (because non-autistic students often acquire that skill in-
tuitively), that should not be taken for granted (because for autistic
students, it takes explicit effort to acquire that skill). In this paper,
we take a theoretical approach to detect these ‘blind gaps’. To count
as inclusive, education should cover these ‘blind gaps’.

In this paper, we only analyze cognitive skills. Excluded from
our attention here, is, therefore, support with independent living
and social skills, with planning and time management, which is
often attended to by universities [59]. We also exclude attention to
cooperation, because we think that cooperation in education for
students in the autism spectrum deserves a separate study.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

Our goal is to create a set of guidelines for inclusive education
for students within the autism spectrum, based on the differences
between the cognitive style that characterizes autism and the cog-
nitive style that is needed within Software engineering.

Structure of this report. This report is structured as follows. In
Section 2, we give a short introduction into autism (as we will ex-
plain, we use ‘autism’ as a synonym of ‘autism spectrum disorder’),
and about the prevalence within Software engineering. We explain
our research method in more detail in Section 3. Section 4 contains
related work, about support for autistic students in general.

We characterize the autistic thinking style in Section 5. In Sec-
tion 6, we compare the thinking skills that are needed within Soft-
ware Engineering with the autistic thinking style that we estab-
lished in Section 5. We show which of those skills might form a
hindrance for autistic students. We illustrate some of these findings
with anecdotal evidence that we have gathered from our students.

Section 7 describes the guidelines we derive from the comparison.
In Section 8, we discuss the explorative nature of this paper, and
argue why our exercision is worthwhile. In Section 9, we draw our
conclusions and present ideas for future work.

2 AUTISM, BACKGROUND

Autism is described in the Diagnostic and Statistical Manual of
Mental Disorders (DsM) as a pervasive development disorder [14].
Diagnostic criteria are persistent deficits in social communication
and social interaction, and restricted, repetitive patterns of behavior,
interests, or activities.

Autism, Asperger, ASD. Autism has been ‘discovered’ by Leo Kan-
ner [32], although other people described similar characteristics
earlier (in particular Hans Asperger [74]). At first, what Asperger
and Kanner described has been classified as two different disor-
ders, although within the same ‘autistic spectrum’: the Asperger
syndrome and classical autism [72]. Later, more variants were dis-
cerned, such as PpDD-NOs (Pervasive Developmental Disorder Not
Otherwise Specified) or high-functioning autism (classical autism
with normal to high intelligence). In the fifth version of the psm [14],
this distinction has been abandoned, because most researchers agree
that the distinction is not useful. At this moment, one speaks of
‘autism spectrum disorder’ (asp). When we speak of autism, in this
article, we refer to AsD.

During the years, the diagnosis of autism (and with it, the mean-
ing of the word ‘autism’) has seen major shifts in type of symp-
toms [63, 74]. The most recent shift is to view sensory and percep-
tual issues as the main characteristic [6, 27, 60].

Neurodiversity. Autism is described and treated as a psychiatric
disorder and for a long time, research has been directed to both
prevention and cure for autism. In recent years, a shift can be seen
to view autism in individuals with average or above average intel-
ligence not as a disorder, but as a difference, which nevertheless
requires adaptations from the rest of society [33] (in the same man-
ner as for, for instance, left-handedness). In other words, autism
is, in this view, not seen ‘as a disorder or a disability nor as an
undesirable condition per se, but rather as a condition with a par-
ticular vulnerability and with particular strengths’ [28]. This view
of autism as a difference has a name: neurodiversity [44]. When we

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

hold this view on autism, it becomes even more important to try
to educate our students in such a way that autistic students have a
chance to get their degree.

To avoid the contrast ‘autistic’ versus ‘normal’, that emphasises
the abnormality of autism, many use the word ‘neurotypical’ for
non-autistic persons. In this report, we will use that word too.

Prevalence in Software engineering. Individuals within the autism
spectrum more often have a profession that requires technical
skills than neurotypical individuals [57], and are more inclined
to follow sTEM (science, technology, engineering and mathematics)
studies [66]. This fact makes it plausible that autism has a higher
prevalence among Software engineering students than among the
general public.

Measuring the prevalence of autism among students is difficult.
It is not possible, for obvious reasons, to diagnose each student
as part of an investigation. When one asks students whether they
have a diagnosis, one misses those students who are autistic but
never have been diagnosed, and one misses students who do not
want to disclose their diagnosis.

In countries where students receive special education services
when they have a diagnose of autism, one may measure the preva-
lence of those services. Based on this estimation, Wei et al. found a
higher prevalence of autism in the sTEM sciences than in non-sTEm
disciplines [66].

Other estimations are possible as well. There are, for instance,
measurements of autistic traits, such as the Autism-Spectrum Quo-
tient (asQ or AQ) [5]. This measurement rates individuals relative
to the mean of the population, with respect to autistic traits that
are measured through a self-report questionnaire. The AsQ can be
used as a coarse-grained estimation of the prevalence of autism.
Note, however, that the AsQ is based on self-reporting, and as such
cannot be regarded as an alternative to a formal diagnosis.

The AsQ has a normal distribution [53]. When depicting the AsQ
in the form of a bell curve, people who are probably within the
autism spectrum occupy a small portion of the extreme of the cuve.
One half of all people have more autistic traits than average.

Using the AsQ on a population of university students, White
et al. found that more than 50 percent of the high AsQ students
where computer science majors. Of the students who did not score
a high Aso, only 28 percent were computer science majors [68]. We
may conclude, therefore, that in general computer science students
scorefairly high on the AsQ. Baron-Cohen found that computer
scientists score higher on the AsQ than scientists in medicine and
biology (and mathematicians score higher than computer scien-
tists) [5]. This means that self-perceived autistic traits are more
prevalent in mathematicians and computer scientists than in other
scientists.

3 METHOD

Our goal is to derive a set of guidelines with respect to inclusive
education. To do that, we compare traits of the autistic cognitive
style with cognitive skills that are needed in Software engineering,

Although there are many competing theories about autism, they
agree on the general ideas about what the autistisc cognitive style
is. It is, however, a difficult task to summarize the knowledge within

S. Stuurman et al.

such a vast field without delving into the details of all competing
theories. In the first place, there are those characteristics of the
cognitive style that can directly derived by the description in the
DsM. Theories that try to explain autism, show how this theory
explains various cognitive aspects of autism. Such cognitive aspects
form part of the autistic cognitive style that belong to autism, ac-
cording to experts. Finaly, one of the authors is a practitioner, with
comprehensive experience as a therapist for autistic adults. She
checked whether we were complete.

The autistic cognitive style that we present here is therefore
grounded in how experts see autism.

During the past two or three years, students sometimes sent us a
summary of the difficulties that they faced during their study, that,
according to their idea, are associated with their autism. We cannot
use these observations as ‘proof’, because they are anecdotical
by nature. However, they illustrate the points we make very well,
so we included them where applicable, to make some cognitive
characteristics more clear.

Deciding the cognitive skills that belong to Software engineering
is no exact science. As a start, we tried to find an operational model
of computational thinking, because that would give us the most
concrete means to compare aspects of cognitive thinking with the
autistic cognitive style. We added thinking as an engineer and
academic thinking to these cognitive skills. We can never be certain
that we are complete, but at least we have a beginning.

4 RELATED WORK

In a systematic literature review, Gelbar et al. found that case studies
in a university setting indicate the presence of anxiety, loneliness,
and depression and the need for supports for autistic students. They
also found a lack of studies indicating which support is needed, and
what works [22].

Fleury et al. [19] inventarised what is known about Academic
performance of students with Asp (Asperger Syndrome; the study
was done before all forms of autism are called AsD, autism spectrum
disorder). They found the following characteristics:

Reading Students with asp were found to be quick in the
mechanics of reading (recognising words), but in general
have problems comprehending text.

Writing Hand-writing is often difficult for students with asp.
Also, planning and organising a text is a difficult skill for
students with AsD.

STEM sTEM studies are popular with students with Asp, in
particular mathematics, science, and computer science. How-
ever, within these studies too, they face difficulties with
language comprehension and executive functioning. Mathe-
matic achievements for students with Asp ranges from mod-
est weaknesses to mathematical giftedness.

They also inventarised instruction strategies for students with
ASD.

Priming: Preparing a student in advance for what is coming,
for instance before the start of the study, the start of a course,
a task or a meeting.

Peer support: Peers are taught how to support students with
ASD.

Autism: Implications for Inclusive Education

Video modelling: Examples of a skill that is taught are video-
taped.

Explicit Strategy Instruction: Explicit strategies are given
for a task (for instance, writing, or solving mathematical
problems): routines to follow.

Self management: Students monitor their own behaviour and
performance through self-tests.

Graphic organizer: A visual chart is used to organize a stu-
dent’s knowledge or ideas.

Facilitate skill generalization: To help generalization of a
skill, a skill is trained in various contexts.

Kurth et al. found that students with autism have areas of strength
in concrete, procedural academic tasks. They were less successful
in performing abstract and inferential tasks, including passage com-
prehension, writing passages, and solving applied math problems
(e.g. word problems). They also found that academic achievements
of autistic students were better in an inclusive setting than in a spe-
cial education setting [37] This means that adjusting the education
in such a way that all students are able to follow (true inclusive
education) works better than leaving education as it is and have
separate additional classes for autistic students.

Twenty six university students within the autism spectrum were
compared with 158 neurotypical university students (from various
universities within the UK) in a study in which they were asked
to self-report their strengths and ‘challenges’ [23]. The challenges
mentioned by autistic students concerned the need for guidance
and clear instructions, not knowing how to pace, absorption in
one subject, processing time, organizational skills, attention prob-
lems, group work and supervisor relationships, visualising abstract
concepts, motivation/procrastination, critical/creative thinking and
research/data analysis. Theit strengths, as self-reported, were aca-
demic and critical writing, the ability to work long hours, to ander-
stand complex ideas, and memory.

When comparing students with and without a diagnosis of
autism, autistic students’ self-reported strengths more often con-
tain [40]: attention to detail, logical reasoning, focus, systemizing,
consistency, visual skills, creative solutions, retentiveness, repet-
itive tasks, numbers, auditory skills, and concentrativeness. Neu-
rotypicals score themselves higher on organizing ability, verbal
skills, emotional control, flexibility, social skills, multitasking, em-
pathy and team work.

Strategy instruction has been proposed for students within the
autism spectrum, for the subjects of reading, writing and mathe-
matics. [67]. Strategies teach knowledge of procedures (i.e., how to
do something). Strategy instruction teaches the rules, processes, or
the order of the steps that are applied systematically that lead to
a problem solution. Strategy instruction proved helpful, in these
areas.

Interestingly, what is called strategy instruction resembles the
procedural guidance that is proposed as helpful in general for soft-
ware engineering education [45]. Here, we see that what is helpful
for students with an autistic thinking style, might deliver better
education in general.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

5 AUTISTIC COGNITIVE STYLE

In this section, we try to define an autistic cognitive style, based on
literature, to be able to compare that style with the cognitive skills
that are related with Software engineering.

Autism can be characterized by a cognitive style [24]. Research
in parents and siblings of autistic children suggests that this cog-
nitive style has a normal distribution, with autistic individuals on
the ‘autistic’ end, while the remainder of the distribution is ‘neu-
rotypical’. Neurotypical family members of autists, while in the
‘neurotypical region’, are close to the ‘autistic region’ of the bell
curve [25]. That means that more people have an autistic cognitive
style than only those with a diagnosis of AsD.

Weak Central Coherence. One of the characterizations of autistic
cognitive style is ‘weak central coherence’ [21]. Strong central
coherence means: being able to process information into a higher
level meaning, at the expense of details. In contrast, weak central
coherence means more attention to detail as to the whole. For
instance, someone with Asp will in general be faster to spot a
mistake in an architectural blueprint, and many people with Asp
are especially good at software testing [65]. On the other hand, it
will be more difficult for them to grasp the essence of a text.

Recent research suggests that weak central coherence in autis-
tic people is not a global processing deficit, but a local processing
bias: when permitted free choice, they show a reduced preference
to report global properties of a stimulus, but when they are in-
structed to report global properties, they are as able to do so as
neurotypicals. A better description of ‘weak central coherence’ is,
therefore, preference for local processing (‘strong local process-
ing’), or a disinclination of global processing(‘central processing
avoidance’) [35].

Thus, a focus on details is one of the aspects of an autistic cog-
nitive style. The fact that this preference for local processing is
not (only) a voluntary choice, has been elaborated in the theory of
enhanced functional processing [42], which states that autistic per-
ception is locally oriented (visual and auditory) and has enhanced
low-level discrimination. The ‘involuntary’ aspect seems to be the
fact that switching from local to global is hard, for autists [55].

People within the autism spectrum are, for instance, less fooled
by some visual illusions than neurotypicals, because of the strong
local processing [24]. Here, we see that the autistic cognitive style
is bottom-up, in contrast to the top-down thinking style that neu-
rotypicals often use.

Explicit rules for categorization. This preference for local pro-
cessing may be the reason behind the enhanced discrimination
skills found in autism (discrimination is the ability to respond to
differences in stimuli) [9]. Enhanced discrimination skills may form
a hindrance for the task of categorization (the action or process of
placing concepts or objects into classes or groups). Each individual
object is perceived different from all other objects, which makes it
difficult to create classes [56].

On the other hand, when taught a rule for categorization, autis-
tic children are at least equally capable of categorization as other
children [9]. Autistic cognitive style is thus characterized by strong
discrimination skills, and by the need for (explicit) rules for catego-
rization.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

Autistic individuals have to learn categorical information because
they miss the automatic mechanisms that allow neurotypicals to
form prototypical representations of information spontaneously.
Therefore, abilities that rely on the formation of prototypes, such
as facial recognition, emotional expression, and the organization of
information into different categories, are affected in autism. Indi-
viduals with autism must develop their own idiosyncratic strategies
to perform categorical organization and discrimination tasks [69].
For instance, when asked to sort books, autistic individuals more
often sort by color or size than neurotypicals [52]. The reason is
that categorization of the contents of books is more difficult than
categorization based on color.

For autistic individuals, it is difficult to discern which details
are the most salient (for instance, those details that are socially
important).

Context blindness. Another way of looking at the autistic cogni-
tive style is to see it as context blindness [64]. Context blindness
explains, for instance, why autistic people have such a hard time
processing ambiguous information. Their brain does not use context
to process information, which means that ambiguousness cannot be
resolved by context. A preference for unambiguous language (logic,
mathematics) is, therefore, also one of the aspects of an autistic
cognitive style.

The positive side of context blindness, is that people within the
autism spectrum make more consistent decisions: they are more
likely than neurotypicals to represent the value of each attribute or
option in isolation, rather than being influenced by the other items
in a choice set. [17].

Rational reasoning. People within the autistic spectrum tend to
prefer deliberate, rational reasoning (‘system 1 thinking’ [31]) to
intuitive, fast reasoning (‘system 2 thinking’) , probably because
their brain does not support intuitive reasoning as much as the
brains of neurotypicals [8].

Weak generalization. The memory style of autistic individuals is
a ‘look-up table memory style’, versus an ‘interpolation’ memory
style in neurotypicals [49]. Autistic people use precise information,
and will have difficulties with generalization, while neurotypical
people learn by generalization. Generalization is the ability to rea-
son inductively, to broaden something specific into something more
general, by focusing on similarities.

Categorization (which we discussed before) is a form of gener-
alization. Generalization is poorly developed in individuals with
autism [48]. Also, there is a link with the focus on details, which
prevents seeing what is the same between situations as opposed to
what is different.

People in the autism spectrum tend to make decisions on the ba-
sis of (too) limited evidence (they tend to ‘jump to conclusions’) [30].
This is because autistic individuals try to understand the world by
applying rules. Jumping to conclusions means that they presume
rules based on too little information. In other words, with an autis-
tic cognitive style, it is difficult to form abstractions (generalization
as forming categories), and one tends to form rules, based on data,
too soon (jumping to conclusions).

Systemizing. Austistic people show a high ‘Systemizing quotient’.
Systemizing is the drive to analyze systems or construct systems, to

S. Stuurman et al.

analyze the variables in a system, and to derive the underlying rules
that govern the behavior of a system. Autistic people show a higher
degree of systemizing than neurotypicals [4]. Systemizing differs
from categorization and generalization: systemizing means that
one forms structure bottom-up, from the details, analyzing data
and constructing rules that explain the data (deductive resoning),
while categorization and generalization means to form structure
using a top-down approach (inductive reasoning).

Executive functioning. ‘Executive functioning’ is an umbrella
term for those functions that are needed to reach a goal: planning,
working memory, impulse control, inhibition, shifting attention,
and the initiation and monitoring of action. In some of these areas,
people within the autistic spectrum show impairments, in particu-
lar [26]:

Planning and organization are difficult for people within
the autistic spectrum. They have poor time management,
and difficulties in prioritizing, coordination and sequencing
of activities.

Mental flexibility is impaired. Switching to a new train of
thought, for instance, is a difficult task for people within the
autistic spectrum. When task instructions do not contain
an explicit indication of the rules to be applied, and do not
explicitly state that a rule switch will occur, results show
rather consistent cognitive flexibility deficits in autism [60]:
it is difficult, when you are autistic, to detect that the rules
have changed. Another aspect of mental flexibility is the
ability to handle exceptions to a rule. People with an autistic
cognitive style are good at conditional reasoning, but have
problems with exceptions to a rule [47].

6 COGNITIVE STYLE AND SOFTWARE
ENGINEERING

In this section, we discuss the thinking skills that are needed within
software engineering, and compare them to the aspects of the autis-
tic cognitive style that we reviewed in the previous section. The
cognitive skills that we discern are: computational thinking, think-
ing ‘like an engineer’, and academic skills.

6.1 Computational thinking

Thinking like a computer scientist is coined as ‘Computational
thinking’ by Jeanette Wing [70].

Computational thinking has a long and rich history [58], with,
for instance, Dijkstra who stated that for algorithmic thinking, one
should be able to transform informality into formality, that one
should be able to form ones own formalisms and concepts, and that
one should be able to go back and forth between various levels
of abstraction [13]. Another example is Knuth, who stated that
computational thinking involves representing reality, the reduction
of a problem into simpler problems, abstract reasoning, informa-
tion structures, attention to algorithms, managing complexity, and
reasoning about causality [34].

Computational thinking is composed of at least three compo-
nents [70]: algorithmic thinking, ‘the thought processes involved
in formulating problems so their solutions can be represented as

Autism: Implications for Inclusive Education

computational steps and algorithms [1], abstraction (some see ab-
straction as the base of computing [36, 71]), and decomposition (the
divide and conquer approach to problem solving).

Because a model to operationalize computational skills has been
established [2], we compare these operationalizations with what we
established about autistic thinking. This model discerns abstraction,
generalization, algorithmic thinking, modularity, and decomposi-
tion.

Abstraction. Abstraction is operationalized by:

(1) Separate the important from the redundant information
(2) Analyze and specify common behaviors or programming struc-
tures between different scripts
(3) Identify abstractions between different programming environ-
ments
Separating the important from the redundant information
is in direct conflict with the detail-focused cognitive style
of autistic thinking. Separating important from redundant
information is a form of categorization, and generalization.
To be able to categorize, people with an autistic cognitive
style need explicit rules.
Even when explicit rules have been given, it is a difficult
task to recognize which information is redundant, when
the superfluous information is described in various, slightly
different, ways. In addition, context blindness plays a role:
deciding which information is important, is only possible
when one is aware of the context.
This aspect of abstraction plays a role in, for instance, prob-
lem analysis. It also plays a role in deciphering assignments,
in understanding what the important aspects of an assign-
ment are. Also, 00-modeling will probably be difficult with-
out explicit guidance on how to capture a problem domain
into a model.
Analyzing and specifying common behaviors or program-
ming structures between different scripts is more concrete.
People within the autism spectrum are more inclined to spot
the differences than the commonalities. However, if explicit
rules are given, this task will probably be doable for students
with an autistic cognitive style. One may, for instance, show
how to detect (almost) duplicate code, and how to create
functions or methods to catch the commonalities.
Identifying abstractions between different programming en-
vironments (what is meant here, is to learn to work with
various environments, such as Eclipse or Intelli]), is, like the
first aspect, in direct conflict with an autistic cognitive style,
for the same reason. Discerning the details from the abstrac-
tions in programming environments demands categorization
skills, that need explicit rules, for students with an autistic
cognitive style.
It is probable that students with an autistic cognitive style
will encounter more difficulties when asked to work with
a new software tool or programming environment. In the
words of a student:
“For this assignment, I had to master too many new
(for me) concepts: new environments (OS: Linux, IDE:
Qt Creator), new language (C/C**). The teacher spends

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

(almost) no time on these new concepts, so I guess that

this comes naturally for other students.”
Summarizing, to teach abstraction to students with an autis-
tic cognitive style, we need to pay additional attention. We
may try to formulate rules to follow, to perform abstraction.
These rules should be accompanied by exercises. Abstraction
is a skill that cannot be taken for granted in the presence of
an autistic cognitive style.

Generalization. Generalization (transferring a problem-solving
process to a wide variety of problems) is operationalized by:

(1) Expand an existing solution in a given problem to cover more
possibilities/cases

As we have seen, weak generalization is one of the characteristics
of autistic thinking. One of the strategies of students with an autis-
tic cognitive style is to systemize: to form structures ‘bottom-up’,
and, doing so, find rules that might be used to generalize. Another
strategy seems to be to ‘jump to conclusions’: to form rules from
(too) few data.

Another view on generalization is that it is the ability to transfer
a solution from one context to another. When it is clear what is
context and what is the solution, this might not pose problems
for students with autistic thinking, but the problem is, of course,
that differentiating context from the essence is difficult. In most
occasions, it is not made explicit what part of a case is context and
which part is the essence, or even what the context of a problem is.

This means that, for instance, ‘learning by example’ will be
difficult for students with an autistic cognitive style, unless it is
made explicit what the essence of the example is. Also, because
with an autistic cognitive style, one tends to jump to conclusions,
examples may very easily put students on a wrong track.

In the words of a student:

“Often, descriptions of assignments are unclear, but
for me, it is even more difficult when there is no clear
structure in the assignments. If I have to bridge a too
wide gap between conceptual knowledge and practi-
cal knowledge, I get overwhelmed, and then I cannot
think any more. If, on the contrary, we start with small
assignments, each training one particular aspect, and
later on, we combine these aspects in assignments,
everything goes well.”

Summarizing, generalization is difficult for students with an
autistic cognitive style. As a remedy, teachers can try to be explicit
about what constitutes context, and can explain explicitly which
parts can be transferred into other contexts. Also, it is important
to realize that ‘learning by example’ does not work for students
with an autistic cognitive style. When giving examples, one has to
spell out what the essence of each example is, and preferably give
explicit rules or guidelines to follow.

Algorithm. Algorithm (writing step-by-step specific and explicit
instructions for carrying out a process), operationalized by:

(1) Explicitly state the algorithm steps

(2) Identify different effective algorithms for a given problem

(3) Find the most efficient algorithm

Explicitly stating the algorithm steps suggests a procedural ap-
proach for algorithms. Creating algorithms in a procedural way

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

combines well with a bottom-up thinking style and in particular
with the preference for rational reasoning. To teach students how
to follow a top-down approach, rules and guidelines are needed:
the rules and guidelines from Felleisen [18] might help students
with an autistic cognitive style to create algorithms with the end
goal in mind, in a more top-down approach.

However, it is important how the problem that the algorithm
should solve is formulated. Context that seems so obvious in the
eyes of the teacher that it is left out, can form a hindrance for
students with an autistic cognitive style.

If the problem is formulated with all context explicit, we see no
conflicts with an autistic cognitive style with respect to identifying
different effective algorithms for a given problem and finding the
most efficient algorithm, in particular when given a clear definition
of what is meant with ‘efficient’ (for instance, the fastest, the least
code, and so forth).

Summarizing, bottom-up algorithmic thinking is probably one
of the strengths within autism. Rules and guidelines for a more
top-down way of working are a welcome help, and it is important
to be explicit in the formulation of problems and exercises.

Modularity. Modularity (encapsulating elements such that they
can be used independently), is operationalized by:

(1) Develop autonomous code sections for use in the same or dif-
ferent problems

In this case, context blindness is a double-edged sword.

On the one hand, context-blindness makes it easier to develop
code that can be used in any context: developing autonomous code
sections might be a strong point in students with an autistic cogni-
tive style.

On the other hand, the same applies as in the case of algorithmic
thinking: it is important how the problem that the code should
solve is formulated. Also, context-blindness may lead to implic-
itly assuming a specific context, without realizing that. Specifying
explicit pre- and postconditions can help.

In the words of our students:

“What do you mean with ‘making a selection’? Do
you mean a choice (= selection)? Or do you mean a set
(= selection). Dutch ! = Java. The question has more
than one meaning.

‘A selection of columns’ can mean, at the level
of the user, that a specific column should be chosen
to be read, but also, that the program should use a
specific set of columns. This is because ‘selection’ can
both point to the process of choosing, as to the choice
itself.”

Summarizing, the context and formulation of the problem should
be very clear. It is advisable to ask to explicitly specify pre- and
postconditions.

Decomposition. Decomposition (breaking down problems into
smaller parts that may be more easily solved), operationalized by:
(1) Break down a problem into smaller/simpler parts that are easier

to manage
Here, the problem of discerning the essence from additional
context may also form a problem. The lack of central coherence and
problems with executive functioning (planning and organization)

S. Stuurman et al.

may for a hindrance with respect to decomposition. In order to
decompose a problem into smaller steps, one should be able to see
the problem as a whole in the first place (instead of as a sum of
details), and one should be able to discern the essence from less
important details.

Decomposition is, in essence, a form of top-down thinking, and
we have seen that the strength in autistic thinking is bottom-up.
Decomposition can also be seen as part of executive functioning (it
has to do with planning and organization). As we have seen, there
are impairments here.

Summarizing, for the skill of decomposition, there are several
hindrances for students with an autistic cognitive style. As in the
case of abstraction, these students probably need more explanation
and more exercises to master this skill.

6.2 Thinking as an engineer

Engineers seek optimal solutions to problems. Engineers should be
able to explain why a particular solution to a problem is best [51].

Frank [20] discerns three categories in engineering: aims (engi-
neering design is directed toward the creation of new technological
components), knowledge, processes and tools (which means that a
knowledge base should be created, models and laws should be ap-
plicated, heuristics should be used), and thinking. In thinking, he
discerns:

Synthesis. If synthesis is defined as ‘an aspiration to understand
how’ (as Frank does), an autistic thinking mind will not have diffi-
culties with this skill. If, on the contrary, it is defined as the skill
to create a whole from parts, we may expect a need for additional
rules of thumb, and exercises.

Concrete thinking. The preference for local processing, for think-
ing in details, and the weak generalization, means that concrete
thinking is a strong point in an autistic cognitive style. Concrete
thinking is the default thinking style for students with an autistic
cognitive style.

Systems thinking. Systems thinking can be translated as looking
at the whole instead of at the parts. As we have seen, seeing the
whole is a difficult task for someone with an autistic cognitive style.
Students with this thinking style will require rules of thumb, and
exercises, to learn to see the whole, and to pay respect to the whole.

Advance toward the desirable. When thinking about how to reach
the goal, it must be clear what the goal is in the first place. It is
important to make the goal explicit, for students with an autistic
style of thinking.

As we have seen, executive functioning applies to what is needed
to reach a goal. Executive functioning is weak in autistic people.
To determine how to reach the desirable, rules of thumb will be
needed: explicit guidelines.

Optimal solution. What is optimal should be made clear, or stu-
dents should be taught how to define optimal themselves. If that
is clear, thinking about what is optimal can be done by rational
reasoning, which is a strong point.

Autism: Implications for Inclusive Education

6.3 Academic thinking

Academic thinking comprises, at least, critical thinking and higher-
order thinking.

Critical thinking. (being able to make an evaluation or judg-
ment [39]) Critical thinking skills have been formulated as fol-
lows [16]:

Interpretation (to comprehend and express the meaning or
significance of a wide variety of experiences, situations, data,
events, judgments, conventions, beliefs, rules, procedures,
or criteria)

As we have seen, interpretation is difficult for students with
an autistic cognitive style, unless the context has been made
clear.

On the other hand, context-blindness also has an advantage
with respect to interpretation: students with an autistic cog-
nitive style will not automatically assume a context, and
may, therefore, see different interpretations, that are equally
valid. Forming rules as a string point will also help with
interpretation.

Analysis (to identify the intended and actual inferential rela-
tionships among statements, questions, concepts, descrip-
tions, or other forms of representation intended to express
belief, judgment, experiences, reasons, information, or opin-
ions)

Context blindness can both be a hindrance (when context is
held implicit) and an advantage (when assuming a context
hinders others to see alternative ways for analysis). On the
other hand, the focus on rules, and the ability to form rules, is
a strong point when analyzing a text. The rational reasoning
aspect of the analysis process is a strong point as well.

A bottom-up thinking style may lead to a different analysis
than a top-down thinking style. With respect to analysis,
one can therefore see diversity in thinking style as positive.
reasoning will be more deductive than inductive.

Analysis can be thought of as a form of systemizing: finding
the rules, the patterns, in a given situation, and applying
them. As we have seen, systemizing is a strong point in
autistic thinking.

Inference (to identify and secure elements needed to draw
reasonable conclusions; to form conjectures and hypotheses;
to consider relevant information and to reduce the conse-
quences flowing from data, statements, principles, evidence,
judgments, beliefs, opinions, concepts, descriptions, ques-
tions, or other forms of representation)

Weak generalization may be a hindrance in the inference
process; rational reasoning is a strong point.

Evaluation (to assess the credibility of statements or other
representations that are accounts or descriptions of a per-
son’s perception, experience, situation, judgment, belief, or
opinion; and to assess the logical strength of the actual or
intended inferential relationships among statements, descrip-
tions, questions, or other forms of representation)
Assessing the logical strength of relationships among state-
ments etc. will be a strong point, in an autistic cognitive
style.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

With respect to assessing the credibility of perceptions, ex-
periences, and so forth, students with an autistic cognitive
style will use the same rational reasoning, without respect
for context. This may be both a hindrance and an advantage.

Explanation (to state and to justify that reasoning in terms
of the evidential, conceptual, methodological, criteriological,
and contextual considerations upon which one’s results were
based; and to present one’s reasoning in the form of cogent
arguments)

For students with an autistic cognitive style, we see no prob-
lems.

Self regulation (self-consciously to monitor one’s cognitive
activities, the elements used in those activities, and the re-
sults educed, particularly by applying skills in analysis, and
evaluation to one’s own inferential judgments with a view
toward questioning, confirming, validating, or correcting
either one’s reasoning or one’s results)

The lesser mental flexibility in autism might lead to a more
rigid thinking style, that might form a hindrance with respect
to self-regulation.

Higher-order thinking. Occurs when a person takes new infor-
mation and information stored in memory and interrelates and/or
rearranges and extends this information to achieve a purpose or
find possible answers in perplexing situations [39].

Because of the ‘look-up table memory style’, this may be one
of the strong points of students with an autistic cognitive style.
However, because the answers are often found using a ‘different’,
bottom-up thinking style, the answers may sometimes be uncon-
ventional in the eyes of others.

When abstraction and generalization are needed, we refer to
what we concluded about those skills.

6.3.1 Academic writing. Most students struggle with academic
writing. It is, therefore, interesting to check whether some aspects
of academic writing are especially hard for students with an autistic
cognitive style.

Teachers often fail to explicitly describe what good academic
writing style comprises[38].

Academic writing demands skills at various levels:

o Selecting/evaluating information sources: finding informa-
tion in library and internet, and understanding which infor-
mation is relevant;

Synthesizing the ideas/arguments from other sources with

one’s own ideas/arguments;

Referencing: conventions of citation, avoiding plagiarism,

knowing why, when and whom to reference, understand-

ing referencing as a method of a. providing evidence, ac-
knowledging the work of others in the field, giving greater
authority to one’s own ideas, constructing knowledge;

o Writing ideas/arguments up into a structured,coherent text:
structuring, language skills (spelling, grammar, rhetorical
strategies, cohesion), using appropriate terminology, style,
conventions, participating in specialist discourse, under-
standing rhetorical processes needed for the construction of
knowledge [73].

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

All these skills should be explicitly taught to students. For stu-
dents with an autistic cognitive style, we see several skills that will
be especially difficult:

Understanding which information is relevant All students
should be taught how to find relevant articles (for instance,
by starting to glance over abstracts), but this is especially
true for students with an autistic cognitive style: thinking in
details is a hindrance when searching for relevant articles,
and finding thousands of possibilities.

Making meaning with unfamiliar discourse Again, thisis
difficult for all students, but with an autistic cognitive style,
context blindness might pose an additional problem. Stu-
dents should be taught explicitly that concepts may have
a (slightly) different meaning in another context, and they
should be taught how to recognize the context in which a
concept is used. Of course, this should be accompanied by
exercises.

Structuring Structuring an academic text is partly a matter of
convention, that can (and should) be taught explicitly. Partly,
it depends on what is the most important part of a section, a
paragraph, or a sentence, and to base the structure on that
(following rules that can be taught).

As we have seen, deciding what is important is difficult with
an autistic cognitive style: this should be taught, accompa-
nied by exercises to train this skill.

7 GUIDELINES

Now, we are able to formulate a first set of guidelines for inclusive
education for students within the autism spectrum, with respect to
cognitive style, based on what we found in literature about autistic
cognitive style and the thinking style in software engineering. These
guidelines have been confirmed by anecdotic evidence from autistic
students telling us about the problems they encounter, but we would
like to gather more data.

Explicit Context. In general, texts should be formulated in such a
way that one needs as little context as possible to understand what
is meant. An autistic thinking style means that texts are read ‘as is’,
and are processed as though there is no context. That means that
texts will be difficult to follow when it is assumed that the reader
will automatically fill in which context is presumed.

To make context explicit seems simpler than it is: one omits con-
text because the context is presumed unconsciously. As a teacher,
one has to put oneself in the shoes of someone who will read the
text, with only the text as guideline for what it means, and nothing
else.

Especially in the case of assignments and exams, it should be
made very clear what one expects from a student.

On the other hand, teachers should supply guidance in teaching
students how to read material without explicit context. There should
be support, for instance, for how to find the implicit context in an
academic source, for how to interpret a scientific article.

Explicit guidelines. In many areas, one should give explicit guide-
lines.

S. Stuurman et al.

For instance, one cannot expect that everyone is able to ‘learn by
example’. One should point out what the salient aspects of the exam-
ple are, and which general rules one may deduce from an example.
Otherwise, one can expect that some students may have drawn
very different conclusions, and will stick to those conclusions.

In particular where the approach is top-down (for instance, in
problem analyzing and design based on such analysis), one should
give explicit guidelines on how to do that. Also, one might try to
find other ways to solve problems, that require a more bottom-up
approach. Both top-down and bottom-up approaches may lead to
good solutions.

Teachers should be aware of the fact that students with an autistic
thinking style may come up with different solutions than the teacher
might expect, because of their bottom-up thinking style.

Explicit guidelines are also needed where finding relevant aspects
are important. For instance, one should explain how to proceed
when trying to find relevant literature.

Students should also be given explicit guidelines with respect to
structure texts.

With respect to ‘thinking as an engineer, students with an autistic
thinking style will probably show strengths. However, they will
need rules and guidelines on how to pay respect to the whole
system, as opposed to only parts of the system.

Exercises. When explicit guidelines are given on how to perform
a task, these should be accompanied by exercises.

Consequences for education. These points have consequences
in many areas. For instance, one may not take it for granted that
students with an autistic thinking style will pick up what is relevant
from listening to a talk. Handing out handouts with the salient
points beforehand might help.

Course material should be revised. In places where examples
are used to teach something, one should make explicit what the
students should learn from these examples.

For many tasks, we should develop explicit guidelines. Some-
times, these guidelines may be very precise. At other times, they
may state that there are no strict rules, and explain a general ap-
proach to tackle a problem.

In the very first place, teachers should be taught about autism
and the autistic cognitive style, so they can see their course material
and their lessons from the perspective of autistic students.

8 DISCUSSION

We formulated guidelines for inclusive education in software en-
gineering, based on what is known about the autistic cognitive
style and on the cognitive aspects of software engineering. As such,
our exercise is not purely speculative, but do not have empirical
evidence other then the anecdotical evidence that students sent us.

We think our effort is worthwhile nonetheless, for a couple of
reasons.

First, It is very difficult to find conclusive information about
hindrances in education for students within the autistic spectrum,
for several reasons. In the first place, one faces the same difficulties
as in estimating the number of students within the spectrum: not
every student is willing to disclose his or her diagnosis, and not
all students who are within the spectrum know that. Also, it is

Autism: Implications for Inclusive Education

difficult to point out hindrances you have, when you think that all
fellow-students will probably face the same hindrances. To be able
to point out what is a hindrance, a student would have to know
how non-autistic students think, how the neurotypical cognitive
style is.

Second, although Software engineering has a relatively high
percentage of students within the autistic spectrum, what autism
is and what the autistic cognitive style is, does not belong to the
general knowledge of most lecturers. An overview of cognitive
characteristics is therefore worthwhile in itself.

Third, giving explicit guidelines on how to proceed with a (com-
plex) task, is part of the 4c/1p approach (the four component to
instructional design model) to teaching complex tasks [41, 61]. It is
interesting to see that many of the recommendations we give over-
lap with this preferred approach to teach complex tasks. It seems,
therefore, that making out education more inclusive with respect to
autistic students, will result in better education as a whole. Students
within the autistic spectrum might be seen, so to speak, as canaries
in the coal mine with respect to suboptimal education. Focusing on
what such student need may be a good starting point to improve
education.

9 CONCLUSIONS AND FUTURE WORK

Based on literature and on the knowledge of an expert, we formu-
lated the autistic cognitive style. We compared these characteristics
with the cognitive skills that are needed within Software engineeing.
Based on that comparison, we predict possible hindrances. We for-
mulated guidelines that might help to take away these hindrances.

Finding out how to support an autistic cognitive style is a new
research area. Therefore, there are many ways in which we would
like to extend this work, for instance:

Ask autistic students We want to ask autistic students about
the difficulties they experience through questionnaires, and
we will organize meetings with autistic students, to brain-
storm about how education can be improved for them.

Coaching thesis writing Probably, writing a thesis is the most
difficult part of the study for almost any student; for autistic
students, this is especially true. We would like to investigate
good practices in coaching autistic student while they write
their thesis. This can be done by interviewing students, in-
terviewing teachers, and by developing and trying out an
approach.

Screening a course It would be worthwhile to develop a set of
guidelines for education that can be used to screen a course
on ‘inclusiveness’ with respect to autism. We would have to
validate the guidelines in several ways: check whether they
are concrete enough to use when reviewing a course and
check whether the guidelines really help autistic students.
We could interview both students and teachers to find out
more about the problems they encounter.

Collaboration To support collaboration between students,
both autistic and neurotypical, we would like to develop
guidelines for collaboration that recognize different cogni-
tive styles.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

Explicit guidelines One of our goals is to develop explicit
guidelines for processes that are inherently nondeterminis-
tic. Examples are, for instance, domain analysis or use case
modeling. We would like to check whether explicit guide-
lines really help autistic students.

REFERENCES

[1] Alfred V Aho. 2012. Computation and computational thinking. Comput. J. 55,7
(2012), 832-835.

[2] Soumela Atmatzidou and Stavros Demetriadis. 2016. Advancing students’ compu-
tational thinking skills through educational robotics: A study on age and gender
relevant differences. Robotics and Autonomous Systems 75 (2016), 661-670.

[3] Robert D Austin and Gary P Pisano. 2017. Neurodiversity as a competitive
advantage. Harvard Business Review 95 (2017), 96-103.

[4] Simon Baron-Cohen, Jennifer Richler, Dheraj Bisarya, Nhishanth Gurunathan,
and Sally Wheelwright. 2003. The systemizing quotient: an investigation of
adults with Asperger syndrome or high-functioning autism, and normal sex
differences. Philosophical Transactions of the Royal Society B: Biological Sciences
358, 1430 (2003), 361-374.

[5] Simon Baron-Cohen, Sally Wheelwright, Richard Skinner, Joanne Martin, and
Emma Clubley. 2001. The autism-spectrum quotient (AQ): Evidence from asperger
syndrome/high-functioning autism, malesand females, scientists and mathemati-
cians. Journal of autism and developmental disorders 31, 1 (2001), 5-17.

[6] Olga Bogdashina. 2016. Sensory perceptual issues in autism and asperger syn-
drome: different sensory experiences-different perceptual worlds. Jessica Kingsley
Publishers, London, UK.

[7] Nicholas A Bowman. 2010. College diversity experiences and cognitive develop-
ment: A meta-analysis. Review of Educational Research 80, 1 (2010), 4-33.

[8] Mark Brosnan, Marcus Lewton, and Chris Ashwin. 2016. Reasoning on the autism
spectrum: a dual process theory account. Journal of autism and developmental
disorders 46, 6 (2016), 2115-2125.

[9] SM Brown and JM Bebko. 2012. Generalization, overselectivity, and discrimina-
tion in the autism phenotype: A review. Research in Autism Spectrum Disorders 6,
2(2012), 733-740.

[10] Luiz Fernando Capretz and Faheem Ahmed. 2010. Why do we need personality
diversity in software engineering? ACM SIGSOFT Software Engineering Notes 35,
2(2010), 1-11.

[11] Nick Chown and Nick Beavan. 2012. Intellectually capable but socially excluded?
A review of the literature and research on students with autism in further educa-
tion. Journal of Further and Higher Education 36, 4 (2012), 477-493.

[12] Bernard J Crespi. 2016. Autism as a disorder of high intelligence. Frontiers in
neuroscience 10 (2016), 300.

[13] Edsger W Dijkstra. 1974. Programming as a discipline of mathematical nature.
The American Mathematical Monthly 81, 6 (1974), 608-612.

[14] Fifth Edition. 2013. Diagnostic and Statistical Manual of Mental Disorders, DSM-5.
American Psychiatric Association, Washington DC, USA.

[15] Nathan Ensmenger. 2015. “Beards, Sandals, and Other Signs of Rugged Individu-
alism”: Masculine Culture within the Computing Professions. Osiris 30, 1 (2015),
38-65.

[16] Peter A Facione et al. 1998. Critical thinking: What it is and why it counts.
Retrieved June 9 (1998), 2004.

[17] George D. Farmer, Simon Baron-Cohen, and William J. Skylark. 2017. People With
Autism Spectrum Conditions Make More Consistent Decisions. Psychological
Science 28, 8 (2017), 1067-1076.

[18] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Krishnamurthi Shriram.
2001. How To Design Programs, An Introduction to Programming and Computing.
The MIT press, Cambridge, Massachusetts, Londen, England.

[19] Veronica P. Fleury, Susan Hedges, Kara Hume, Diane M. Browder, Julie L. Thomp-
son, Kathy Fallin, Farah El Zein, Colleen Klein Reutebuch, and Sharon Vaughn.
2014. Addressing the academic needs of adolescents with autism spectrum
disorder in secondary education. Remedial and Special Education 35, 2 (2014),
68-79.

[20] Moti Frank. 2006. Knowledge, abilities, cognitive characteristics and behavioral
competences of engineers with high capacity for engineering systems thinking
(CEST). Systems Engineering 9, 2 (2006), 91-103.

[21] Uta Frith. 1989. Autism: Explaining the enigma. Vol. 1989. Wiley-Blackwell,
Malden MA, USA.

[22] Nicholas W Gelbar, Isaac Smith, and Brian Reichow. 2014. Systematic review of
articles describing experience and supports of individuals with autism enrolled
in college and university programs. Journal of autism and developmental disorders
44,10 (2014), 2593-2601.

[23] Emine Gurbuz, Mary Hanley, and Deborah M. Riby. 2019. University Students
with Autism: The Social and Academic Experiences of University in the UK.
Journal of autism and developmental disorders 49, 2 (2019), 617-631.

CSERC’19, The 8th Computer Science Education Research Conference, November 18-20

[24]

[25]

[26

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

(37

[38]
[39]

[40]

[41]

(42

[43

(44

[45

[46

[47]

[48]

[49]

[50]

Francesca Happé. 1999. Autism: cognitive deficit or cognitive style? Trends in
cognitive sciences 3, 6 (1999), 216-222.

Francesca Happé, Uta Frith, and J Briskman. 2001. Exploring the cognitive
phenotype of autism: weak “central coherence” in parents and siblings of children
with autism: I. Experimental tests. The Journal of Child Psychology and Psychiatry
and Allied Disciplines 42, 3 (2001), 299-307.

Elisabeth L Hill. 2004. Executive dysfunction in autism. Trends in cognitive
sciences 8, 1 (2004), 26-32.

Grace Iarocci and John McDonald. 2006. Sensory integration and the perceptual
experience of persons with autism. Journal of autism and developmental disorders
36, 1 (2006), 77-90.

Pier Jaarsma and Stellan Welin. 2012. Autism as a natural human variation:
Reflections on the claims of the neurodiversity movement. Health Care Analysis
20,1 (2012), 20-30.

Jordynn Jack. 2011. “The Extreme Male Brain?’ Incrementum and the Rhetorical
Gendering of Autism. Disability Studies Quarterly 31, 3 (2011), 1041-5718.
Claire Jinsch and Dougal Julian Hare. 2014. An investigation of the ‘jumping to
conclusions’ data-gathering bias and paranoid thoughts in Asperger syndrome.
Journal of autism and developmental disorders 44, 1 (2014), 111-119.

Daniel Kahneman. 2011. Thinking, fast and slow. Macmillan Publishers, NY,
USA.

Leo Kanner et al. 1943. Autistic disturbances of affective contact. Nervous child
2,3 (1943), 217-250.

Steven K Kapp, Kristen Gillespie-Lynch, Lauren E Sherman, and Ted Hutman.
2013. Deficit, difference, or both? Autism and neurodiversity. Developmental
psychology 49, 1 (2013), 59.

Donald E Knuth. 1974. Computer science and its relation to mathematics. The
American Mathematical Monthly 81, 4 (1974), 323-343.

Kami Koldewyn, Yuhong V Jiang, Sarah Weigelt, and Nancy Kanwisher. 2013.
Global/local processing in autism: Not a disability, but a disinclination. Journal
of autism and developmental disorders 43, 10 (2013), 2329-2340.

Jeff Kramer. 2007. Is abstraction the key to computing? Commun. ACM 50, 4
(2007), 36-42.

Jennifer A Kurth and Ann M Mastergeorge. 2010. Academic and cognitive profiles
of students with autism: implications for classroom practice and placement.
International Journal of Special Education 25, 2 (2010), 8-14.

Mary R Lea and Brian V Street. 1998. Student writing in higher education: An
academic literacies approach. Studies in higher education 23, 2 (1998), 157-172.
Arthur Lewis and David Smith. 1993. Defining higher order thinking. Theory
into practice 32, 3 (1993), 131-137.

Timo Lorenz and Kathrin Heinitz. 2014. Aspergers—different, not less: Occupa-
tional strengths and job interests of individuals with Asperger’s syndrome. PloS
one 9, 6 (2014), €100358.

Jeroen J.G. van Merriénboer and Paul A. Kirschner. 2017. Ten steps to complex
learning: A systematic approach to four-component instructional design. Routledge,
NY, USA.

Laurent Mottron, Michelle Dawson, Isabelle Soulieres, Benedicte Hubert, and
Jake Burack. 2006. Enhanced perceptual functioning in autism: an update, and
eight principles of autistic perception. Journal of autism and developmental
disorders 36, 1 (2006), 27-43.

Ann M Mulder and Andrew Cashin. 2014. The need to support students with
autism at university. Issues in mental health nursing 35, 9 (2014), 664-671.
Francisco Ortega. 2009. The cerebral subject and the challenge of neurodiversity.
BioSocieties 4, 4 (2009), 425-445.

Harrie Passier. 2017. The Role of Procedural Guidance in Software Engineering
Education. In Companion to the First International Conference on the Art, Science
and Engineering of Programming (Programming ’17). ACM, New York, USA,
Article 21, 2 pages.

Vreda Pieterse, Derrick G Kourie, and Inge P Sonnekus. 2006. Software en-
gineering team diversity and performance. In Proceedings of the 2006 annual
research conference of the South African institute of computer scientists and infor-
mation technologists on IT research in developing countries. South African Institute
for Computer Scientists and Information Technologists, ACM, New York, USA,
180-186.

Judith Pijnacker, Bart Geurts, Michiel Van Lambalgen, Cornelis C Kan, Jan K
Buitelaar, and Peter Hagoort. 2009. Defeasible reasoning in high-functioning
adults with autism: Evidence for impaired exception-handling. Neuropsychologia
47,3 (2009), 644—651.

K. C. Plaisted. 2001. Reduced generalization in autism: An alternative to weak
central coherence. In The development of autism: Perspectives from theory and re-
search, J.A. J. A. Burack, T. Charman, N. Yirmiya, and P.R. Zelazo (Eds.). Lawrence
Erlbaum Associates Publishers, Mahwah, New Jersey, United States, 149-169.
Ning Qian and Richard M Lipkin. 2011. A learning-style theory for understanding
autistic behaviors. Frontiers in human neuroscience 5 (2011), 77.

Allison B Ratto, Lauren Kenworthy, Benjamin E Yerys, Julia Bascom, An-
drea Trubanova Wieckowski, Susan W White, Gregory L Wallace, Cara Pugliese,
Robert T Schultz, Thomas H Ollendick, et al. 2018. What about the girls? Sex-
based differences in autistic traits and adaptive skills. Journal of autism and

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]
[72]
[73]

[74]

S. Stuurman et al.

developmental disorders 48, 5 (2018), 1698-1711.

John A Robinson. 1998. Engineering thinking and rhetoric. Journal of Engineering
Education 87, 3 (1998), 227-229.

Danielle Ropar and David Peebles. 2007. Sorting preference in children with
autism: the dominance of concrete features. Journal of autism and developmental
disorders 37, 2 (2007), 270-280.

Emily Ruzich, Carrie Allison, Paula Smith, Peter Watson, Bonnie Auyeung,
Howard Ring, and Simon Baron-Cohen. 2015. Measuring autistic traits in the
general population: a systematic review of the Autism-Spectrum Quotient (AQ)
in a nonclinical population sample of 6,900 typical adult males and females.
Molecular autism 6, 1 (2015), 2.

Wayne Sailor and Blair Roger. 2005. Rethinking inclusion: Schoolwide applica-
tions. Phi Delta Kappan 86, 7 (2005), 503-509.

Maria Felipa Soriano, Antonio J Ibanez-Molina, Natalia Paredes, and Pedro Macizo.
2017. Autism: Hard to Switch from Details to the Whole. Journal of abnormal
child psychology 46, 6 (2017), 1-13.

Isabelle Soulieres, Laurent Mottron, Daniel Saumier, and Serge Larochelle. 2007.
Atypical Categorical Perception in Autism: Autonomy of Discrimination? Journal
of Autism and Developmental Disorders 37, 3 (01 Mar 2007), 481-490.

Annelies A Spek and E Velderman. 2013. Examining the relationship between
autism spectrum disorders and technical professions in high functioning adults.
Research in Autism Spectrum Disorders 7, 5 (2013), 606-612.

Matti Tedre and Peter J Denning. 2016. The long quest for computational thinking.
In Proceedings of the 16th Koli Calling International Conference on Computing
Education Research. ACM, New York, USA, 120-129.

Ernst van Bergeijk, Ami Klin, and Fred Volkmar. 2008. Supporting more able
students on the autism spectrum: College and beyond. Journal of autism and
developmental disorders 38, 7 (2008), 1359.

Sander Van de Cruys, Kris Evers, Ruth Van der Hallen, Lien Van Eylen, Bart
Boets, Lee de Wit, and Johan Wagemans. 2014. Precise minds in uncertain worlds:
Predictive coding in autism. Psychological review 121, 4 (2014), 649.

Jeroen JG Van Merriénboer. 1997. Training complex cognitive skills: A four-
component instructional design model for technical training. Educational Technol-
ogy Publications, Englewood Cliffs, NJ, USA.

Daniel Varona, Luiz Fernando Capretz, Yadenis Pifiero, and Arif Raza. 2012.
Evolution of software engineers’ personality profile. ACM SIGSOFT Software
Engineering Notes 37, 1 (2012), 1-5.

Berend Verhoeff. 2013. Autism in flux: a history of the concept from Leo Kanner
to DSM-5. History of Psychiatry 24, 4 (2013), 442-458.

Peter Vermeulen. 2015. Context blindness in autism spectrum disorder: Not
using the forest to see the trees as trees. Focus on autism and other developmental
disabilities 30, 3 (2015), 182-192.

Jonathan Wareham and Thorkil Sonne. 2008. Harnessing the power of autism
spectrum disorder (Innovations case narrative: specialisterne). Innovations: Tech-
nology, Governance, Globalization 3, 1 (2008), 11-27.

Xin Wei, W Yu Jennifer, Paul Shattuck, Mary McCracken, and Jose Blackorby.
2013. Science, technology, engineering, and mathematics (STEM) participation
among college students with an autism spectrum disorder. Journal of autism and
developmental disorders 43, 7 (2013), 1539-1546.

Peggy] Schaefer Whitby, Jason C Travers, and Jamie Harnik. 2009. Academic
achievement and strategy instruction to support the learning of children with
high-functioning autism. Beyond Behavior 19, 1 (2009), 3-9.

Susan W White, Thomas H Ollendick, and Bethany C Bray. 2011. College students
on the autism spectrum: Prevalence and associated problems. Autism 15, 6 (2011),
683-701.

Diane L Williams and Nancy] Minshew. 2010. How the brain thinks in autism:
Implications for language intervention. ASHA Leader 15 (2010), 8.

J. M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006), 33-35.
Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical transactions of the royal society of London A: mathematical, physical
and engineering sciences 366, 1881 (2008), 3717-3725.

Lorna Wing. 1988. The continuum of autistic characteristics. In Diagnosis and
assessment in autism. Springer, Springer, Boston, MA, USA, 91-110.

Ursula Wingate. 2006. Doing away with ‘study skills’. Teaching in higher education
11, 4 (2006), 457-469.

Sula Wolff. 2004. The history of autism. European child & adolescent psychiatry
13, 4 (2004), 201-208.

40
41
42
43

44

Programming for teachers: Reflections on the design of a course
supporting flexible learning trajectories

ABSTRACT

How to design an online flexible learning trajectory course where
students are in-service teachers with varied level of programming
knowledge, interests, and different application need? This paper
presents the design of such a course for teachers on applied pro-
gramming. The main learning objective of the course is to provide
in-service teachers with insight into how programming can be
used to create digital solutions. The course is practically directed
and emphasizes programming as a constructive and creative tool.
The course is aimed at teachers in secondary schools. The paper
describes the main design choices of the course. Based on the ex-
perience with the course, the paper reflects on the challenges to
design courses that do not support a single learning path for all the
students, but rather aims at providing a context where students can
identify and follow the learning path that is best fitting for their
competencies, interests, and needs of the local practices.

CCS CONCEPTS

« Applied computing — Education; E-learning; Distance learn-
ing; » General and reference — Design; « Social and profes-
sional topics — Computer science education; Adult education.

KEYWORDS

Online course, Programming for teachers, Flexible learning trajec-
tories, Applied programming, Learner-Centered Design, Continued
Education

ACM Reference Format:

. 2019. Programming for teachers: Reflections on the design of a course
supporting flexible learning trajectories. In The 8th Computer Science Educa-
tion Research Conference, 18-20 November 2019, Larnaca, Cyprus. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Teaching programming in schools is challenging, and can also be
overwhelming if programming is not part of your educational back-
ground. The demand for incorporation of programming into the
curriculum of various subjects in schools is on the rise, and teachers
need some additional education and guidance regarding that. The
course is aimed at in-service teachers who represent the group
that has the most difficulties with this topic as they usually did not
have any kind of formal programming education in their careers

Unpublished working draft. Not for distribution.

2019-06-29 09:56. Page 1 of 1-11.

thus far. Some of the challenges that are discussed in this paper
are: Students are in-service teachers who teach at different levels
(primary, secondary, and upper secondary level), different needs for
application of programming to varying levels of education, flexible
course versus class size and assessment, "learning programming is
hard" and "programming for all".

In this paper, we reflect on how these challenges in the everyday
practice of teachers influence the design of in-service training for
teachers. The discussion is based on the experience with the design
on an online course: Applied programming.

The paper is organized as follows: Section 2 presents related work
and positions the paper in the context of current teacher training
in the area of programming. Section 3 presents the overall design
of the course, and Section 4 discuss the results on the course based
on the instructor’s experience and feedbacks from participants.
Lastly, section 5 outlines some implications for course designers
and instructors.

2 RELATED WORK

"Computational methods and models give us the courage to solve
problems and design systems that no one of us would be capable
of tackling alone" [12]. Wing argues that computational thinking
should be included in the lower education curriculum, which indeed
is in coherence with the report Students’ Learning in the Future
School by the Norwegian Directorate of Education and Training
[7].

A study on student engagement in online discussions [1], con-
cluded with the need for including pedagogical course designs in
closer relation to online learning. In the course which is described
in this paper, Applied Programming for Teachers, we have tried to
implement didactic features of online learning by using a learner-
centered design for the course structure [2], which is explained
further in section 3.

To understand the place that this course takes, we need to under-
stand the variety of courses that are delivered in an online format.
Massive Open Online Course (MOOC) is a widely adopted type
of course and most dominant form found today. They are aimed
towards participation on a large scale with availability to anyone
with access to the internet. Various reports on the effectiveness
of this type of course have been made. It has been reported that
adoption and drop-out rates vary, in some cases 50% or more of the
participants cease their activity in the first weeks with the decline
to 16% in the following weeks [4]. Also, various reasons have been
reported as reasons for high drop-out numbers, some of them in-
clude lack of motivation, poor contact with the staff, long times to
receive answers to queries, too constrained syllabus, and similar
[6, 13, 14]. As MOOC:s usually do not have targeted demographics,
the assessment of the course effectiveness becomes hard other than
reporting competition numbers.

59
60
61
62
63
64
65
66

67

79
80
81
82
83
84
85

86

90
91
92
93
94
95

96

98
99
100
101
102
103

104

106

111
112
113

114

116

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142

149

160
161
162
163
164
165
166
167

168

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

In recent years, several projects for teaching coding to teach-
ers have emerged [6],e.g., Switzerland has an ongoing educational
reform that requires them to conduct continued education for teach-
ers in regards to programming and computational thinking [5]. In
the context of Norwegian schools, Simula Research Laborotory1
has been working with teachers about how programming can be im-
plemented in classroom situations with an interdisciplinary focus
similar to the course described in this paper. In contrary to Simula’s
face-to-face and seminar-based approach, the Applied Program-
ming for Teachers course has adopted a web-based structure, which
according to Hadjerrouit [3] offers increased learning benefits when
combined with a learner-centered structure.

3 DESCRIPTION OF METHOD AND CASE

The purpose of this study is to promote how to design a course
with flexible learning trajectory for students who are in-service
teachers. In the following sections we will give a brief description
of the challenges and how to design such a course.

3.1 Background

The message from the Norwegian government, [9] says: "The cur-
riculum will be renewed so that it reflects the current school life and
the challenges children and young people face today.".

Norwegian Directorate for Education and Training (Utdannings-
direktoratet) is working on renewing all the curricula in primary
and secondary education, which will be implemented from 2020
onwards. The purpose of renewing “The knowledge promise” is to
make children and young people able to meet and find solutions for
todays and future challenges. They will develop relevant expertise
and good values and attitudes that affect the individual, in a soci-
ety characterized by greater complexity, high diversity, and speed
change”[10].

To support this, the Centre for Continuing Education and Profes-
sional Development at the University offers several courses within
Information and Communication Technology (ICT) Programming.
These are online courses that provide teachers with insight into
how programming as a subprocess of the more significant problem-
solving methodology is used to create digital solutions. Using a
programming language can create a solution to a problem. The
program is practically directed and emphasizes programming as a
useful and creative tool. The focus is on how the programming sub-
ject can be communicated to students with a focus on creativity and
collaboration in task solving. The program qualifies for teaching in
programming at levels 8-13 (and earlier).

The target audience is teachers who need programming skills
and insight into the possibilities of coding, design, and modeling of
software-based solutions. These courses give guidance of program-
ming in schools and other subjects and activities where program-
ming is used to support learning.

Lectures are web-based, but the emphasis is placed on social and
interactive learning with weekly activities such as online lectures
and regular compulsory work requirements (exercises). Lectures
include interactive learning materials and videos made available to

!https://www.simula.no/news/simula-educates-teachers-programming

Ommited

students, and online collaboration and guidance are conducted in
social spaces (Slack? and Blackboard?).

The teaching is based on the curriculum consisting of both text-
book [2] and online resources. In teaching, we use both text and
block-based programming tools. Through the obligatory exercises,
the students will try out new academic and subject didactic knowl-
edge in their teaching.

3.2 Challenges

Through the process of designing this course and further reflection
we have identified some challenges which we briefly explain in this
section.

Students are in-service teachers who teach at different lev-
els (primary, secondary, and upper secondary level). Our fo-
cus is teachers who teach in level 8-13, but we also try to meet the
needs of lower-level teachers. We achieve this by including games
and block-based programming.

Programming at primary and secondary schools will require
other forms of programming didactics than those who wish to
apply for upper secondary school programming. This requires a
flexible course content that will meet the needs of all students in
order to be able to implement programming in their respective
areas.

Different needs for application of programming at differ-
ent levels of education. Teachers from the upper secondary level
teach in many different subject areas (automation in technical sub-
jects, natural science, and history/languages, etc.). At lower levels,
the students have other needs and issues related to programming
and its applications. This challenge requires highly flexible course
content, and students should be able to choose the direction which
is relevant to them.

Flexible course versus class size and assessment. There is
aneed to increase the number of students taking this course. Defin-
ing a course content and having a form of assessment where the
workload does not escalate when the number of students increases,
is, therefore, a challenge that must be dealt with in the right way.

Learning programming is hard. “We have significant empiri-
cal evidence that learning to program is harder than teachers might
predict.”[2]. One crucial aspect is motivation and a strong desire
to learn programming. “Critical to success in learning computing is
wanting to learn computing”[2]. Learning programming languages
might be more comfortable for some people, and more difficult for
others. “Becoming a good programmer is incredibly difficult, and it
does not happen quickly”[11].

The aim of this course is, therefore, to teach programming to all
students at Norwegian schools in a way that increases their interest
and commitment. Through this course, our task is to transfer this
engagement with the students (who are in-service teachers) in a
way that enables them to see the benefits of applying programing in
their area while also being able to increase their student’s interests.
How to learn programming concepts, thus becomes an essential
aspect of this course.

Programming for all [2] There is a broad range of reasons
for making computing education available to everyone. These are

Zhttps://slack.com/
3https://www.blackboard.com/about-us/index.html

2019-06-29 09:56. Page 2 of 1-11.

205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

260

261

262

263

264

265

266

267

276

289

290

291

292

293

294

295

296

297

298

299

300

301

310

311

312

Programming for teachers: Reflections on the design of a course supporting flexible learning trajectories

explained in the textbook Learner-Centered Design of Computing
Education by Mark Guzdial[2]. To achieve the goal of making com-
puting education available to everyone, we will need to change
how we teach computing. “The most common user interface design
approach, user-centered system design, emphasizes understand-
ing the user’s tasks and helping her to achieve those tasks[8]. The
method of Learner-Centered Design of computing education is used
for designing this course.

The term programming for all may not be accepted by some
students as they may not see the benefit of it from their point
of view. It is therefore essential to delve into research that has
been done in this area and to have a proven relationship with the
importance of this message. It is also important to understand what
the challenges of learning programming concepts are and how to
overcome these.

3.3 Learning objectives and design principles

The learning objective is a very general statement about the broader
goals of the course. For the course Basic programming for teachers,
the learning objectives are that students have learned and reached
an understanding of the most important programming concepts. An
example of this is saving and retrieving data from different media
and programming structures like repetitions, making choices, etc.

The course that is discussed in this paper, Applied Programming
for Teachers, will give students a deeper understanding of these
concepts and how this can be applied to solve issues within different
subject areas. This course focuses on the knowledge students need
as teachers, and how they can ease students learning process and
understanding of programming. The course is primarily intended
as a way of getting ready to teach programming by focusing on
applications in natural sciences, electronics, and robotics. We also
want to give students insight into programming concepts as well
as a general understanding of modern programming languages,
techniques, and methods.

The course is designed to inspire students through examples of
programming applications and tasks where the students can use
this in practice. Tasks provided give the students opportunities to
work interdisciplinary, be creative, and collaborate.

Designing the course Applied Programming for Teachers has
been based on the following principles:

o The course should focus on students at secondary- and high
school level, but it should also be useful for primary schools
A minimum level of programming skills is defined and should
be gained by all students.

Students who already know programming at a medium or
advanced level should also find this course useful and should
be able to develop their skills further.

Focus is learner-centered course design: The most critical
idea in learner-centered design is respect for the learner.
Learner-centered design tells us to respect students motiva-
tions to learn and what they want to learn. We expect variety
in our learners and rapid change as they learn. We need to
construct learning opportunities for who the learner is and
wants to be, not for the expert that we computer scientists
might want them to be[2]. Students at a different level should
select relevant content (different trajectories). They should

2019-06-29 09:56. Page 3 of 1-11.

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

also be able to select the level of complexity and follow their
plan to complete the course.

The course is organized in a way that students learn program-
ming through practical applications. Lectures in modules are using
web-resources (interactive materials) to extend students program-
ming knowledge. The exercises are practically arranged. The stu-
dents program micro-electronic devices or modulate natural science
mathematics related issues.

3.4 Organization of the learning material

The overall topics covered. In this course (“Applied program-
ming for teachers”), we focus on the programming didactics, ap-
plications of programming and increase the general knowledge in
software development. The topics we address can be divided into
the following main areas:

(1) Increase understanding of the need to learn programming.
We look at research within the challenges of learning pro-
gramming and look at the reasons why everyone should
learn to program. The book Learner-Centered Design of
Computing Education[2] is used as a textbook for students.
Applications of Programming: In this section, we focus on
somewhat more complicated programs and application of
programming in areas such as games, simple electronics, and
robotics (such as Arduino?, Raspberry PI°, micro: bit®, LEGO
Mindstorms’), computing applications and simulations in
subjects such as mathematics and physics. The students get
a good overview of different applications of programming,
and through the project, they are allowed to immerse them-
selves in applications that are relevant to their teaching and
subjects.

Specialization in programming / general knowledge of sys-
tem development process: The focus here is to acquire more
detailed knowledge of constructions and structures in mod-
ern programming, know programming languages, tools and
methodology, both pedagogically oriented solutions and so-
lutions that are used professionally.

—~
®
—

—~
W
=

Organization of the course

Fig. 1. shows how this course has been organized. Student activ-
ities are planned in four main loops: Webinars, self-study modules,
exercises, and discussion forums.

One of the main objectives of the course is to make it flexible for
the students in a way that they can control their working speed.
The course is providing a plan and a recommendation on how to
complete the course, but students can still complete the course
earlier. The content of the course is divided into six modules, and
each module consists of one or several related topics. Some of the
modules (modules 3 and 4) provide a variety of topics related to
applications of programming. Students will choose topics based on
what is most relevant to them. They can also choose tasks from
exercises that are related to topics they choose to study, that is,
exercises follow whatever students choose in the study modules.

https://www.arduino.cc/
Shttps://www.raspberrypi.org/
Chttps://microbit.org/
https://www.lego.com/en-us/mindstorms

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

370
371
372
373
374

387

390
391
392

393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409

410

436
437
438

439

445
446
447
448
449

450

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

176203 Basic programeming for teachers, e have similar knowledge

Module 0

¥ luaprss

LR

Module 1
Exerclse 1

Webinar 1 Module 2
Exorcise 2
Webinar 2
Module 3

Webinar 3 Exorcise 3

P Aruo) UoEISIQ

Module 4
Webinar 4 Exorcise &

Module S Project:
Exercise 5 feasibility study

Webinar §

Module 6

Project: create & teaching program applicable foe own teaching

Figure 1: Organization of IT6204 Applied programming for
teachers

Webinars are complementary online lectures and are meant to
help students get a broader view of core topics. Also, students will
have a chance to ask questions directly or discuss different subjects
related to the course. All webinars are recorded and made available
through the learning platform.

Module 1 - Introduction, why and how everyone should
learn programming. There is a high demand for education in
computing and information technology. Many students (both chil-
dren and adults) are aware that they will need programming in the
future. This module presents arguments for ubiquitous program-
ming education while allowing for individual learning motivation
and application of use. What do we mean when we talk about
everyone having to learn to program? How can we create an ed-
ucational program that works for everyone? In this module, we
look at the use of a learner-centered design of computing educa-
tion (student-centered) approach to reach a broad audience. Several
reasons for teaching programming to everyone are discussed, and
we study how the various cases lead to different choices of learning
objectives and teaching methods.

Module 2 - Block based programming. This module deals
with applications of programming using block-based programming.
All students are encouraged to complete this module even though its
content is more applicable to primary/secondary schools. The cho-
sen technologies for this module are micro: bit, code.orgg, Scratch®,
and Pocket Code'®.

Module 3 - Principles, constructions, and structures in mod-
ern programming. In this module, students extend their program-
ming knowledge on selected topics (relevant for natural science) to
an advanced level. Also, they will learn more about algorithms and
how to apply programming in natural science.

Module 4 - Understanding the software’s function in elec-
tronics and robotics. In this module, we apply the application of
programming in electronics and robotics. Several techniques (mi-
croelectronic technologies) are introduced, but it is up to students
to choose which of these he/she wants to immerse in. Techniques
introduced are relevant to teaching at all school levels.

Shttps://code.org/
“https://scratch.mit.edu/
Ohttp://robotixedu.com/phiroresources/introduction-to-pocket-code.html

Ommited

Module 5 - Game programming. Making games allows us to
be high-interest, engaging, teaches foundational and transferable
skills 1. Using games in teaching can, therefore, be very motivating
for the students, but it is crucial that the level is right so that they are
not overwhelmed by information and technical difficulties. Game
programming can be so advanced that it governs the overall IT
development, both in terms of graphics and artificial intelligence.
On the other hand, it can be done very quickly, and in this module,
we make a game with Scratch (block programming).

Module 6 - Programming languages, tools, methodology,
and testing. In this module, we address some key topics relevant
to professional software development. The purpose is to familiarize
students with the software development process itself, methods
and techniques that are used professionally to develop computer
systems. We have introduced the most central topics in this lesson
and enclosed documents that deal with the topics in greater depth
for those who are particularly interested in increasing their general
competence in software development.

Exercise. Exercises follow the flexibility of the modules. Stu-
dents choose relevant tasks from the exercises based on the topics
they have select to immerse in.

Project. Student assessment will be based on exercises and
project delivery. When a student has completed a minimum set
of exercises, they can start to work on the project. It is, however,
possible to start a feasibility study for the project before mandatory
exercises have been completed.

The project is about to create a teaching program that the student
can use in his/her class to teach programming.

Project delivery requirements:

e Scope: It is expected that a minimum of 40 hours per person

will be worked on with the project (pre-project / previous

exercises not included). Students can work individually or

in groups of a maximum of three persons.

A simple project report per person shall be provided con-

taining hourly consumption per activity and reflections on

self-learning/results.

Project description (preliminary project): A step by step de-

scription of how the student intends to implement the teach-

ing program

A complete teaching program that includes how the student

plan to teach programming in the classroom. This implies:

- Program code and screen dumps

- Video of a maximum of five minutes showing a demo of
running program or robot.

Discussion forums A forum where students can discuss with
each other and trainers of the course is an important part. Slack!?
is used as a tool for this purpose.

3.5 Course exercises

In this flexible course, we have designed exercises that correspond
to the flexibility of the topics. The aim is that every student can have
benefits of the course regardless of which level the student teaches
and what level of programming knowledge he/she has. To achieve

Uhttps://codakid.com/why-coding-games-is-the-best-way-to-teach-kids-computer-
programming/
2https://slack.com/about

2019-06-29 09:56. Page 4 of 1-11.

465

468
469
470
471
472
473
474
475
476
477
478

481

494
495
496

498

Programming for teachers: Reflections on the design of a course supporting flexible learning trajectories

Module 1 “ Exercise 1

Module 2 « Exercise 2
v Topic 1 v

Module 3 Exercise 3
- Topic n ~
v Topic 1 v

Module 4 Exercise 4
A Topic n *

Module 5 « Exercise 5

Module 6

Figure 2: Flexible exercises

this, we have defined a minim set of tasks in each exercise. Each
task can either be mandatory or optional. Figure 2 shows the design
of exercises and their connection to topics in each module. Modules
1, 2, and 5 in the course are mandatory for all students. There is no
flexibility in these modules, and therefore, tasks specified are not
optional, and students must resolve the minimum set of tasks to be
able to pass. However, in module 5 (Game programming), the stu-
dent is supposed to create a game. The technology and complexity
behind the games that students creates can be flexible. Module 3
and 4 are the main modules for application of programming and
covers many areas. The specified exercises are also reflecting the
same flexibility. In exercises 3 and 4, there are some mandatory
tasks. Also, the students need to resolve a minimum set of optional
tasks. They can select tasks depending on what topics in the module
they have immersed in.

In Module 6, we address some key topics relevant to professional
software development. The module is optional, and no exercise has
been defined for it. Based on feedback (see figure 6 question 33), 52%
of the students find this module useful. This is expected since the
module is supposed to address topics only for those students who
want to gain advanced knowledge to have a better understanding
of the overall picture.

3.6 Course assessment

The main requirement for completing the course is that students
conduct a project, as explained in the previous section. This project
has two sub-deliveries. The first delivery is a feasibility study (sub-
delivery one) where the students specify what programming con-
cepts they will cover and how this can support/increase the under-
standing of the profession for their students. The first sub-delivery
will be evaluated, and feedback is given to students before they
are allowed to continue with sub-delivery two, which is the actual
2019-06-29 09:56. Page 5 of 1-11.

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

Number of exerc

$65 passed

"L { YO Wrming o emming

Figure 3: Overview of passed exercises

implementation of the teaching program they have specified in the
first sub-delivery.

A prerequisite for starting the project is that students have to
deliver a minimum of 70% of exercises in advance. Each exercise
is organized in a way that reflects the diversity and flexibility of
the course content. This means that students need to resolve a
minimum set of questions in each exercise, but they can choose
what optional questions to resolve.

Mandatory exercises force the students to study the learning
materials which are relevant and interesting to students, which in
turn make the basis for their project.

Figure 3 shows number of exercises passed. A minimum of 4
exercises in addition to "project feasibility study," had to be delivered.
Exercises 3-4 were designed in a way that students could select a
minimum set of tasks that were relevant with regards to complexity
and application in their subject area.

73 students got a grade after delivering the mandatory project
in the course. 80 students started the course in January. This gives
a retention rate of approximately 91%. This result should be seen
in the context of an online course (7,5 ECTS) where there is a clear
commitment between teachers and schools to give teachers some
free time to take the course. Therefore the result is excellent, but
should be seen in this specific context.

4 RESULTS

4.1 Flexible Learning Trajectories

Figure 4 is showing schematic view of how flexible learning tra-
jectories are implemented in this course. A learning path consist
of common mandatory modules; flexible modules and a project
delivery.

The different areas for applications of programming within elec-
tronics and natural science/mathematics in the course have been
defined as follows: micro: bit, block-based (Scratch), Pocket Code,
Raspberry PI, Arduino, LEGO Mindstorms, Game programming
(Minecraft, PyGame), Modelling (natural science and mathematics).
In table 2, we have an overview of what modules students have
been using during their project.

Some examples of learning trajectories that students have fol-
lowed in this course:

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

680
681
682
683

684

686

687

688

689

690

714

715

716
717

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

Path

Minimum requirements

[Learning trajectory 1 Project

| H
| Learning trajectory 2 Project

20\ g §

3 2| Learning trajectory 3 Project | E

£ gl 4
E 8

S| @ — — - <

£ S | Learning trajectory 4 Project]

€ 3| 5

S w

S S

Learning trajectory n Project

Figure 4: Schematic view of flexible learning trajectories

Example 1:

o Level
— Upper secondary school
- Mathematics
e Modules
- Module 1: programming didactic
- Module 2: Block based programming
- Module 3: Application of programming within natural
science
— Module 4: micro:bit, robatics
Topics
— Modelling, Mathematics
- 3D printing
- micro:bit
Project: Measurement of acceleration, speed and distance
using programming

Example 2:

o Level
— Upper secondary school
— Technical and industrial production
e Modules
- Module 1: programming didactic
— Module 2: Block based programming
- Module 3: Principles, constructions and structures in mod-
ern programming
— Others (topics not covered in the course): C++, Programmable
logic controller (PLC)
e Topics
- Python
- C++
— Programmable logic controller (PLC)
e Project
— Part 1: A basic course in "Use and programming of PLS
for VGI1 electrical subjects”
— Part 2: Course in sequence control with PLC. Adapted to
class level VG2 electric energy plus especially interested
students in VG1 electrophysics.

Ommited

Table 1: Application of programming in student projects

Application areas

Language

C++

Python

KRL

Python/C++
Block/Python
HTML/JavaScript
Block
Block/JavaScript/C++
Block/C++

App Lab

Arduino

10

Blue-Bot

Games

iPad

iPad/Pythonista

KUKA-robot

Lego Mindstorm

11

micro:bit

21

micro:bit, bitbot

micro:bit, Arduino

MineCraft

PLS/Arduino

PyGame

Python

Python/C++

Pythonista

Raspberry pi

Scratch/Ras.Pi

Spyder

TinkerCad

Website

Totalsum

10

16

- Part 3: Basic course in text-based algorithmic program-
ming using C ++ with emphasis on electrotechnical calcu-
lations. This course will probably fall outside the limits of
the ordinary VG1 Electrical Subjects, but it should be able
to be used within "Vocational Education Specialization
»where the students work from the curriculum goals for
later VG3 studies. (Automation and Computer electronics.)

Example 3:

o Level: Elementary school

e Modules

- Module 1: Programming didactic
— Module 2: Block based programming
o Topics: Block based programming
o Project: Programming BlueBot to demonstrate programming

concepts

Examples 1 and 2 are both on upper secondary level, but subject
area and complexity they have chosen are different. Example 3 is
showing a path which fulfills the minimum requirements, but is

directed towards elementary school.

2019-06-29 09:56. Page 6 of 1-11.

804
805
806

807
808

809

820
821
822

823

829

830

831

832

860

861

862

863

864

Programming for teachers: Reflections on the design of a course supporting flexible learning trajectories

Table 2: Projects related to modules

Project
Module 2, 3 2
Module 3 14
Module 3,4 16
Module 4 34
Module 4, Others 2
Module 5 3
Others 2
Totalsum 73

The most popular applications of programming in the project
delivery has been the use of micro: bit, Arduino, and LEGO Mind-
storms. Projects based on block programming are 53% (39 projects),
Text-based projects are 40% (29 projects) and 7% (5 projects are
mixed).

Relation between modules and student projects are also shown
in table 2. Modules 3 and 4 deal with application of programming
within different areas covered in the course and most projects are
related to these modules. There are 2 projects in "Others" modules
which are not covered in the course, but still accepted and will be
considered to be added next time the course is executed.

There are both students with little or no programming knowl-
edge and students who are advanced programmers. We have cov-
ered a wide range of topics that students can choose to immerse in.
Still, some observation has been done where students have been
asking for new areas that were not covered in the course (e.g., au-
tomation, programming of PLC (programmable logic controller)
and 3d printing). More research needs to be done to identify all
relevant subject areas in primary-, secondary- and upper secondary
schools in regards to the inclusion as mentioned above of program-
ming in specific curriculums. These areas need to be included in (or
considered) the learning trajectories of the course. We have also ob-
served that students with little or no programming knowledge and
students with advanced programming knowledge have expressed
that this flexible course has been useful to them since they can
choose a learning trajectory that is relevant for them.

An advantage of having a class where a different level of knowl-
edge, objectives, and interests for applications exist, is that we
can use the class as a learning resource environment. We utilized
Slack to enable students to interact with each other and observed a
high level of participation amongst students of different skill levels.
They share their knowledge, which in turn may increase the level
of programming skills.

We are experiencing that there is a considerable demand for pass-
ing the programming courses, and we are expecting this demand to
increase the next few years (the reason is explained in section 3.1).
The main challenge of increasing the number of students in the as-
sessment process regarding a parallel increase in workload for staff
members. To accommodate the demand for more students, we need
to reassess how compulsory assignments are implemented in the
course, and how we can increase efficiency and general scalability.

The implementation of flexible learning trajectories in this course
allow teachers to study topics which are applicable to their respec-
tive school subjects and how programming can be used to convey
2019-06-29 09:56. Page 7 of 1-11.

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

knowledge in a variety of topics. Reflection notes provided by the
students as part of their project work show that their engagement
has increased considerably during the project period, and they have
discovered new areas where they can teach programming for their
students. They also welcome the fact that the results of the project
can be used immediately in their teaching classes, which means
that they put more effort into the implementation of the project.

4.2 Course evaluation

At the end of the course, we sent a questionnaire to the students
for completion. They were informed that anonymized data from
the survey could be used in research related to the subject. A total
of 22 students filled in the questionnaire while the approximately
same number of students decided not to complete the questionnaire
(stopped at first question). The result is shown in figure 5. A detail
graph is shown in ??. In addition to these results, we also asked
students to deliver a reflection note as part of their project deliveries.
These reflections evaluate both this course and their project results,
which are discussed in session 4.3.

Questions 39 and 40 are related to the project, and respectively,
71% and 67% are happy with their project delivery.

Questions 34 through 38 are related to course exercises. Most
of the students (>65%) agree that exercises have been relevant and
were not hard to resolve. However, we have got feedback from some
students saying that exercise 3, which is related to the application of
programming within natural science and mathematics (modeling),
has been too hard to resolve. In this exercise, we assumed that all
students have a minimum understanding of essential mathematical
functions like sinus, cosine, etc.

Questions 28 through 33 are related to actual topics in each mod-
ule and how relevant they were for students. Results are slightly
weaker (52%-68%) but still within the range of acceptability. In mod-
ule 1, we discussed programming didactics. We focused on questions
like what is computational thinking, why should everyone learn
to program, what are the challenges, etc. To gain a better under-
standing of these topics, we used the textbook Learner-Centered
Design of Computing Education [2]. For this module, the satisfac-
tion rate is 64%. Most students (68%) are also satisfied with module
2 (Block-based programming). This is also reflected in table 1 where
most students have selected block based (micro: bit) as their project.
The satisfaction rate for module 5 (Games programming) is lower
(52%). The number of students that have delivered is lower for this
exercise (see figure 3) compared to others. 24% of students have
answered "Neither nor" to this question, which could mean that
they have not done the exercise.

Questions 3 and 4 are related to using communication channels.
90% of students are satisfied using Slack. A total number of 1540
messages have been registered in Slack during the course. Figure 7
shows daily activities. The activity level of Slack confirms the high
rate of satisfaction in the course. In addition to Slack, some students
preferred to have direct communication with instructors/teaching
assistants using e-mail instead of or in addition to Slack. Questions
have been answered as quickly as possible to ensure that students
get clarification in the shortest possible time. We would like to
analyze and discuss use of communication tools used in this course

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

945
946

947

962
963
964
965
966
967
968
969

970

979
980
981
982
983
984
985
986
987
988
989
990

991

996
997
998
999
1000
1001

1002

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

Ommited

Figure 5: Course evaluation - Overview

in a separate paper. Therefore, we do not go into more details on
use of Slack here.

Questions 5 and 6 are related to the use of Skype as a webinar
tool. Only 50% of students were able to connect successfully to the
webinars. The rest had either technical issues or was not able to join
due to other reasons. At this point, we do not know how many of
these students had technical issues, but based on comments during
the webinars, we have been told that either they could not see the
picture or they could not hear the sound. However, 64% are satisfied
with the recorded version of webinars.

Questions 7 through 16 are related to the contents of the we-
binars. The first webinar had a focus on introducing the course
and giving practical information. The last webinar focused on the
project (all sub-deliveries). The other three webinars discussed dif-
ferent topics relevant to teachers. The satisfaction rate is lower
compared to other areas of the course and the main reasons for
this may be related to these conditions: Firstly, many students had
technical issues connecting to these webinars (See comments on
questions 5 and 6). Secondly, students have responded that they
wanted a better connection between topics discussed in the modules
and the topics in the webinars.

4.3 Reflection notes

In addition to results from the questionnaire discussed above, we
have received a reflection note from each student who passed the
course as part of their project delivery. These reflection notes are
discussing two subjects: Firstly, how this course has increased their
knowledge about applying programming in their subject-area and
their more profound understanding of programming concepts. Sec-
ondly, students have created their own "teaching program" as the
project delivery. Some of them have been able to run this program
in the class for their students and have reflected on the results.

In this paper, we do not analyze all the results from these re-
flections, but can point to few reflections which confirms that the
project has been a process for students to gain a better understand-
ing of programming and how to apply it in their subject-area:

"What I first and foremost appreciated about this project is that it
motivates me as a student and teacher as I spend time on a teaching
program that is aimed at my practice...I spend time on this through
the study program, but at the same time, I get a program that I

can use myself in my practice. I believe that we have produced a
teaching course that is very beneficial for the competency goals in
the elective course programming in secondary school."

Several students are giving this type of feedback which confirms
that it is motivating for students who are in-service teachers to
work on a project where results which are rooted in the competence
goals can be directly used in their class.

"Programming engages, it creates engagement and collaboration.
In the teaching situation, we find that the students talk a lot together,
and there is good work noise in the classroom. We see that this
motivates the students very much. However, we also see that it
requires a lot of knowledge and expertise from the educators, and
sees that it is important to be well prepared. It is important to have
clear learning goals and criteria for each session. The fact that the
students have written a log along the way and have had to submit a
description of their programming project has meant that the work
the students have done has been more thorough.."

This is another type of reflection where students observe an en-
gaged and motivated class. Another student reflects on how it went
when they executed their teaching program development during
the project in their class: "The main impression I am left with after
the completed project period is that the task was comprehensive
and demanding, but feasible, fun, and very educational. It differen-
tiated well and gave all students, regardless of their skill level, the
challenges that suited them. Some students were very self-sufficient
and needed little help with the task. They showed high competence
in terms of problem-solving and coding. Others needed a great
deal of help with the coding itself. It was intense weeks for both
students and teachers, but everyone came to the goal, and everyone
felt that they were getting something they thought was impossible
beforehand.."

Each student had delivered a project report where they are re-
flecting on how it went during project execution and when they
executed their teaching program in their class. We have chosen to
quote a few of these in this paper to show the type of results and
what students think about the project in this course.

Some students with little or no programming knowledge experi-
enced that the introductory course was hard, while it was easier
for them to understand the programming concepts in the applied
programming course.

2019-06-29 09:56. Page 8 of 1-11.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

Programming for teachers: Reflections on the design of a course supporting flexible learning trajectories

[O%%)-The project helped me develos my own teaching program and b usetsl

[QI9)-"Feautility tudy” helped me understand how %20 imp lement avy project

QM| Emercine S had relevant CONtent and was ot 59
[Q37] Emercine & had relevant COMent and wars »O1 %
[Q36]-Exmrcine 3 had refevant content and was not %o
QNS)-amrcine 2 had refevant content and was not %o

Q|- Danrcine 1 had refevant content and was not 50

[Q33) 4 find thant the 20pics In mofde 6 are relevant 10 my work

[Q32]4 find than the topics In module S are relevant 10 my work

[Q31}1 find that the topics In module 4 »

[Q30)1 find that the topics In module 3 are relesvant to my work
[Q29)4 find than the 3opics In modde 2 are relevant 10 my work
[Q2E] 4 firnd thant the topics in modude 1 are relevant 10 my work
[Q2734 find that online lowrning works well
[Q2¢)- Teachers make it clear from the baginning what s espected of me in_

[Q25)-1 find it $itticuk 10 figure out what is espeacted of me on this topic

[Q2&] 4 was able 10 wo

[Q23)-1 feel | had encugh time to ender tand what | was intended 2o lowrn

[Q22])-Thin course attempts Lo cover t

Q21 Workicad to high for me

[Q20) 4 find thatt | hat & 200d 49undmiON 10 readh The lear Ning Sutcomes

[O19]- Teaching mater s & relevast for me when | STt teadhing progr amming
[Q18]-% s eaay for me 10 under and what s required for me to succesfally.
[Q1 7Hearming owtcomes have been commenicted in

[Q16) Reconding og Webinar 5 was usetull and | feel | increased my knowledge

Q1 5) Wiebs
[Q14) Recerding o Webinar 4 wars usetoll an

it 5 was usefll and | feel 1)

QL3 Webinar 4 wan usefull and | feel

|QL 2} Recording og Webinar 1 was usetull and 1 deel | increased my trowledge

11 3] Webinar 3 was usefll and | feel Hindreased my &nowied ge
iy edned rrvy knowledge
ncresed my rowledge
creaned my knowledge

[Q10]-Recording og Webine2 was usefull and | feel 1
[O9)-Webinar 2 waa usefull and 1 feel)

(O} -Recording og Webinar 1 was usefull and 1| feel

[Q7) Webinar 1 was usel ol and | teel Lincreased my nowied ge

[Q6) Websinars (1-5)
[QS)- Webinars (1-5)

O8] have used o-mail In this course as 3 communication mediam

[QI}-1 have used Slack

[Q2}-Thha module ghves me a good overview of lear ning objectives

[QL}-Fve received encugh information Sefore sart

SOt Ny with the teaching material throwghout The

O many Sopics

i eased revy & e bed ge
el | incressed my ksowhed ge

ncreaned my knowled ge

Sound and Video qualty was good wsing Skype

” worked fined to get connected saing Skype

RS COUTSE 8% 3 cOmmunication mediem

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

Course evaluation

o ——

=3 L —
hNard 3o resove I S ———
Nard o resoive —
hard 1o resove 1
hard to resoive N R ———
hadtwwresohve W S ———
_ a———

== S

relovant to my work N ————
p— S ——

Y o ————

n ————

A

= o ——

—_— S ———

T e G

_— o

ear way

L= |
® s » 1L »x e
Wy Agere @ Traag Nt s MAgww @ Tiwy agew

Figure 6: Course evaluation - Detail

5 LESSONS LEARNED

Multiple dimensions of flexibility in this context mean providing
a fully flexible course for teachers in elementary and secondary
schools in a way that helps them achieve the learning goals. E.g.,
selecting relevant content from the learning material and have the
flexibility of choosing their topic in the project for creating their
own ‘teaching program’.

Teachers are usually postgraduate students with varied back-
grounds and experience in computing education. One dimension is

2019-06-29 09:56. Page 9 of 1-11.

to consider this variety of backgrounds, and another dimension is
that teachers are going to teach computing education to students
on different levels. Teaching programming to all introduces other
topics like programming didactic and gaining the understanding

that computing education is important and necessary for the future.

By a variety of backgrounds as one dimension, we mean that
students have different levels of programming knowledge. Some
students are experienced programmers, while others do not have
any programming knowledge at all. Also, teachers are teaching

4
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
n7n
172
173
1174
175
1176
177
178
179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
121
1212
1213
1214
1215
1216
1217
1218
1219
1220

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

£ Active members

Figure 7: Slack

in a wide variety of subjects. Some examples are Mathematics,
Art-, design and architecture, Media and communication, Music,
dance and drama, Sports and physical education, Electricity, and
electronics, Technical and industrial production, etc. 13 This variety
of background knowledge of programming and subject areas in
the same classroom may lead to the design of a flexible learning
trajectory course. Projects delivered by students (see table 1) reflects
variety of programming applications and reflection notes in section
4.3 indicates that this flexibility is desirable. We believe that in
a class-context with these varieties, a flexible learning trajectory
course is a good choice.

The course was designed to provide flexible learning trajectories
in some areas and mandatory in other areas of the curriculum. The
first part of the course was mandatory for all students. The main
goal was gaining the understanding that computing education is
for everyone. This prevented students from spending much time
discussing why they should learn programming and contributed to
increased motivation and engagement for the rest of the course.

Module 1 and exercise 1 deal with this. Delivery of exercise 1
in figure 3 shows high student participation. the students have
engaged a lot in these questions and, based on the feedback, this
part of the course has created increased motivation for further
learning.

Individual trajectories were planned for other topics of the course
since the level of knowledge on computing education, their interest
and local practice (this is an element that is different from courses
for regular students) are very different. It is challenging to create
enough learning trajectories to cover both students interests and
what is required to know and teach in their respective subjects.
However, having in mind that the aim is to increase students’ in-
terest and engagement in this field makes it easier to design the
course in a way that most teachers find it useful.

Teachers need to have a clear understanding of the learning out-
comes for their students. They need to have a clear understanding
of the requirements of the new curricula provided by Norwegian
Directorate for Education and Training in primary and secondary
education. Based on this, and support from the course instructor,
they can select a learning trajectory that is most appropriate for
their subject.

Bhttps://www.vilbli.no/en/en/no

Ommited

Having a course where students can select a learning trajec-
tory among many, makes it challenging for course instructors and
teaching assistants (TA). Many different areas for the application
of programming need to be supported in the course. To manage
this, we have given each TA a separate area to focus on. Each TA
is responsible for one or more areas of applied programming. An-
other challenge has been cooperation among students. Since they
have different areas of interest, it can be challenging for them to
get the support they need. We have introduced the use of Slack as
a tool for discussions in addition to instructors and TA’s actively
supporting the students. Providing a set of links to relevant online
Internet resources helps students find the answers to some of their
questions.

5.1 Course webinars

Webinars have been used in this course as complementary lectures
and a way of direct communication between students and instruc-
tors.

These types of lectures are appreciated by students, but need
to be planned and executed carefully. Finding a time that suits
all participants can be challenging (see section 4.2). In addition,
students are spread around the country and use different types
of equipment which can create technical issues with connection.
When a proper solution to these issues are available, webinars can
be useful in such a model.

Based on the results of the course evaluation, a tighter connection
between Webinars and topics of the course is desirable. This will
help students get a better understanding of each module and they
will be in a better position to select a proper learning trajectory in
the course.

5.2 Teaching assistants

Several TAs have been used to manage the correction of exercises in
addition to answering questions and making clarifications. A course
supporting flexible learning trajectories requires TAs to have a wide
range of competencies and skills. Finding these types of resources
could be challenging, especially if the number of students in the
course increases, and the need for employment of TAs increases pro-
portionally. To resolve this, we shared the responsibility of different
topics to different TAs. E.g., some had a responsibility to answer
questions/make a clarification to Arduino related discussions and
exercises while others had responsibility for Raspberry Pi, etc.

We find the use of TAs with different backgrounds in program-
ming to be appropriate in such a model.

5.3 Implications for course re-design

As the approach is learner-centered, we need to tackle the problem
as a design-based-research project and use feedback from the first
cohort to redesign the course where needed.

A flexible course design model as explained in this paper does
not scale up well when number of participants increase. Huge
number of students will result in proportionally additional work
for instructors to do assessment.

Another implication in such a flexible course design is for stu-
dents to find the correct learning trajectory. In-service teachers
with little or no programming knowledge may need assistance to

2019-06-29 09:56. Page 10 of 1-11.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

1413

1414

1415

1416

Programming for teachers: Reflections on the design of a course supporting flexible learning trajectories

find the right path and this challenge will increase as number of
students increases in the course.

Some topics for application of programming seem to be more
relevant then others (see table 1). Re-design of the course must
focus on these areas which will result in reducing the flexibility of
the course.

6 CONCLUSIONS AND FUTURE WORK

Designing a course that supports flexible learning trajectories intro-
duces many challenges that need to be addressed. At the same time,
it opens opportunities to increase student learning outcomes in a
course where in-service teachers have varied level of programming
knowledge, interests, and different application need. A learner-
centered design process for computing education[2] is the basis for
the design of a flexible programming course for in-service teachers.
In the case of this course, this design helped creators to reach their
initial idea and has provided a good structure for flexible learning
trajectories. Some areas of future research on this topic are:

(1) A full evaluation of communications channels used in the
course (Slack email)

(2) How to help students to reflect on their learning needs and
choose the right learning trajectories

(3) How to help students to reflect on their teaching practice

(4) How to promote cooperation among students towards the
establishment of a Community of Practice (CoP)

In this paper, we have explained how the course has been de-
signed and discussed our initial reflections on results, challenges
and possibilities.

REFERENCES

[1] Bodong Chen, Yu-Hui Chang, Fan Ouyang, and Wanying Zhou. 2018. Fostering
student engagement in online discussion through social learning analytics. The
Internet and Higher Education 37 (apr 2018), 21-30. https://doi.org/10.1016/j.
iheduc.2017.12.002
[2] Mark Guzdial. December, 2015. Learner-centered design of computing education :
research on computing for everyone;. Morgan & Claypool Publishers. 147 pages.
[3] S Hadjerrouit. 2005. Learner-Centered Web-Based Instruction in Software En-
gineering. IEEE Transactions on Education 48, 1 (feb 2005), 99-104. https:
//doi.org/10.1109/TE.2004.832871
[4] Andrew Ho, Justin Reich, Sergiy Nesterko, Daniel Seaton, Tommy Mullaney, Jim
Waldo, and Isaac Chuang. 2014. HarvardX and MITx: The First Year of Open
Online Courses, Fall 2012-Summer 2013. 1 (2014). https://doi.org/10.2139/ssrn.
2381263
[5] Anna Lamprou, Alexander Repenning, and Nora A Escherle. 2017. The Solothurn
Project - Bringing Computer Science Education to Primary Schools in Switzerland.
In Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education November (2017), 218-223. https://doi.org/10.1145/
3059009.3059017
Fotis Lazarinis, Christoforos V. Karachristos, Elias C. Stavropoulos, and Vassilios S.
Verykios. 2018. A blended learning course for playfully teaching programming
concepts to school teachers. Education and Information Technologies (2018),
1237-1249. https://doi.org/10.1007/s10639-018-9823-2
Sten Ludvigsen, Pia Elverhei, Bushra Ishaq, Jens Rasmussen, Daniel Sundberg,
Eli Gundersen, Kjersti Kleven, Mari Rege, Helge @ye, Sigve Indregard, Tormod
Korpés, and Sunniva Rose. 2014. Elevenes laering i fremtidens skole. Technical
Report. Oslo.
Bonnie A. Nardi. 1993. A Small Matter of Programming. The MIT Press.
Government Norwegian. accessed April 17, 2019. Government message St. 28
(2015-2016).
[10] Utdanningsdirektoratet. 2019. What is the knowledge promise.
[11] Utdanningsdirektoratet. 2019. Why Don’t More People Work As Programmers.
[12] Jeannette Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35. https://doi.org/10.1145/1118178.1118215 arXiv:=

[13] Di Xu and Shanna Smith Jaggars. 2013. Adaptability to Online Learning: Dif-
ferences Across Types of Students and Academic Subject Areas. Economics of
Education Review 37, 54 (2013), 46-57. https://doi.org/10.7916/D82N59NB

2019-06-29 09:56. Page 11 of 1-11.

=

S

[8
[o

CSERC ’19, 18-20 November 2019, Larnaca, Cyprus

[14] DiXu and Shanna S. Jaggars. 2014. Performance Gaps Between Online and Face-
to-Face Courses: Differences Across Types of Students and Academic Subject
Areas. The Journal of Higher Education 85, 5 (2014), 633-659. https://doi.org/10.
1353/jhe.2014.0028

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

Peer Assessment by Ranks
Insert Subtitle Here

FirstName Surname’

Department Name
Institution/University Name
City State Country
email@email.com

ABSTRACT

Peer assessment is a teaching technique in which students assess
each other’s work. It has many potential advantages. It helps
students to learn and engage with the quality criteria of their
subject, and to see their own work as others see it. There are
problems with peer assessment as well, however, including
numerous anxieties that students may have. They may have
concerns about fairness, about any extra work involved, about their
abilities to assess fellow students, and to be assessed by them.

We assigned a piece of coursework to twenty-one students in which
their task was to rank some design concepts from a previous class.
They put the designs in order of value so that they only had to judge
the designs in comparison to each other, and not to some imagined
universal standard that they are not familiar with. The assignment
allowed students to give their answers both formally, as a ranked
order, and textually, in open answers where they could explain and
justify their choices. This mix permits a semi-automatic marking
scheme to be applied, and we tested two such schemes. One is a
standard used quite commonly in multi-choice tests, because it is
simple; and the second is a refinement on the idea which was
intended to give more accurate results for ranked questions. Both
marking schemes are tested, and the second one is found to give
significantly better results.

This style of peer assessment is thus demonstrated to be viable. It
gets over some of the problems with peer assessment, and can give
students a new learning experience with its own set of advantages.
It can be used in cases where exact answers are not available, such
as in matters of design, or other areas of expertise which cannot be
reduced to a formula, but which students nevertheless need to learn
in order to become professionals. There are such requirements in
computing, but also in many other subjects, so the technique should
be widely applicable.

CCS CONCEPTS

e Insert CCS text here «Insert CCS text here
text here

e Insert CCS

KEYWORDS

Peer assessment, peer feedback, automated marking.

FirstName Surname
Department Name
Institution/University Name
City State Country
email@email.com

FirstName Surname
Department Name
Institution/University Name
City State Country
email@email.com

ACM Reference format:

FirstName Surname, FirstName Surname and FirstName Surname. 2018.
Insert Your Title Here: Insert Subtitle Here. In Proceedings of ACM
Woodstock conference (WOODSTOCK ’18). ACM, New York, NY, US4, 2
pages. https://doi.org/10.1145/1234567890

1. Introduction and Background

Peer assessment is seen as valuable, but needing careful treatment,
in areas such as teaching argumentation [4, 13], and academic
writing [6, 7]. Other authors assert that more research is needed to
ask just how students benefit from PA (peer assessment) [10, 20].
It is also necessary for teachers to understand their options in
delivering PA [17]

Nicol et al extol the many virtues of peer assessment [12], and
conclude that it should receive much greater attention in higher
education.

1.1. Peer Assessment Offers Benefits to Students

Students stand to benefit from feedback in many ways, but they do
not always seek it, even when it is on offer [18, 19]. Peer
assessment may help, because it is an alternative way to get more
feedback to students.

In a large study of 180 participants, the students recognised that
assessing peers” work helped them to improve their learning.
However, lon et al also found that, when the feedback was returned
to students, they sometimes needed mentoring and guidance to help
digest the comments [8].

Judgement (as in assessment) is an important faculty in any expert
profession, but we generally let students develop this skill only by
having their own work judged and assessed by an expert.
Professionals cannot expect always to have a better expert on hand,
and they must learn to accept the judgement of their peers; and
eventually clients.

We may summarise some of the benefits of peer assessment here;
but there may yet be many more. Students engage with the marking
scheme, internalising the criteria of value in their domain; they
produce work in awareness that other students will see it, and will
see other student work and learn to evaluate themselves against it,

WOODSTOCK’18, June, 2018, El Paso, Texas USA

and develop confidence in assessing as well as producing.
Furthermore, judgement is crucial in domains where criteria cannot
be reduced to numerical formulae. Computing is an exact domain
of science and engineering, but it is not only that: it has its own
needs for expert judgement at times, such as in design, and many
forms of applied computing. Despite appearances then, there is a
need for PA in computing just as there is in many other fields.

1.2. Problems with Peer Assessment

While feedback is perennially recognised as crucial to learning in
higher education, there is also persistent dissatisfaction with it. Liu
and Carless investigated why there is so much resistance to using
PA, in a large questionnaire based study of over two thousand
students and tutors. They advocate normalising PA in the standard
course procedures, so that students have time to practice their skills
special to PA [10]. In an extremely large study in Australia,
Henderson and colleagues found that there were many issues,
including concerns of students and tutors that the time available to
generate feedback limits the quality of feedback that can be given
[3, 5]. Students often feel they need more detail, in order to be sure
they understand what the feedback says and can get back value
from it that rewards the work they put into it when creating it.

One issue with peer feedback is that students may have
exaggerated expectations if it is led and delivered by the tutors.
However, if courses are designed to offer opportunities for students
to provide feedback to each other, then a more sustainable model
for assessment results [2]. Topping found that students “with less
skill at assessment but more time in which to do it can produce an
assessment of equal reliability and validity to that of a teacher”
[15]. If this is explained to students it may go some way to allaying
their concerns about the merits of PA.

The inexperience of students can clearly be a problem in PA. It
has been found by Knight e al, in a large study of two thousand
students [9], that it is helpful for them to start with a calibration
task, in which they first learn about how to assess work, and what
the criteria should be.

We may summarise the concerns that students may have with PA,
by a series of questions relating to the quality of assessment.
Students are uncomfortable assessing each other. Do they have the
right, or expertise? Is it their role, and should they have power over
their equals? Will they judge fairly? Will all other students judge
equally well? Will students in their turn be assessed fairly by their
peers? Does peer assessment merely miss an opportunity for
genuinely valuable feedback from the teachers? Could the feedback
from other students, without quality control, be misleading, or even
harmful? Different students have different levels or patches of
knowledge, as well as different personalities, and moods or
emotions on the day; they might also have complicated social
relationships with others in the class, and a recent history that may
add overtones which aren't present with the teacher. Peer
assessment may be done anonymously, but can anonymity be
guaranteed, and if not is there a chance that students might bear a
grudge toward their fellows who have assessed their work?

F. Surname et al.

In addition, students and tutors have concerns about workload.
Each individual student cannot be expected to peer assess all the
other students in the class. If the work is divided up between
students, on the other hand, then how can rising issues of unfairness
be handled and moderated? Perhaps automation can help with some
of the tasks inherent in managing a PA process.

1.3. Tools for Peer Assessment

There have been many attempts to build software solutions to
support the peer marking process. One useful review is by Luxton-
Reilly [11]. More recently there are quite innovative proposals,
such as the use of social robots to help automate the experience of
personal feedback [1].

The main route for automated support for PA is online,
however, in website based VLEs (Virtual Learning Environments).
A typical example of how higher education recommends these
facilities to their academic staff is that of the University of Bristol,
which uses the blackboard VLE [16]. For larger courses that are run
exclusively online, as MOOCs, the demands for PA are clearly
more pressing, and there are therefore some interesting attempts to
solve some of the problems of PA in that sphere. In one study,
which was the largest of its kind up to that date, the online
education company Coursera developed algorithms to help
compensate for the differing reliabilities, and any biases of online
peer assessors [14].

1.4. Propose Peer Assessment by means of
Ranking Exemplars

In the next section, a method is proposed to manage a PA process
by setting a task to rank a small number of other students’ pieces of
work. This method may bring several of the benefits alluded to
above, and yet avoid some of the problems.

The method was tried in a class of twenty-one students, and it is
evaluated in the following sections.

Insert Your Title Here

2. A Ranking Method of Peer Assessment

In a game design class, students were asked to evaluate four brief
design concepts that were created by students in a previous year.
These four concepts (collectively a quartet) would give the students
an insight into how their own designs might appear to others,
including tutors or any future professional colleagues or clients. In
this exercise of peer assessment, the students assess other student
work, but did not have their own work assessed by peers in turn.
This allowed them to feel secure from some of the concerns about
PA they might have, but also to benefit from the experience of
evaluating work from other students on the same course. The whole
exercise was to take anything between a half hour and an hour, as
the students chose.

The quartet of four designs were selected to give a sample of
different styles of design, of varying lengths but not too long, with
a range of different strengths and weaknesses. Some were more
clearly better than others; but some were quite close in quality.
They were authentic designs, without editing or corrections of
typing errors, but they were anonymized, so that their creators
could not be identified.

Students were assigned the task to read all the designs in their
own time at home, online in the form of a Google questionnaire.
Their answers were to two questions: a ranking question, then an
open text question. The first question asked the student to rank the
quartet, to put the four designs in order from strongest to weakest,
according to the evaluation criteria. Students had previously been
familiarized with these criteria in a practice session with four
different design concepts. In this task, the design concepts may
have been difficult to separate and put in order, in some cases.
Students may also have only partial appraisal of the evaluation
criteria, which they are still learning, after all. Therefore, the second
open text question offered them the chance to explain their
reasoning for the ranking they chose. This also helps the students
to trust in the process, as it allowed the tutors to check their answers
and give them compensation in case their ranking was not the same
as the tutor’s, but their reasons were nevertheless cogent and
relevant. Tutors then marked the rankings according to a formal
scheme, and gave marks based on that and on any comments that
were given as answer to the second question.

Afterwards some general feedback was given to the class about
how they all did in the task, with summary statistics. The main point
of the exercise was, however, to give the students an authentic
experience of assessing peer work.

There were two quartets given, as the students were already
grouped into two halves for other reasons. They were groups A and
B, with twelve and nine students in each one respectively. It was
thus convenient to assign them two different quartets of designs, as
an additional check that the assignment was consistent, and
working well; and provide an opportunity to intervene and make
corrections otherwise.

WOODSTOCK’18, June, 2018, El Paso, Texas USA

2.1. The simple marking scheme

The marking scheme that was used to score the rankings was the
one that is typically used for such questions in VLEs, such as
Blackboard for instance. In this scheme the answer gets one point
for each element in the ranking that is in the correct place,
according to the ranking defined by the tutor as the correct answer.

Although this is the common way to mark such questions, it is
somewhat crude. It has no regard to the nature of a ranking, which
places items in an order. In ordinal sequences, wrong answers may
thus be wrong by a narrow or a wide margin, or distance. To
exchange the top two items in the order would be to make a small
mistake; but to swap the top and bottom items would be a bigger
one. Both mistakes would receive the same score according to the
simple scheme.

2.2. The refined (distance) marking scheme

In order to reflect the margin of error, a slightly more complex
scheme was also developed. It was not used at the time of the class,
but developed later, in order to improve the course fur future years.
Its performance in automating scoring is compared with the simple
scheme in the following sections.

The essential idea of this marking algorithm is to count errors in
a student’s ranking, compared to the definitive answer. Each item
scores an error score of how far out of place it is. These scores add
up to zero if the answer is perfectly correct. The scores can increase
in multiples of two, up to a maximum of eight (assuming there are
four items to rank). We obtain a final score from this total error e,
by the formula s = (8-¢) / 2. This gives an integer from 0-4, just as
the simple score does. However there are several cases in which the
distance method scores higher than the simple method. Table 1
shows examples.

Table 1: Examples scored by simple and by distance methods.
The best ranking is in the top line, B C D A, and students
below get these scores. The third student gets a higher score
under the distance method.

B C D A simple distance
A D B C 0 0
B C D A 4 4
C D B A 0 2

With these two methods to score the formal ranking answers, it is
possible to evaluate their performance on the real data that came
from the coursework assignment. It is shown in the next section that
the refined method is significantly better.

WOODSTOCK’18, June, 2018, El Paso, Texas USA

3. Results and Analysis

The students were in two groups, A and B, and each group was
given a quartet of design concepts to rank. They were scored
according to how their rankings compared to the tutor’s rankings of
the quartets. The students’ comments on their rankings were taken
into account, in arriving at a final score for the exercise, especially
when a student seemed to rank the quartet very differently from the
tutor. Although the rank order may be different, the student may
have given some good reasons for their choices, and can gain credit
by their rationale. In this way, normal academic judgement can
compensate for any failings in the formal marching scheme. In the
following, however, we report only the formal results, in order to
see how well the two marking methods fare.

The scores for rankings are compared against the other marks
that the students got, for another assignment they were set. A
natural assumption is that the marks should be correlated, because
stronger students will tend to do better across all assignments. The
correlation will never be perfect, of course, as different assignments
require and assess different skills and knowledge; but in general, a
higher correlation signifies a more reliable assessment scheme.

Figure 1 shows that Group A (of twelve students) attained
simple scores for their rankings that correlate reasonably well
(0.38) with their other marks. Any weakness in the scoring method
is most likely to be evident in the divergent scores of students
achieving high marks in one measure, but low marks in the other
one. These cases would appear in the charts in either the top-left or
bottom-right quadrants. Figure 1 has three students top-left, who
appear to perform well in their other marks, but only scored 0 (zero)
in the ranking assignment. It is a concern if an assignment often
gives low scores to good students.

Group A (N=12)
Correlation = 0.38

80

75])i :
g 70 ----------------------------
o 65 --------------------- .
: o y = 2x + 63.417
25 d hd R?=0.1456
£ 55
Os0®

45

40

0 1 , : 4

Simple score

Figure 1: Some consistency is shown between the marks that
students got for their other work, and the simple score for their
ranks. It is not possible to get a simple score of 1. The students
top-left have high marks, but only get 0 for their rankings.

F. Surname et al.

Group A (N=12)
Correlation = 0.54

80

4 1 LI Iy
s g
E 65 -------------- .
E) Loeeeerertt i
M L R2=0.297
255 .
Os50 @

45

40

0 . : ! 4

Distance score

Figure 2: Using the more refined method to score rankings,
based on distance errors, the correlation is significantly
stronger. Some students who got 0 in Fig. 1 now get scores of 2.

When the students’ rankings are scored by the distance method,
however, the correlation rises to a more respectable 0.54 as seen in
Figure 2. This is principally because some students, who got 0 by
the simple method, get scores of 2 by the more refined distance
scoring scheme.

These are reassuring results, but to confirm them, similar results
are shown for the other group, B, in Figures 3 and 4. This group
had the same assignment, but for a different quartet of design
concepts. It was again found that the correlations in the marks were
higher for the distance method (0.44) than for the simpler method
of scoring (0.11). The correlations are both lower for this group
than they were for Group A, but this may be because Group B has
fewer students in it (nine instead of twelve).

Insert Your Title Here

Group B (N=9).
Correlation =0.11

80
75
70

65 8 e o

60
55 PS y =0.5989x + 62.357

L] R?=0.0112
50

45
40
0 1 2 3 4

Other marks
)

Simple score

Figure 3: The other group showed less consistency. There was
an outlier score of zero, for a student who otherwise got top
marks (of 78).

Group B (N=9)
Correlation = 0.44

80
75
e
65 . ------------------ .
60 eee®
55
50
45
40
0 . : ! 4

Other marks

® R?=0.1922

Distance score

Figure 4: The outlier student from Fig. 3 now scores 2, and
others have an improved score too, using this method. As with
the other group in Fig. 2, there is a stronger correlation now.

In Group B, the top-scoring student in the class, with a mark in her
other assignments of 78, scored only 0 (zero) by the simple marking
scheme for her rankings. By the more refined scheme based on
distance, though, her score is 2 instead. This is because her ranking
was ACBD, when the tutor’s ranking was CADB. She therefore
correctly put the two better designs first, but in the wrong order
(CA). Likewise, she put the weaker designs at the bottom. By the
simple marking scheme she therefore scores nothing; but taking
into account that her ranking put each design only a minimal
distance out of place, she scores 2 out of 4.

WOODSTOCK’18, June, 2018, El Paso, Texas USA

In addition, the comments that this student gave are a good
example to show how the scores by a formal marking scheme may
be softened by consideration of the student’s rationale. Her
comment was :-

“Concept A and C were closely tied for first place they
both took novel perspectives to bullying that i wouldn't
have though of, a parent and a therapist. In the end it was
concept A that won out over concept C because of the
elegance of the idea it was simpler that concept C and had
a similar amount of value. It showed the player how to
spot bullying and also gave bullies a different outside
perspective to see what they were doing.

Concept B and D were hard to tell apart from last place.
Concept B was even compared to another game about
bullying, showing the lack of novelty. However it beat
idea D because of how much value it had as a serious
game...”

It is clear from this that she understood how close the better two
designs are (A and C), and that the other two are also close to each
other. Her reasons for distinguishing them are also good ones, and
could serve as helpful discussion points for the class, in the form of
feedback later. Because of this student’s clear understanding of the
designs, and how to evaluate them in this forced-choice exercise,
she in fact was given a final score of 2 for this effort by the tutor,
and not the zero score that the simple marking scheme gave her.
The refined distance-based marking scheme was not used in
marking the class, because it was only developed afterwards in
analysis of the results, that was done to evaluate the assignment to
check how well it works for future reference. However, the distance
method would award 2 marks to this student, which is exactly what
the tutor judged was a fair mark for her at the time.

WOODSTOCK’18, June, 2018, El Paso, Texas USA

4. Discussion and Further Work

This teaching intervention was intended to allow students a
measure of peer assessment, in a way that would be fair to them
both as markers and if their own work were to be marked by other
students. In this case students were only marking the work of
previous students, and so their own work was not being marked by
their classmates. However, the analysis shows that this type of
assignment would be an appropriate way to actively mark student
work by their peers in the same class, if it were administered
anonymously. The students have shown that they could mark each
other’s work fairly in this way.

Two scoring methods were tested in this study. The first, simple
scoring method is one that is used in commercial VLEs, because it
is easy to understand and to calculate automatically. It gave results
that were acceptable for one group, Group A, but not really
adequate for Group B. That might be a consequence of the group’s
smaller size, but it serves as a warning that the simple scoring
method may be fragile.

The second scoring method, based on a concept of error size
represented by natural distance across the rankings, clearly gave
significantly better results. This was demonstrated by comparing
the students’ marks from other assignments, to validate that the
ranking scores were more consistent with other student work that
had been independently assessed. It therefore seems that the
proposed type of assignment, based on ranking peer work, together
with the more refined marking scheme, is reliable and fair to mark
by peer assessment.

This type of assignment may owe its success to the way that it
bases student assessments on ranking exemplars of peer work,
rather than marking them on some absolute scale. The idea was that
students would find it easier to rank pieces of work according to the
chosen subject criteria, than to assess each piece of work as ‘good’
or ‘bad’. They don’t have to condemn any other student’s work as
‘bad’ and don’t have to feel that pressure, even anonymously. Their
assessments are only based on each work’s strengths and
weaknesses, which people readily understand that all student work
will have anyway: this is in the nature of education, after all.

Another advantage of the assignment is that it is sometimes
difficult to rank works in order, because each may be stronger in
some respects, but weaker in others. This will generally be the case
with exemplars chosen from students who took the same classes,
because they will naturally be quite close to each other in their skills
and knowledge, having had the same learning experiences. The
difficulty of this task thus forces students to engage critically with
the exemplars, to reconsider the meaning of the evaluation criteria,
and see how their own work might look to a neutral person who is
judging by the same criteria. The assignment brings out many of
the advantages of peer assessment, therefore.

If the assignment were to be used for the other limb of peer
assessment, then further advantages would be offered. Thus, if
students were to be assessed by their peers in the same class, albeit
anonymously, they would probably be more attentive to their own
work as they produce it, knowing that their peers and friends may
read and judge it. This is a useful portion of motivation that tutors
may use to help drive the students to perform at their best.

F. Surname et al.

Furthermore, it would then become feasible for students to get
independent, anonymized feedback on their work from other
students, and not only from the tutor. It is a clear possibility that
this would induce a stronger learning effect, as students may care a
good deal for hearing the opinions of their peers, in a safely private
manner. Peers are directly comparable, by definition, and students
would be naturally interested in an honest expression of their fellow
perspectives, engaging as it does the powerful human psychology
surrounding issues of social dominance and hierarchy.

More practically, it remains to be seen how easily and quickly
such feedback from fellow students in the class can be organized,
anonymized, and routed back to the students who created the
designs. It would be useful to explore technological tools that could
help, or even automate parts of the process.

Future work might also confirm that an assignment based on
ranking peer work is truly fairer than absolute marking. Whether it
is easier to do, or perhaps more difficult, is also of interest. If it
proves to be experienced as more difficult, however, that would not
in itself be a reason not to set the assignment; for it may be more
difficult because it is more valuable. The marking scheme itself
might be improved further. For instance, it is based on a notion of
distance as number of ranking steps out of place; but a more exact
notion of distance might be feasible. When two neighboring
exemplars are judged as nearly equal, then the distance between
them might be said to be only a fraction of a step.

Another matter for further research regards the opinions of
students to the assignment. Do they feel that it is a valuable learning
experience, as suggested above; and if so, in how many ways? Do
they feel more confident of being able to assess work by ranking in
order, rather than determining its value in some absolute sense? Do
they gain any insights into the nature of their subject?

The effect on views of their own work would also be interesting
to explore. Does a critical engagement with other students’ work
leave a lasting trace on how they see their own work? Is there any
change in how they see themselves developing towards more
professional standards of quality? Has there been any change in
their (supported and validated) levels of self-confidence? Do they
also feel more confident in being able to judge the work of
colleagues, and to express their judgements considerately?

5. Conclusions

Peer assessment is often seen as potentially powerful, but it also has
numerous difficulties, including the burden is places on the students
who are asked to assess their peers. As well as workload, there are
psychological pressures. Cognitive difficulties regard the challenge
to evaluate work that the students do not yet feel confident of
themselves. Emotional pressures regard the demand to pass
judgement on fellow students.

The assignment task here was designed to negotiate, temper or
avoid some of these difficulties. It asks students only to rank a small
number of peers’ works. This simplifies and focuses their cognition
on the key elements of the subject domain. It also liberates them
from some of the anxieties regarding peer judgement.

Insert Your Title Here

Results show that the assignment was able to score the students
assessments reliably and fairly; but only when the more refined
method of scoring was used. This method is not standard, and
commercial VLEs typically use only the simpler method, which
was shown here to be less reliable. Therefore, it is important to use
the more accurate scoring method presented here. Even better
methods may be possible, as suggested earlier, but that must be
demonstrated with further research.

It would be a natural next step to take the method presented here,
and apply it to return peer assessments of their creations to
originating students. This should ideally be done soon after they
have created them, if possible. An interesting further stage might
even be to allow students to rebut the criticisms, and return those
rebuttals to the peers who assessed them. That would take the
notion of peer assessment into new territory, which shows just how
rich the technique is, and how full of potential.

The work in this study represents a start, and only one forward
step in this direction. There is much more that could be done, to
develop this teaching technique for computing subjects; but also for
all other subjects too, in principle.

REFERENCES

[1] Belpaeme, T. et al. 2018. Social robots for education: A
review. Science Robotics. 3, 21 (Aug. 2018), eaat5954.
DOL:https://doi.org/10.1126/scirobotics.aat5954.

[2] Boud, D. and Molloy, E. 2013. Rethinking models of
feedback for learning: the challenge of design. Assessment &
Evaluation in Higher Education. 38, 6 (Sep. 2013), 698-712.
DOL:https://doi.org/10.1080/02602938.2012.691462.

[3] Dawson, P. et al. 2019. What makes for effective feedback:
staff and student perspectives. Assessment & Evaluation in
Higher Education. 44, 1 (Jan. 2019), 25-36.
DOIl:https://doi.org/10.1080/02602938.2018.1467877.

[4] Haro, A.V. et al. 2018. The effects of an online learning
environment with worked examples and peer feedback on
students’ argumentative essay writing and domain-specific
knowledge acquisition in the field of biotechnology. Journal
of Biological Education. 0, 0 (Jun. 2018), 1-9.
DOLI:https://doi.org/10.1080/00219266.2018.1472132.

[5] Henderson, M. et al. 2019. The challenges of feedback in
higher education. Assessment & Evaluation in Higher
Education. 0, 0 (Apr. 2019), 1-16.
DOL:https://doi.org/10.1080/02602938.2019.1599815.

[6] Huisman, B. et al. 2018. Peer feedback on academic writing:
undergraduate students’ peer feedback role, peer feedback
perceptions and essay performance. Assessment & Evaluation
in Higher Education. 43, 6 (Aug. 2018), 955-968.
DOLI:https://doi.org/10.1080/02602938.2018.1424318.

[7] Huisman, B. et al. 2019. The impact of formative peer
feedback on higher education students’ academic writing: a
Meta-Analysis. Assessment & Evaluation in Higher
Education. 44, 6 (Aug. 2019), 863-880.
DOL:https://doi.org/10.1080/02602938.2018.1545896.

[8] Ion, G. et al. 2019. Giving or receiving feedback: which is
more beneficial to students’ learning? Assessment &
Evaluation in Higher Education. 44, 1 (Jan. 2019), 124-138.
DOL:https://doi.org/10.1080/02602938.2018.1484881.

WOODSTOCK’18, June, 2018, El Paso, Texas USA

[9] Knight, S. etal. 2019. Calibrating assessment literacy through
benchmarking tasks. Assessment & Evaluation in Higher
Education. 0, 0 (Feb. 2019), 1-12.
DOL:https://doi.org/10.1080/02602938.2019.1570483.

[10] Liu, N.-F. and Carless, D. 2006. Peer feedback: the learning
element of peer assessment. Teaching in Higher Education.
11, 3 (Jul. 20006), 279-290.
DOL:https://doi.org/10.1080/13562510600680582.

[11] Luxton-Reilly, A. 2009. A systematic review of tools that
support peer assessment. Computer Science Education. 19, 4
(Dec. 2009), 209-232.
DOLI:https://doi.org/10.1080/08993400903384844.

[12] Nicol, D. et al. 2014. Rethinking feedback practices in higher

education: a peer review perspective. Assessment &

Evaluation in Higher Education. 39, 1 (Jan. 2014), 102-122.

DOLI:https://doi.org/10.1080/02602938.2013.795518.

Noroozi, 787 and Hatami, J. 2018. The effects of online peer

feedback and epistemic beliefs on students’ argumentation-

based learning. Innovations in Education and Teaching

International. 0, 0 (Jan. 2018), 1-10.

DOL:https://doi.org/10.1080/14703297.2018.1431143.

[14] Piech, C. et al. 2013. Tuned Models of Peer Assessment in
MOOCs. arXiv:1307.2579 [cs, stat]. (Jul. 2013).

[15] Topping, K.J. 2009. Peer Assessment. Theory Into Practice.
48, 1 (Jan. 2009), 20-217.
DOTI:https://doi.org/10.1080/00405840802577569.

[16] University of Bristol, education support unit Self and peer
assessment in Blackboard.

[17] Wanner, T. and Palmer, E. 2018. Formative self-and peer
assessment for improved student learning: the crucial factors
of design, teacher participation and feedback. Assessment &
Evaluation in Higher Education. 43, 7 (Oct. 2018), 1032—
1047. DOL:https://doi.org/10.1080/02602938.2018.1427698.

[18] Winstone, N.E. et al. 2017. ‘It’d be useful, but I wouldn’t use

it’: barriers to university students’ feedback seeking and

recipience. Studies in Higher Education. 42, 11 (Nov. 2017),

2026-2041.

DOL:https://doi.org/10.1080/03075079.2015.1130032.

Winstone, N.E. et al. 2017. Supporting Learners’ Agentic

Engagement With Feedback: A Systematic Review and a

Taxonomy of Recipience Processes. Educational

Psychologist. 52, 1 (Jan. 2017), 17-37.

DOLI:https://doi.org/10.1080/00461520.2016.1207538.

[20] Zhu, Q. and Carless, D. 2018. Dialogue within peer feedback
processes: clarification and negotiation of meaning. Higher
Education Research & Development. 37, 4 (Jun. 2018), 883—
897. DOI:https://doi.org/10.1080/07294360.2018.1446417.

[13

—

[19

—

Programming, Research and... Coffee? An Analysis of

Workplace Activities by Computing Interns

Author 1 and Author 2
University

E-mail: {author1,author2}@university.edu

ABSTRACT

To overcome the skills gap between industry demands and learning
outcomes achieved by graduates in higher computing education,
many Bachelor programs integrate some form of internship in their
curriculum; students are assumed to encounter authentic tasks and
recent technologies in the workplace. In practice however,
educators often do not know specifically which tasks their students
perform and which technologies they use, mainly due to the
distance between coach and student during the work placement and
the lack of cohort-based overviews of activities performed in
internships. In this study, we gathered and analyzed workplace
activity data of 54 students over the course of their third-year
semester-long internships in the computing industry. We performed
descriptive analyses to gain insight into i) which categories of
activities students performed most (programming, research and
documentation) and ii) which of the activity categories they find
most difficult (we were unable to tell). Subsequent text analysis
gives us insight into students’ perceptions of the categories used to
label activities (testing, research, meetings, and academic
documentation are congruous) and which technologies were used
most by these students. Based on the results, we conclude it is
feasible to use user-generated data to get insights into workplace
activities of computing interns. The quality of this user-generated
data does hamper us from drawing certain conclusions, such as
which activities are perceived as most difficult. Further research is
needed with improved data quality and volume in order to obtain
more generalizable results.

CCS Concepts

¢ Social and professional topics — Professional topics —
Computing education — Computing education programs

Social and professional topics — Professional topics —
Computing profession — Employment issues

Applied computing — Education

Keywords
Computing Internships; Workplace Learning Analytics; Data-
Driven Curriculum Development

1. INTRODUCTION

To overcome the skills gap between industry demands and learning
outcomes achieved by graduates in higher computing education,

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference’l0, Month 1-2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 ...$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

many higher education computing programs integrate some form
of workplace learning in their curriculum. The rationale is that
internships better prepare students for their entry into the workplace
after graduation, due to the authentic tasks and recent technologies
that students encounter while working and learning in the industry.
Furthermore, learning in the workplace allows students to transfer
computing knowledge and skills from university to professional
contexts more easily.

In practice however, educators often do not know specifically
which tasks their students perform in the workplace and which
technologies they use. This lack of insight is mainly due to the
distance between coach and student during the work placement.
Generally, only a few visits take place where the coaching teacher
visits the workplace of the student. Higher educational institutes
also experience a lack of cohort-based overviews of activities
performed in internships, since every single teacher only coaches a
small group of interns and a broader collection of workplace
learning data is scarce.

Learning analytics endeavors in higher education have primarily
focused on classroom-based learning. Recently, workplace learning
analytics (WPLA) has become an emergent research area. WPLA
opens up opportunities to analyze workplace learning data of
students in computing programs in higher education and give us
more insight into which knowledge and skills are necessary for
computing students in their internships and hence should be
covered in the curriculum beforehand. Especially for higher
professional education — as is offered mainly at universities of
applied sciences — workplace learning analytics seems to be crucial
in data-driven or data-informed curriculum development.

2. THEORETICAL BACKGROUND

In this section, we discuss the theoretical background of this study
focusing on the skills gap, workplace learning and technology-
enhanced learning. Finally, based on this overview, we identify the
goal of this study.

2.1 Skills Gap and Workplace Learning

Due to the ever-faster digitization of our society, our workplaces
and our everyday life, the need for well-equipped graduates in the
IT and computing domain has risen sharply [10]. According to the
EU, there is a significant ‘Digital Skills Gap’ in Europe: business
find it hard to employ both IT specialists as well as non-IT
personnel with sufficient digital literacy [6, 7]. To fulfill the needs
imposed by the digital transformation in Europe, two problems
need to be tackled: 1) a shortage of computing graduates and 2) a
mismatch between graduates’ qualifications and industry
requirements. In this study, we focus on the latter.

In comparison to other domains, computing graduates need a very
diverse skills set, ranging from hard skills, to innovative skills to
social skills [25]. In a study among recent computer science
graduates and employers of these graduates, a skills gap was found
to exist for many of the skills that employers require of new
employees [27]. In a large study among Spanish employers, it was

found that in general, employers feel that graduates lack field-
specific practical knowledge, whereas the gap for field-specific
theoretical knowledge is much smaller [9].

Workplace learning within formal higher education programs is
believed to help overcome the skills gap between graduates’
qualifications and industry requirements. Gaining work experience
during a Bachelor study, offers students an opportunity to develop
both ‘hard skills’ (subject-matter) and ‘soft skills’ such as
teamwork, planning and communication [11]. Graduates with prior
work experience are generally considered to have a higher
‘employability’ [2].

Workplace learning offers students opportunities to practice job-
specific functions, such as socialization, innovation and job
performance [16]. An increasing number of universities is
integrating some form of workplace learning into their curricula.
The pedagogy of such integrations [26] and the design of such
hybrid learning environments [29] have been subject to recent
studies.

2.2 Technology in Education

Technology-Enhanced Learning (TEL) refers to the use of
technology to support learning and teaching. TEL is often used as
a synonym for e-learning but can also be used to refer to technology
enhanced classrooms and learning with technology, rather than just
through technology [23]. Besides e-learning, other examples of
enhancing learning through the use of technology are Massive
Open Online Courses (MOOCs) and Computer-Supported
Collaborative Learning (CSCL). TEL provides the advantage of
easier access to more information and creates flexibility in time and
location of learning. Generally speaking, TEL can be used to (i)
replicate existing teaching practices, (ii) supplement existing
teaching or (iii) transform teaching and/or learning processes and
outcomes [12].

Most studies that consider technology to support learning in the
workplace, focus on the (formal or informal) learning of
professionals working in industry and governmental organizations,
often from a human resources point of view [19]. Examples of such
technologies are (personal) knowledge management tools, e-
learning platforms, mobile learning applications and social
collaboration systems. Only few studies aim to design, develop and
evaluate technologies that specifically support workplace learning,
which is informal, contextual and social in nature [20, 22].

Recently, design propositions for Technology-Enhanced
Workplace Learning (TEWL) have been developed and evaluated,
and a web application was developed that implemented most of
these propositions [22]. This open-source web application provides
students with an interface to register their working and learning
activities in the workplace in an easy-to-use way, which in turn
allows for analytics (a dashboard with charts) giving them insight
into their learning process.

A specific research area within TEL is Learning Analytics (LA),
which provides data-driven interventions in the learning process,
such as LA dashboards and predictive or recommendation
functionalities within a Learning Management System (LMS). The
most commonly used definition of learning analytics is the one
presented at the first Learning Analytics & Knowledge (LAK)
conference: ‘Learning analytics is the measurement, collection,
analysis and reporting of data about learners and their contexts, for
purposes of understanding and optimizing learning and the
environments in which it occurs’ [1].

Learning analytics for workplace and professional learning is a
recent area of interest. In 2016, a workshop on this topic was

organized at the LAK conference [14]. One year later, a first
systematic literature review on workplace learning analytics was
published [17]. Only a few of the studies included in this review
considered workplace learning as part of formal (higher) education.
In a recent, extensive literature review of LA literature, the number
of studies gathering data from informal settings (e.g. the
workplace) and having a program-wide scope turned out to be very
small, and even decreasing over the last few years [4].

Over the last few years, several approaches have been developed to
improve education programs and curricula in a data-driven way.
Data-Based Decision Making (DBDM) mainly uses hard data such
as test scores to guide instructional decisions such as adaption of
teaching strategies [13, 28]. Schildkamp and Kuiper published a
comprehensive overview of the use of data to inform curriculum
development in secondary education [18]. For higher education, in
2014, an integral approach (including a process and the design of a
tool) was proposed to enable data-driven course design [5].
Specifically for higher computing education, Méndez et al.
presented an overview of techniques to analyze school-based data
to obtain recommendations for curriculum re-design [15] and
Toetenel and Rienties analyzed learning designs of university
courses in order to evaluate the impact of pedagogical decision
making [24].

Research on analyzing data collected in the workplaces of student
internships in the computing domain is scarce. Recently,
possibilities were explored to use the data generated by the users of
a TEWL application for data-driven curriculum development and
requirements were elicited by evaluating the proposed solution with
program managers [21].

2.3 Research Goal

For (computing) programs in higher professional education
wishing to improve their curriculum in a data-driven way, it is
crucial to analyze workplace data from student internships. In this
study, we aim to answer the following three research questions.

When students in higher professional computing education perform
an internship in industry:

- Which activities do they perform most?
- Which activities do they find most difficult?
- Which technologies do they use most?

The answers to these questions help to open the ‘black box’ of
internships in higher computing education, which in turn can help
universities to (re-)design their curriculum to better prepare
students for professional practice.

3. METHODOLOGY

3.1 Participants

In the Fall Semester of 2018, we deployed and configured the
aforementioned open-source TEWL application [22] and provided
it as an opt-in instrument for a group of 183 third-year students in
three Bachelor programs in the IT and Computing domain in a
European university of applied sciences. It was mandatory for all
students to record their worked hours; they were offered a choice
between their own logbook solution (e.g. in Word of Excel) or to
use our application. Out of the 183 students, 81 registered an
account in our application, of which 68 entered at least one activity.
We note that the participating students were self-selected, which
might give rise to biased data.

Students performing an internship in these Bachelor programs have
to spend at least 100 working days of at least 7.5 hours within an
organization in the IT industry. Participants that registered less than
four weeks of activities (equal to 20 working days, ca. 160 working

ACTIVITY HOURS CATEGORY ©
- " 8as

DESCRIPTION:

CHAIN TO PREVIOUS ACTIVITY:

Manage chains

i)

STATUS © DIFFICULTY ©

Figure 1. Screenshot of input screen of the application (with categories customized for the SE cohort).

hours) were removed from the data set, in order to have data
representative of working activities for a significant amount of time
with respect to the default internship of 100 days. This yielded a
final set of 54 students (49 male, 5 female) that were included in
this study. The average number of days per student on which
activities were registered is 90 (6=25,2 days).

All participants gave informed consent to the use of the registered
data for research purposes. All data was anonymized before the
analysis.

3.2 Data Collection

In the application we provided to the participants, students register
their working activities in an input screen as shown in Figure 1. The
relevant part of the underlying database scheme is shown in Figure
2.

Central to the database model of the application is the
LearningActivity table of which the attributes are recognizable in
the input screen of the application. A student enters a description of
an activity performed during their internship and labels this with
(meta)data such as a date, a category, resources used, a status and a
difficulty.

Stadent

e

triNare

stNare

edcatorProgand

s

phorahumser

EavsamenProgram

eacatorProgamD

rame Caton
cononud
rame
Sescripnon
edcutorProgramD

Figure 2. Core of the Entity-Relationship Diagram

For authentication, administration and customization purposes, the
tables Internship, Student, EducationProgram and Cohort are
included. A Cohort is a group of students enrolled in the same
program at the same time (e.g. all Software Engineering students
starting their internship in September 2018). For our study, the table
Category is interesting as this is used to label activities into specific
classes that should give insight into the nature of these activities.

Categories can be defined i) at the education program level, ii) at
the cohort level or ii) user-generated by a student. For this study,
all categories predefined by us were defined at the cohort-level and
based on a national framework aimed at defining learning outcomes
for Bachelor programs in the IT/Computing domain.

3.3 Analysis

We started our analysis with the necessary data extraction and data
cleaning.

3.3.1 Descriptive analytics

As can be seen in Figure 1 and 2, students input data into a single
text field (Description), after which they label the activity with
meta data: Duration, Category, Status, Difficulty and optionally a
previous activity. In our analysis, we do not use this chaining
functionality and we also neglect the associated Status field
(activities labelled as ‘Busy’ become available for chaining later
activities).

We filtered all activities of the 54 participants from the MySQL
database and exported them as comma-separated files for further
analysis. We first explored the workplace data by computing
several statistics on the number of activities, the number of days
and the total duration of the registered activities per student; see
Section 4.1. After this, the main focus of the descriptive analysis is
on the Category field. We analyzed which categories were i) user-
generated (Section 4.2), ii) most occurring (Section 4.3) and iii)
most difficult (Section 4.4).

3.3.2 Text analysis

After the descriptive analyses of the meta-data of the entered
activities, we performed a content analysis of the Description field.
The analysis was focused on trying to determine the intent of the
description as written by the student, by looking for commonly

FROG

Morphological Count
Tokeri2e e Lemmatize — —
nalysis eywords
Data Combine &
.
deansing / e
Train pattern Generate .
Encode —) — - | Court patterns
Mode ngrams
CousriCoRE

Figure 3. Text analysis pipeline.

occurring keywords. This was done for each of the pre-defined
categories of activities (Research, Programming, Testing,
Academic Documentation, IT Documentation, and Meeting). The
descriptions were analyzed for each separate category, for all
cohorts combined. The hypothesis was that the descriptions of the
activity would largely match the category of the description (e.g.,
most students would mention something related to Programming
in the description of a Programming activity), and that this would
be no different between the cohorts.

To be able to check the descriptions for frequently occurring
keywords, a Dutch Natural Language Processing toolkit called
LaMachine' was used. In particular, a morphological tagger and
parser named FROG [3] used to tokenize and lemmatize the words
(i.e., to make sure that “program”, “programming” and
“programmed” are counted as a single keyword). Furthermore, we
analyzed the descriptions on frequently occurring patterns of words
(called n-grams) by means of the COLIBRICORE tool [8] also part of
LaMachine.

The text analysis pipeline applied is shown in Figure 3. Results of
this analysis are presented in Section 4.5.

A second text analysis was performed by combining all
descriptions of the Programming, Implementation/Configuration,
Testing, and IT Documentation activities, but separated by Cohort.
These sets of descriptions were analyzed again using the same text
analysis pipeline, but subsequently filtered for nouns, verbs and
special named words. The resulting set of keywords was manually
filtered on mentioned technologies. Each of these mentioned
technologies was then used to determine the number of students
mentioning using that technology (that is to say, instead of counting
the frequency of that technology occurring in the descriptions, we
counted the number of distinct students mentioning that technology
instead). This gives us an indication of the most frequently used
technologies. The results of this analysis are shown in Section 4.6.

4. RESULTS
4.1 Descriptive Statistics

The participants were students of three different Bachelor’s
programs (cohorts): Business Informatics (BI), Software
Engineering (SE) and IT Systems & Networks (SN). In Table 1,
descriptive statistics (mean and standard deviation) of the data on
the workplace activities entered by the participants is shown: the
number of activities registered, the total number of hours spent on
all activities in an internship, the number of days with registered

! https://proycon.github.io/LaMachine/

activities, the number of activities registered per working day and
the duration of a single activity (in hours).

Out of the 54 students included in this study, six students entered
activities with an average duration of 7 hours or more. Of these six,
four students consistently entered a single activity per working day
(average duration of a single activity = 8h). We observe that even
though some students might register merely a single or two
activities per day, in professional practice it is seldom the case that
one performs a single same activity for a longer period of time (and
that for many days in a row). We presume these students did not
want to put in the (extra) effort of entering several activities per
day, even if this means they will not get usable insights from the
analytics of these data.

As a measure of variety in types of activities performed in the
workplace, we analyzed how many different categories the
participants used to label their registered activities; see Figure 4.
The median is eight different categories. Notably, one student only
used a single category to label all activities performed during their
internship, whereas another student used as much as thirteen
different categories. We notice the BI students on average used the
least number of categories (6.2), whereas SE students used most
(8.2).

4.2 User-generated Categories

As mentioned earlier (Section 3.2), a set of categories was pre-
defined for each cohort, based on the learning outcomes of the
Bachelor programs:

Table 1. Descriptive statistics of the workplace learning
activities entered by the participants (per student).

g
- a
E - e
£ g zg
P 2 =z
2. = 53
- 5 2 Ze
2 = 3 B
2 . :
b 3 ;: g & a g3
g S 5 2 3 E®
-4 2 a =] 2a
3 : . } . . .
Cohort | 7 m o u o 0 o B, o | pu| o
BI 12 195 | 1180 | 7528 | 15600 | %46 1953 | 211 109 | 49| 2,18
SE 29 | 204 | 935 | 7356 | 161.08 | 925 | 1940 | 22 | 090 | 40| 1.23
SN 13 150 888 635.1 | 27851 | 798 | 36.10 | 1.9 | 064 | 48 | 167
54 | 189 7152 21

Total 1009 20024 | 899 @ 2518 090 | 44

Number of categories used

3
2
0
4 s 6 7 8 9 10 11 12 13

1 2 3

PRI

Students

Number of categories used by students

Bl mSE = SN

Figure 4. Number of different categories used by students
to label their activities in the application.

- All cohorts:
o Academic Documentation
o IT Documentation

o Meeting
o Research
o Testing

- BI&SN:

o Implementation / Configuration
- SE:
o Programming

These pre-defined categories were the categories most-used by
students to classify their activities. However, the application also
allows users to create their own categories. We presume that
students that add customized categories feel that the pre-defined
categories do not cover some of the activities they performed
during their internship. We analyzed which categories were added
by the computing students by extracting those from the database
and classifying them into classes of activity categories. The results
are presented in Table 2.

Notably, sixteen students created an ‘Other’ category for activities
that did not fit the pre-defined categories. Moreover, five students
created a ‘Container category’ with customized labels such as
‘Internship’, ‘Internship activities’, or ‘Work’. Of course, these
categories do not give much insight into which specific activities
are performed by our students in the workplace. Other user-
generated categories that were added while they do not provide
additional insight into the work activities of computing students are
categories related to the category classes ‘Illness’, ‘Break / Free
time / Drinks’, ‘Absent’ and ‘Outside of work’ (or when the
category label was left empty). It is interesting that students did
actually register activities in such categories, since absent days and
activities outside of work do not count as working hours according
to academic guidelines at the university of the participants. In Table
2, all user-created categories that do not give any new insights into
what students do are shaded dark grey.

The category classes that are shaded light grey actually overlap
with pre-defined categories: Research, Meeting and (IT)
Documentation. The students that created these categories may
have overlooked the corresponding categories that were already
available.

All categories that are not shaded grey in Table 2, do give us more
insight into students’ working activities. Most notable are the
category classes ‘Introduction’, ‘Training / course / personal
development’, ‘Demo / presentation’ and ‘Setting up (technical)

Table 2. Student-generated activity categories.

Category class BI SE SN #s;l;ﬁlt:l ts

Other 4 8 4 16
Introduction 1 5 7 13
Tllness 1 5 5 11
;‘;:ierii)r;gm/;(iurse / personal 4 5 1 10
Demo / presentation 2 6 1 9
Preparation 1 5 2 8
Sett'ing up (technical) working 4 2 6
environment

Container category 1 1 3 5
Planning 5 5
Break / Free time / Drinks 1 2 1 4
Scrum activities 3 1 4
Teambuilding 4 4
Research 3 1 4
University work 4 4
Meetings 1 2 1 4
Assisting others 3 3
Absent 1 2 3
(IT) Documentation 1 1 2
-left empty- 1 1 2
Proof of concept 2 2
External visit / meeting 1 1 2
Problem solving 2 2
Organizing 1 1
Administration 1 1
Deployment 1 1
Outside of work 1 1

working environment’. Often, the internship is the first industry
experience for a student, so it makes sense that many students
register activities dealing with getting to know the company and the
assignment, getting familiar with and setting up their working
environment (such as a DTAP-pipeline) and taking in-house
training or courses.

Only seven user-generated categories were used to label more than
100 working hours of a student, of which three were a ‘container
category’. The other four were: ‘Documentation’, ‘Research,
‘Gathering information’ (classified as Introduction) and ‘Proof of
Concept’.

4.3 Most Occurring Activities

To find the most occurring activity categories, we summed up the
durations of all activities and grouped them by category; we merged
the user-generated categories Research, (IT) Documentation and
Meeting with their corresponding pre-defined categories. We
disregarded those categories that had a total duration of less than
100 hours over all 54 students. In Table 3, the relative occurrence
of the remaining activity categories can be found. Since we did not
include all categories, the percentages do not necessarily add up to
100%. In the right-most column, the relative occurrence of the
category over students of all three cohorts is shown.

Table 3. Relative occurrence of activity categories over the
three different cohorts.

Category class BI SE SN Overall
Programming 44,7% 25.7%
peademic 29.1% | 164% | 323% | 224%
Research 27,5% 13,6% 21,1% 18,2%
IT Documentation 13,2% 13,6% 12,6% 13,3%
Meeting 5,7% 4.2% 4,4% 4,6%
Container category 8,4% 0,2% 4,3% 2.8%
Testing 1,1% 2,7% 2,3% 2,2%
Other 1,1% 0,5% 0,8% 0,7%
Introduction 1,7% 0,3% 0,6% 0,7%
Illness 0,3% 0,5% 0,9% 0,6%
Planning 0,8% 0,5%
Preparation 0,2% 0,5% 0,3% 0,4%
Proof of concept 1,6% 0,4%
Training / course /

0,3% 0,4% 0,0% 0,3%
personal development

Demo / presentation 0,8% 0,1% 0,1% 0,3%

From Table 3, we can conclude that the pre-defined categories as
listed in the previous section, were the categories that were used
most by students (the sum of their percentages is 92.1%). The
‘Container category’ class is the most-used user-generated
category, which is not surprising since students presumably use
such categories to label all of their activities.

We also notice that SE students spend almost half of their time
programming, while BI and SN students clearly spend less time on
the corresponding category Implementation / configuration. In turn,
BI ad SN students spend over half of their time on the two
categories Academic Documentation and Research, whereas for SE
students, this combination of categories accounts for less than a
third of the total time spent. Regarding IT Documentation, Meeting
and Testing, all cohorts relatively spend the same amount of time:
approximately 13%, 5% and 2% respectively.

For the user-generated categories, we believe the most notable
insight is that BI students spend more time on both Introduction and
Demo / presentations, as compared to SE and SN students.

In Figures 5, 6 and 7, we picture the ten most occurring categories
for each of the three cohorts separately for a more visual indication
of the distribution of hours spent on the various activity categories.

4.4 Difficulty of Activities

As shown in Figure 1, students can label the activities they register
with the perceived difficulty. We allocated weights to these
difficulty levels as follows: Easy=1, Average=2 and Difficult=3.

Ten most occurring categories for cohort Bl

2481

1195
760 733
511
I I 51199 g e
- - - -

2632

2500 ‘
00
0

Figure 5. Ten most occurring categories for students from
the program Business Informatics (BI) in total number of
hours.

Ten most occurring categories for cohort SE

10436

i 10000
5
=]
< 8000
=
c
2 6000
e
] 3818
T 4000 3178 3176
s
8 2000
981
2
| 620 183 128 126 115
0 m - T =
& & & & d & &
N N & 3 A
> ~¥:> ¢5* & & ¢>\
Q S

Figure 6. Ten most occurring categories for students from
the program Software Engineering (SE) in total number of
hours.

Ten most occurring categories for cohort SN

00

3000
2664
2500

50
2
000 1742
1573
1500
1040
1000
500 364 359
192
I l R
o =
N > N o & & o 2 ¢

O
&

Total duration in hours

Figure 7. Most occurring categories for students from the
program IT Systems & Network (SN) in total number of
hours.

Table 4. Distribution of difficulty levels over all registered

activities.
Difficulty Activities | Percentage Duration
Easy 6,101 59.8% 20,41%h
Average 3,394 33.2% 14,906h
Difficult 714 7.0% 3298h
Total 10,209 100% 38,623h

First, we studied some descriptive statistics of the difficulty labels
entered by students; see Table 4. We note that a mere 7% of the
activities is labelled Difficult by the participants, whereas almost
60% of activities is labeled Easy.

The original goal of the TEWL application we used in this study, is
to create more awareness of the learning process and to realize more
of the learning potential of students working in internships [20],
e.g. by showing a reflection prompt (with feedback and
feedforward questions) whenever students enter an activity with the
difficulty level Average or Difficult and with the Status Busy. We
hypothesize that students are generally not motivated to fill out a
reflection prompt and as a reaction will label their activities as
Easy, leading to only a small percentage of activities labelled
Difficult. Further in-depth and qualitative analysis can shed light
on whether students indeed find most of their work during
internships as easy as they have inputted in the application.

Next, we analyzed the filled-out reflection prompts to gain insight
as to why students found specific activities difficult. A vast
majority of students (83%) indicated that the reason they perceived

that activity difficult was a lack of experience. A mere 3% of the
filled-out prompts recorded that a lack of resources was the culprit.
Finally, we analyzed which activity categories where perceived to
be most difficult. We disregarded category classes that were used
by only a single student and computed the average difficulty for the
remaining category classes. The results of this analysis can be
found in Table 5.

We see that the average difficulty over all categories for the BI
cohort is 1.43, for the SE cohort 1.48 and for the SN cohort it is
clearly lower with 1.26. Based on our data set, we cannot ascertain
whether SN students indeed have ‘easier’ internships or whether
they have other reasons to label more activities as Easy.

For the BI cohort, the categories Testing (2.13), Implementation /
configuration (1.63) and Research (1.54) have the highest average
difficulty, whereas Introduction has the lowest average difficulty
(1.01). For the SE cohort, the top three is Deployment (2.00),
Scrum activities (1.95) and Demo / presentation (1.90), whereas
University work and Introduction have the lowest average
difficulty (1.00). For the SN cohort, the top three is Implementation
/ configuration (1.57), Academic documentation (1.54) and IT
Documentation (1.53), whereas both Preparation and Setting up
(technical) working environment have the lowest average difficulty
(1.00).

Interpretation of these results is not straightforward; a certain
category can be labelled Difficult by merely a couple of students,
or for a small sum of working hours, or even both. In that case, we
cannot claim this first category is harder than another category that
has a slightly lower average difficulty, but was labelled by more
students and for more working hours. For example, for the SE

Table 5. Difficulty of category classes for the different cohorts.

Totsl Bl SE SN
Catagery (chess) m&'&'.u Jl;u:r?m-n; Duraton | Stoéents ::l:tnln Daraiies | Studests 3.'.‘“..., Deratios | Stodents
Academic decumentation 147 136 26302 1l 1.9 1818 2 154 2 13
Assisting others 104 1.04 61 3
Demio / preseatation 170 1.%0 [z 2 190 % s
Deployment 2.00 200 n 2
Implementation / confligaratien 1.60 163 73 6 1.57 1,573 10
Introduction 103 (R 151 2 100 e J s 107 50 7
IT Documentation 140 124 1,198 " 145 117 27 1.5 1008 9
Meeting 108 o7 sn 1 105 981 » L3 165 1
Planning by 1. 183 s
Preparation 112 1M 1ns 6 1.00 21 2
Problem selvisg 153 18 2 2
Programmiag L7l 1n 10436 2%
Preof of Coacept 150 150 149 2
Revearch 140 154 2481 12 128 ANE % 155 1,242 3]
Scrum activities 195 195 0]
Setting wp (sechaical) working envirsnment 1.3 163 % ‘ 1.00 4 2
Teambulldiag 150 1.5 19 4
Testing 1,70 an 101 4 166 420 23 1.52 192]
Teniming / course / personal development 1.26 13 24 3 119 101 s
Ualversity work 1.00 1.00 a 3

144 143 143 126

cohort the category Programming has average difficulty 1.71 with
a total sum of 10,436 working hours for 28 different students,
whereas the category Deployment has average difficulty 2.00 with
a total sum of only 32 working hours for two different students.
Would it be justified to conclude that Deployment is more difficult
for SE students than Programming? We do not think so.

Based on the above reasoning, we conclude that the current data set
does not allow us to determine which category was the most
difficult for an entire cohort of students. Nevertheless, we believe
the results in Table 5 can give some insight to program managers
of these students and can be a starting point for further analysis.

4.5 Students’ Perceptions of Activity

Categories

By means of the text analysis pipeline show in Figure 3, we
analyzed the descriptions entered by the students for each of their
activities. We analyzed whether the descriptions were congruous to
the activity’s category. The analysis described in Section 3.3.2 was
performed on the original Dutch texts, the keywords were
translated to English only for presentation in this paper.

The descriptions of the activities in the following categories were
inconclusive:

e [mplemation/Configuration: ‘implement’ was mentioned
in only 9.8%, and ‘configure’ was mentioned in only
8.8% of all 510 descriptions;

e Programming: ‘program’ was mentioned in only 5.1% of
2140 descriptions?; and

e T Documentation: ‘documentation’ was mentioned in
8.1% of 800 descriptions).

Each of these keywords mentioned was also the highest
ranking keyword for that category.

The results from the analysis of the categories Meeting, Testing,
Research, and Academic Documentation are shown in Figure 8 to
11. Each of these categories has a keywords used in the descriptions
of the activity congruous to the activity to which it is related. In the
Meeting category, it clearly shows that ‘meeting’ and ‘daily stand-
up’, mentioned in 28.8% and 16.5% of the 1450 descriptions
respectively, are what the students perform most often. Moreover,
meetings are more often with their ‘supervisor’ (10.3%) than with
teachers (2.3%) or colleagues (2.2%). ‘Test’ is mentioned in 64.8%
of all 250 descriptions of the Testing category and ‘research’ is
mentioned in 37.8% of all 1810 descriptions of the Research
category. ‘Project plan, ‘final report’, ‘reflection report’, and
‘personal development plan’, are mentioned in 30.7%, 15.8%, 10%,
and 7.3% of 2200 descriptions in Academic Documentation
respectively, clearly showing what the university requires the
students to write.

4.6 Technologies

The second text analysis performed on the descriptions tries to
determine whether the students are using relevant and modern
technologies in their internship. As mentioned in Section 3.3.2, we
ran the descriptions of the relevant categories of each cohort
through the text analysis pipeline (see Figure 3), and subsequently
checked for each technology found, how many distinct students
mentioned that particular technology. The results of this analysis
for the SN and SE cohorts are shown below are shown in Figure 12

2 Although the keyword ‘realize’ occurred in 15.1% of 2140
descriptions, we cannot definitively claim that students do
realize, since the Dutch word from which it derives (‘maken’)

Meeting keywords

Figure 8. Frequency of keywords in the category Meeting.

Testing keywords

> Frequency
% of 250 posts)
a
3

Figure 9. Frequency of keywords in the category Testing.

Research keywords

Relative Frequency

Figure 10. Frequency of keywords in the category Research.

Academic documentation keywords

Figure 11. Frequency of keywords in the category Academic
Documentation.

can also be used as an auxiliary verb. The n-grams did not show
any noteworthy patterns.

SE

Figure 12. Technologies frequently mentioned by SE students.

distinet

f

SN

of distinct stude

Figure 13. Technologies frequently mentioned by SN students.

and Figure 13, respectively. The analysis of the descriptions of the
BI students did not lead to any conclusive technologies (top
mentioned technology was ‘Sharepoint’ by four distinct students).

As shown by Figure 12, several software engineering technologies
are mentioned frequently by different SE students; ‘API’ is
mentioned by 48.3% of students, just as ‘Database’ 48.3%, ‘Git*’
(meaning anything starting with git: ‘git’, ‘github’, ‘gitlab’, etc.)
41.4%,’REST’ and ‘RESTful’ by 41.4%, ‘Angular’ by 34.5%,
‘Jira’ by 31%, ‘CSS’ by 31%, and ‘HTTP’ and ‘HTTPS’ by 27.6%.
Clearly, most of the SE students are indeed programming, even
though our previous analysis was inconclusive on that matter.
Moreover, most of them appear to be working on front-end
(reactive webpages) and back-end (databases and api’s)
applications. The students mention the programming languages
used less; ‘JavaScript’ is mentioned by 6 distinct students (20.7%
of total); ‘Java’, ‘Python’ and ‘C#’ are mentioned each by two
distinct students (6.9% of total).

Figure 13 clearly shows that the SN students are mentioning
‘network’ rather often (84.6% of total), again showing that they
appear to be working on what is expected. Other frequently
mentioned technologies are: ‘server’ by 53.8%, ‘router’ by 46.2%,
and ‘Windows’, ‘Cisco’, ‘Firewall’, and ‘Cluster’ by 30.8% each.

5. CONCLUSIONS AND DISCUSSION

5.1 Conclusions

The goal of this study was to gain more cohort-based insight into
which tasks computing students perform, and which technologies
they use, while learning the workplace. To this aim, we gathered
and analyzed workplace activity data of 54 students over the course
of their third-year semester-long internships in the computing
industry. We performed descriptive analyses to gain insight into
which categories of activities students performed most, which were
programming, documentation and research.

Students added their own categories to the application to label
activities. Most notably, they created categories for orientation and
introduction activities, getting acquainted with a company

efficiently and setting up their technical working environment. In
our university, we do not prepare our students for these activities.
These new insights could help us refine and improve computing
curricula, especially the curriculum parts before the internship.
Additionally, we can use the results of this study for expectation
management towards our students. When providing prospective
interns with information and instruction, we could include data on
which activities are performed most.

Subsequent text analysis gave us insight into students’ perceptions
of the categories used to label activities. The user-generated
descriptions of activities in the categories testing, research,
meetings, and academic documentation are congruous with their
labels, while the analysis of the descriptions of implementation/
configuration, programming and IT documentation did not give
conclusive results. Finally, we analyzed which technologies were
used most by these students, which did not yield any conclusive
insights for the BI cohort, but we did find technologies for the SE
and SN cohorts which were in line with what we expected based on
the learning outcomes of these programs. Repeating this analysis
every year has the potential to reveal technology trends which could
be used to update the curriculum accordingly.

The content analyis of the user-generated descriptions, combined
with the analyses of the most occuring categories, implies that the
common understandig which claims that interns are mainly busy
getting coffee for others can be debunked, at least for this group of
computing students.

5.2 Limitations

Based on the results, we conclude it is feasible to use user-
generated data to get insights into workplace activities of
computing interns. However, the quality of the data does hamper
us from drawing certain conclusions, such as which activities are
perceived as most difficult.

Registering time sheets at work is usually perceived as boring and
bothersome. To some extent, we recognize ‘resistance’ to the
workload involved in three main strategies students use to reduce
the time needed to register their activities: 1) register work in very
large portions (one or two activities per day), 2) creating custom
‘container categories’ to label activities, and 3) label activities as
Easy to avoid a reflection prompt. All three strategies degrade the
quality of the data and thus also the results obtained after analysis.

The text analysis we performed also has limitations. For example,
in the category Programming, the variation of keywords used was
very large. The text analysis pipeline we used did not allow to easily
count and cluster different wordings for the same activities.
Additionally, students do not always mention the technologies they
used explicitly in the descriptions of their activities. Adjustments
to the application (e.g., providing support questions in the input
field for the descriptions or adding a field for technologies) could
give higher quality data. A more advanced analysis of the user-
generated texts can subsequently give more insightful results.

Finally, the students in this study opted in to participate, which can
induce self-selection bias in the data. We analyzed data of merely
30% of all students performing an industry internship. We do not
know whether their data was representative for the entire
population. Furthermore, we only included students from one
university in this study. All the above limitations have an influence
the obtained results and the generalizability of our conclusions.

5.3 Future Work

We plan to extend this study in the near future by recruiting a larger
set of students, also by cooperating with other higher educational

institutes. It would also be interesting to perform this type of study
for other educational domains, such as economics, health or
education. Furthermore, it would be interesting to include other, not
user-generated, workplace data such as log files, etc. This was not
feasible since the 54 students performed their internship at 54
different organizations. Finally, the text analysis of the descriptions
of activities could be extended by comparing the results with the
results of a similar analysis of school-based descriptions (syllabi),
e.g. to compare which technologies are used and the relative weight
of categories in internships compared to the relative weight in the
curriculum in order to identify ‘weak spots’ in the curriculum that
differ most from what industry requires from computing graduates.

REFERENCES

(1]

(3]

[10]
[11]

[12]

1st International Conference on Learning Analytics and
Knowledge 2011: 2011.
https://tekri.athabascau.ca/analytics/. Accessed: 2019-
02-22.

Andrews, J. and Higson, H. 2008. Graduate employability,
“soft skills” versus “hard” business knowledge: A
european study. Higher Education in Europe. 33, 4
(2008), 411-422.
DOT:https://doi.org/10.1080/03797720802522627.

Bosch, A. van den et al. 2007. An efficient memory-based
morphosyntactic tagger and parser for Dutch.
Computational Linguistics in the Netherlands 2006:
Selected papers from the seventeenth CLIN Meeting. LOT.
191-206.

Dawson, S. et al. 2019. Increasing the Impact of Learning
Analytics. Proceedings of the 9th International
Conference on Learning Analytics & Knowledge - LAK19
(New York, New York, USA, 2019), 446-455.

Dunbar, R.L. et al. 2014. Connecting Analytics and
Curriculum Design: Process and Outcomes of Building a
Tool to Browse Data Relevant to Course Designers.
Journal of Learning Analytics. 1,3 (Aug. 2014), 223-243.
DOLI:https://doi.org/10.18608/j1a.2014.13.26.

EC 2016. ICT for work: Digital skills in the workplace.
European Commission.

EPRS | European Parliamentary Research Service 2017.
Digital skills in the EU labour market.

van Gompel, M. and van den Bosch, A. 2016. Efficient n-
gram, Skipgram and Flexgram Modelling with Colibri
Core. Journal of Open Research Software. 4, 1 (2016).
DOT:https://doi.org/10.5334/jors.105.

Hernandez-March, J. et al. 2009. Graduates’ Skills and
Higher Education: The employers’ perspective. Tertiary
Education and Management. 15, 1 (Mar. 2009), 1-16.
DOT:https://doi.org/10.1080/13583880802699978.

Hiising, T. et al. 2015. e-Skills in Europe.

Itani, M. and Srour, 1. 2016. Engineering Students’
Perceptions of Soft Skills, Industry Expectations, and
Career Aspirations. Journal of Professional Issues in
Engineering Education and Practice. 142, 1 (Jan. 2016),
04015005. DOTI:https://doi.org/10.1061/(ASCE)EL. 1943-
5541.0000247.

Kirkwood, A. and Price, L. 2014. Technology-enhanced
learning and teaching in higher education: what is
‘enhanced’ and how do we know? A critical literature
review. Learning, Media and Technology. 39, 1 (Jan.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

2014), 6-36.

Van der Kleij, F.M. et al. 2015. Integrating data-based
decision making, Assessment for Learning and diagnostic
testing in formative assessment. Assessment in Education:
Principles, Policy & Practice. 22, 3 (Jul. 2015), 324-343.

Ley, T. et al. 2016. Learning analytics for workplace and
professional learning. Proceedings of the Sixth
International Conference on Learning Analytics &
Knowledge - LAK '16 (New York, New York, USA,
2016), 484-485.

Méndez, G. et al. 2014. Techniques for data-driven
curriculum analysis. Proceedins of the Fourth
International Conference on Learning Analytics And
Knowledge - LAK '14 (New York, New York, USA,
2014), 148-157.

Nijhof, W.J. et al. 2008. The Learning Potential of the
Workplace. Sense Publishers.

Ruiz-Calleja, A. et al. 2017. Learning Analytics for
Professional and Workplace Learning: A Literature
Review. EC-TEL 2017, LNCS 10474 (2017), 164-178.

Schildkamp, K. and Kuiper, W. 2010. Data-informed
curriculum reform: Which data, what purposes, and
promoting and hindering factors. Teaching and Teacher
Education. 26, 3 (2010), 482—496.

Schmidt, A. and Kunzmann, C. 2006. Towards a Human
Resource Development Ontology for Combining
Competence Management and Technology-Enhanced
Workplace Learning. OTM 2006, LNCS 4278 (Oct. 2006),
1078-1087.

Siadaty, M. et al. 2012. Semantic web and linked learning
to support workplace learning. CEUR Workshop
Proceedings (2012).

van der Stappen, E. 2018. Workplace Learning Analytics
in Higher Engineering Education. I[EEE Global
Engineering Education Conference, EDUCON (Santa
Cruz de Tenerife, Canary Islands, Spain, 2018), 15-20.

van der Stappen, E. and Zitter, 1. 2017. Design
propositions for technology-enhanced workplace learning.
Proceedings of EAPRIL (Hémeenlinna, Finland, 2017),
37-51.

Technology enhanced learning | Higher Education

Academy: 2018.
https://www.heacademy.ac.ul/individuals/strategic-
priorities/technology-enhanced-learning. Accessed:

2019-04-08.

Toetenel, L. and Rienties, B. 2016. Analysing 157
learning designs using learning analytic approaches as a
means to evaluate the impact of pedagogical decision
making. British Journal of Educational Technology. 47, 5
(Sep. 2016), 981-992.
DOT:https://doi.org/10.1111/bjet.12423.

Tynjéld, P. et al. 2006. From university to working life:
Graduates’ workplace skills in practice. Higher education
and working life: Collaborations, confrontations and

challenges. January (2006), 73-88.

Tynjdla, P. 2013. Toward a 3-P Model of Workplace
Learning: A Literature Review. Vocations and Learning.

Wickramasinghe, V. and Perera, L. 2010. Graduates’,

(28]

university lecturers’ and employers’ perceptions towards
employability skills. Education + Training. 52, 3 (Apr. [29]
2010), 226-244.
DOT:https://doi.org/10.1108/00400911011037355.

Wiliam, D. 2011. What is assessment for learning? Studies
in Educational Evaluation. 37, 1 (Mar. 2011), 3-14.

DOL:https://doi.org/10.1016/J.STUEDUC.2011.03.001.

Zitter, 1. et al. 2016. A Design Perspective on the School-
Work Boundary: A Hybrid Curriculum Model. Vocations
and Learning. 9, 1 (Feb. 2016), 111-131.
DOT:https://doi.org/10.1007/512186-016-9150-y.

40
41
42
43
44

45

Is Deductive Program Verification Mature Enough to be Taught
to Software Engineers?

Marc Schoolderman
Radboud University
Nijmegen, The Netherlands
m.schoolderman@cs.ru.nl

ABSTRACT

Software engineers working in industry seldom try to apply for-
mal methods to solve problems. There are various reasons for this.
Sometimes these reasons are understandable — the cost of using
formal methods does not make economic sense in many contexts.

However, formal methods are also often greeted with scepticism.
Formal methods are assumed to take too much time, require tools
that are too academic, or to be too mathematical to be understood
by practice-oriented software engineers.

We tested these assumptions by designing a small course around
a framework for program verification, aimed at regular computer
science students enrolled in a Master’s programme. After four lec-
tures and associated exercises, students were given a small verifica-
tion task where they had to model and verify a real, non-trivial, C
function in Why3.

A significant majority of students managed to prove a non-trivial
functional specification of this C function in the time allotted, and
many also pointed out inherent flaws of this function discovered
during formalization. Participants reported no major difficulties or
mental hurdles in learning Why3, and considered its approach to
be appropriate for selected components of safety-critical software.

While formal verification tools such as Why?3 still have lots
of room for improvement, this experience shows that in a short
amount of time, software engineers can be taught to use a program
verification tool, and obtain usable results without being fully profi-
cient in it. We further recommend that courses on formal methods
should also let students explore these as techniques to be applied,
instead of only focusing on the theory behind them, as we expect
this to gradually lower the barrier to wider acceptance.

KEYWORDS
formal verification, teaching, Why3

*Also with Radboud University.

This work is part of the research programme ‘Sovereign’ with project number 14319
which is (partly) financed by the Netherlands Organisation for Scientific Research
(NWO). .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSERC ’19, November 1820, 2019, Larnaca, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Sjaak Smetsers
Radboud University
Nijmegen, The Netherlands
s.smetsers@cs.ru.nl

Marko van Eekelen”
Open University of the Netherlands
Heerlen, The Netherlands
marko.vaneekelen@ou.nl

ACM Reference Format:

Marc Schoolderman, Sjaak Smetsers, and Marko van Eekelen. 2019. Is De-
ductive Program Verification Mature Enough to be Taught to Software
Engineers?. In Proceedings of The 8th Computer Science Education Research
Conference (CSERC ’19) (CSERC ’19). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Program verification is about as old as the field of computing science
itself [17], and the focus of much academic research. Yet, it is seldom
applied in industry. In the Sovereign project, we strive to find ways
to apply formal methods — and deductive program verification in
particular — to practical situations, in cooperation with partners
from industry. This has made us acutely aware of the divide between
industry on the hand, and academia on the other.

In our discussions, representatives of our industry partners ex-
pressed the sentiment that it was all well that academics understand
the academic tools and can use them for selected problems, but that
their company employs software engineers which, although aca-
demically trained, would not be able to learn and understand these
techniques in such a way that they can use the effectively — and
that formal verification can not hope to get a wider foothold in
industry unless this problem was addressed.

This sparked our interest. Clearly, there is no argument that
many programs are too large or too complex to be within reach
of formal verification with the current tools. However, if the tools
themselves are also perceived to be too complex or too theoretical
to be understood, that is another problem altogether.

Therefore we were interested in testing the assumption that
program verification, and associated computer-aided reasoning
tools, would intrinsically be too much work to get accustomed with,
for a practice-oriented software engineer.

One way to answer such a question is to design a crash course
that teaches a formal method to software engineers, and see how
they perform at a small verification task. However, since any aca-
demically trained software engineer will at some point have been
a student, we can instead test this assumption by doing the same
experiment with university students, which are readily available to
us.

Therefore, we selected to teach the Why3 framework for program
verification [11] in a short time span, as part of an existing course
at Radboud University, and assess the performance of students at a
small, but realistic verification task.

In Section 2, we will briefly introduce the Why3 verification
framework. Section 3 provides an overview of the choices we made
in teaching it to students. Sections 4 and 5 will present and discuss

61
62
63

64

66

79
80
81
82
83
84
85
86
87

88

90
91
92
93
94
95

96

98
99
100
101
102
103

104

106

116

118
119
120
121
122
123
124
125
126
127
128
129
130
131

132

139
140
141
142

143

156
157
158
159
160
161
162
163

164

169

171
172

174

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

our evaluation of the course. Section 6 provides an overview of
related courses. Section 7 contains our conclusions.

2 OVERVIEW OF WHY3

Whys3 [11] is a platform for deductive verification of programs.
It takes programs written in a dedicated programming language
(WhyML), which should be annotated with pre- and postconditions,
assertions and loop invariants, and uses a weakest precondition
calculus to generate verification conditions in a typed first order
logic. These are then subsequently translated to the input formats
of various automatic provers, in order to prove them, as visualized
in the following diagram:

| WhyML programs !
l 1 !
! Why?3 logic I
T *\ ‘
777777 [CVCs E | ZR

In Why3, as in many such systems, there is a difference between
programming constructs and the logical constructs. A program is
written in WhyML, and annotations are written in a logical lan-
guage. There is a high degree of similarity between the two: they
both share the same expression syntax and allow for the definition
of functions. There are also subtle differences. Furthermore, Why3
supports ghost code [10]. This is any code or data that is not of any
consequence for the outcome of a program, but can make its its
verification easier. The Why3 type system will ensure that ghost
code can not affect the outcome of a program, allowing the user to
use purely logical constructs in computations that only have (ghost)
side-effects. Furthermore, a user can ‘promote’ a programming
construct to have an effect on the logical level. A function at the
programming level can be used to either prove a logical lemma (a so
called lemma function or let lemma), or provide an axiomatization
of a function in a safe manner (Why3 calls this a let function).
The similarities between the various levels of Why3 make it fairly
easy to get novices started with Why3, at the same time, the subtle
differences can also catch new users off-guard.

Most work in Why3 is done inside a graphical user interface
where users can transform verification conditions (e.g., splitting a
large conjunction into smaller ones), and send them to provers. Most
actions are performed with a single mouse click. The user interface
also uses colour highlighting to provide users with information
about which programming constructs are involved in the current
proof state.

3 APPROACH

Our treatment of Why3 was part of an existing course on ‘Software
Analysis’, which is an elective course offered as part of the MSc
programme in computing science at Radboud University. The scope
of this course was intentionally broad, to treat varying topics in
it relating to tools and techniques for analysing software. Formal
program verification using Why3 was planned to take up the first
half of this course, with the second half veering more towards static
analysis. The entry requirement for this course is that students
are in possession of a Bachelor’s degree in computing science (or
equivalent).

Marc Schoolderman, Sjaak Smetsers, and Marko van Eekelen

By using an existing course that was not advertised primarily as a
course on formal methods, theoretical computer science, or theorem
proving, we are confident that the students taking this course did
not self-select, and form a unbiased representative sample of the
computing science student population at Radboud University.

Secondly, to prevent students from deselecting after the start of
the course, the guiding principle during teaching was to approach
program verification using Why3 as a tool that might have a place
in a software engineers toolbox, instead of treating formal verifica-
tion as an intrinsically interesting theoretical topic, where Why3
is only used as a vehicle for demonstrating an application. So, for
instance, students were not taught any core principles on which
formal verification frameworks are based, such as Hoare logic or
how to compute weakest precondition calculus.! Instead, this was
explained only in so far as was necessary to give students an intu-
ition into what Why?3 is doing. Also, exercises focused mostly on
familiarizing students with features of Why?3, similar to a course on
programming, and were chosen to enable quick positive feedback.

At the end of this part of the course, students had to write a short
report about their work, in which they were also required to include
a reflection on Why3. Furthermore, students were asked (but not
required) to complete an anonymous survey intended to verify that
they were indeed a representative sample of students enrolled in
a Master’s programme in computing science. In this survey, they
are also asked about the time they needed for the course work, and
their general disposition towards program verification after taking
the course.

3.1 Course structure in detail

Teaching Why3 was split in two parts: in-class teaching with weekly
lectures with associated homework exercises, and a small project
where students would, in groups of two, tackle a verification chal-
lenge in the style of the VerifyThis? or SV-Comp® competitions.
4

3.1.1 Teaching Why3 in four weeks. In-class teaching consisted
of four weeks of lectures and exercises. The organization per week
was as follows:

(1) Outlining a historical background motivating why program
verification schemes should employ computer-aided reason-
ing in order to be feasible, and a first look at Why3 and
how to write basic WhyML programs; as well as how to use
the logical language of WhyML to write function contracts,
invariants, and prove termination.

How the Why3 type system works, and how to reason about
mutable data such as arrays. At this point, students were
subjected to an interactive demonstration where Kadane’s
algorithm [3] for finding the maximum subarray was verified,
with the intent to set an example to students of how to write
more complex logical specifications, discover invariants, and
how to interpret the responses of the Why3 IDE.

—~
N
=

1We do not mean to imply that taking that approach is not a valid didactic approach —
however, it would not have been relevant for our research question.
Zhttps://www.pm.inf.ethz.ch/verifythis.html
3https://sv-comp.sosy-lab.org/

The course material, including exercises and project description is available online
at https://cs.ru.nl/~M.Schoolderman/swan2019/

180

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

216

217

219

220

221
222

229

240

242

261

262

263

264

265

266

267

269

279
280
281
282

283

285

286

288

289

290

Program Verification: Mature Enough to be Taught to Software Engineers?

(3) Techniques in Why?3 that can be used in more difficult situ-
ations where a proof is not solved automatically — such as
cases where a proof by induction is needed. In particular, in
this lecture the somewhat difficult concept of ghost code
and let lemma’s [10] was introduced.

Modelling a program in a different, more realistic, program-
ming language in WhyML; e.g. how to handle integer over-
flow, or how to reason about a memory model that supports
pointers (adapted from the lectures notes by Filliatre [12]).

(4

=

Weekly exercises were designed to fit with the level students
were expected to have after each lecture. Students were required to
use a Why3 installation on their own system instead of using a web
interface for all of these, to have access to the full capabilities and
multiple back-end provers. The objective of these exercises were,
per week:

(1) Familiarizing with the WhyML syntax and Why?3 interface.
In particular, students had to finish a partial proof of a Rus-
sian peasant multiplication (adapted from an existing course
by Bobot [5]). Students were also challenged to rewrite this
verified program to perform exponentiation instead, with
some hints.

(2) Writing a WhyML program and specification from scratch.
Students had to pick a simple sorting algorithm and model
it in WhyML, and prove it correct.

(3) Using let lemma’s to write inductive proofs, and a slightly
harder partial proof (for the factorial function one taken
from [17]) that needed to be finished.

(4) Modifying a WhyML program so that it can be used to extract
C code.

We estimated that students would need not more than six hours
for each exercise. Students were given formative feedback (includ-
ing fixes to finish their proof efforts, whenever they were very close
to a solution).

3.1.2 Verification challenge. After four weeks of in-class teach-
ing, students project assignment. Students had to either choose a C
functions from a small list of system library routines contained in
the CloubLibc [24] library, or a test case that was designed to be
similar to a routine for modular addition of 256-bit integers used in
the cryptographic library TweetNaCL [4].

Given this C function, the assignment consisted of modelling it
reasonably accurately in WhyML, providing a formal specification,
and proving that the WhyML model adheres to this specification.

Most student teams chose to verify the strlcat routine from
CloudLibc; probably because it looked the easiest due to its familiar
operation (string concatenation) and relatively shorter size. Two
teams chose the TweetNaCL-inspired test case.

3.1.3 Self-evaluation. Students were given four weeks to com-
plete the verification challenge. Afterwards they had to write a
report documenting their formalization, motivating their modelling
choices and formal specification; students also had to reflect on
what they considered to be the strengths and weaknesses of Why?3,
and were encouraged to do so from a software engineering view-
point.

In order to learn more about the learning experience, we also
sent a survey asking students about how they self-assessed their

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

programming and mathematical maturity, how much time they
spent on the Why3 exercises and the verification challenge, and
what their disposition to formal verification was at the end of the
course, as an extra check of (our interpretation of) the information
contained in their reports.

4 RESULTS

In total 22 students participated seriously in the verification chal-
lenge, grouped into 11 teams. One other student made only a rudi-
mentary attempt and would eventually drop out of the course after
the part focusing on Why3 part was finished.

Out of the 11 teams, nine chose to verify the strlcat routine
from the CloudLibc library, and two took on the modular addition
routine, as mentioned in Section 3.1.2.

4.1 Verifying strlcat

Out of the nine teams that chose strlcat, seven teams produced a
WhyML model with a logical specification that was fully verified
in Why3. The remaining two teams delivered an incomplete proof.
In both cases this seems to be due to teams choosing to build an
axiomatization of the C memory model instead of a simpler ap-
proach. We discouraged students from doing this, because it risks
introducing logical inconsistencies. In these two cases, however,
the axiomatization was simply not powerful enough to support
drawing the necessary conclusions.

The C function strlcat is intended to be a safer version of
strcat, for concatenating null-terminated strings in a manner
which is much less likely to cause buffer overruns, but also guaran-
teeing that the result is a proper null-terminated C string.

There are three major difficulties where the verification effort of
this function is not straight-forward:

(1) strlcat is not required to (and in fact will not) perform its
expected operation in case the two pointers it is passed point
to overlapping regions of memory.

(2) In case strlcat is called with a size argument that is too
small, there is a subtle safety mechanism that prevents it
from accessing out-of-bounds memory addresses. However,
in this case strlcat will not concatenate any strings or
necessarily produce a result that is null-terminated.

(3) To reason about the length of strings at the specification
level, the notion of the “terminating null character” needs to
be expressed somehow.

All successful teams used the technique for modelling memory
outlined in [12], where memory is modelled as an array of bytes
and pointers are indices into this array. To tackle the first problem,
students either used different arrays to model separate memory
regions, or explicitly added a precondition that the two input strings
should not overlap. One team was so precise in this that they proved
the code works in some cases of overlap.

The second problem was handled by all teams either by adding
the explicit precondition that the size argument is proper, or spec-
ifying a separate postcondition for the cases where it is improper.
Some teams commented (rightly) that this made the formal speci-
fication of strlcat more intricate than would appear necessary,
showing that they were able to draw conclusions about the sub-
tleties of systems-level C code based on their formalization.

291
292
293
294
295
296

297

299

300

302
303
304
305

306

319

320

322
323
324
325
326
327
328
329
330
331
332

339
340
341

342

379

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

The third problem was one which was handled in different ways.
Several teams took a hint that existential quantification can often
be avoided by using ghost code [10], and simply added the location
of the null character terminating a string as a ghost argument to
strlcat. One team used direct existential quantification instead
to find the null character. This resulted in a much harder, yet still
successful proof effort. Several other teams added a logical con-
struct (using a let function) which explicitly finds the position
of the null character using a loop, but which can still be used in
specifications. This essentially involves also proving the correct-
ness of strlen, and is an interesting approach that these students
discovered themselves.

4.2 Verifying modular addition

Only two teams attempted to verify the modular addition routine;
both teams completed verification, where one team performed a
thorough analysis, and the the other only proved a simple property.

Even though the modular addition code consisted of the least
lines of code of all the options available to students, it was probably
the most challenging to verify given that (unlike the CloudLibc
routines) it did not have a clear (informal) specification, and has
known problems that become apparent during verification.

During this challenge, both teams used Why3’s machine integers
to prove the absence of signed integer overflow under reasonable
input conditions. Both teams were instructed to identify some prop-
erty that the addition routine preserved. For example, whether if
both inputs are already reduced modulo 22°° — 19°, it holds that
the result will also be in a reduced form. Both teams correctly con-
cluded that such an easy property did not exist. However, one team
already reached this conclusion before formalizing the routine it.
In the end, one team proved that the modular reduction step in the
addition routine is never performed if the original inputs were in
reduced form. The other team simply proved a bound on the output.
Only one team tried to prove that the addition routine actually adds
numbers; this was achieved with some supervision.

4.3 Self-evaluation

Students were asked to provide an evaluation of Why3 and to assess
what role it could have in software engineering. The most often
mentioned benefit of Why3 was that it makes performing formal
proofs accessible and easier, and that proofs provide a higher degree
of confidence in software than simple testing. On the other hand,
students reported that the verification task involving only a small
piece of code took many hours to complete. Students concluded
that they considered Why3 inappropriate for regular software engi-
neering due to this time investment, but well-suited for cases where
safety or security of software is more important than economic
arguments.

Other interesting general observations raised by students where
the following:

o Students were generally positive about the graphical user
interface of Why3, which can highlight assumptions and
goals in the source code.

5 A prime number that defines a finite field used in the Curve25519 elliptic curve.

Marc Schoolderman, Sjaak Smetsers, and Marko van Eekelen

o Students criticized the error messages provided in case of a
syntax or type error. This is an area where academic tools are
often lacking, and this clearly hinders the learning process.

o Multiple students complained about the lack of an online
community of Why3 users, on a platform such as StackEx-
change.

Many students also discussed how they experienced working
with Why3 in the process of finding a correct proof; key points
raised here were:

Since Why3 uses automatic provers, proofs can fail for rea-
sons that are not obvious to the users and hard to predict for
novices.

Why?3 provides a mechanism to generate counter-examples.
While students did report using this, the consensus seemed to
be that they did not provide meaningful information except
in simple cases.

Similarly, some students were dismayed that an inconsis-
tency in a lemma (or invariant) will allow any subsequent
statement to be proven vacuously — giving the user the mis-
taken impression that the they only have one unproven goal
remaining. On the other hand, other teams reported using
the smoke detector of Why3 to catch these cases with success.
To explore some program state in depth, several students
reported missing the ability to have an interactive debugger
in the Why3 IDE.

Finding loop invariants is clearly the hardest part. Several
students found it surprising that Why3 was unable to deduce
simple loop invariants, or that a loop invariant also needs to
be established if the associated loop is not executed.

Although students reported needing a lot of time to complete
the verification challenge, most did not report an obstacle inherent
to Why3 while working on the challenge. An obstacle that was
reported by several students was that to model a C program in
WhyML requires a deep understanding of C — a deeper under-
standing than these students professed to have. These students
also pointed out that this translation of C to WhyML should be
automated.

4.4 Survey

To learn more about the learning experience, a survey was sent
to the 22 students that participated seriously in the verification
challenge. One student was at this time no longer at Radboud Uni-
versity and could not be reached. Of the remaining students, 15
responded, for a response ratio of slightly above 70%, which we
consider to be acceptably high for a student evaluation.

In general, students reported a much higher confidence in their
programming ability than their mathematical ability. All partici-
pants reported that they felt at least somewhat skilled in program-
ming (rating themselves at least a 5 on a 7-point Likert scale),
whereas two thirds of the students reported their mathematical
skill level to not that great (at most a 3 on a 7-point Likert scale).
Only one student reported a higher skill level in mathematics than
programming, but this student also reported having taken much
more ECTS credit in maths and logic courses (120, instead of the
average 18).

416

419

429

440
40
442
443

444

465

466

467

468

469

484

487
488
489
490

491

Program Verification: Mature Enough to be Taught to Software Engineers?

When asked whether they had any experience in other formal
method tools, only a handful students reported having some expo-
sure to systems such as Coq or Uppaal (which are used to support
teaching in some bachelor courses at Radboud University). On the
other hand, many students reported having used ESC/Java2. This
tool is used only briefly at another Master’s level course at Radboud
University for a simple weekly exercise, and so we do not consider
this to have significantly impacted our teaching experiences or
jeopardize the representativeness of our student sample. When
asked in the survey how they compared learning Why?3 to learning
a new programming language, 12 students answered that learning
Why?3 was as hard or slightly harder, with only 3 indicating they
found it considerably harder.

The survey results also indicated that the amount of time spent
on the weekly exercises was within our estimate and fitting for
the number of ECTS points that could be earned for the course.
More interestingly, the amount of hours students spent on the
verification challenge was reported to be slightly less than 20 hours
on average, with the median being 18 hours. In advance, we had
budgeted between 24 and 32 hours for the challenge. A histogram
of the hours reported is shown in Figure 1.

students

0-10 10-20 20-30 30-40

Figure 1: Hours spent on verification challenge by students

5 DISCUSSION

At the start of the verification challenge, we had expected about half
of the students to succeed, and another half to deliver only a partial
result which either proves only a single property, or where the
final result is incomplete due to unproven goals. We also expected
students to require around 24 to 32 hours of work. In total, 8 out of
the 11 teams managed to complete the challenge with a successful
verified result, which we found encouraging. If we assume that
the three less successful teams (comprising 6 students) all make up
the lower end of the graph of Figure 1, we can still conclude that
students completed the challenge in less time than we anticipated.

Students, however, did report needing a lot of time for the ver-
ification task. We would like to put this in perspective. The code
students were given was representative of systems-level code. De-
veloping such code, including writing a good test suite, takes more
time than students probably realize.® Compared to that, the amount
of time students actually reported is rather low, especially if we
take into account that they were all inexperienced users of Why3.
To see how much faster they would be if we gave them another

® In the case of strlcat, the function students ended up seeing is the end result of
years of intermittent updates and tweaks

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

similar challenge would be interesting, but we could not justify this
being part of the ‘Software Analysis’ course.

Ultimately, we think that our students were up to the challenge
that we put to them, even though they had only received a crash
course of four weeks.

5.1 Comparing students to software engineers

Our survey results indicate that our student sample was a typical
set of students enrolled in the Master’s programme at Radboud
University, and did not have a significant prior bias or inclination
towards formal methods. For example, in the survey, 60% of the
students reported not being familiar with Hoare logic at the start
of the course. In the other 40%, only one student reported that he
or she used this familiarity while working with Why3. All were
familiar with the concept of pre- and postconditions, but had little
experience in reasoning about invariants.

Most of these students will, after graduation, apply for software
engineering jobs, and so we believe our sample to be representative
of a highly educated software engineer. Of course our results do not
apply to all software engineers in possession of a Bachelor’s degree
in computing science, since our students did choose to enrol in a
Master’s programme at a university.

5.2 Modelling challenges

As mentioned in Section 4.3, some students reported finding it less
satisfying to make a model of C code WhyML, due to the fact that
they felt less confident that they could model C concepts accurately.
At another stage in the ‘Software Analysis’ course, several students
also expressed discomfort in reasoning about C programs. This
was surprising to us. As one student team put it: “This decreases
our confidence that when a WhyML model is proven correct the
program in the target language will also be correct.” In the anony-
mous survey, students would also indicate they found modelling the
second hardest part in using Why3, after finding loop invariants.

Students identified that a remedy would be to have a tool that
either directly verifies C code, or that automatically translates C
code into WhyML, but that such a step would inevitably also make
verification more difficult. In the survey, 80% of the students indi-
cated that the design of modern programming languages should
use formal verification to some degree, which we find consistent
with the students’ written remarks.

5.3 Using mature tools

In our course, we chose to not use the web interface of Why37,
but required students to install it on their own systems. The ad-
vantage of this was that students could tackle more complicated
proofs, since they had access to all the supported powerful auto-
matic provers, and could benefit from all of the features of Why3,
such as counterexample generation and the smoke detector feature
of Why3. Even though there is much available to them in the full
Why?3 interface which they will not understand (at least at first),
we do not find that this impedes the learning process.

The downside here was that installing Why3 is a rather involved
process, due to the need to install it (and the specific versions of var-
ious automated provers that are supported by Why3) from source.

http://why3.Iri.fr/try/

562

563

564

566

603

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

624

626

627

628

629

630

631

632

633

634

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

To save time, and to ensure most students were on the same plat-
form, we created a binary-only distribution of Why3 and a selection
of automated provers for Linux. This worked well, but was a step
in distributing Why3 to students that was cumbersome for us and
that should not have been necessary.

5.4 Recommendations

Complex programming languages such as C++ are used daily by
practitioners that will freely admit to not understanding all the
intricate details. The same is also true for formal verification tools.
However, in our experience, this is not how they are usually per-
ceived in industry. In order to change this, we believe two things
are necessary. First, verification tools should not forget to focus
on user friendliness; this will lower the barrier to acceptance by
engineers that are typically used to work with highly polished tools.
Meaningful error messages will also ensure a positive feedback cy-
cle that benefits the learning curve. Second, a university curriculum
should not only present computer-aided reasoning tools as part
of an (elective) theoretical course on program logics, as this will
cement the notion that these tools are mostly an academic pursuit.
Students should also be encouraged to explore the application of
these tools to small but realistic problems.

6 RELATED WORK

Formal verification of software is a research area for which inter-
est is still growing. It is therefore not surprising that attention is
paid to it within higher education, also because of the great social
importance of secure software.

We note that both fully automated proof tools and semi auto-
mated proof assistants are used within education. In a number of
cases, this is done as support when teaching students about mathe-
matics topics that are often experienced as difficult. For example, in
[13], the design of the web server Proof Web for Coq (developed to
avoid installation difficulties with different versions of COQ) used to
teach logic to undergraduate students is presented. Another project
[6] uses the COQ proof assistant based on a two-step approach.
When teaching students, the authors strictly stick to COQ in the
first step. Thereafter, in the second step, they encourage students to
gradually convert less formal ordinary textbook proofs into formal
COQ proofs. The GeoGebra tool [15] is an automated reasoning
tool for discovering theorems on constructed geometric figures,
and proving these theorems automatically. The tool is intended to
serve as a guiding stick fostering student activities while learning
elementary geometry.

In the context of computer science teaching, formal verifica-
tion is generally introduced at a more advanced level. A theorem
prover is not a learning goal in itself but is rather considered as
a framework for teaching other subjects. The idea is that using a
formal language as a means for introducing new concepts helps
student to get a deeper understanding of these. For example, [20]
is a textbook on semantics entirely based on the proof assistant
Isabelle®, and the NASA PVS Library® contains a full formalization
of Nielson and Nielson’s textbook [19] on formal semantics. The
main advantage of using a proof assistant in the teaching is that

Shttps://isabelle.in.tum.de/
“https://github.com/nasa/pvslib

Marc Schoolderman, Sjaak Smetsers, and Marko van Eekelen

it allows students to experiment with their specifications, and to
make proofs that are guided by the proof assistant which gives
them immediate feedback. RISCAL [25] is a language for modelling
algorithms and their properties. This language comes with a tool
supporting model development and automatic verification. The tool
has been used in two courses at the computer science department
of the Johannes Kepler University Linz: (1) The course ‘Formal
Methods in Software Development’ for master students, and (2)
the ‘Logic’ course for undergraduate students. First experiences are
promising: a small scale study indicated students seem to perform
better if they can use the tool in its full potential. The PEST frame-
work [7] is similar to RISCAL in the sense that is provides both a
specification language and a tool (available as a plug-in for Eclipse)
that facilitates automated reasoning. Classroom experiences (the
framework was used in two undergraduate courses taught at the
computer science department of the University of Buenos Aires)
confirm the preliminary results of [25].

In [22] experiences are discussed with teaching formal program
specification and verification using the specification language JML
and the automated program verification tool ESC/Java2. The au-
thors state that current program verification technology is suffi-
ciently mature for students to use, even as part of courses which are
not specifically about formal methods, such as standard program-
ming or software engineering courses. However, the authors also
indicate that the use of these tools is better limited to controlled ex-
periments, where the students work with (relatively small) supplied
programs, rather than code they develop themselves.

Other experiences are based on the approach in which students
are supposed to develop loop invariants before actually writing
their code, which is also known as invariant based programming.
Invariant based programming was already introduced in the 1960s
([18],[14]), and developed further by e.g. [9]. In [1], the results
are discussed of using this approach in two different courses. In
both courses, the SOCOS [2] environment was used to develop
invariant diagrams. The environment computes the verification
conditions (VCs) automatically for all transitions in these diagrams,
and sends them to either an automatic prover (SIMPLIFY [8]) or
to an interactive prover (PVS [21]), similar to the technique that is
employed by Why3. One of the courses was an advanced course
for graduate students where they were asked to prove program
correctness of the generated VCs using PVS. The second course was
a beginners course, where the students could discharge the VCs
to the SIMPLIFY SMT solver to perform automatic proving, and to
PVS for those that could be automatically proved. In both cases,
the authors observed that a suitable error reporting mechanism is
clearly needed when using these tools in education. In particular,
they commented on the difficulties of students when dealing with
PVS. They also warn against the pitfall that the tools invite students
to use a try-and-debug strategy instead of thinking beforehand
about the constraints needed for the invariants.

Another project [23] presents a method to gain insight into
the difficulties that students face while developing suitable loop
invariants, and assist them in the process. The authors collected data
in the background as students attempted to produce verified code
with loop invariants. Analysis of this data indicated the kinds of
information that can expected, and what kinds of feedback might be
useful. In [16] the authors report on an experiment with invariant

639

640

641

642

643

644

645

646

648

661

662

663

664

665

667

669

693

695

696

697

698

699

700

702
703

704

719

736

749

Program Verification: Mature Enough to be Taught to Software Engineers?

based programming. They analysed a group of novice students
and found that the main difficulty seemed to be lack of skills in
formalizing expressions in general, rather than inventing specific
invariants. Hence, to successfully use invariant based programming,
appropriate training to develop these more general formalization
skills is essential.

7 CONCLUSION

As the literature shows, tools for computer-aided reasoning have
been used in the classroom successfully for many years, and we
encourage this. It is clear that a computer can give students more
instant feedback, and is less likely to make a mistake.!? Also, in
logic courses, it can alleviate tedium by offering automation.

The question that we sought to answer is whether computer-
aided reasoning tools are also getting mature enough they can not
only be used in the classroom for teaching, but that we can also
train software engineers in industry to apply them to solve real —
although perhaps small — problems in a short amount of time. Our
results support the conclusion that this is the case.

Our survey indicates that our student sample is fairly repre-
sentative for students who have completed a Masters degree in
computing science, many of whom will eventually pursue a career
as a software engineer. In fact all of our students, being in the pos-
session of a Bachelor’s degree, could just as well have been working
in this field already.

A purist approach would only allow students to use automation
offered by powerful tools only after the student demonstrates proper
understanding of the actions that are being automated. When deal-
ing with Why3, this is impossible — due to the fact that it relies on
state-of-the-art SMT solvers to prove goals — and, we believe, not
necessary. Students (and software engineers) with a sufficient level
of higher education will have developed intuitions about reasoning
about programs, and have had formal training in programming and
logic. They can draw upon these experiences when learning Why3
(or we expect, similar tools) in an applied setting.

As asside effect, we also predict that trying out formal verification
tools in a realistic setting on students will provide the developers
of these tools with invaluable feedback. Having physical access to
a novice user base trying to apply these tools will give insight into
what makes them difficult to learn, or where they need to be more
powerful. Ultimately, this will result in computer-aided reasoning
that will be more usable and powerful for everybody.

ACKNOWLEDGMENTS

The authors thank Léon Gondelman for providing ideas in setting
up the course on Why3.

REFERENCES

[1] Ralph-Johan Back. Invariant based programming: basic approach and teaching
experiences. Formal Aspects of Computing, 21(3):227-244, May 2009.

[2] Ralph-Johan Back and Magnus Myreen. Tool support for invariant based pro-
gramming. Technical Report 666, TUCS - Turku Centre for Computer Science,
Turku, Finland, Feb 2005.

[3] Jon Bentley. Programming pearls: Algorithm design techniques. Commun. ACM,
27(9):865-873, September 1984.

19For instance, we would not have trusted ourselves to correctly check a pen-and-paper
proof of the verification challenge described in Section 3.1.2.

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

[4] Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange, Peter
Schwabe, and Sjaak Smetsers. TweetNaCl: A crypto library in 100 tweets. In
Diego Aranha and Alfred Menezes, editors, Progress in Cryptology - LATINCRYPT
2014, volume 8895 of Lecture Notes in Computer Science, pages 64-83. Springer-
Verlag Berlin Heidelberg, 2015.

] Francois Bobot. MPRI lecture 2-36-1. http://francois.bobot.eu/mpri2018/, 2018.
[6] Sebastian Bohne and Christoph Kreitz. Learning how to prove: From the coq
proof assistant to textbook style. In Pedro Quaresma and Walther Neuper,
editors, Proceedings 6th International Workshop on Theorem proving components
for Educational software, TREdu@CADE 2017, Gothenburg, Sweden, 6 Aug 2017.,
volume 267 of EPTCS, pages 1-18, 2017.

[7] Guido de Caso, Diego Garbervetsky, and Daniel Gorin. Integrated program
verification tools in education. Software: Practice and Experience, 43(4):403-418,
2013.

[8] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. 7. ACM, 52(3):365-473, May 2005.

[9] E.W. Dijkstra. A constructive approach to the problem of program correctness.
BIT Numerical Mathematics, 8(3):174-186, Sep 1968.

[10] Jean-Christophe Filliatre, Léon Gondelman, and Andrei Paskevich. The spirit of
ghost code. Formal Methods in System Design, 48(3):152-174, Jun 2016.

[11] Jean-Christophe Fillidtre and Andrei Paskevich. Why3 — where programs meet
provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the
22nd European Symposium on Programming, volume 7792 of Lecture Notes in
Computer Science, pages 125-128. Springer, March 2013.

[12] Jean-Christophe Filliatre. Deductive program verification with why3: A tutorial.
UniGR Summer School on Verification Technology, Systems & Applications 2018,
2018.

[13] Maxim Hendriks, Cezary Kaliszyk, Femke van Raamsdonk, and Freek Wiedijk.
Teaching logic using a state-of-the-art proof assistant. Acta Didactica Napocensia,
3:35-48, 2010.

[14] C.A.R Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580, October 1969.

[15] Zoltan Kovécs, Tomas Recio, and M Vélez. Using automated reasoning tools
in geogebra in the teaching and learning of proving in geometry. International
Journal for Technology in Mathematics Education, 25:33-50, 07 2018.

[16] Linda Mannila. Invariant based programming in education - an analysis of
student difficulties. Informatics in Education, 9(1):115-132, 2010.

[17] F.L. Morris and C. B. Jones. An early program proof by alan turing. Annals of
the History of Computing, 6(2):139-143, April 1984.

[18] Peter Naur. Proof of algorithms by general snapshots. BIT Numerical Mathematics,
6(4):310-316, Jul 1966.

[19] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal
Introduction. John Wiley & Sons, Inc., New York, NY, USA, 1992.

[20] Tobias Nipkow and Gerwin Klein. Concrete Semantics — With Isabelle/HOL.
Springer International Publishing, 2014.

[21] S. Owre, J. M. Rushby, and N. Shankar. Pvs: A prototype verification system. In
Deepak Kapur, editor, Automated Deduction—CADE-11, pages 748752, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

[22] Erik Poll. Teaching program specification and verification using jml and esc/java2.
In Jeremy Gibbons and José Nuno Oliveira, editors, Teaching Formal Methods,
pages 92-104, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[23] C.Priester, Y. Sun, and M. Sitaraman. Tool-assisted loop invariant development
and analysis. In 2016 IEEE 29th International Conference on Software Engineering
Education and Training (CSEET), pages 66-70, April 2016.

[24] Ed Schouten. CloudABI, cloud computing meets fine-grained capabilites. https:
/Iwww.bsdcan.org/2015/schedule/track/Security/524.en.html, 2015.

[25] Wolfgang Schreiner. Theorem and algorithm checking for courses on logic and
formal methods. In Pedro Quaresma and Walther Neuper, editors, Proceedings 7th
International Workshop on Theorem proving components for Educational software,
THedu@FLoC 2018, Oxford, United Kingdom, 18 july 2018., volume 290 of EPTCS,
pages 56-75, 2018.

769

809

810

812

Evaluation of a structured design methodology for concurrent
programming

ABSTRACT

Learning how to design and implement a program is hard. Teaching
methods and textbooks on Java programming often treat a new
subject in terms of syntax and examples. Little attention is paid
to systematically designing programs with these new concepts.
Research has shown that such a complex task requires not only
conceptual knowledge, but also explicit procedural support.

In this paper, we investigate the effect of combining concep-
tual and procedural guidance to teaching and learning concurrent
programming. We build on earlier research in which we have in-
troduced such a structured design methodology which divides the
development of multi-threaded Java programs into a sequence of
explicit, manageable steps: the Steps Plan.

We present our experiences with applying the Steps Plan in an
introductory course on object-oriented programming, with multi-
threading. The main questions addressed are: "What problems did
the students encounter in direct relation to the Steps Plan?", and
"What general problems surfaced?"

As to the first question, two important issues were that using
a relatively far developed sequential solution as a stepping stone
towards a multi-threaded solution wrong-footed some students, and
that remedying race condition situations turned out to be supported
at a too high level of abstraction.

As to the second question, two notable issues were that deciding
on the right amount and type of concurrency by themselves is
maybe too difficult for students at this level, and that the notion of
(establishing) correctness or quality of a solution is, different from
the sequential case, not intuitively clear to students.

For these issues, the paper recommends remedies and indicates
directions for future work. We discuss the consequences for educa-
tion as regards teaching materials and forms of teaching.

CCS CONCEPTS

« Computing methodologies — Concurrent programming
languages.

KEYWORDS

Education, object-oriented programming, concurrency, Java, pro-
gram design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSERC ’19, 18 — 20 November 2019, Larnaca, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6338-9/17/11...$15.00
https://doi.org/10.1145/3162087.3162088

1 INTRODUCTION

Many students have difficulties in learning to program. Program-
ming is a very complex activity that requires effort and a special
approach both in the way it is learned and taught. Traditional
programming courses and standard textbooks on programming
focus on conceptual knowledge rather than on procedural guidance
of students. They mainly rely on the learn-by-example principle:
After briefly introducing a new concept or language construct,
and illustrating these new notions with examples, students are ex-
pected to construct their own programs ‘by analogy’. The actual
programming skills are then developed in supervised lab classes.
This approach, while quite labour-intensive on the teaching side,
provides the student with no methodical procedure for starting
and systematically navigating the complex programming task. The
lack of procedural guidance is often felt as ineffective. Kirschner,
Sweller and Clark [11] argue that learning such a complex task not
only requires conceptual knowledge, but also explicit procedural
assistance. Essential is to understand which steps to take in order to
solve the problem, as well as how to recognize a potential solution.

In this paper, we present our experiences with applying such
a combined approach to teaching and learning concurrent pro-
gramming. To support this complex task, we proposed a design
methodology that provides scaffolding for the development of pro-
grams in the form of a sequence of explicit, manageable steps: the
Steps Plan as presented at the CSERC 2017 conference [1]. This
paper is part of an educational design research project [15] in which
we improve our programming education through cycles of devel-
oping a concrete change in our teaching, applying it at several
universities, collecting data on it and analyzing the effects.

To set the context, we briefly summarize the Steps Plan - for
further detail we refer to our earlier paper [1]. The idea of the Steps
Plan is to provide beginning students with a design method for
simple concurrent programs in which the development of a program
is divided into explicit, manageable steps. Each step consists of a
procedural description of how to perform that step, and typically
ends with one or more output artifacts that serve as input to the
next step. This should scaffold the student’s learning of concurrency
concepts and their application. The steps proposed are essentially
as follows, to be applied to a description of a programming problem
that in a natural way involves concurrency: a simulation, a program
with efficiency requirements or a program with responsiveness
demands.

(1) OO structuring of the problem domain — Possibly a (sometimes
given) sequential program using these classes that shows
the essential behavior.

(2) Adding the concurrency — Analysis whether concurrency is
needed, and what type of concurrency is involved. Decision
of which activities should be performed concurrently, which
determines the number and roles of threads.

CSERC ’19, 18 — 20 November 2019, Larnaca, Cyprus

(3) Analysis on race conditions — The program is analyzed on
possible race conditions due to shared variables using an
enhanced UML activity diagram. If needed, synchronization
is applied to regulate all shared variable access.

(4) Analysis on check-then-act race conditions — Analysis of the
program for check-then-act race conditions, again using the
enhanced UML activity diagram, and preventing these using
synchronized methods.

(5) Reflection — Assessing the quality of the resulting program.
Reflection on analysis and design decisions made and going
back to the appropriate step if remedy is required.

The artifacts here are the description of the problem, the class
diagram, and the enhanced activity diagram. Furthermore, there is
a more advanced part of the Steps Plan, concerning deadlocks, this
is also not addressed in the present paper.

Our research questions are the following.

(1) What problems did the students encounter in direct relation
to the Steps Plan, i.e., problems that can be related to direct
deficiencies in steps or combinations of steps?

(2) What problems remain after providing the Steps Plan, i.e.,
what problems where encountered that are not so much
deficiencies of the Steps Plan but more general issues with
concurrency education?

Following up on this, we propose improvements, both in the
Steps Plan and for the more general issues identified. Among the
latter there also emerged matters impacting university education
in a broad sense, such as the use of adaptive teaching materials
and the balance between the number of subjects treated and the
intensity with which they are practiced.

Our paper is organized as follows. Section 2 introduces the
method used to investigate the application of the Steps Plan. Sec-
tion 3 contains the analysis. We formulate the conclusions of the
study and suggest improvements to our teaching method and plans
for future research in Section 4.

2 METHOD

The study was conducted at three universities during a freshman
course on object-oriented programming in Java. The research pop-
ulation was heterogeneous, with students from different academic
levels and age-groups (varying from first-year bachelor students to
students having a professional background in IT enrolled in a bridge
program preparing for a master software engineering). The topic
concurrency and the Steps Plan were taught and trained during
two lectures of two hours and a tutorial of three hours. After that,
ten students were observed during a practical work session while
making an assignment on concurrency, on which they worked in
pairs. The students were expected to complete this assignment in
approximately 2 hours.

The assignment
The participants’ activities were recorded while they were working
on the following exercise:
Imagine that a certain number of travelers (between
60 and 90) arrive at a train station. These people must
continue to their final destination, a holiday resort,

session | duration | text type

A 196 min | 9137 words | Audio

B 51 min 842 words Video+Screencasts
C 123 min | 2188 words | Video+Screencasts
D 185 min | 15413 words | Audio

E 32 min 3527 words | Audio

Table 1: Length of sessions

by taxi. Four taxis are available: two with a capacity
of four and two with a capacity of seven people. The
taxis ride back and forth as long as there are still
people waiting at the station. Each taxi transports as
many people as it can, or possibly less, depending on
the actual number of people still waiting.

The goal of this assignment was to implement a concurrent sim-
ulation of the system that imitated reality as faithfully as possible.
For this purpose, in order to reduce the task’s size and complexity,
the students were given a sequential solution that needed to be
converted into a concurrent version. We expected that the students
would need about two hours to complete this assignment.

Data collection and analysis

The activities of five different pairs were recorded. This has hap-
pened in different ways. Only sound recordings were made of three
groups. Video recordings were made from other two groups, com-
bined with screencasts. The audio recordings were transcribed
verbatim by the research team. The student activities in the screen-
casts and video recordings were described in text documents. First,
all transcripts and descriptions were read in their entirety. Then, the
first set of codes was generated through open pair coding. The main
reason for pair coding is to obtain a consensus of two people for
all decisions. Similar codes and quotes were clustered and labelled,
and categories emerged from this process. Together, the research
team organized the codes and clustered them into smaller thematic
groups on a plenary team meeting. The discussions during this
meeting led to a consensus on the division into themes. This axial
coding process was performed using sticky notes on flip charts.

Results

The recorded sessions differed in duration; see Table 1. Table 2 sum-
marizes the result of the coding process. The left column (named
category) is the result of the axial coding (resulting in themes and
corresponding issues) whereas the right column (named observa-
tions) shows some characteristic examples of codes that were placed
in the same thematic group.

In the next section we will investigate these issues in depth.

3 ANALYSIS
By analyzing the observation results, we identified four shortcom-
ings of our procedure. Two of these are shortcomings concerning
an existing step, namely:
e We provided a sequential solution as a step towards a con-
current version. This confused some students, as they were

Evaluation of a structured design methodology for concurrent programming

category observations
Concepts
Synchronization Synchronizing the wrong code; synchronizing too much or too little

Shared resources
Race conditions

code.

Identifying the wrong object as shared.

Misunderstanding the concept of race condition and/or of check-then-
act.

Correctness

Testing

Input/Output analysis

Assuming that concurrent programs are deterministic and that tests
are reproducible.
Assuming the program is correct once it produces some output.

Procedural guidance

Active Class design pattern
Following the steps

Performing the steps

Misunderstanding the design pattern: failure to identify actor; referring
to the design pattern at the wrong time.

Starting a next step before the preceding one has been completed;
taking the steps in the wrong order.

Confusing the active class with the class that creates the thread; being
unable to perform the refactoring required by a correctly identified
check-then-act situation; unclear how the domain model classes corre-
spond to the thread model.

Implementation

Emphasis on code

Sequential simulation

Inspecting code rather than design; ignoring the procedure and starting
on the code right away.

Reproducing the limitations of the sequential simulation in the prob-
lem statement; trying to adapt the sequential simulation rather than
designing afresh.

Other (unexpected) activities

Anthropomorphisms

Unsuccessful approaches

Ascribing human motives to threads and objects; detection of final
state by observing prolonged inaction.

Trial and error, (random) googling; having no plan at all; just respond-
ing to IDE error messages

Table 2: Code categories

CSERC 19, 18 — 20 November 2019, Larnaca, Cyprus

unable to separate the program units to be reused in the con-
current version from those merely present for the purpose
of sequential simulation.

o The steps are of too high a level, so that students, while
aware what had to be done, were unable to perform the
steps. Therefore the big steps have to be split into micro
steps, and their execution needs to be practised.

The other two are points of interest missing in the procedure as a
whole:

o The exercises do not specify the desired amount of concur-
rency.

o There is no explicit step requiring the students to check the
output for correctness. This would also involve specifying
precisely what correctness consists of.

Additionally, we make two observations about the use of anthro-
pomorphism and the role of examples. These issues are discussed
in more detail in the remainder of this section.

3.1 Taking a sequential solution as a step
towards a concurrent version

We observed that students had difficulties identifying actors. Our
procedure gives no concrete instructions on how to determine
which activities should be performed concurrently. Moreover, in
our exercise a sequential solution to the problem was provided, sim-
ulating concurrency through a step method. Students often persisted
in maintaining parts of this ‘step’ function, leading to inadequate
definitions of active classes, as illustrated by the following obser-
vation: one pair of students created a Taxirunner thread, without
removing the step method, that was then started. They studied the
output of the program and doubted the solution. However, they did
not get the idea to abandon the use of the step method.

One explanation for this behavior is that novice programmers
tend to be reluctant to modify code that they didn’t write them-
selves, either because they don’t understand it properly, or because
they are afraid of breaking something that was already (close to)
working. Another reason might be a deficiency in the student’s
conception of threads. Transforming a sequential program into a
concurrent one, is by no means straight forward as an exercise for
a first level course.

CSERC ’19, 18 — 20 November 2019, Larnaca, Cyprus

To remedy these issues, the assignments should indicate the
desired behavior (e.g. the granularity of each task) more explicitly.
Meanwhile, our procedure needs to more explicitly describe how
students should decide which actions can be achieved concurrently.
Therefore task definition (via the active class pattern) and task
creation (using threads) have to be taken into account separately,
avoiding any confusion of these activities.

3.2 Micro steps: the actual procedure is too
high level

The suggested procedure is described at a high level of abstrac-
tion. In that sense, it is like a recipe that contains instructions like
‘prepare chicken stock’ without further explanation.

For instance, when a check-than-act situation is identified, the
procedure states that ‘the actions of checking and acting must
occur in the same synchronized method’. In order to bring this
about, refactoring steps will be necessary and it is assumed the
student knows how to perform these. But it turns out that this is
not always the case. If refactoring is done inadequately, this will
lead to synchronized blocks that are far too large and take away
most of the concurrency, resulting in programs that are correct
but of low quality. This is not easily noticed by students [13]. The
following fragment shows a example:

Student A: The problem is you can’t put synchronized
outside otherwise only one taxi will operate, that is
not the intention of course. So you actually want to
synchronize a block inside the while loop.

Student B: If we synchronize this wrong, it still works,
right? It should work, right? It is not just that efficient.
You don’t like one taxi to do all the things.

A comparable problem occurs when the threads have to be cre-
ated. One of the misunderstandings that occur here is that the active
classes (those that implement Runnable) should have the responsibil-
ity for creating the threads. Another mistake we have seen is that
far too many threads are created, namely a fresh one every time an
object has finished some process step.

Student: The thread has to be created afresh every time. I
Jjust happen to know that. [...] There are four taxis and
there will never be more. But each taxi is inserted into
a thread as a task, and when it is finished its work it
should go for a new ride. Then you should start a new
thread, hence also create one.

These are situations where students know which step of the
procedure needs to be executed but lack sufficient competence to
do so. There should be more detailed explanations available of what
is to be done within each step of the procedure.

However, filling the teaching materials with detailed explana-
tions of micro-steps will make them extremely boring for students
that already have a good understanding of the required actions. In
practice, some of the students entering the course will have had
little exposure to programming, while others have several years’
professional experience. It is impossible to provide a linear text that
equally satisfying to both groups.

A possible solution may be found in the concept of adaptive
hypertext [2]. This allows for details to be suppressed or provided
according to the needs of the student. The decision may be taken
explicitly by the student, by clicking some ‘expansion’ symbol, as
has been already implemented by some online newspapers. Alter-
natively, the decision could be made automatically based on the
results of the student’s performance on formative tests.

3.3 Desired amount of concurrency

Once the decision has been taken that the program will have to
execute some steps concurrently, the question naturally arises what
will be allowed to take place concurrently and what not. For in-
stance, a printer should be accessible to multiple threads containing
print instructions, but characters produced by different threads
should not be arbitrarily intermingled.

Initially, we provided exercises that did not explicitly specify
the desired amount of concurrency: we assumed that this would
be inferred from the intended use of the program in real life. How-
ever, this proved to be a mistake, as many students’ submissions
contained suboptimal choices in precisely this area. Hence, we now
feel that either the exercise text itself must explicitly specify what
is to be performed concurrently, or the students have to be trained
in providing such specifications themselves.

The amount of concurrency has three aspects: the number of
threads, the granularity of the protected code blocks, and the mu-
tual synchronization of these blocks. The problem with the number
of threads has already been addressed in Subsection 3.1. The granu-
larity problem involves determining the size of a critical section: a
code fragment that may refer to a shared resource that should not
be accessed by different threads at the same time is called a critical
section [3]. The size of the code fragment is important, because too
large a critical section will result in threads being blocked unnec-
essarily long, thus reducing the advantages of concurrency. The
mutual synchronization is important, because synchronizing blocks
that do not interfere unnecessarily reduces concurrency, whereas
not enough synchronization may lead to unsafe situations.

An extreme instance of a struggle with granularity choice that
we observed was students protecting a block containing sleep state-
ments.

Student A: Why don’t you make the whole thing synchro-
nized?

Student B: Because the synchronized part should not be
made too large.

Student A: What’s too large?

Student B: You should not sleep within the synchronized
block. Because there may be no people waiting at the
station.

Student A: Let’s measure how long the sleep lasts.

A distinct but related problem occurs if too many blocks are syn-
chronized causing too many threads to be blocked, including ones
that are not about to access the shared resource. The latter problem
occurs when a single lock is used to delay all threads at the critical
section, regardless of what resource is actually wanted in a thread’s
current context. To see an example of this, consider a system for
reserving airplane seats: to prevent double bookings, a seat should

Evaluation of a structured design methodology for concurrent programming

be blocked during such a transaction. Using a separate lock for each
seat will solve this problem efficiently; using a single lock for all
seats, although safe, will hamper progress quite unnecessarily.

The opposite effect, using too many different locks, will re-
sult in an unsafe solution. Two students observed that method
takePassengers in class Taxi influenced the attribute
numberOfPassengersWaiting in a different class, and reasoned as fol-
lows:

Student A: Well, it’s time to start synchronizing some
methods. This method takePassengers will be called by
different threads.

Student B: We solved that by making it synchronized.

Student A: Now that we’ve done that, I wonder whether
we should also synchronize getNumberOfPassengers Waiting.

Student B: But that would synchronize all the code within
that method.

Student A: Right, so we need only synchronize the top
level.

Student B: It might still be the case that we synchronize
too much code.

Student A: In principle we have only synchronized takePassengers.

Here the students seem aware of the danger of blocking too much,
but do not realize that by marking the method synchronized without
explicitly mentioning a lock, they are implicitly using a separate
lock for each (taxi) thread; thus different taxis are not prevented
from accessing numberOfPassengersWaiting simultaneously.

3.4 Correctness

We found two issues concerning correctness, namely students often
assume a program is correct once it produces some output, and
students are often not aware that because of non-determinism
different correct program outputs may result.

First, instead of comparing program output to the requirements
in the exercise description, students often assume a program is
correct once it produces some output. One example of this way of
thinking is shown in the following fragment: students want to ask
a question and, in the meantime, execute the program developed
so far. They see that many taxis are created, but all these taxis
do not transport any passenger. The teaching assistant appears.
The students show the output and ask the assistant: ‘Ts this output
correct?’.

In this fragment, the students are considering obviously incorrect
program behavior as ‘possibly correct’, although as long as there
are passengers to transport, taxis should not be empty.

Another example fragment is the following:

Student A: While not station is closed, ... well,But, in
that case he should close. The train will close the station
... Look at this!

Student B: All passengers have been transported.

Student A: [think it is ok so. We finished the job. We have
to write our report.

These students are assuming the program is correct because it
produces some superficially correct output. But they did not inspect

CSERC 19, 18 — 20 November 2019, Larnaca, Cyprus

the output precisely, i.e., were all taxis always transporting the
maximum number of passengers possible. Neither did they check
on anomalous behavior such as halfway vanishing or materializing
passengers as might occur due to race conditions.

These findings, i.e. that students are satisfied with a program that
compiles and produces some output, correspond with Kolikant [12].

Second, students are not aware that, because of non-determinism
in the scheduling of concurrent program parts, different correct
outputs may result when running a program several times with the
same input. The following fragment shows an example:

Student: 12 34 1 2. Hey! How is that possible? That is
strange. Why didn’t it do that a moment ago?

Here, the student is surprised that the concurrent program pro-
duces an output different from the previous execution. This in-
dicates a lack of understanding of concurrent execution and/or
an inability to apply the conceptual knowledge concerning non-
determinism into real situations. They are looking for the correct
output, but several correct outputs are often possible.

Apparently, students do not have a notion of what correct behav-
ior is in the multi-threaded application area, and when a program
can be assumed to be correct. Observing that there is output is
not enough. Instead, the output must be analyzed in relation to
the informal specification of the program’s behavior as (should be)
described in the assignment. It should be noticed that proving a con-
current program is correct is beyond the scope of a freshman course
on object-oriented programming. But analyzing and checking on
some behavior properties is certainly possible.

In the think-aloud sessions we did not find any fragment where
students talked in terms of correctness.

Looking again at our teaching material and exercises, we find
that these do not discuss how to draw up informal specifications
of program behavior and how to use these to reason about the
correctness of a concurrent program. This corresponds to Goetz’s
observation [8]: ‘... we often don’t write (adequate) specifications
... As a result, it is actually impossible to know whether a program
is correct. Drawing up informal specifications of expected program
behavior and using them in reasoning whether a concurrent pro-
gram is correct should be clarified at the appropriate level for an
introductory course.

This indicates the need for identifying properties that the behav-
ior should have. For example, in case of our train-taxi-passenger
exercise, one could require that the number of trains, taxis, and
passengers should remain constant during program execution. Or,
depending on the goal of the simulation, instead of simply count-
ing passengers at the start and end of a program run, one could
check on the passengers’ IDs, because due to race conditions, one
passenger could disappear while another is created.

In the case of simulation, a natural candidate for a condition on
behavior would be an invariant property. Invariants and other con-
ditions could be provided with the exercise, or, for more advanced
students, be required to be constructed by the student from the
exercise description.

The current Steps Plan has a step, Reflection, that concerns the
correctness of the final multi-threaded program, but this step incites

CSERC ’19, 18 — 20 November 2019, Larnaca, Cyprus

only to reflect on the analysis and design decisions made, not how
how this analysis should be performed. As a result, the Step Plan
should be extended in two ways:

First, an activity analysing/drawing up correctness properties should
be added in terms of, e.g., invariants. This can be done at the start
of implementing the program, but properties can be further refined
when steps towards the final version are being made. Note that for-
malization of the conditions is beyond the scope of an introductory
course: the approach by Felleisen is an inspiring example of how
to incorporate explicit condition at this level [7].

Second, at several points in the step plan, the student should be
guided to reflect on how the program satisfies such properties.
In particular the step Reflection should be extended with means
how to use the properties to determine whether the final program
behaves correctly.

Additionally, despite the explanation of the concept of non-
determinism as part of the Steps Plan, it turns out that students
are not aware of this concept in practical situations, i.e., that a cor-
rect concurrent program can produce several different outputs due
to non-determinism in the scheduling of the concurrent program
parts. This impacts the notion of correct behavior: students should
be aware which differences in output over different runs are an
indication of incorrect behavior and which are due to acceptable
non-determinism induced by concurrency. Next to the explanation
and the use of this concept in complete exercises, the application
of this concept should be practiced in smaller exercises, so called
part-tasks [18], to train this routine aspect up to a higher level of
understanding and automation.

3.5 Anthropomorphism

Anthropomorphism is the attribution of human characteristics to
things that are not human. Analyzing the think-aloud sessions,
we observed, as a fortunate by-catch, that students often use an
anthropomorphic style in talking about objects and their behavior.
For example:

Student: Voild, out of the box. O yes, he is going to create
taxis first, then there arrives suddenly a train with 85
passengers. The taxis take all these passengers ...

Here, he points to the part of the program responsible for creating
taxi objects.

In literature, anthropomorphism is considered as an innate ten-
dency of human psychology [14]. It is known that anthropomor-
phism can help in thinking and talking about difficult and unfa-
miliar topics [10]. Nevertheless, many scientists disapprove the
use of anthropomorphism: It is considered as a symptom of profes-
sional immaturity, i.e. it disguises that one’s knowledge is insuffi-
cient [4, 5, 10, 16].

In our recorded sessions, we found passages where the use of
anthropomorphism is just a style of talking that does not seem to
hinder understanding. The passage above is an example of this.
Anthropomorphism may hinder understanding, however, when
programming objects are attributed human characteristics that can
not and will not be implemented. Then the student is constructing
a programming model that does not comply with reality and will
hamper his understanding and programming abilities.

The following fragment is an interesting example where this
case may be applicable.

Student: Yes, that is wrong. There should be something
...indeed. [...] Can you say that after a number of
taxi rides he simply stops? Or, that after a long time of
waiting, in case he has waited ten times and there still
aren’t passengers there, he goes home?

In this example, a final state of a taxi is observed by a prolonged
inaction of that taxi. Where a human would be tired to wait, it is
obviously not the reason for a thread to stop. How mistaken this an-
thropomorphism is, remains the question, though. Remember that
we have a simulation here where the student’s program is intended
to simulate human behavior (human passengers, taxis driven by hu-
mans). From the exercise description, it is not so clear what exactly
is simulated. Is it just a logistic procedure, implemented by the taxi
drivers and not intended to be influenced by human considerations
such as tiredness or are we simulating human behavior here?

In our opinion, anthropomorphic thinking can be helpful to ex-
plore a new subject or to get to grips with a new problem. It can,
for instance, be used in an OO simulation game, resembling the
well-known CRC modeling technique [9], performed by students
to explore the way objects behave and interact with each other.
However, if this is carried out too far, there is a risk that students
will set themselves on the wrong track. In the case of simulations
where humans are involved, extra care has to be taken to make
clear to the students what behavior is to be simulated, e.g., behav-
ior of an inanimate algorithm, possibly implemented by humans,
or decisions made by humans. This may help the student to not
confuse the innocent anthropomorphisms and the helpful anthro-
pomorphisms of the phase of getting to grips with the problem
and the possibly detrimental anthropomorphisms regarding, e.g.,
programming objects.

3.6 Unrealistic examples

Many instructors have found it difficult to construct high quality
programming assignments. Several authors have looked at this
issue and proposed different criteria which should be taken into
account when developing programming assignments. For instance,
Falkner and Palmer [6] state that a good programming assignment
should be based on a real-world problem and allow the students to
generate a realistic solution.

In our opinion, the three main reasons to introduce concurrency
into a program, are improvement of efficiency and processor utiliza-
tion, avoidance of nonresponsiveness, and simulation of inherently
parallel processes in the real world.

It is relatively simple to give examples and assignments for the
first two cases that are both practically relevant and relate to a
realistic problem. If we look at our step-by-step plan, we find that
provided procedural guidance mainly focuses on the third category
of applications: the simulations. In practice, simulations are used to
determine properties of processes by modeling these processes as a
computer program and then analyzing the results of this program.
However, often it is not necessary to use concurrency in such a
model. On the contrary, in many cases a sequential implementa-
tion appears to work much better. This also seems to be the case

Evaluation of a structured design methodology for concurrent programming

in the taxi assignment used in this study. The simulation in this
assignment has no realistic goal. In fact, the taxi problem is only
used as a metaphor to visualize the abstract concurrency concepts.
The need to make explicit use of concurrency for this purpose is
lacking, as a result of which students are often unable to discover
the constructs intended by the lecturers themselves. This could
explain why students stubbornly stick to the sequential solution
that was provided as a starting point.

4 CONCLUSIONS AND FUTURE WORK

Using the Steps Plan in actual education has confirmed our initial
intuition that something along these lines would be useful as a guide
providing scaffolding for those students that have no experience
how to attack concurrency exercises. The observation results do not
show a reason to change the choice or the order of the macro-steps
in the Steps Plan.

Students have to deal with amount of concurrency, correctness,
race conditions and synchronization. Problems observed pose the
question how to help the student make these things concrete and
explicit, and how to provide procedural help. A general observation
is, that this cannot be provided by the Step Plan alone: exercises
need to be crafted that provide detailed explicit scaffolding at the
beginning and gently evolve to posing more demands on the inde-
pendent thinking of the student.

Analysis of the difficulties students ran into points the way to
improvements.

Providing a sequential solution to a problem for which a
concurrent solution is sought is not helpful. If we want to
assist students to get started, a framework of domain classes
is preferable.

Exercises should specify clearly which activities are sup-
posed to proceed concurrently. If this decision is left to the
(more advanced) students, they ought to provide explicit
reasoning leading to their choice.

Task definition (via the active class pattern) and task creation
(using threads) have to be taken into account separately in
the Steps Plan, avoiding any confusion of these activities.
Detailed information in terms of micro-steps on how to per-
form the macro-steps in the Steps Plan should be available
on demand: the role of adaptive hypertext needs to be inves-
tigated.

The step Reflection of the Steps Plan should be extended
with means of how to check the output for correctness. This
requires an analysis to determine which correctness prop-
erties would be visible from the output, taking into account
the non-deterministic character of concurrent programs.
Examples and assignments should be both practically rel-
evant and relate to a realistic problem. This is more often
the case with problems addressing efficiency and responsive-
ness than with simulation of real-world parallel processes.
Exercises should be adapted to this insight.
Anthropomorphic thinking turned out to be helpful when
thinking about a problem domain, but turned out to be dan-
gerous when applied to, i.e., programming objects. We should
make our students and teachers aware of this.

CSERC 19, 18 — 20 November 2019, Larnaca, Cyprus

Two aspects of our research that have not yet been discussed
are the following.

First, the detailed observation of students (through screencasts
and audio recordings) and the comprehensive analysis of the gen-
erated data leads to valuable knowledge about the way students
learn to program. This information remains invisible if we solely
base conclusions about the learning behavior of students on the
assessment of delivered products and disregard the way in which
students proceeded. In our specific case of the Steps Plan, this has
yielded a number of concrete points for improvement that would
otherwise have gone unnoticed.

Second, while working on the assignment, students sometimes
seemed not to make any progress at all. We observed that students
often had difficulty with concepts that had already been introduced
and that the teachers assumed students would master. Due to the
cognitive load [17] that this creates, the entire development process
seems to be stagnating. We think that for learning new concepts,
students must have sufficient time and opportunity to practice. To
create room for this, teachers should consider reducing the number
of subjects in a course.

ACKNOWLEDGEMENT

This project is part of the research group Didactics of Informatics
and is carried out in collaboration with E. Barendsen. Participating
universities in this project are the Radboud University, Eindhoven
University of Technology and Open University of the Netherlands.

REFERENCES

[1] A. Bijlsma, C. Huizing, R. Kuiper, H. J. M. Passier, H. J. Pootjes, and J. E. W.
Smetsers. A structured design methodology for concurrent programming. In
Proceedings of the 6th Computer Science Education Research Conference, CSERC
’17, pages 1-9, New York, NY, USA, 2017. ACM.

[2] Paul De Bra. Adaptive educational hypermedia on the web. Commun. ACM,
45(5):60-61, May 2002.

[3] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 26(1):21-22, January 1983.

[4] EW. Dijkstra. How do we tell truths that might hurt, 1975. EWD 498.

[5] EW. Dijkstra. On anthropomorphism in science, 1985. EWD 936.

[6] Katrina Falkner and Edward Palmer. Developing authentic problem solving skills
in introductory computing classes. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education, SIGCSE *09, pages 4-8, New York,
NY, USA, 2009. ACM.

[7] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to Design Programs: An Introduction to Programming and Computing.
MIT Press, Cambridge, MA, USA, 2001.

[8] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David

Holmes. Java Concurrency in Practice. Addison-Wesley, Upper Saddle River, New

Jersey, 2006.

Lars Hvam, Jesper Riis, and Benjamin Loer Hansen. Crc cards for product

modelling. Computers in Industry, 50(1):57 — 70, 2003.

[10] M. Kallery and D. Psillos. Anthropomorphism and animism in early years science:
Why teachers use them, how they conceptualise them and what are their views
on their use. Research in Science Education, 34(3):291-311, Sep 2004.

[11] P.A. Kirschner, J. Sweller, and RE. Clark. Why minimal guidance during in-
struction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational psycholo-
gist, 41(2):75-86, 2006.

[12] Yifat Ben-David Kolikant. Students’ alternative standards for correctness. In
Proceedings of the First International Workshop on Computing Education Research,
ICER °05, pages 37-43, New York, NY, USA, 2005. ACM.

[13] Gary Lewandowski, Dennis J. Bouvier, Robert McCartney, Kate Sanders, and
Beth Simon. Commonsense computing (episode 3): Concurrency and concert
tickets. In Proceedings of the Third International Workshop on Computing Education
Research, ICER "07, pages 133-144, New York, NY, USA, 2007. ACM.

[14] KJ. McCaffree. Is magical thinking good?. Skeptic, 19(1):59 - 61, 2014.

[15] T. Plomp. Educational design research: An introduction. In T. Plomp and
N. Nieveen, editors, Educational design research, pages 10-51. Enschede: SLO,

[9

CSERC ’19, 18 — 20 November 2019, Larnaca, Cyprus

2013. Review, 17(2):147-177, Jun 2005.
[16] L. Vaillant. Anthropomorphism gone wrong: Poor motivating example for oop, [18] Jeroen J.G. van Merriénboer, Richard E. Clark, and Marcel B.M. De Croock.
2015. Blueprints for complex learning: The 4c/id-model. Educational Technology Re-
[17] Jeroen].G.van Merriénboer and John Sweller. Cognitive load theory and complex search and Development, 50(2):39-61, 2002.

learning: Recent developments and future directions. Educational Psychology

A class project to prepare software engineering students for
their capstone projects

ABSTRACT

We discuss the design of a class project which we have introduced
to improve our Software Engineering course presented on the third-
year graduate level at our institution. For this project, the whole
class collaborate to design and implement a single, reasonably large
software system. We believe that the class project has the potential
to provide an intensive learning experience for our students and
may have several educational benefits.

We investigate the impact of the class project on student achieve-
ment and project success. We gauge the impact of the class project
by analysing differences the academic performance of the students
in the course, analysing the differences in assessment marks as-
signed to projects and by observing variations in the source code
of the software systems delivered by the students through the ap-
plication of popular software metrics.

Although the results are inconclusive, we feel the class project
provides a unique opportunity for students to get hands-on experi-
ence in the development of real-world software for industry.

CCS CONCEPTS

«Social and professional topics — Software engineering edu-
cation; « Software and its engineering — Software maintenance
tools; Empirical software validation; Programming teams.

KEYWORDS

software engineering, software metrics, capstone project class project,
teaching software development

ACM Reference Format:

. 2019. A class project to prepare software engineering students for their
capstone projects. In CSERC ’19: Computer Science Education Research Con-
ference, November 18-20, 2019, Larneca, Cyprus. ACM, New York, NY, USA,
12 pages. https://doi.org/xxxx

1 INTRODUCTION

In our software engineering (SE) module, we usually have between
80 and 100 students who are required to complete their capstone
projects. For these projects, students are expected to design and
implement a software system for an industry partner over a period
of approximately five months. During this time, the students design
and implement relatively large authentic systems to solve open-
ended problems. To prepare our students for their capstone projects,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSERC ’19, November 18-20, 2019, Larneca, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX...$15.00

https://doi.org/xxxx

we involve them in a class project during the first eight to ten
weeks of the module. This class project is described in Section 2.
We contend that the class project helps the students to be more
successful when completing their capstone projects and ultimately
to more in-depth learning of SE concepts and competencies.

In this paper, we describe our class project. We briefly state why
it was introduced and report how it is conducted in its current
state. We introduce software metrics we used in our investigation
whether the class project has the assumed effect.

In order to enable us to observe the effect of the class project, we
omitted the class project when we presented the SE module in 2018.
In our investigation we observe the difference in achievement of
the students who participated in the module in 2018 with those who
participated in the module in the previous year when a successful
class project was conducted. Firstly, we analyse the final marks that
were achieved by the individual students in the module at the end
of each of the two years. We compare the results of the years with
one another to determine if the overall achievement of the students
is better during the year in which the class project was included.
Secondly, we analyse the marks that were assigned to these teams
during continuous assessment of their progress during of each of
the two years. We compare the results of the years with one another
to determine if the students fared worse during the year in which
the class project was omitted. Finally, we apply software metrics to
assess the student code gathered from public git repositories that
were used by student teams when they worked on their projects.
We compare the outcome of the assessment of their code of the
years with one another to determine if there is any decline in the
quality of the code written by the students when they had not done
the class project.

We conclude with a brief summary of the results of our investi-
gations and discuss some implications thereof.

2 CLASS PROJECT

We observed that our students are likely to make many bad deci-
sions while working on their capstone projects. One of the con-
sequences of such bad decisions are that they learn more about
how not to do things rather than gaining experience in how to do
things right. We attribute some of the bad decisions to the inex-
perience and ignorance of the students. To address the problem,
we applied a lesson learnt from Desai et al. [4]. They introduced a
class project during their fifth semester to address shortcomings
commonly found in capstone projects such as lack of teamwork,
bad planning, weak requirements management, poor design and
documentation, excessive code bulk, late integration, and weak
testing. Likewise we inserted an intense class project before stu-
dents commence with their capstone projects. The class project is
an opportunity for the students to gain the experience in the appli-
cation of SE concepts, practices, tools and the social skills required
for the completion of their capstone project. The aim in doing so

CSERC 19, November 18-20, 2019, Larneca, Cyprus

is to reduce the problems and increase the value of a subsequent
capstone project.

The class project is conducted before the students commence
with their capstone projects. The main aim of the class project is
to teach the software development life cycle in a hands-on manner
and at the same time to ensure that students enter their capstone
projects with more experience.

The project had evolved over the years. Since having introduced
the class project in 2011 [11-13] we applied continuous action
research to analyse and improve the process with each presentation
of the course[10]. In its current state, this project involves the whole
class to collaborate on the design and implementation of a single
software system. This is done by conducting three consecutive
micro-projects where lecturer assigned teams are shuffled for each
micro-project. The tasks for the micro-projects are:

(1) Requirements specification.
(2) Design and deployment planning.
(3) Implementation and testing.

For the first two micro-projects the teams have the same task
and should produce the required documentation while in the last
micro-project the teams are each assigned a different module to
implement. We require test driven development.

When implementing the system students are exposed to large
scale development and the difficulties posed by the integration of
the inter-dependant modules developed by different teams. They are
guided to use dependency injection, unit testing with mock objects
and integration testing. It is also expected that they use build tools
which support dependency management, integrated testing and
artefact distribution. The practical experience of applying these
practices in software engineering, is required here to foster an
appreciation of their benefits.

The system designed and implemented during the class project
is chosen to be aligned with the latest technology trends in order to
create a situation in which the students have to learn the application
of contemporary technologies. The project should be suitable for
its purpose. It should apply cutting edge technologies, yet should
not be technically too challenging. The system should lend itself
to modular design where each team can work independently on
their assigned module and provide the exposure to the challenges
associated with integration allowing for piece-wise integration.

We emphasise various aspects of documentation in order to guide
the students to understand the need for proper documentation. Mi-
tra [9] found that enforcing high level of precision UML modelling
supporting direct mappings to code demonstrated the relevance
of models to students and facilitated maintainability of developed
systems. Similarly, we require technology-neutral component based
modelling facilitating mapping of component contract specifica-
tions onto interfaces and unit tests and data structure specifications
onto entities and activity diagrams onto method bodies.

We assign new teams for each micro-project in order to maximise
the number of different people each student is required to work with
during the class project. This creates an opportunity for the students
to meet the people with whom they may team up to for their
capstone projects. They are also exposed to a variety of personalities.
During this time students are allowed to make mistakes without

having to suffer the consequences in the longer term because the
teams are short-lived.

After completing the task, we expect the students to partici-
pate in structured reflection on their newly acquired skills. We are
aware that students are less inclined to judge each other openly
and passing on critique to instructors is often felt as betrayal [1].
For this reason the feedback is confidential. To encourage students
to be truthful, marks are awarded to individuals for the quality
of their feedback. General guidelines to the individuals supports
the identification of soft skills that could be improved in the next
micro-project. It is assumed that the lessons learnt in each micro-
project is acted upon in the next micro-project. The timeliness of
processing the feedback is essential as the usefulness and impact
thereof fades over time.

To maximise the actual learning that results from the opportuni-
ties created this way, we provide support. We inform them about
the possible difficulties they may experience during their forthcom-
ing micro-projects and give them guidelines on how to deal with
expected difficult situations. We also encourage the students to seek
help when needed.

Because students are regularly re-assigned to new teams during
the class project, it allows students to acquaint themselves with
most of the other students in the class. Furthermore, it creates
situations where the students can learn teamwork skills [7, 14].

The class project provide a guided learning experience in which
the students can master the software development life cycle and
learn how to use software tools to support various aspects of the
software development process. The project also supports the devel-
opment of employability skills such as getting along with people of
different genders, races, religions or political persuasions; defining
one’s role in a team; identifying the strengths of the other team
members; and being able to lead a team effectively [6].

3 SOFTWARE METRICS

Quantitative measurements are essential in all sciences. Computer
Science is no exception. There is a continuous effort by computer
science practitioners to design quantitative measures to validate the
quality of software. The goal is to obtain objective, reproducible and
quantifiable measurements, which may have numerous valuable ap-
plications in schedule and budget planning, cost estimation, quality
assurance, testing, software debugging and software performance
optimisation.

The metrics that were chosen to assess the student code are
Cyclomatic Complexity, Halstead Metrics and Maintainability Index
[3]. We used freely available software tools to analyse the code.

3.1 McCabe’s Cyclomatic Complexity

Developed by McCabe [8], this metric is used to indicate the com-
plexity of a program, and measures the number of linearly indepen-
dent paths through the source-code of a program.

A class project to prepare software engineering students for their capstone projects

Take for example the following section of code:

A =10
IF (B > C) THEN
A=B

ELSE
A=C
ENDIF

Print A
Print B
Print C

,
,
5

Figure 1: Control Flow Graph

The graph depicted in Figure 1 shows 7 shapes (nodes), 7 lines
(edges) and 1 exit point. Mathematically, Cyclomatic Complexity is
defined as:

M =E—-N +2P

o E = number of edges in the control flow graph
e N = number of nodes in the control flow graph
e P = number of nodes that have exit points

CSERC 19, November 18-20, 2019, Larneca, Cyprus

3.2 Halstead Metrics

Halstead [5] introduced software metrics as part of his treatise on
establishing an empirical science of software development. He ob-
served that language agnostic metrics should reflect the implemen-
tation of an algorithm in different languages, but be independent
of their execution on a specific platform. His goal was to identify
measurable properties of software and the relations between them.
The following base measures can be collected:

e 11 = number of distinct operators
e 12 = number of distinct operands

e Nj = total number of operators

o N, = total number of operands

e LOC = total lines of code (without comments)

In this paper, the following Halstead metrics are used:

3.21 Length. N =N; + N,

This metric calculates the total number of operator occurrences
and the total number of operand occurrences.

3.22 Vocabulary. n =n1 +n2

The total number of unique operator and unique operand occur-
rences.

3.23 Volume. V = N X logan

This metric calculates the relative program size.

u4DWMWD:%x%
As the volume of the implementation of a program increases, the
program level decreases and the difficulty increases. Thus, pro-
gramming practices such as redundant usage of operands, or the
failure to use higher-level control constructs will tend to increase
the volume as well as the difficulty.

3.25 Effortt E=DXV

Measures the amount of mental activity needed to translate the
existing algorithm into an implementation in the specified program-
ming language.

3.3 Maintainability Index
MI =171 -5.2xIn(V) - 0.23 X M — 16.2 x In(LOC)

Maintainability Index is a software metric which measures how
maintainable (easy to support and change) the source code is. We
use the improved four-metric model proposed by Welker et al. [15]
to calculate the Maintainability Index of the source-code written by
our students. This maintainability index is calculated as a factored
formula consisting of Lines Of Code, Cyclomatic Complexity and
Halstead volume.

4 SOURCE-CODE ANALYSIS TOOLS

The projects that were analysed were written in the Java, JavaScript
or Python programming languages. In order to analyse the source-
code of these projects, three open-source / free software tools (one

CSERC 19, November 18-20, 2019, Larneca, Cyprus

tool per programming language) were selected to perform the anal-
ysis. These tools were selected based on being freely available and
their capabilities to determine the metrics discussed in Section 3.
Table 4 shows the selected tools that were used to analyse the
source-code of the student projects. The tools were installed and
executed on a Linux Mint operating system.

4.1 Java and Source Meter

After Source Meter was installed, it was executed with the com-
mand shown in Figure 2 on a project with Java source-code. This
command produces a number of result output files, among which
is a comma-delimited file containing all the metrics mentioned in
Section 3 (among others), calculated per method.

4.2 Python and Radon

After Radon was installed, it was executed to calculate the vari-
ous metrics mentioned in 3 by executing the commands listed in
Figure 3.

The command labeled a) is used to calculate Cyclomatic Complex-
ity on a project with Python source code. The command calculates
the Cyclomatic Complexity per function, method and class and
pipes it to a text file.

The Maintainability Index is calculated with the command la-
beled b). The command calculates the Maintainability Index per file
and pipes it to a text file.

The command labeled c) is executed to calculate the Halstead
metrics. The command calculates the Halstead metrics per method
and pipes it to a text file.

4.3 JavaScript and Plato

After Plato was installed, it was executed with the command shown
in Figure 4 on a project with JavaScript source-code. This command
calculates the metrics referred to in Section 3 per method and saves
it in JSON-formatted result files in the specified folder.

5 IMPACT ON INDIVIDUAL PERFORMANCE

We assume that the students who have participated in the class
project have a better understanding of the software engineering
life cycle and have gained practical experience in SE technical
skills as well as in employability skills. We further contend that
those who enter their capstone project after having completed this
preparatory project is more likely to succeed in their capstone
projects. Ultimately these students have a wider frame of reference
when learning during their capstone projects resulting in improved
learning outcomes. The following hypothesis is formulated to assert
this assumption:

The overall achievement of students who had par-
ticipated in a class project is higher than the overall
achievement of students who had not participated in
a class project.

To test this hypothesis we use the final marks that were achieved
by the individual students in the module at the end of the year in
2017 and 2018. The students in the 2017 cohort had participated in
a class project while the 2018 did not. We compare the results of

the years with one another to determine if the performance of the
2017 cohort is better than the 2018 cohort.

In 2017 nine of the 103 students (8.7%) who started the module,
failed or dropped out. In 2018 ten of the 81 students (12.3%) who
started the module discontinued or failed. This increase in failure
in the year where the class project was omitted, is an indication
that the individual performance of the students is better when
they participate in the class project as more of them successfully
complete the project.

We further analyse the final marks of the students who passed
the module. The students in the two cohorts are independent of
one another, thus our data is unpaired. Our sample size is relatively
small (93 in 2017 and 72 in 2018). Furthermore, the students in this
course are not representative of the population, consequently their
marks does not necessarily follow a Gaussian distribution. Based
on these facts we decided to use a non-parametric test to test our
hypothesis. Although we expected that the achievement of the 2017
cohort would be higher, we decided to performed the two-tailed
t-test rather than performing a one-tailed test to provide for the
probability that the class project may have had a negative effect on
the performance of the students. Table 2 shows the group statistics
of the final marks of individual students in the two groups.

The mean of the 2017 cohort is higher than the mean of the
2018 cohort. This is in line with our expectation. The p-value of
Levene’s Test for Equality of Variances is 0.345. This value is more
than 0.05, therefore we know that the result has equal variance.
Table 3 shows the result of the two-tailed t-test for equality of
means assuming equal variances. The 95% Confidence interval of
the difference is [3.257, 10.488]. Since the p value is practically 0, we
reject the null hypothesis (of no difference) and conclude that there
is a statistically significant difference of 5.108 between the mean
marks of the 2017 cohort and the 2018 cohort at a 5% significance
level.

We can conclude that the achievement of the students who partic-
ipated in a class project before commencing their capstone project
is statistically better than those who did not. This confirms that
the class project had a positive effect on the achievement of the
students in this case.

6 IMPACT ON TEAM SUCCESS

Apart from providing a broader learning experience for the students,
culminating in better overall learning for individuals, we assume
that the students who have participated in the class project are
better prepared when they enter their capstone project. This should
enhance the likelihood that they would succeed in their capstone
projects.

The following hypothesis is formulated to assert this assumption:
The projects done by teams consisting of members
who had participated in a class project is more suc-
cessful than the projects of teams who have members
who had not participated in a class project.

A class project to prepare software engineering students for their capstone projects

Language ‘ Tool Name ‘ URL

CSERC 19, November 18-20, 2019, Larneca, Cyprus

Java Source Meter | https://www.sourcemeter.com

Python Radon
JavaScript | Plato

https://pypi.org/project/radon
https://github.com/es-analysis/plato

Table 1: Tools used in the analysis of the source-code

./SourceMeterJava -resultsDir=<dir_to_save_results> -projectName=<P1...Pn>
-runAndroidHunter=false -runVulnerabilityHunter=false -runFaultHunter=false
-runRTEHunter=false -runDCF=false -projectBaseDir=<root_of_project_to_analyze>

-runFB=false -runPMD=false

Figure 2: Command used to invoke Source Meter

a) radon cc --show-complexity root_of_project_to_analyse > result_text_file
b) radon mi --show root_of_project_to_analyse > result_text_file
c) radon hal root_of_project_to_analyse > result_text_file

Figure 3: Commands used to invoke Radon

plato -r -d <dir_to_save_results> <root_of_project_to_analyse>

Figure 4: Command used to invoke Plato

year N Mean StdDev Std.Err Mean
2017 93 72.25 8.744 0.907
2018 72 67.14 7.908 0.932

Table 2: Group Statistics - individual achievement

Mean Std.Err
t df Sig (2-tailed) Difference Difference
3.879 163 0.000 5.108 1.317

Table 3: T-test for equality of means

We deem the marks assigned to project teams when assessing the
projects at regular intervals as a good criterium for the success of
the projects. Figure 5 shows the marks of the teams. The teams are
numbered in order of the marks with the project with the highest
mark is assigned the number 1, the number 2 is assigned to project
with the second highest mark, etc. One can observe that the projects
of 2018, when compared with the project in 2017 which is ranked
in the same place, is consistently weaker in terms of these marks.

To test our hypothesis, we analyse the final marks that were
achieved by the capstone teams in the module during the two years
under investigation. These marks are compiled using the marks
that where awarded to the teams at a variety of assessments during
the course of the project. We evaluate the implementation of the
projects in a series of demonstrations where the teaching assistants
assessed their projects using rubrics that include the scope of the
project, the professional conduct of the team, compliance with their
development plan, as well as the quality of the code in terms of
readability, re-usability and efficiency.

We compare the results of the years with one another to deter-
mine if the performance of the 2017 teams (who had a class project
before commencing with their capstone projects) is better than
the 2018 teams (who started with their capstone projects without
participating in a class project).

The teams in the two years are independent of one another, thus
our data is unpaired. We decided to use a nonparametric test to
test our hypothesis because our sample size is very small (20 in
2017 and 16 in 2018). Although we expected that the achievement
of the 2017 teams would be higher, we decided to performed the
two-tailed t-test rather than performing a one-tailed test to provide
for the probability that the class project may have had a negative
effect on the performance of the teams. Table 4 shows the group
statistics of the final marks of the teams in the two years.

year N Mean StdDev Std.Err Mean

2017 20 71.76 11.278 2.522

2018 16 67.94 16.474 4.119
Table 4: Group Statistics - team achievement

In line with expectation it can be observed that the mean of the
2017 teams is higher than the mean of the 2018 teams. The p-value
of Levene’s Test for Equality of Variances is 0.391. This value is more
than 0.05, therefore we know that the result has equal variance.
Table 5 shows the result of the two-tailed t-test for equality of means
of the team marks assuming equal variances. The 95% Confidence
interval of the difference is [-5.703, 13.128]. Since the p value of

CSERC 19, November 18-20, 2019, Larneca, Cyprus

-
o

- - - - - -
° - [=3 N -

il

ofects
<

o ~

w

3

w

~

o
g
g

@0

Percenage

g

- 207
= 2018

g
=
2
8

0]

Figure 5: Final Project Marks

this t-test is 0.429 (>0.05), we cannot reject the null hypothesis. We
conclude that the difference in marks assigned to the teams during
assessment in these years does not provide evidence that the teams
in 2018 were less successful than the teams in 2017 despite the
visual impression created by the graph in Figure 5.

Mean Std.Err
t df Sig (2-tailed) Difference Difference
0.801 34 0.429 3.713 4.633

Table 5: T-test - team achievement

We conclude that the achievement of the students who partici-
pated in a class project before commencing their capstone project
is statistically better than those who did not.

Possible reasons for our failure to confirm our hypothesis include
the following:
(1) The marks allocated to the teams cover a wide range of
criteria. Certain aspects that were weighted high may have
skewed the marks.

(2) The marks allocated to the teams were assigned at different
points in time. There are teams who were very unsuccessful
in the beginning, yet succeeded towards the end who ended
with fairly low marks overall because of their initial failures.
For some other teams the converse is true.

(3) Most of the marks were assigned through the application of
subjective criteria

7 OBJECTIVE COMPARISON OF TEAM
PROJECTS

In order to address some of the reasons why we could not confirm
that the participation in the class project has a positive effect the
work done by the capstone project teams, we decided to investigate
the quality of the projects based on the objective measures discussed
in Section 3.

Figures 6 to 12 show the source-code metrics that were calculated
for the projects done in 2017 and 2018 per programming language.
Where projects consist of multiple source-code files, the average
metric value of all methods in all the files is taken. In most graphs
the scale used to show the calculated values for source-code written
in javascript is significantly larger than the scale used to show these
values for source-code written in Java and Python.

A class project to prepare software engineering students for their capstone projects

CSERC 19, November 18-20, 2019, Larneca, Cyprus

Python 2018

Java 2018

Python 2007

Java 2007

o 05 1 15 2% 3 s 4 45
—_—
-
——
—_—
JavaScnpe 2018
—_—
.
JavaSengt 2017 e
RN
—_—
0 100 200 300 400 500 60 To0 800

Figure 6: Average Cyclomatic Complexity

It can be observed in these figures that the use of javascript is
prominent. In most projects the students prefer to use javascript.
In some cases they used javascript in combination with another
language.

Figure 6 shows that the projects delivered in 2017 has higher
complexity. This is prominent by comparing the complexity of
the projects between these years for the javascript source-code as
the complexity of source-code using other languages are far less
complex than the javascript source-code.

Figure 7 shows more projects of higher difficulty in 2017. This is
true when comparing the difficulty of the projects between these
years for the javascript source-code. This trend is true with one ex-
ception of a project including Python source-code in 2018 which has
a far higher difficult value than the other Python implementations

in our sample yet significantly less difficult than most javascript
implementations in 2017. It thus seems if the students who par-
ticipated in the class project, were generally able to deliver more
difficult projects than those who did not participate in a class project.
This observation is confirmed in Figure 8 which illustrates that the
javascript source-code written in 2017 required more effort to write
than the javascript source-code written in 2018. Figure 8 correlates
with Figure 7. This is expected since higher difficulty implies higher
effort to implement.

Figures 9 and 10 shows respectively that Halstead length and
Halstead vocabulary of the source-code of projects that were written
in 2017 is generally larger than those of the projects written in 2018
although there were some projects written in javascript in 2018

CSERC 19, November 18-20, 2019, Larneca, Cyprus

Python 2048
Java 2008
Pythen 2007 ==
Jeva 2037
0 5 10 15 % 3 3 40 &5
—
[r—
S
JavaScrpt 2018
—_—
P ——
—
—_—
JAVASCTPR 2017
—_—
—
0 50 00 50 200 250

Figure 7: Average Halstead Difficulty

that had Halstead lengths and vocabularies exceeding the Halstead
length and vocabulary of many of the projects written in 2017.

Figure 11 correlates with the previous figures since there are
more unique operators and operands when programs are larger
and more complex. The source-code written in Java and Python
also have higher Halstead volume in 2017 when compared with
those written in 2018. Figure 11 confirms larger relative program
size in 2017.

It seems if the solutions delivered by the student teams who were
exposed to the class project are more ambitious and comprehensive
than the ones delivered by students who went straight into their
capstone project. This is counter-intuitive since those who went

straight into the capstone project effectively had more time to work
on the project and yet delivered somewhat weaker solutions.

Figure 12 shows the average Maintainability Index (MI) of the
source-code of the projects under investigation. Previous empirical
testing of the MI model which we used in our analysis suggests two
cut-off points. MI values below 65 indicates low maintainability,
and values above 85 signifies high maintainability. The range of 65
to 85, inclusive, indicates moderate maintainability [2, 15].

When looking at the MI values for the javascript source-code
written by our students it is evident that the maintainability of the
projects across the years do not differ from one another. Most of the
projects in both years fall in the moderate maintainability category
while a few projects can be classified as low in maintainability.

A class project to prepare software engineering students for their capstone projects

CSERC 19, November 18-20, 2019, Larneca, Cyprus

Python 2018
Jawva 2048
Python 2007 =
Jawva 2007
0 S000 000X 15000 20000 25000
'
—_
-
JavaScnge 2018
-
—
P ——
_—
JavaScrige 2007
-
.
o S0000000 L00000000 150000000 200000000 250000000

Figure 8: Average Halstead Effort

None of the projects are highly maintainable. This phenomenon is
expected given the relatively low experience levels of our students.

The MI values for the Java source-code are all above 85 in both
years indicating that our students are able to write highly maintain-
able Java code. Given that our advance programming modules use
Java as the programming language for instruction, this confirms
higher experience levels of our students when programming in
Java. The maintainability of the Java projects seems to be similar
across the years.

The only difference in maintainability across the years can be
observed when looking at the projects using Python. All the source-
code written in Python in 2018 is low in maintainability while those
written in 2017 moderately maintainable.

These observations provide only weak support for the notion that
the class project could have contributed to the ability of students
to write more maintainable code. Students who have participated
in the class project have written slightly more maintainable code
only when considering source-code written in Python.

When further taking in consideration that relatively few projects
used Python, poses a real a threat to the validity of this notion. We
conclude that having participated in the class project seems to have
no impact on the students’ ability to write more maintainable code.

When considering the size of the projects measured using Hal-
stead length, vocabulary and volume, it can be observed that stu-
dents who had gone through the class project, had on average
slightly larger projects than those who went into their capstone

CSERC 19, November 18-20, 2019, Larneca, Cyprus

Pyhon 2018

Jwa 2038

Jwazmr

JmiaSedpe 2018

Jmiaserge 2007 =

Figure 9: Average Halstead Length

projects without the preparation offered by the class project. Un-
fortunately, this is not a strong case to justify the class project.
Only if the projects were significantly larger we could have argued
that the students could solve more complex problems owing to
the experience they had during the class project where they were
exposed to working on an industry scale project.

We have, however, established that the source-code written by
students who participated in a class project is likely to be higher in
difficulty and complexity and was likely to require more effort when
compared with the source-code written by students who did not
participate in a class project. This is an indication that the students
who had participated in the class project in general were able to
produce more ambitious projects. This observation correlates with
our general intuition that the projects of the year during which
omitted the class project were less impressive than the projects
done in the previous year.

Pytton 2018

Jwa 2018

Pytton 2017

Python 2017 =

smazr

. o © ® © ® ©
P—
Javaserpt 2017 :
o ® wm w w - o o
Figure 10: Average Halstead Vocabulary

p—

s

Jwa 2017

Figure 11: Average Halstead Volume

A class project to prepare software engineering students for their capstone projects CSERC 19, November 18-20, 2019, Larneca, Cyprus

Python 2018
Java 2058
Python 2007
Java 2007
0 0 &£ 60 80 100 120 140
JavaScrpe 2018
e
Javascrgt 2017
0 20 0 X @0 S0 w b] %«
Figure 12: Average Maintainability Index
8 CONCLUSION the delivery of a high-quality, reliable, innovative and cost-efficient
The SE module covers a range of Software Engineering concepts, software product. The class project however, is an opportunity for
tools, techniques and skills as well as team collaboration and compe- the students to work on one fairly large software project as a small

tencies. Usually, the main goal of a software development process is

CSERC 19, November 18-20, 2019, Larneca, Cyprus

group of 5 to 6 persons in a team. The main goal of the class project
is to deliver a software product that may fail while, the students
learn to develop a software product that is high-quality, reliable, in-
novative and cost-efficient software product. The capstone project
requires the students to integrate the complete knowledge of their
study in computer science and some elective modules to effectively
carry out the capstone project. The capstone project exposes the
students to a variety of methodologies for tackling different stages
of the software life cycle, therefore providing a broader learning
experience.

Based on the analysis of the individual student performance in
the module for 2017 (i.e., when the class project is presented before
the capstone project) and in 2018 (when there was no class project,
instead the students started with capstone project). We conclude
that the achievement of the students who took part in a class project
before commencing their capstone project is statistically better. The
findings further confirm the positive effect of the class project to
the students’ confidence and technical knowledge to carry-out the
capstone.

REFERENCES

[1] Achilleas L. D. Buisman and Marko C. J. D. van Eekelen. 2014. Gamification
in Educational Software Development. In Proceedings of the Computer Science
Education Research Conference (CSERC ’14). ACM, New York, NY, USA, Article 1,
12 pages. https://doi.org/10.1145/2691352.2691353

[2] Don Coleman. 1992. Assessing maintainability. In Proceedings of the Software
Engineering Productivity Conference. Hewlett-Packard, Palo Alto, CA, 525-532.

[3] Bill Curtis, Sylvia B. Sheppard, Phil Milliman, M. A. Borst, and Tom Love. 1979.
Measuring the Psychological Complexity of Software Maintenance Tasks with
the Halstead and McCabe Metrics. IEEE Transactions on Software Engineering
SE-5, 2 (March 1979), 96-104.

[4] P.Desai, G. H. Joshi, and M. Vijayalaskhmi. 2012. A novel approach to carrying
out mini project in Computer Science & Engineering. In Engineering Education: In-
novative Practices and Future Trends (AICERA), 2012 IEEE International Conference
on. 1-4. https://doi.org/10.1109/AICERA.2012.6306699

[5] Maurice H. Halstead. 1977. Elements of Software Science (Operating and Program-
ming Systems Series). Elsevier Science Inc., New York, NY, USA.

[6] Carmel Marock. 2008. Grappling with youth employability in South Africa. Tech-
nical Report. Human Sciences Research Council, Pretoria.

[7] Linda Marshall, Vreda Pieterse, Lisa Thompson, and Dina M. Venter. 2016. Ex-

ploration of Participation in Student Software Engineering Teams. ACM Trans-

actions on Computing Education (TOCE) 16, 2, Article 5 (Feb. 2016), 38 pages.
https://doi.org/10.1145/2791396

Thomas J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software

Engineering SE-2, 4 (Dec 1976), 308-320.

Sandeep Mitra. 2014. Using UML Modeling to Facilitate Three-Tier Architecture

Projects in Software Engineering Courses. Transactions on Computing Education

(TOCE) 14, 3, Article 17 (Oct. 2014), 31 pages. https://doi.org/10.1145/2635831

[10] Stacey Omeleze, Vreda Pieterse, and Fritz Solms. 2015. Teaching Modular Software
Development and Integration. In Proceedings of the 6'" Annual International Con-
ference on Computer Science Education: Innovation & Technology (CSEIT)(Singapore,
5 - 6 October 2015). https://doi.org/10.5176/2251-2195_CSEIT15.25

[11] Vreda Pieterse, Fritz Solms, and Stacey Omeleze. 2017. Preparing software
engineering students for industry. Innovate 12 (2017), 89 - 90.

[12] Vreda Pieterse, Lisa Thompson, Linda Marshall, and Dina M. Venter. 2012. An
Intensive Software Engineering Learning Experience. In Proceedings of Second
Computer Science Education Research Conference (CSERC °12). ACM, New York,
NY, USA, 47-54. https://doi.org/10.1145/2421277.2421283

[13] Vreda Pieterse, Lisa Thompson, Linda Marshall, and Dina M. Venter. 2012. Par-
ticipation patterns in student teams. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (SIGCSE ’12). ACM, New York, NY,
USA, 265 - 270.

[14] Vreda Pieterse and Marko van Eekelen. 2016. Which Are Harder? Soft Skills or
Hard Skills?. In ICT Education: 45th Annual Conference of the Southern African
Computer Lecturers’ Association, SACLA 2016, Cullinan, South Africa, July 5-6, 2016,
Revised Selected Papers, Stefan Gruner (Ed.). Springer International Publishing,
Cham, 160 - 167. https://doi.org/10.1007/978-3-319-47680-3_15

[15] Kurt D. Welker, Paul W. Oman, and Gerald G. Atkinson. 1997. Development
and Application of an Automated Source Code Maintainability Index. Journal of
Software Maintenance: Research and Practice 9, 3 (1997), 127-159.

[8

[9

E-Advise: An Adaptive Visual Toolset to Support Academic
Adyvising

Hicham H. Hallal
Computer Science and Engineering
American University of Sharjah

Fadi Aloul

Computer Science and Engineering
American University of Sharjah

Sameer Alawneh
Computer Science and Engineering
American University of Sharjah

Sharjah, UAE Sharjah, UAE Sharjah, UAE
hhallal@aus.edu faloul@aus.edu salawneh@aus.com
ABSTRACT

Academic advising, which aims at providing students with
guidance to perform successful academic program
planning, is a process that has undergone major
transformations over the years. With the high level of
connectivity witnessed in all aspects of life, the academic
advising process is bound to benefit from automation. In
this paper, we report on the development of a toolset to
support academic advising and make the experience less
tedious for both advisors and advisees. The E-Advise is an
online application that interacts with an existing student
information system (SIS) to read student information,
presents the progress of students in their respective
academic plans in a visual display, and allows students to
select their courses for an upcoming term. The advisor, on
the other hand, accesses the application to monitor student
progress, confirm selected courses for registration, or to
suggest modifications. All these features are comprised in a
friendly graphical user interface, which allows the students
and their advisors to exchange instant messages to discuss
the selections or the progress. The E-Advise has been
deployed and used in the Department of Computer Science
and Engineering at the American University of Sharjah for
two consecutive terms, where the feedback is all positive
about the improved advising experience.

KEYWORDS
E-Advising, Academic Advising
Development, Curriculum planning

toolset, Tool

ACM Reference format:

Hicham H Hallal, Fadi Aloul and Sameer Alawneh. 2019.
E-Advise: An Adaptive Visual Toolset to Support
Academic Advising. In Proceedings of CSERC ’19 the 8th
Computer Science Education Research Conference,
Larnaca, Cyprus.

1 Introduction

Academic advising has come a long way to support
university students in their pursuit of completing their
degrees in the optimal time and efforts. Efforts to optimize
the advising process have been dedicated in many ways.
With recent advancements in technologies, automating the
process has become a viable option to make it both more
flexible and efficient, which led to several tools
implemented [1] to support this automation. The focus in
the implemented tools is mainly on factors like:

1. Ease of use for both the student and the advisor.

2. Accessibility: the proposed tool should be
accessible by users from anywhere and at any
time.

3. Versatility: the different features offered by the
proposed tool.

In this paper, we report on the development of an
automated solution to support the academic advising
activities in the department of Computer Science and
Engineering (CSE) at the American University of Sharjah
(AUS). The E-Advise tool is a mobile friendly web-based
application that offers both students and their academic
advisors several services that facilitate the advising process
and make it more efficient. Worthy to note that prior to the
use of E-Advise, academic advising was performed
manually and by paper, where students meet their
respective advisor who had to pull out courses from the
system and then manually mark the advising sheets. This
process used to be lengthy and prone to errors.

E-Advise interacts with an existing student information
system to enable students to:
1. Access their advising records.
2. Visually display their progress in their academic
plan.

3. Select their desired courses for an upcoming term.

On the other hand, the academic advisor accesses the E-
Advise application to:
1. Monitor the student progress.
2. Confirm selected courses for registration or
suggest modifications.
3. Communicate with the students via
messaging to discuss decisions.

instant

The E-Advise toolset has been deployed and used in the
CSE Department at AUS for two consecutive academic
years, where the feedback from students has been positive
about their improved advising experience.

Section 2 provides a literature review of electronic advising
systems. Section 3 discusses the design and implementation
of the proposed design. An evaluation of the deployment of
the proposed advising system is presented in Section 4.
Finally, the paper concludes in Section 5.

2 Related Work

This work belongs to the category of attempts to automate
the academic advising process for university students.
Similar existing works include tools like

e My eAdvisor [2], an automated tracking tool that
provides students and advisors with immediate
semester-by-semester feedback regarding the
students' progression on their major study plans.

e E-Advisor [3], a multi-agent intelligent advising
system designed for the Master of Science in
Information Systems in Athabasca University in
Canada [4]. E-Advisor allows students the ability to
add preferences of specialization to their profile and
then recommend courses based on these preferences.

e Adviseme [4], an intelligent web-based application,
which provides a reliable, user-friendly interface for
the handling of general advisory cases in special
degree programs offered by the Faculty of Science
and Technology (FST) at the University of the West
Indies (UWI), St. Augustine campus.

e Online Advisor [5] is a decision system that
supports both advisors and students in their use of
than existing student information system. It
integrates with the SIS to relieve clerical burdens
and enable advisors to be student centered, allow
academic advisors to aid students beyond the

routine. The experiment was conducted in the
school of business at the American University of
Beirut, but was not extended to include other
schools and departments.

While the main features of E-Advise toolset are common in
existing solutions, the proposed solution provides a more
interactive environment that follows a workflow between
the advisor and the advisee. The student starts the process
by accessing his/her study plan, selects the desired courses
for the next term, and submits the selection to transfer the
control to the advisor. The advisor can confirm, modify, or
reset the selection and return it to the student. In both cases,
a notification process is implemented through which both
the student and the advisor receive email messages of the
actions taken. Alternatively, the users can exchange instant
messages within the main selection window to discuss
modifications when suggested.

On the other hand, the E-Advise toolset is implemented
independent of the student information system of the
university. This allows for avoidance of interference
between the two platforms and for more security in the SIS
ecosystem.

3 E-Advise: Design and Implementation

Figure 1 shows the workflow of the E-Advise tool. The
implemented tool includes two main components:

Student User v Advisor User

| Student ‘
| Plan_J
—x

Student |
| Files_ ¥
—z

S
sis > g 1
Figure 1: Workflow of the E-Advise toolset.

The GUI: E-Advise includes a friendly GUI that offers the
following main features:
1. Visual display of the study plan of each student as
shown in Figure 2.

2. Use of color-coding to distinguish between
courses per category. One categorization of
courses is following their status:

a. Completed courses (pink)

b. Currently registered courses (orange)

c. Courses available for selection in the next
term (yellow)

d. Courses selected for next term (green)

Another categorization is according to the type of
the course:

a. Required

b. Major Elective

c. General Education Requirement or Free
Elective

3. Critical path identification: Through depicting the
prerequisites of courses, the tool helps the user
identify the critical path in the study plan by

showing the courses that become available as a
result of completing any specific course.

Identification of missing pre-requisites for any
course that the student wants to take.

Manual insertion of courses in the schedule of the
upcoming term, especially when the desired
course is not in the displayed plan (Figure 2).

Display of the completed hours, -currently
registered hours, remaining hours, the major of the
student, and the version of academic catalog
followed to specify the study plan of the student.

ﬁ :

L lom T

e

.
L g A —

Figure 2: Color-coded display of the study plan in E-Advise.

The Intelligent Engine: This component is responsible for

the following functions:

a. Communication with the existing SIS to retrieve up to
date student files and data related to their study plans.

b. Reorganization of the retrieved student records to
become usable in the visual display of the study plan.
This includes computation of values like:

e Number of completed credits
e Number of remaining credits

c. Communication between the student user and the
advisor user to share comments on a specific study
plan.

d. Analysis of the pre-requisite relationship between
courses to indicate dependence and ordering.

3 System Evaluation

To evaluate the tool, we deployed a survey to students
asking them about their impressions of the experience of
using the automated advising approach and the electronic
E-Advise application. In the survey, we asked students to
answer two direct questions about their experience of using
the E-Advise toolset and to compare the experience to the
scenario before the deployment of the tool. The answers of
the students showed a positive impression as indicated in
the following tables.

The number of participating students was in the range 120
to 130 students out of almost 400 students in the CSE

department.

Question 1: The new electronic advising system was useful

The new electronic advising system was useful?
Results
Answers Spring
Fall 2017 h018
Strongly Agree 71 76
Agree 29 37
Neutral 15 11
Disagree 2 2
Strongly Disagree 1 2
Score 4.42 443
Number of Participants ~ [118 128

Question 2: I prefer the new electronic advising system
over the traditional paper-based advising system

I prefer the new electronic advising system over
the traditional paper-based advising system
Results
Answers Spring
Fall 2017 h018
Strongly Agree 30 94
Agree 19 21
Neutral 14 11
Disagree 3 0
Strongly Disagree 2 2
Score 4.46 4.60
Number of Participants 118 128

4 Conclusion and Future Work

We presented an automated approach to assist in the
academic advising process. The approach involves the
deployment of the web-based application E-Advise that
interfaces users, students and advisors, to an engine capable
of extracting student information from an existing SIS and
present it in a visual display. Once displayed both the
student and his/her advisor are able to modify it and
exchange comments/feedback about the optimization of the
advising process for a specific term and for the whole study
plan as well. The feedback from users (mainly students) has
been positive when compared with classical advising
methods.

Further development of the toolset is already in process and
more features have been added to it. In addition, a major
improvement on the tool development is launch a mobile
version of the application that can add to the flexibility of it
use and to its efficiency.

ACKNOWLEDGMENTS

The authors of this work would like to recognize the
contributions of the IT unit of the College of Engineering at
AUS to the development and the expansion of the E-Advise
toolset.

REFERENCES
[1] O. Iatrellis, A. Kameas, and P. Fitsilis, “Academic
Advising Systems: A Systematic Literature Review of

Empirical Evidence,” in Education Sciences, vol. 7, no. 4,
pp. 90, 2017.

[2] L. Keston Henderson and W. Goodridge, “AdviseMe:
An Intelligent Web-Based Application for Academic
Advising” International Journal of Advanced Computer
Science and Applications (IJACSA), 6(8), 2015.
http://dx.doi.org/10.14569/1JACSA.2015.060831

[3] F. Lin, S. Leung, D. Wen, F. Zhang and M. Kinshuk,
“E-Advisor: A Multi-agent System for Academic
Advising,” in International Transactions on Systems
Science and Applications, vol. 4, no. 2, pp. 89-98, 20009.

[4] A. Noaman and F. Ahmed, “A New Framework for E
Academic Advising,” in Procedia Computer Science, vol.
65, pp. 358-367, 2015.

[5] T. Feghali, 1. Zbib, and S. Hallal, “A web-based
decision support tool for academic advising,” in Journal of
Educational Technology & Society, vol. 14, no. 1, pp. 82—
94,2011.

DI2-Co-Innovation Lab

Teaching software development in and for real business situations

Holger Giinzel Lars Brehm Hans-Jiirgen Mira Gronvall Anne-Mari
Department Department Haak Business Sainio
Business Business Haak Consulting Information Business
Administration Administration and Mediation Systems Information
Munich University Munich University mail@haak- Tampere University Systems
of Applied Sciences of Applied Sciences beratung.de of Applied Sciences Tampere University
holger.guenzel@hm lars.brehm@hm.ed mira.gronvall@tuni of Applied Sciences
.edu u i anne-

ABSTRACT

Globalization and digitization affect not only the business world,
but also significantly university teaching. Besides competencies in
regular software development and software engineering, focusing
on fixed, pre-defined, solvable tasks for single students it is
required to teach flexible solution definition, development and
testing in a complex, business-like context. The consideration of
the topic interdisciplinary, international and spatially distributed
teams deserves special mention.

The DI2-Co-Innovation Lab serves as a framework to work on joint
projects and tasks with companies, students and lecturers in a
spatial distributed, international and interdisciplinary setting (DI2)
and at the same time to reduce the effort and risk of those involved.
The Co-Innovation Lab brings a proven agile project management
method with knowledge assets from previous projects to support
the work on real business problems. Aspects of mediation mitigate
the effects of the international, interdisciplinary and distributed
setting. Tried and tested IT tools for acquisition, communication
and knowledge management support the processing. Furthermore,
branding and publications are used in the acquisition of companies,
tasks and cooperating lecturers.

Our approach is based on earlier studies and field reports from
practice and universities that try to learn and teach in similar
scenarios. The added value of our Co-Innovation lab consists of an
existing, flexible framework and appropriate processes to simplify
and accelerate the set-up, execution and close of projects for all
participants.

The DI2-Co-Innovation Lab will take place in the winter semester
2019/ 2020 for already the third time in a cooperation course
between business students of the University of Applied Sciences
Munich (Germany) and IT students at the University of Applied
Sciences Tampere (Finland) and will be continuously developed
further.

mari.sainio@tuni.fi

KEYWORDS

educational framework, interdisciplinary, international,
experience paper

ACM Reference format:

Holger Giinzel, Lars Brehm, Hans-Jiirgen Haak, Mira Gronvall, Anne-Mari
Sainio. 2019. DI2-Co-Innovation Lab: Teaching software development in
and for real business situations. In Proceedings of the 8th Computer Science
Education Research Conference (CSERC '19)

1 Introduction

Digitization is changing the business world as a whole
[McKinsey2016]: New business models, changing processes and
changing customer requirements are creating new challenges for all
industries. Digital technologies in particular are changing the "rules
of the game" in business life to date, and in this way information
technology in turn.

In addition, the "globalization of brainwork"
[BoesKampf2009] is creating new challenges in the world of work,
as for the first time highly qualified areas of work such as
information technology are coming under pressure to change
because of an international market. According to
[BoesKampf2009], employees will either show "the feeling of
powerlessness" or as "manifestly employees" will have to
consciously deal with the new situation in order to gain a self-
confident self-image as employees and a new ability to act. It
should not be forgotten that not all IT employees will be
extroverted, but are often technology-fixed.

In contrast, the teaching of software development and software
engineering often still focuses on "one-dimensional programming
tasks" [Alkadi et al 2010] such as sorting algorithms, which have
to be solved by the student alone and can often be copied/pasted
from the Internet. According to [BusenbergTam1979], academic
programming differs from real programming in the following ways
« often more complex and of a larger scale
« focus on both system software and application software

CSERC '19, November, 2019

« developed by programming teams under constraints in both time
and resources

« develop software requirements and detailed design specifications
« software documentation required.

For this reason, [Frezza et al 2018] describes in his
competency-based framework for learning (CoLeaF) that the three
"learning components: knowledge, dispositions and skills" must be
covered. In the area of knowledge, for example, the theoretical
foundation on programming, algorithms and data structures have to
be lectured, in the area of disposition topics such as ethical
awareness or never giving up on solving a problem have to be
addressed, and in the area of skills communication, conflict and risk
management, among other things, in order to discuss ideas or
results with developers, users or customers. The highest priorities
of his analysis are teamwork, communication and planning/time
management. In the agile world, the changed responsibility of
employees must be added, as management and control are replaced
by self-management. Furthermore, decisions will be made by the
employees themselves and under a clear uncertainty.

The article of [Hesmeralda et al 2018] on "Evaluation of the
University Curriculum in the Formation of Competences for the
Software Development Industry" resumes about the cooperation
between universities and companies: "Looking back, the answer is
always the same, the mission of the university must be the
commitment to practical training, and the link of the graduate in the
real workplace, the third mission, which society claims is what
allows the articulation between its actors for its benefit”. Here, too,
the need for effective communication and conflict resolution is
emphasized.

Therefore, the new didactic demands will be: opening the
subject classification to situation dynamics and from instruction to
self-directed learning [Schiifiler 2008]. The fundamental change of
perspective from a knowledge transfer didactic to didactics of self-
directed appropriation of knowledge and competences is essential.
Behind this is the insight that learning is most effective and
efficient when the learner can independently acquire the
knowledge, experience its sustainability and apply it in experiments
[Schiifller 2008]. "Competence building and maturing learning is a
self-motion through which the learning subject develops skills for
self-organized and appropriate problem solving. It moves in a
learning environment (which defines a competence profile and
distribution channels), but at the same time realizes a learning
world (self-learning and design)" [Arnold Erpenbeck 2014].

In the classic definition of self-directed learning, Knowles
[Knowles 1975] describes the process of self-directed learning as a
process in which individuals take the initiative - with or without the
help of others - and analyze their learning needs, formulate learning
objectives, identify human or material learning resources, select
and implement suitable learning strategies and evaluate learning
outcomes.

It should be particularly emphasized that a constant reflection
and an improvement loop is built into the process of self-directed
learning through the evaluation aspect. The teacher takes on
different roles in the learning process. He is an expert for the
learning content, an active listener and productive questioner,

H. Giinzel, et al.

facilitator of a concentrated and trusting (learning) atmosphere,
trainer who recommends exercises, and process facilitator in the
sense of a "critical friend" ([Siebert 2009]).

Universities must ask themselves: How can a future-oriented
teaching concept - a "learning world" [Arnold Erpenbeck 2014] -
be implemented alongside theoretical lectures and exercises in
order to develop the required "skills"? How can the competences
for a new, international and interdisciplinary cooperation be
developed? How can innovative tasks and experience gain be
integrated into a module with little additional effort? Where do the
real tasks come from? How can more cooperation be integrated
with companies or organizations?

Chapter 2 deals with the requirements and existing literature for
the implementation of the requirements. Then the concept of the
Co-Innovation Lab and its extension will be presented (Chapter 3).
This concept was improved in a multi-year cooperation course
between German and Finnish students (Chapter 4), in addition to
many years of experience in the Faculty of Business
Administration. The article concludes with a summary and outlook.

2 Related work

In designing an appropriate learning environment, the
professional and organizational requirements must be met by
students, lecturers and participating companies as well. Students
are interested in attractive (challenging but solvable) projects with
a real issue, authentic customer contact, an usable, but flexible
method with proven tools and infrastructure and an integration into
existing courses. Furthermore, they require a complete overview
over all responsibilities, expected results and grading for all
participants in the beginning. Lecturers expect low or manageable
risk, relatively small additional effort, rapid reuse of teaching
concepts, integration into existing courses, easy contact with
companies for acquisition of projects, visibility of cooperation
results, and contact with other lecturers/disciplines.
Interdisciplinarity and internationality must be implemented in the
processes of all joining universities. Participating companies would
like to achieve innovative results with an accurate generation of
results with small cooperation effort and often the contact to
potential employees. On the one hand, as much as possible must be
covered by processes; on the other hand, flexibility must be
maintained. The participants shouldn’t get suck by a mass of
different tools, processes and preferences.

From a variety of similar approaches, exemplary attempts are
presented which partially build or support a learning world. [Gotel
et al 2009] set up an infrastructure platform for student projects that
also facilitates international cooperation. The focus is on the tools
for cooperation and software development. In [Parker Holcombe
1999] article, project risks between universities and industry are
reported, which are caused by the limited time and, above all, the
new project organization to be set up. In the "protected learning
space" [GroschelRoth-Dietrich 2018] approach, cooperation with
industrial partners is supported by best practice for project
management, process models and knowledge management.
[Bernstein et al 2005] pursues a similar approach with the
AlgorithmA Project, which sets up a "microcosm" of a software

DI2-Co-Innovation Lab

company in which software engineering, but also teamwork and the
holistic implementation of software projects can take place in 10
weeks. Knowledge for subsequent projects is also preserved.
Analogously, [Way 2005] reports on his collaborative framework
to simulate the real-world experience of working for a medium-
sized software company to develop a new product under time
pressure. The focus is always on the aspect of implementation:
local and exclusively intra-disciplinary.

[Cavrak Bosnic 2018] discusses the aspect of cooperation with
the resilience in project teams in distributed project teams in case
of problems caused by missing employees and changes in
requirements. The cohesion of the team is reflected in a stronger
product (weak cohesion) or process focus (strong cohesion). A
multi-year distributed software development study with three
universities supports this theory.

In all examples, the focus is primarily on the student's point of
view. However, a learning world must involve all participants -
students, lecturers and companies in order to be successful in the
long term.

3 DI2-Co-Innovation Lab

The DI2-Co-Innovation Lab serves as a framework to work on
joint (spatial distributed, international and interdisciplinary)
software development projects and tasks with companies, students
and lecturers and at the same time to reduce the effort and risk of
those involved.

It bases on the Co-Innovation Lab [Giinzel Brehm 2018],
initiated by Prof. Holger Giinzel and Prof. Lars Brehm at the
Munich University of Applied Sciences in the field of business
management projects and supports with some extensions these
projects. The Lab is an overarching concept for innovation projects
of students with companies and serves at the same time as an
organizational platform and interface between courses and
companies. With the joint development environment between
students and companies, temporary innovation partnerships are
created - in the form of projects: from the idea through validation
to the result in a maximum of ten weeks, in order to strive for a win-
win situation for universities, students and companies. Companies
receive innovative solutions from the point of view of an often
unknown group of customers and they also meet the potential
employees of tomorrow. The students build up the necessary
competencies by moving from case studies to reality and
intensifying the learning content.

The DI2-Co-Innovation Lab brings a proven agile project
management method with knowledge assets from previous projects
to support the work on real business problems. Aspects of
mediation mitigate the effects of the international, interdisciplinary
and distributed setting. Tried and tested IT solutions for acquisition,
communication and knowledge management support the
processing. Furthermore, branding and publications are used in the
acquisition of companies, tasks and cooperating lecturers.

3.1 Concept

The four building blocks didactic, platform, stream and community
shape the framework of the DI2-Co-Innovation Lab.

CSERC '19, November 2019

3.1.1 Didactic concept

The didactic concept base on small teams of four to seven
interdisciplinary students (Business administration, computer
science, business informatics, but as well design students or subject
matter experts) who autonomously carry out real tasks in a self-
directed learning mode. The lecturer acts as a coach. Analogous to
the agile approach used at [Sutherland Schwaber2017], which
consists of several iterations and retrospectives, the student teams
set the requirements independently, prioritize, plan and implement
them. The task is solved parallel to the theoretical units of courses
(fig. 1). In most cases, it is not necessary to change the examination
regulations. The theoretical units can be reduced to a minimum
depending on the objectives of the course and the level of training.
The lecturer uses a time contingent in the course to carry out the
coordination and result presentations.

Examination, e.g.
Seminar Paper

,,,,,,,, S— 1. Session

Regular CIL integrated

Figure 1: Integration of the DI2-Co-Innovation Lab in a course

3.1.2 Platform concept

In addition to providing the theoretical basis for the course, the
most important task of the lecturer is the integration of innovation
partner companies and project topics. The steps used are
comparable to a consulting life cycle of a consulting company (Fig.
2).

e Acquisition phase (Acquire): The respective lecturers
carry out the acquisition - they must decide whether the
project topics are suitable for a course. Through personal
contacts, previous projects or through contact with other
colleagues, new project topics arise. In addition, a
"pipeline" of project requests can be established. During
the acquisition process, information about the company
is collected and the problem outlined in order to prepare
the students.

e Project implementation phase (Deliver): In the following,
the scope, method, work products, organization and
timing are described.

CSERC '19, November, 2019

Deliver Projects

H. Giinzel, et al.

Students
@ @ S
3 Project D : B
Company & e @ S &
Acquire & x fa Pro- Grow
Projects mote Network
Lecturer s
[) Publ.
t +
4 S v
Yo % ®. - | '8
>/ 220 £\ £la
&
Customer CIL Project Projects Working Promotion Commamication
Relationship Methods & Assets Base Branding Y

Fig. 2: Platform concept

Depending on the course and the level of knowledge, this
task should be taken over by the students. Students
interview the companies involved to find out the "real"
problem (and not just the symptoms). Parallel to the
initiation activities, formal contracts are concluded to
define the legal framework. On the one hand,
confidentiality clauses are required; on the other hand,
the question of intellectual property in the results is
clarified. The implementation is carried out according to
the procedure model described in the project plan.

e During the follow-up (Close), the students deal with
further internal questions. The students carry out a self-
reflexion, the follow-up of the method for the internal
knowledge management, the preparation of a case study
for the education of other student groups and the request
of a reference letter from the customer. Of particular
relevance in the agile sense is the optimization of the
knowledge database procedures for lecturers and
students. In the final discussion with the students, the
lecturer compares the expectations and experiences of the
stakeholders.

e Marketing phase (Promote): In the marketing phase, the
aim is to increase the visibility of the faculty, the
professors and students involved through press articles
on successful projects, but also through scientific
publications. In addition to the short-term identification
of topics and competence, the basis for the acquisition of
the next projects is created here.

e Growth phase (Grow): The expansion of the network
with companies and lecturers in turn supports the
acquisition activity and the possibility of
interdisciplinary and international projects.

3.1.3 Stream concept

Currently, several streams are identified in which the tasks of
the companies can be classified. Projects with software
development can be found in the category IT & Product Consulting.

e Strategic Impulses: The stream deals with the support of
a real company in business models and strategies in the
digital world. These concern the evaluation, further
development or new development of goals, concepts and
initiatives.

e Business Consulting: The aim of the stream is to apply
the working practices and techniques of an innovation or
digitization project under realistic conditions based on a
concrete, complex project. Students acquire the ability to
apply solution-oriented, adequate working practices,
consulting and project management techniques to the
implementation of theoretical knowledge in concrete
projects.

e IT & Product Consulting: The stream focuses on the
conception and prototypical implementation of IT as a
mobile app, software application and extension of a
website of real issues from industry. The students learn
working techniques from the requirement gathering with
customers up to the implementation. An emphasis lies on
interdisciplinary cooperation and project management.

e OQOutsourced Services: This stream deals with the
outsourcing of challenges of project partners. The focus
is less on the conception than on the execution of
operative tasks.

3.1.4 Community concept

The open, non-commercial community offers the possibility to
profit from the didactic concept, the platform and the work results
or the projects with one's own application. In addition, everyone is
invited to add new results, procedures, publications or project
partners in order to stimulate the expansion of the platform.

DI2-Co-Innovation Lab

3.2 Project management

The DI2-Co-Innovation Lab uses a hybrid project management
approach adapted by Scrum4Consulting [Kerscher Giinzel 2019].
The team works in iterations and continuously documents the
activities so that the customer and the lecturer can follow the
progress. The project ends with the presentation and delivery of the
results by the team. In this case, additional persons from the partner
organization are often invited, which is an additional challenge for
the students, but also motivation.

3.2.1 Agile Values and Principles

Through the agile values [Agile Manifesto 2001] and the focus
on interactions, working products, cooperation with the client,
acceptance of change, commitment, focus, courage, respect and
openness become essential components of the approach. These are
required from both, the students and the client. The second must
actively engage in the cooperation, otherwise, the project cannot be
carried out successfully. Therefore, the principles (derived from the
agile manifesto) such as continuous delivery of increments,
positive response to change, a self-organized team, daily
cooperation, personal dialogue, professional as well as technical
excellence and reduction to the essentials are essential
fundamentals of the concept.

3.2.2 Roles

The roles are based on the roles of traditional Scrum. However,
some necessary ones extend these roles and tasks are adapted in
order to reflect the temporary cooperation between companies and
students.

Roles Tasks
Scrum The ScrumMaster (SM) is responsible
Master for ensuring that the process is followed.

For this, he protects his team and
eliminates disturbances and obstacles.
This position is often covered by a student.
Particular attention is paid to the work on
the agile mindset of the participants, since
his focus is on increasing the productivity
of the team.

Product The Product Owner (PO) is
Owner responsible for the value of the project and
prioritizes user stories by value. The PO
delivers the requirements that the student
team needs for the project. He is either a
trained employee of the client, who can
also be supported by a students, or a
student.

Team The student team consists of students
and client’s employees. Together they are
responsible for a constant and qualitative
delivery of results (self-organized).
Together with the product owner, the
strategic added value and the direction

CSERC '19, November 2019

towards product development are
permanently worked on.
Client The client has requested the task and is

the first contact person for contractual and
organizational matters. He mainly works
together with the PO. He receives and
accepts the product increments in each
review meeting and coordinates them
continuously with the PO.

Mana- The management is defined in this

gement concept as the manager one level above of
the client in the advised company. He is
responsible to ensuring that all essential
elements for product development are
available to the team. In cooperation with
the scrum master, he revises structures and
conditions in the client's company.
User The user is the customer of the product
or service. The user is always actively
asked for feedback and can be invited to
review meetings. Depending on the type of
project, the user can be an external
customer or an internal employee.

3.2.3 Phases and Procedure

The Scrum4Consulting process is divided into an initiation
phase, an implementation phase and a final phase (figure 3), with
adjustments being made in the first two phases. In comparison to a
waterfall procedure model with a conventional project management
approach, client’s requirements are fixed in the beginning and
completely worked towards the entire project, the initiation phase
is also used to understand the project scope and client’s
requirements, but not to analyse and document them
comprehensively. The focus is on breaking down the requirements
into redundancy-free "stories" for the iterative implementation
phase, which, in addition to fast partial results, provides intensive
cooperation and optimisation of the process.

Initiation Phase: The initiation phase (according to [Gloger
2016] also called strategic phase) is used in Scrum4Consulting to
carry out the elements to be planned, such as the detailing of the
idea, generation of a common vision, creation of a backlog with
user stories, its prioritization and initial estimation of the
Scrum4Consulting Team. This phase is characterised by the fact
that work is not done directly for the result, but the requirements of
the client are fixed [Gloger 2016] [Heikkild et al. 2015].

CSERC '19, November, 2019

5
-

Fig. 3: Initiation and Implementation Phases with Work
Products

Depending on the type of project, a new project is triggered by
either a client’s idea or need or their management. For example,
business process optimization serves to improve quality or process
execution speed. The vision creates a motivating target picture for
the team. The challenge in creating a vision is to create a strong
product vision that simultaneously triggers emotions [Gloger,
2016] [Gottesdiener Gorman 2011]. The creation of this vision
often already takes place within the assignment. It is the
responsibility of the Product Owner to create the vision. In
"Team4Consulting", in addition to the selection of the client's
employees for the team and team building, work is done with the
company on the activation of the agile mind-set - which is currently
not available in all companies. The mind-set is an essential success
factor or, in a negative case, a show stopper for agile projects
[Gloger 2016]. Furthermore, the common "rules of the game" in the
team such as working hours, exchange of work results, sprint
length, definition of done, etc. are defined. An important extension
is the procedure described in chapter 3.3, which starts at this point.
The Scrum Master supports the team during the whole project.
Personas serve as a description of a potential target group that uses
the result. In addition to the description of the person, goals of the
person, life circumstances and context of the product use are
recorded. The scenarios show the use and influence of the product
on the target group. The backlog consists of the scrum backlog with
the user stories as functional requirements for the result and
additional requirements (called side products) of the client. In some
situation makes it necessary to introduce client stories like the
creation of a business case.

Implementation Phase: In the Scrum4Consulting concept, the
implementation phase describes all activities to be performed by
the implementation team. These activities are carried out in time-
limited ("timeboxed") iterations. The sprint length for student
projects is set to two weeks. The software development is run
through during the sprint for the individual story. The final rollout
only takes place when the solution has proven to be suitable
through the test of the implementation phase. The implementation
phase includes the sprint planning meeting, the review meeting, the
retrospective and the daily [Wirdemann Mainusch 2017]. Analogue

H. Giinzel, et al.

to Scrum, sprint planning is separated into two different meetings
in order to carry out planning (sprint planning 2) only after
understanding and creating a team commitment in sprint planning
1 [Gloger 2016] [Maximini 2018]. For each selected backlog item,
the requirements must be clarified, acceptance criteria (behaviour)
and constraints (framework conditions) fixed and a test generated
[Gloger 2016][Maximini 2018].

3.3 DI2-extension: Coaching Concept for
International and Interdisciplinary Projects

Based on the specific situation (distributed, international and
interdisciplinary) an associated coaching for the scrum master and
the team is introduced. The coaching of the scrum master puts its
focus firstly on sensitizing that besides the common challenges as
missing skills or motivation there could be more crucial and hard-
to-handle challenges as cultural differences, deviating mother
languages and missing face-to-face contact. Secondly the scrum
master gets an introduction into mediation methods to better fulfill
his/ her role. During the project phases the coach supports the team
members to articulate the impediments frankly and to find and
decide proper solutions. After an initialization, the regular
retrospectives are supplemented by coaching sessions. In
particular, interpersonal and communicative obstacles are
addressed, in the team, between the project roles and with other
persons involved. In addition, the scrum master is supported with a
toolset that specifically contains challenges and possible solutions.
Furthermore, the teams and the team members had the opportunity
to be coached individually in telephone calls or Skype sessions.

3.3.1 Initialization

The scrum master supports and is responsible for the solution
process within project. The participants try to reach a common
agreement that corresponds to their interests. Analogous to the
basic principles of agile project management, the responsibility for
a solution of a conflict remains in the team.

The toolset, handed over to the scrum master is based on a
simple finding: Having success is a very strong motivator - for all
team members. The scrum master helps the team to achieve the
targets in time and budget. Aspects of mediation will help: It is
about people, individual interests and needs and communication
skills. It provides methods to respectfully work together, to avoid
critical situations, to cope with conflicts and may be adopted
through all phases of a project. The focus is on the work process to
increase team cohesion.

3.3.2 During the Iterations

Agile methods rely on a regular improvement process in
relation to the product and the process. Retrospectives are team
meetings to learn from the past [Andriyani et al. 2017}. In the best-
case scenario, the team addresses problems of the last iteration and
jointly finds improvement actions. The retrospective is a protected
space for the team and the product owner in which problems can be
addressed openly and solutions found together. Although there is a
multitude of different methods, they all contain the same basic
elements: introduction, data collection, insight, actions,
effectiveness testing, and closure.

DI2-Co-Innovation Lab

In previous projects, it became obvious that team members
often had intrinsic problems to articulate impediments because of
inadequate co-operation or even missing support and input from
their colleagues. The fear to blame someone could be observed
frequently. So special attention of the scrum master should be given
to the way of communication of the team members. Be aware that
communication between people follows specific rules. When a
party argues his/ her position, he/ she follows (probably non-
transparent) interests which are based on (mainly emotional) needs.
Basic skills in detecting those cases and therefore in excellent
communication are e.g. listening respectfully, asking the questions
needed for your better understanding or telling your opinions,
views, needs & abilities and explaining them.

3.3.3 Communication Disorders and Conflicts

In addition to the regular retrospective, the support of the scrum
master can also become necessary in case of conflicts. Strong signs
for a critical situation or a potential conflict are among other things
emotional comments (accusing, shouting, less esteem), less
attention (not listening, interrupting, talking simultaneously),
generalization (using ‘“always”, “never”, arguing with rules/
regulations), endless discussions (repeating the same arguments,
insisting) or nonverbal signals (turning away, folding one’s arms).
In critical situations: Identify whether all parties involved judge the
situation as a conflict. If so, bring them together, i.e. don’t act
bilaterally.

3.4 Utilized Toolset to Support Framework

The following technical infrastructure and tools are utilized to
support the participants in the overall project lifecycle.

e Acquire: A cloud CRM platform is used from a startup
MyTaskey (www.mytaskey.de). The requirements are
that the customer data and project ideas are collected and
used quickly and easily. A rights concept ensures
appropriate access to the data. The contact persons for the
project partners establish a contact with other lecturers
and topics.

e Deliver:

o The project management method is supported
either by MyTaskey or by Trello
(www.trello.com). MyTaskey offers more
possibilities in terms of protocols, scheduling
and document management. Trello provides a
visual advantage.

o As an exchange platform, the university's own
cloud platform (“Sync&Share”) is used, which
functions analogously to commercial tools.

o Nuclino (www.nuclino.com) is used for the
joint processing of documents.

o Gitlab/ Github and documents in Markdown
format are used as a knowledge base for
lecturers and students.

o Slack (www.slack.com) (asynchronous) and
Skype (synchronous) are used in the student

CSERC '19, November 2019

teams as communication tools for spatially
distributed processing.

o The development tools are not explicitly fixed
as they depend on tasks and customers.

e Promote: Project articles are published via the university
or faculty website and Facebook. More and more, articles
are the basis for new customer publications in journals -
the aim is to expand the community and fill the pipeline
with new tasks.

e Grow: Slack and Skype serve as a communication
platform for lecturers to exchange project ideas and
initiate joint projects.

4 Case Study

Both the Tampere University of Applied Sciences and the
Munich University of Applied Sciences have many years of
experience in project-based learning and want to take project
learning to the next level in an international context with their
cooperation. The increase in complexity, interdisciplinary,
intercultural with spatial separation, was brought about as a
cooperation project between the Master of Business Administration
students from the Munich in Germany and Bachelor of Business
Information Systems students from the Tampere in Finland and one
or more clients.

The Co-Innovation Lab has existed for almost 5 years in the
Faculty of Business Administration at Munich University of
Applied Sciences. A large number of students experienced the
cooperation with industrial companies and real tasks. Various
processes and tools support lecturers and students.

The students have to support the above-mentioned phases as
well as to fulfill the customer requirements. In previous
cooperation, for example, projects such as an app for a smart meter
for an energy company or a gamification approach for logistics
processes were designed and implemented. Furthermore, the
students use the knowledge database and contribute to the
extension of this platform. In addition to a reference, a project
description and a press article, value is placed on the extension of
the knowledge database with templates, process models and
literature.

The first run was characterized by a sequential execution with
a customer in Munich with a conception in the summer semester by
business students and the implementation by business informatics
students in the winter semester. The general goal that students work
realistically and interdisciplinary was achieved. Despite extensive
documentation, the typical problems of a waterfall procedure have
arisen, i.e. the requirements were either not detailed enough or have
changed in the meantime.

CSERC '19, November, 2019

Acquisition date”™

9 Proposal

§
¥
¥
7
g
>
v

9 Delivery intermal

/19 Knowledge Exchange
ments

/19 Imernal Kick-off

05/19 Final Presentation

3
'-'
(]
°

oS,

3
o

2
’ 07/19 Feedback

S aad Deliver L2

4

Pre-Project Consulting

&

Summer Semeiter

2019

3 Projects

Inmernal Kick-off 10/19 ‘

Fig. 4: Schedule in Winter Semester 2019/ 2020

In the second year, the setting was fundamentally changed.
Mixed teams started together in the winter semester. The given
roles as product owner, scrum master and functional team (both
with business and IT expertise) were filled and the project was
planned with four sprints. One lecturer assumed the role of team
coaching; other lecturers provided technical and organizational
support. The students of the participating universities were invited
to an intra-university kick-off at the beginning of the semester to
get to know the rough project requirements and customer profiles.
The project was divided into four teams with participants from each
university.

On the day of arrival at Tampere for a 3-day field trip (with an
effective 48h on site), the students from Tampere and Munich got
to know each other. On the following day, the customer presented
his business area and an assignment in a two-hour presentation and
discussion. The rest of the day and the following day were
characterised by the planning of the procedure and the generation
of initial concept ideas. After another three days, the students were
asked to submit a project proposal, which was subsequently
commented on and revised by the lecturers. In the following ten
weeks, an agile process approach with 2-week sprints was carried
out. The review meetings took place virtually with the student
teams, the company and the lecturers. A trained coach (lecturer)
supported the retrospectives. A few days before the final
presentation, a dry run was carried out within the university to
ensure quality. With the final presentation, the cooperation with the
company was concluded, and by the end of the semester, further
internal university results had to be finalised (i.e. assets for

®N Deliver L2 ® ¢
“a .34 2 8
Ly - ~
-3 s A
0¥ 2 g £
o§ 25 '
J e 3 2
3% =G 3 a
¢35 28 > &
- - B -
s 32 8 2
b c -L < E
x -
: : § 3
5 =] c
k-

H. Giinzel, et al.

Dev-Project (4 Iterations)
5 Projects

Winter Semester 2019/ 2020

Delivery

knowledge management). After the presentation, four final
retrospectives were held with each team and a final discussion was
held at the end of the semester. All teams have succeeded with the
assignments; the cooperation was more time-consuming due to the
increased communication effort, but more customer-specific in
terms of the result.

In the current third collaboration round, the general procedure
will be maintained (Fig. 4). A preliminary phase in the summer
semester with other teams with strategy projects allows the students
to get to know the customer and his area of business. A handover
in the current semester with the students of the winter semester
enables early mental involvement with the topic. The
implementation takes place again in the winter semester.
Additional interdisciplinarity is achieved through the involvement
of design students. Further skills in usability and design are
expected. Coaching in the area of retrospectives will be extended.
The use of an enlarged team canvas around the aspects of
communication and conflict resolution should make the aspects of
team building more visible. The students receive technical
literature on the different discipline's processes and work products
even before the project in order to create a project canvas faster and
speak the same language.

5 Summery

The existing approaches in project-based learning at both
universities will be extended to address the international context.
The participating lecturers and students see the Co-Innovation Lab
as an excellent opportunity to come into contact with practice-
relevant topics at the university. However, the greater added value
lies in the expansion of the competences required by the digital
transformation and globalisation. The participants move from hard

DI2-Co-Innovation Lab

facts to soft skills and can deal with the future world of work. In
the DI2 setting, real interdisciplinary and international experiences
can be made.

The following topics have been repeatedly shown: The topic
should be based on a real need in the company, so that the
seriousness for a consultation and a sufficient time commitment of
the company is given. The topics must come close to the topics of
the study programme so that they can be solved in a short time. An
autonomous planning of the project with regard to content and
effort of the students and the comparison at the end lead to an
increased interest in the project and a significant increase of the
learning success of the students. The commitment of the students is
constantly high due to their practical experience and their personal
responsibility. This has a high learning effect: The students
experience "up close" the effects of incorrectly calculated costs,
inaccurately assumed changes and framework conditions or
incorrect planning in the project plan.

Despite the very positive results in the existing rounds, the
cooperation and approach is constantly being further developed.
Nevertheless, it should not be forgotten that not only the formal
framework for achieving success is in place, but also the positive
spirit of cooperation for teaching and research of the persons
involved.

REFERENCES

Agile Manifesto: Manifesto for Agile Software Development, online:
https://agilemanifesto.org/ (last access: 19.05.2019), 2001

Alkadi, G.; Beaubouef, T.; Schroeder, R.: The Sometimes Harsh Reality of Real World
Computer Science Projects, ACM Inroads V1, Nr.4, 2010, pp. 59-62

Andriyani, Y.; Hoda, R.; Amor, R.: Reflection in Agile Retrospectives, In: XP 2017:
Agile Processes in Software Engineering and Extreme Programming, 2017, pp
3-19

Arnold, R.; Erpenbeck, J.: Wissen ist keine Kompetenz. Dialoge zur
Kompetenzreifung, 2014

Bernstein, M.; FitzGerald, K. M.; Macdonell, J. P.; Concepcion, A. I.: AlgorithmA
Project: The Ten-week Mock Software Company, Volume 37, number 1, Feb
2005, pp. 142 — 146

Boes, A.; Kampf, T.: Offshoring und die neuen Unsicherheiten einer globalisierten
Arbeitswelt. In. Hochseilakt - Leben und Arbeiten in der IT-Branche, 2009, pp.
23-41

Busenberg, S. N.; Tam, W. C.: An Academic Program Providing Realistic Training in
Software Engineering, Communications of the ACM, Volume 22 Issue 6, June
1979, pp. 341-345

Cavrak, I; Bosnic, I.: Team Resilience in Distributed Student Projects Team
Resilience in Distributed Student Projects Proceedings of the 13th International
Conference on Global Software Engineering, ICGSE '18, 2018, pp. 112-120

Frezza, S.; Daniels, M.; Pears, A.; Cajander, Asa; Kann, V.; Kapoor, A.; McDermott,
R.; Peters, A.; Sabin, M.; Wallace, C.: Modelling Competencies for Computing
Education Beyond 2020: A Research Based Approach to Defining Competencies
in the Computing Disciplines, In: Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education, 2018, pp. 148-174

Gloger, B.: Scrum: Produkte zuverldssig und schnell entwickeln. Hanser, 2016

Gotel, O; Kulkarni, V.; Phal, D.; Say, M.; Scharff, C.; Sunetnanta, T.: Evolving an
Infrastructure for Student Global Software Development Projects: Lessons for
Industry, ISEC '09 Proceedings of the 2nd India software engineering conference,
Pages, 2009, pp. 117-126

Gottesdiener, E.; Gorman, M.: It’s the Goal, Not the Role: The Value of Business
Analysis in Scrum, Online: https://www.agileconnection.com/article/its-goal-
not-role-value-business-analysis-scrum (last access: 19.05.2019), 2011

Groschel, M.; Roth-Dietrich, G.: Acquisition of Practical Skills in the Protected
Learning Space of a Scientific Community, ECSEE'l8 Proceedings of the 3rd
European Conference of Software Engineering Education, 2018, pp. 63 — 71

Giinzel, H.; Brehm, L.: Co-Innovation Lab — a Platform for Learning the Competences
of the Future, The Future of Education Conference 2018, Florence, 2018

CSERC '19, November 2019

Heikkild, V.T.; Paasivaara, M.; Rautiainena, K.; Lasseniusa, C.; Toivola, T.; Jarvinen,
J.: Operational release planning in large-scale Scrum with multiple stakeholders:
A longitudinal case study at F-Secure Corporation. In: Information and Software
Technology, 57, 2015, pp. 116-140

Hesmeralda R. E.; Marleny P. A.; Ronald R. A.; Willie A. C.: Evaluation of the
University Curriculum in the Formation of Competences for the Software
Development Industry, ICBIM '18: Proceedings of the 2nd International
Conference on Business and Information Management, 2018

Kerscher, S.; Giinzel, H.: Scrumd4Consulting — Agile Project Management for
Consulting Projects, 8th International Scientific Conference on Project
Management in the Baltic Countries, April 25-26, 2019, Riga, pp. 242 — 253

Knowles, M. ,,Self-directed learning: A guide for learners and teachers®, New York,
Association Press, 1975

Maximini, D.: Scrum-Einfiihrung in der Unternehmenspraxis: Von starren Strukturen
zu agilen Kulturen. Gabler, 2018

McKinsey Quarterly (ed): “Digital strategy: The economics of disruption”, Number 2,
2016, online: https://www.mckinsey.com/quarterly/the-magazine/2016-issue-2-
mckinsey-quarterly

Parker, H.; Holcombe, M.: Campus-based Industrial Software Projects: Risks and
Rewards, In SIGCSE Bull, Volume 31, Number 3, 1999, p. 189

Schiiler, L.: Reflexives Lernen in der Erwachsenenbildung — zwischen Irritation und
Kohirenz, Bildungsforschung, 5 (2), 2008, https://uhh.de/k9dmq

Siebert, H.: Selbstgesteuertes Lernen und Lernberatung. Konstruktivistische
Perspektiven, ZIEL Verlag: Augsburg, 2009

Sutherland, J., Schwaber, K., The Scrum Guide - The Definitive Guide to Scrum: The
Rules of the Game, 2017

Way, Thomas P. A Company-based Framework for a Software Engineering Course,
SIGCSE '05 Proceedings of the 36th SIGCSE technical symposium on Computer
science education, SIGCSE Bull.Volume 37, Number 1, Feb 2005, pp. 132 - 136

Wirdemann, R.; Mainusch, J.: Scrum mit User Stories. Hanser, 2017

A Flipped Classroom Experiment

The implementation of Semi-Synchronous Learning

Hani Alers Marcella Veldthuis
The Hague University The Hague University
of Applied Sciences of Applied Sciences
Zoetermeer, Netherlands Zoetermeer, Netherlands
HAL@HHS.NL M. Veldthuis@HHS.NL
ABSTRACT

With semi-synchronous learning, students are provided with
online learning material, and allowed a window of time within
which they learn the material. This allows the students to employ
mastery-based-progression and just-in-time learning approaches.
Furthermore, this also frees lecturers' time, allowing them to focus
on helping students lagging behind.

This article describes the process of converting a ten-week
university course to a semi-synchronous teaching format. The
course is followed yearly by an average of 200 students. All
theoretical course lectures were replaced by short online videos
and a few interactive workshops that encourage student
progression. Other aspects of the course were left unchanged.
Feedback about the course was collected from lecturers and
students. Student grades and video viewing statistics were also
used to evaluate the new approach.

Results show that some students had an initial resistance to the
new format and leaned towards traditional teaching methods.
However, these complaints quickly subsided. Video viewing
statistics show that students remained engaged in learning the
theory throughout the course duration. The new approach did not
result in a significant difference in student grades. Additionally,
involved lecturers who were less familiar with the theory simply
viewed the videos to quickly prepare for their role. Moreover,
lecturers were also able to save time by referring students with
basic questions to the correspondent videos

KEYWORDS

Semi-synchronous learning, flipped classroom, blended learning

1 Introduction

Active learning in the classroom has taken the forefront as a
teaching method. Eric Mazur, a Harvard physicist and educator
who has campaigned against the lecture format for years argued
that ’Lecturing is outmoded, outdated, and inefficient,” (2014).
His statement is based on a study that shows that test scores
significantly improve when lectures are replaced by other methods
of active learning. Students should not be passive listeners, but

Aleksandra Malinowska Tim Cocx
University of California, The Hague University
Santa Barbara of Applied Sciences
California, USA Zoetermeer, Netherlands
Amalinowska@ucsb.edu T.Cocx@HHS.NL

use their time in the classroom to actively participate and engage
(Freeman, Eddy, & McDonough, 2014).

In an era where information is freely available to everyone,
employees are expected to be able to independently acquire
knowledge and skills. The traditional lecture does not prepare
students for the context of their future professional practice. A
different kind of education is needed, a semi-synchronous
teaching format that allows students to employ just-in-time-
learning and mastery-based-progression.

‘Online education has clear pedagogical advantages over
traditional education’ (Caplan, 2018). With semi-synchronous
learning, students are provided with online learning materials
(such as videos) and are give a timeframe to prepare for seminars,
where they discuss what they have learned. This teaching format
has certain advantages. Through video lectures Students have
access to top teachers on a specific topic. Furthermore, students
can consume the content at a time that is convenient, and they can
rewatch the video until they have mastered the content.

The use of videos combined with seminars also helps students
develop planning skills. Studies indicate that the adolescent brain
does not fully develop until the the age of 25. Some adolescents
may find regulating their behavior difficult based on long-term
abstract goals, struggling with skills such as planning,
anticipating, prioritizing and focus (Nelis & Van Sark, 2009; Slot
& Van Aken, 2013). Within a specific timeframe, students choose
to view content specific videos, preparing them for seminars. The
videos are deliberately kept short, to ensure ease of focus and to
invite students to rewatch the videos in order to fully master the
content.

This article will focus on the effects of semi-synchronous learning
at the The Hague University of Applied Sciences (HHS). The
research is conducted in a ten-week research course. The research
course is a project based course given to second year information
and communication technology (ICT) students. The course aims
to teach students how to conduct research in the context of their
future professional practice. Research groups consisting of four
people choose a (semi structured) assignment from a client. The
course provides students with a full set of research skills, starting
with a first interview with a possible client and finalizing with the
group presenting their results in a scientific research paper.

Certain challenges have been noted in the construction of the
course. Due to a large number of students enrolled, a low interest
in research, and a shortage of qualified staff, (also see chapter 3)
the number of students who pass the course is relatively low
compared to other courses students attended. Also, a discrepancy
exists between the education the students receive and the tools
needed for future employment. According to Wolbers (2003) the
right tools are not being utilized to provide students with the
knowledge and skillset they need to succeed. Therefore, a more
effective program is needed.

This article describes the process of converting the ten-week
research course to a semi-synchronous teaching format. It
provides an answer to the question if semi-synchronous learning
can be used in a university of applied sciences. With this setup,
students are allowed to learn just in time and employ mastery-
based-progression. We hypothesize that there will be an increase
in success rate, skill level, and student involvement.

2 Old design of the Research-Course

For the experiment, a course was chosen which proved
challenging for both students and instructors. This Research-
Course taught students applied research methods. The course was
taught in the traditional classroom format for the last five years.
The course is given simultaneously to students from different
specialization programs in order to encourage interfaculty
collaboration.. The Research-Course consists of three components
as explained below.

2.1 Research-Theory

The first part of the course consisted of five lectures explaining
research theory. The lectures were based on the book “Research:
This Is It!” (Ben Baarda, 2010). Students were encouraged to use
the book but it was not obligatory for the subject. The end
assessment was an individual written exam based on the book.

2.2 Research-Plan

Students were allowed to choose a research challenge to work on
which was coupled to one of the research groups within the
university. The students worked in groups using the theory the
students learned in “’Research-Theory™ to analyze the challenge
and break it down into a specific research question. Students then
crafted a research plan describing the topic, research questions,
and data gathering methods. Four interactive workshops were
used to discuss the progress and provide feedback from research
coaches and fellow students. The students were assessed based on
their final research proposal.

2.3 Research-Project

Once the students completed the research proposal, they used it to
start a research project where they carried out that plan. During
this period, students had regular meetings with their research
coach to check whether their work is still relevant to the original
research challenge and whether they were conducting the research
appropriately. Additional, three lectures were given describing
how to perform data analysis and write a scientific report. These

H. Alers et al.

lectures were not covered by the written exam mentioned in
section 2.1 and were solely aimed to help students with the
research project. The students completed the project by writing a
research report detailing methodology, results, and conclusions.
Grades were awarded per group based on the quality of the
research and the report.

3 Challenges facing the research course

As mentioned before this course has always proved challenging
for both students and instructors. Below are the main challenges
faced by the course

3.1 Low interest in research

Students in the university of applied sciences are more interested
in applied fields than theoretical ones. They prefer working in
project based environments. They are therefore less motivated in
learning research methodology, as to them this seems like a course
more fitting for a technical university. For example, the final 3
lectures of the course had extremely low student attendance. Even
though these lectures were vital for completing the Research-
Project, they were not covered by the exam of the Research-
Theory. The students did not care enough about the subject to
attend these last few lectures.

3.2 Large number of students

Students within two different specializations and located in two
different campuses take the course. Students from Information
Security Management (ISM) are all located in Zoetermeer while
Software Engineering (SE) students can take the course either in
Zoetermeer or in Den Haag. Combined, there are approximately
200 students in total.

3.3 Shortage of qualified-staff

Since the course is given in a university of applied sciences, There
is a shortage of qualified staff specializing in research methods.
Previously, additional staff with limited experience and training
were asked to assist in the course. This is exacerbated by the
previous issue of having a large number of students over multiple
locations. Although qualified staff gave the main course lectures
and were available for questions, there was not enough time to
monitor the progress of each individual student. This task fell on
the additional staff, who simply lacked the hands on experience to
provide ideal support.

3.4 Low passing percentage

As a direct result of the issues mentioned above, about half the
students pass the theory exam on their first attempt. A large
number of students show lack of knowledge of the basic
theoretical concepts.

4 New flipped classroom format

To implement self synchronous learning, a flipped classroom was
used. I a flipped classroom, the students learn the theory of the
course at home and they come to the university to work on

excursuses to practice the theory they learned. The research
proposal and research project parts of the course are largely
unaltered. The changes are mainly in the way the that research
theory is taught to the students. The changes are listed below.

4.1 Online videos replace classroom lectures

In the new flipped classroom approach, all seven classic
classroom lectures are cancelled. The theory of the course is
instead explained in 19 videos. The first 14 videos are tested in
the written exam, corresponding to the first five lectures. Videos
15-19 correspond to the last three lectures which are aimed to help
students with completing their research projects. The videos are
kept short to help maintain student attention. Durations ranged
between 5-10 minutes. To achieve this, all repetition of
information from the lectures was eliminated in the videos.
Instead, videos refer to relevant topics in other videos and provide
links so students can easily jump to the relevant topic if needed.
Illustrations and animations are also added to the videos to help
sustain student attention. The illustrations were also intended to
serve as mnemonics to help students remember information.
These illustrations also help the students find the relevant spot in a
specific video when they quickly scroll through it.

The videos were recorded in a studio environment to ensure high
production quality. Efforts were made to ensure that sound, video,
and color rendering were as natural as possible. The videos were
uploaded in 1080p resolution to YouTube and made publicly
available.

4.2 Interactive workshops

To ensure minimum student progression, three new interactive
workshops were planned during the course. Each workshop

M Mean grades

o

N

w

2

1

0
Grades classic

Grades flipped

Figure 1: Mean grades scored by students for the Research-
Theory part of the course using the flipped classroom
approach (left) and lecture based approach (right). Error
bars show the mean standard error.

A Flipped Classroom Experiment

covers a subgroup of the videos and is used to discuss questions
about the material explained in these videos. Students have to
complete homework exercises as preparation for each workshop.
These homework assignments are discussed at the beginning of
each workshop, then new questions are presented to the students
which they can work on trying to answer in groups.

If at any point during the workshop it became clear that a student
has not watched and understood the videos before hand, the
student is asked to leave the workshop. They can only join the
workshop again once they have watched an understood the needed
videos. Although the workshops are optional, they are presented
to the students as important practice for the written exam. They
are therefore motivated to attend these workshops, and as a result
are pressured to progress through the course theory.

The workshops use a Kahoot setup. Kahoot is an online tool
which allows lecturers to present questions to the students and let
the students individually try to answer the questions using their
mobile phones. By immediately seeing how many students are
able to choose the correct answer, lecturers can immediately
determine how much difficulty the students are facing with the
question and decide how much time to spend on discussing it.

4.3 Templates with links to videos

The research proposal and research project parts of the course are
graded based on a report (one for each) provided per group. Links
to the videos were added in the templates for each report. The
video links are targeted so that in each section of the report the
student can see a link to a video explaining that specific topic.

5 Results

Looking at the grades the students scored in the exam for research
theory (Figure 1), it is possible to see that the students performed
at a similar level with the new flipped format. This indicates that
the flipped classroom is equivalent to the classroom approach
when it comes to the overall level of the students’ understanding
of the theory.

Student feedback (Frigure 2) shows that a large number of
students found the format enjoyable. Students explained that the
videos had surprisingly high production quality. They were short
and therefore easy to watch repeatedly when needed. Figure 3
shows that leading to the exams, students have repeatedly
rewatched the videos. Therefore it is clear that the students
heavily relied on the videos to understand the theory and prepare
for the exams.

Besides understanding the course theory, students reported that
the videos also helped them while conducting the practical part of
the research course (research proposal and research project) as can
be seen in figures 4 and 5. They helped the students plan the
research, and also propelled them further when they had trouble
progressing. We interpreted this to mean that despite the short
format of the videos, they were still a useful guide for conducting

40

30

20
) I l
1 2 3 4 5

disagree agree

Figure 2: Student feedback “I found the EWR course format
(videos + interactive lectures) to be enjoyable”

applied research. With the students leaning on the videos for help,
this freed time for the instructors from answering simple
questions. Students who came with questions that indicated they
had not put in effort to learn the theory, were referred to a video
that answered their question. This allowed instructors to focus
their efforts on students who were lagging behind their peers, or
advanced students who wanted to know more about the topic than
what the videos provided.

With the help of the videos, it was easy to provide all students
following the course a comparative level of instruction, thereby
bypassing the problem of lacking enough qualified staff.
However, the interactive workshops differed in quality depending
on the instructor. By offloading some of the work to the online
videos, qualified staff had more time to play a greater role in
coaching a larger number of students than would have been
possible otherwise.

40
30
20
10
0
1 2 3 4 5
disagree agree

Figure 4: Student feedback “The videos helped me in planing
how to do” the research project”

H. Alers et al.

1400

o 1050

=

8

>

]

£ 700

>

©

°

F 350
0
ND NN NN NDNDDNDDNDDNDDNDNDN NN NN NN
O O 0O 00000 OoOOoOOo o O O O o o
28929229922 c@Ieceee
POPPLPPPOPPOPOPOFRPL QPP
O O 0O 0000000 OO o O O O O O
BEHEHQ QO a a0 PP PP
NDMNMNOO = =4 4NN WO - 4 a2 NN
O~ ONOODOP»OMNOOGO W - 01 © W~

Date

Figure 3: Total views of the video recordings. Day of the
exam is highlighted in orange

Less than half the students participated in the interactive
workshops. Students were only allowed to participate if they
watched the required videos associated with the lecture and
completed the required homework. Those who did not adequately
prepare for a workshop were sent away. Those who did participate
showed good understanding of the theory. Lecturers noted that the
discussions they had with these students were more advanced than
in previous years, and that they found these interactions “more
enjoyable” than discussions during traditional lectures.

On the other hand, as Figure 6 indicates, the majority of the
students preferred the old classroom based lectures to the flipped
classroom. When sent away from the interactive lectures for not
having watched videos in preparation, students reacted negatively
claiming that they were “treated like children”. It is possible that,

40

30

20
) . I
1 2 3 4 5

disagree agree

Figure 5: Student feedback “When I got stuck with the
research the videos helped me figure out how to proceed
(videos + interactive lectures) to be enjoyable”

50
38

25

13
1 2 3 4 5

0

disagree agree
Figure 6: Student feedback “I prefer this flipped classroom
format to traditional lecture based format”

this being the first course to use the flipped format, the students
were simply not used to the novel methods. Instructors
commented that this format also required the students to “take
more responsibility in planning their progress”, which the students
“did not seem too eager to take”.

6 Conclusions and recommendations

The flipped classroom was an effective way to teach the course to
a large number of students. Their performance was equivalent to
that using lecture based instructions for the same course the
previous year. The flipped format helped free resources allowing
instructors to focus their efforts where they were really needed.
Although students enjoyed having video lectures, they still
preferred a lectures based approach.

It is clear that students had problems keeping up with the expected
minimum student progression expected for the course. They were
not able to plan their progress and keep up with the pace the
course required. One possible solution to enforce minimum
progression is to have weekly assessments in the interactive
workshops as part of the final course grade.

REFERENCES

Bajak, A. (2014, May 12). Lectures aren't just boring, they're ineffective, too, study
finds. Retrieved from https://www.sciencemag.org/news/2014/05/lectures-arent-
just-boring-theyre-ineffective-too-study-finds

Caplan, B. (2018). The Case against Education: Why the Education System is a
Waste of Time and Money. Princeton, NJ: Princeton University Press.

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H. &
‘Wenderoth, M.P. (2014). ‘Active learning increases student performance in
science, engineering and mathematics.” Proceedings of the National Academy
of Sciences, 111(23), 8410-8415. Retrieved from https://www.pnas.org/content/
111/23/8410

Nelis, H. & Van Sark, Y. (2010) Puberbrein binnenstebuiten. Wat beweegt jongeren
van 10 tot 25 jaar? (7e, herziene en uitgebreide druk). Utrecht/Antwerpen,
Kosmos Uitgevers B.V.

Slot, W., & Van Aken, M. (2013). Psychologie van de adolescentie. Basisboek.
Amersfoort: ThiemeMeulenhoff.

Baarda, B. (2010). This is It!: Guidelines for Setting Up, Doing and Evaluating
Quantitative and Qualitative Research. Noordhoff.

Wolbers, M.H. (2003). Job mismatches and their labour-market effects among
school-leavers in Europe. European Sociological Review, 19(3), 239-266.

A Flipped Classroom Experiment

REDUCING TEAMWORK FAILURES BY TYING ETHICS TO
TEAMWORK TRAINING

Alan P. Sprague

Raquel Diaz-Sprague

Dept. of Electrical and Computing Engineering
University of Alabama at Birmingham
Birmingham, AL, USA

sprague@uab.edu

Abstract. Most engineering curricula require ethics teaching.
Competence in teamwork is considered an essential skill that
students need to acquire during their undergraduate education.
Both ethics and teamwork are course objectives mandated by
the Accreditation Board for Engineering & Technology
(ABET). However, those subjects - ethics and teamwork - are
often difficult to teach and evaluate. We present our
experience offering a short refresher on ethics principles to
Electrical & Computing Engineering juniors prior to offering
teamwork training. We use an andragogical approach — guided
discussions, not lectures, and student-led demonstrations. We
report preliminary results and observations.

Keywords—teamwork, ethics, engineering education.

1. INTRODUCTION

Most engineering curricula require ethics teaching.
Competence in teamwork is considered an essential skill that
students need to acquire during their undergraduate education.
Both ethics and teamwork are course objectives mandated by
the Accreditation Board for Engineering & Technology
(ABET). However, those subjects - ethics and teamwork - are
often difficult to teach and evaluate. Lingard [5] suggests that
one of the reasons that teamwork is difficult to teach is the fact
that most engineering faculty have not themselves had much
teamwork training.

The literature reports that teamwork is difficult for students
[5]. Training in teamwork for undergraduate students
commonly takes the form of having students take a course/s
requiring them to produce a product as a member of a team.
Lingard and Barkataki [6] consider this to be a poor method —
they state “it is unlikely that without adequate faculty
guidance students can pick up (effective teamwork) skills
through ad-hoc group project experience”.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

diazspra@uab.edu

The realiy of being better trained in technical matters than in
interpersonal communication and other people-related skills
also extends to industry: Crawford (2) reports that managers
of engineering projects in industry are better prepared and
trained in management of projects than management of
people.

II. TEAMWORK AMONG STUDENTS CAN BE FRAUGHT WITH
FAILURE

Failure in team projects is not uncommon. One mode of
failure in teamwork that we have observed/experienced is
contrasting work styles by team members -- one team member
wanting to get started immediately while teammate/s prefer to
procrastinate. Another more surprising mode of failure that
we observed starts with a team leader who is an overachiever,
who grabs a central part of the project and keeps the results
under wraps, and then when the semester is coming to a close
these results cannot be successfully integrated with the
portions constructed by the other team members.

There are differences between the consequences of teamwork
failures in certain courses requiring teamwork: In some
classes, especially Computer Science classes, each team is to
produce a piece of code — a program that accomplishes some
goal. The goal is sufficiently complex that a team of 3 to 6
students is expected to spend a semester accomplishing it. In
other classes, like the Electric & Computing Engineering class
where we presented our minimodule, each team was expected
to come up with a design for a new product, including some
business/financial aspects of the product. Computer code to
accomplish some task is a very touchy thing: very small errors
can result in catastrophic failure of the program. Design
seems to be much less fragile.

III. OUR MINIMODULE

In fall 2018 we dedicated two class periods to review moral
reasoning theories, based on short video lectures. This is
followed by guided student group discussions of engineering
practice scenarios presenting moral dilemmas. The rationale
for this approach is to provide reasonably realistic scenarios
that young professionals may encounter. Also, within a group
even a single person can serve as a powerful force to choose to
do the right thing over expedience and/or apathy, thus
contributing to foster a moral climate

We use an andragogical approach — guided discussions, not
lectures, and student-led demonstrations.

Description of our mini-module:

The 35 undergraduate students in our class had already been
assigned to 7 teams of 5 students each. The 3 graduate
students in the class formed the eighth team.

We started the first class period with watching the video
“Justice: What’s the right thing to do?”, an ethics class taught
by Professor Michael Sandel (Harvard, a regular class with
several hundred students, presented in a large auditorium). He
presents a scenario which contains a dilemma, asks some
specific questions and asks for answers from volunteers, and
very occasionally takes a poll of the students. After about 30
minutes watching Sandel’s lecture, we handed each of our
teams a page containing a few questions based on the Sandel
lecture and told our students to discuss these questions within
the teams and write answers to one question on the page.
Each team was to then report discussion results orally to the
class as a whole.

The second class period started with watching a video of
Professor Frans de Waal of Emory University, on morality
among animals (Capuchin monkeys, elephants, and others),
emphasizing fairness and reciprocity as pillars of morality.
The class period was followed by guided student discussion in
the same way as the first.

For the third and fourth class periods of our minimodule
occurred 4 weeks later. Students were to demonstrate their
understanding of teamwork. There are at least two ways for
students to present the concepts of teamwork to the class. A
team can make a powerpoint presentation to the
class. Alternately, a team can direct the remaining teams in
playing a game. Many internet sites describe games that are
intended to foster teamwork among the players [9,10].

Each group had been assigned (during class period 2) to
present either an activity/game that promoted teamwork
among the members of the team, or to present a 10-minute
lecture on teamwork to the class. Numerous web sites
promote games that encourage good teamwork among
members of a team (the setting for this often is the employees
of a company). Most teams chose a game to lead the other
teams in playing, and just two teams presented powerpoint

lectures. Feedback from the students showed that the students
liked the games better than the powerpoint presentations.

IV. DISCUSSION

Our goal was to help students understand moral reasoning and
how moral principles are related to ethical teamwork
behaviors. Based on experience on teaching the UAB
Computer Science Capstone course, we believe that lectures
are not an effective method for presenting ethical material. We
decided to use Harvard edX’s online ethics videos followed by
in-class discussion.

Following our minimodule tying ethical principles — fairness
and reciprocity — to teamwork training, no teamwork failures
were observed in EE485, a UAB Electrical & Computing
Engineering class of 38 students in the fall of 2018. This
compares favorably with three (3) documented teamwork
failures among 37 students in CS499 in the fall of 2016.
CS499, the Computer Science capstone course, requiring
group work, was taught by these coauthors at the UAB
Computer Science Department in 2016-7. No ethics-teamwork
minimodule was offered.

Given that prior to the fall 2018, the UAB EE485 class was
plagued by teamwork failures, we preliminarily conclude that
the inclusion of a 4-class minimodule tying ethics to
teamwork was influential or perhaps instrumental in
improving a sense of fairness and accountability in group
work. We observed that the guided discussions were highly
animated. At semester’s end, several students expressed
appreciation to these co-authors as instructors of the ethics-
teamwork minimodule.

V. CONCLUSIONS

Providing a brief refresher on moral principles, emphasizing
fairness and reciprocity prior to assigning students to do group
work in Electrical and Computer Engineering can significantly
reduce teamwork failures and enhance the chances of
successful teamwork.

It may also make a critical difference in enhancing the
attitudes and behaviors of Electrical and Computer
Engineering students, which may have a broad and lasting
impact on their professional practice, employability and
leadership, beyond graduation.

REFERENCES

[11 S. Ciston. Berkeley Center for Teaching and Learning.
https://teaching.berkeley.edu/news/building-teamwork-
process-skills-students

[2] M. Crawford. Teaching Teamwork to Engineers. ASME
Magazine, October 2012.

[3] F. de Waal,
https://www.youtube.com/watch?v=GcJxRqTs5nk

[4] W. Frey. Ethics of Team Work. U Puerto Rico.
(https://www.saylor.org/site/wp-

content/uploads/2011/07/psych304-7.3.1.pdf)

[5] R. Lingard. Teaching and Assessing Teamwork Skills in
Engineering and Computer Science. Systemics, Cybernetics,
and Informatics, vol 8, issue 1, 2010, p. 34-37.
(wwwe.iiisci.org/journal/CV$/sci/pdfs/GQ816EX.pdf)

[6] R. Lingard and S. Barkataki. Teaching Teamwork in
Engineering and Computer Science. Frontiers in Education
Conference, IEEE, 2011.

[7] M. Sandel, justiceharvard.org

[8] R. Diaz-Sprague., A. Sprague, Software for the Soul: Our
Experience Teaching Ethics to Computer Science Seniors.
Presentation at the 26 APPE Annual International
Conference, Dallas, TX, February 25, 2017.

[9] wheniwork.com/blog/team-building-games

[10] www.teambonding.com/five-fun-team-building-activities

Project TOMO: immediate feedback enabling service in
teaching programming

Matija Lokar
Matija.Lokar@fmf.uni-1j.si
University of Ljubljana
Ljubljana, Slovenia

ABSTRACT

Teaching programming is demanding since it is not enough to ex-
plain the ideas and terms. Programming is a skill and mastering
a skill requires a lot of practice and thus inevitably a lot of mis-
takes. Most beginner mistakes are easy to correct if the students
are properly directed. If the teacher’s assistance is not available
immediately, the students get stuck and their progress slows down
considerably. Good and immediate feedback is a key component
that ensures fast success. Therefore a tool enabling quick feedback
is very useful in the teaching process. It is no wonder that services
providing automated programme assessment (SAAP) have become
a very popular choice in programming courses.

The teacher at our Faculty agreed that using such a service could
improve our teaching. Unfortunately most such services already
available had considerable shortcomings. The biggest was that the
feedback was more or less limited to the information whether or not
the result matched the expected outcome. Therefore we developed a
new web service called Project Tomo https://www.project-tomo.si/.
It is completely open and available to all. There are more than 4000
programming exercises that can be adapted and re-used in new
courses. At the moment the service is used by over 30 educational
establishments, most of which are high schools.

The article describes the options available in the service and
presents its use. It is shown how the analysis of the solution at-
tempts can pinpoint the students’ false ideas and therefore serves
as the basis for improving feedback. User opinions are given as
well.

CCS CONCEPTS

« Social and professional topics — Student assessment; « Ap-
plied computing — Computer-assisted instruction; « Soft-
ware and its engineering — Software notations and tools.

KEYWORDS

programming, beginners, services providing automated programme
assessment, web service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Matija Lokar. 2019. Project TOMO: immediate feedback enabling service
in teaching programming. In Proceedings of CSERC ’19: The 8th Computer
Science Education Research Conference (CSERC ’19). ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

As stated in [15] "Reading all the textbooks and listening to all the
best lectures cannot teach you to program a computer. Learning to
program is only possible if you sit down at the computer and start
writing programmes.” It has to be considered that ([9]) code writing
in itself is not the only important thing. It is equally important to
get feedback on how the programme is written, whether it fulfils
the demands of the specified problem, and if the appropriate tech-
niques were used. Constant monitoring and assessing the students’
work during the learning process ensures that the students’ write a
sufficient number of programmes and that they get feedback about
the quality of their solutions. That is actually the primary role of
the teacher. The large numbers of students in classrooms make
exactly that very difficult as several studies show, including [5].

Most beginner mistakes are easy to correct if the students are
properly directed. Good and immediate feedback is a key compo-
nent that ensures fast success. If the teacher’s assistance is not
available immediately, the students get stuck and their progress
slows down considerably. Therefore, a tool enabling quick feedback
is very useful in the teaching process. Discovering mistakes in the
syntax is not too difficult as contemporary tools provide reason-
ably good assistance. There are many more problems regarding
semantic mistakes. The teacher cannot usually be available for all
the beginners in need of assistance. Therefore, it is often the case
that students are not even aware that their solution is wrong or
incomplete precisely because of lack of teacher’s assistance. Let
us provide a simple example. Experience shows that an exercise
asking the students to Write a programme that will read a whole
number and provide its reciprocal. will often result in solutions such
as the one shown in Fig. 1

The students tested their solution, got accurate results for their
examples and believe that the exercise has been solved successfully.
Not many of them will test their programme with 0. Here the
teacher is the one who should provide the appropriate explanation.
Because programming courses are usually held in larger groups,
immediate intervention is not always possible and is often not
sensible as there are usually several students who thought of the
boundary example on their own. In such situation the real value
of services providing automated programme assessment (SAAP)
becomes apparent, as the students are immediately provided with
feedback and reminded of the forgotten example. Of course the

CSERC 19, November 18-20, 2019, Larnaca, Cyprus

3>
Easer » vhole munbers 4
IBe Deciprocial value 23 0.2%
>>>|

Figure 1: The example of an incomplete solution

teacher is still the key component in the process: if the prepared
testing examples are not good (the teacher can just as easily forget
the boundary example of 0) the service is not of much assistance.

There is a number of studies (e.g. [8, 14, 16]) describing the utility
of such services. As Pieterse and Liebenberg state in [13] the SAAPs
are very appropriate in formative assessment used in lab exercises.

The programming courses at our institution could be improved
with the use of SAAP as well, mainly in subjects where lab exercises
involve writing a programme. Thus the first version of Project Tomo
web service was developed in 2010 ([19]). As it turned out it was a
very practical teaching tool. The experience led to the development
of the next version in 2015. In it some drawbacks of the previous
version were addressed, for example the teacher can more easily
follow the students’ progress and prepare study materials.

It is fully open and accessible to everyone. At the moment the
service is used by over 30 educational establishments, most of
which are high schools. So far more than 3000 students submitted
almost 900.000 attempted solutions to over 180.000 exercises, and
the numbers keep growing. The bank of exercises keep growing,
too, and it includes well over 4.000 different programming exercises
that can be adapted and reused in different sets of exercises.

Since it has been suggested in Slovenia as well ([17]) that a basic
knowledge of a programming language is part of contemporary
elementary literacy, a further increase in the use of such services
can be expected.

2 A SHORT PRESENTATION OF THE
PROJECT TOMO SERVICE

After the decision to develop an SAAP tool was reached we checked
a number of services that belong in the category. The primary fo-
cus was on the services that are used for assessment in computer
competitions, because they are also most often used when teaching
programming ([6]). Unfortunately most of the systems had short-
comings. The biggest issue proved to be the feedback, which usually

Matija Lokar

centred on whether or not the solution matched the expected pro-
gramme exactly, which excludes certain types of feedback and
often requires different wording of the exercises. For example, if
the assessed programmes are to provide a large number of possible
results, the exercise had to ask for the results to be ordered in a
certain sequence even if the order of the results was not of any
considerable importance.

Because of this and several other shortcomings like the quick
insight into class- and individual students’ performance, the deci-
sion to develop our own service was reached. The development of
the service itself and the decisions that were taken in the process
as well as the reasons behind them are described in more detail in
[12, 15].

The service is available at https://www.project-tomo.si/. The
service requires login as teachers should track their students. This
can be done with an existing account for Facebook, Google or
ArnesAAI ([3]). The possibility to use the ArnesAAI account is very
useful for Slovene teachers and students, as most schools in Slovenia
already use the system. This means they can access the school
services and Project Tomo with the same username and password
which simplifies the administrative process. The teachers agree on
this point: Not having to create a new account for TOMO is great. All
our students are in the e-identities management system (mdm.arnes.si)
and have AAI access that they used to register for TOMO. With rare
exceptions everyone could register with no difficulties. The few students
who experienced difficulties in the registration process, used their
Google accounts.

At registration the user sees the first page that lists all the avail-
able subjects. The top part of the page shows the subjects that the
user is already registered in, and below is the list of subjects they
can register for. These are listed according to the educational estab-
lishments and projects. The materials within a subject are divided
into units. Each unit consists of several exercises and each exercise
has one or more sub-exercises.

The service was initially used for teaching those subjects only
where Python was the chosen language, but it soon became ap-
parent that quick automated feedback is very useful in all subjects
that include code writing in the lab exercises. Therefore the service
enables each exercise to be in its own programming language. At
the moment three more languages besides Python 3 are supported:
Octave and MATLAB that we use in numerical mathematics, and R
that is used in financial mathematics and statistics.

It is not particularly hard to add a new programming language.
At the moment the support for CSharp and Java is also planned.

The chosen exercise is transferred as a text file by the student.
The file contains everything that is necessary for solving the exer-
cise: the text of the exercise and the space for the student to enter
the solution.

The file can be opened in any programming environment for the
given language (e.g. Python IDLE, Thonny, PyCharm 4Ae¢) and the
student can immediately start working. The service has purposely
been formed in such a way that it does not require learning a
new programming environment in order to minimize extraneous
cognitive load ([4]), a student is exposed to when having to solve a
certain problem through code writing. This ensures the possibility
of increasing the effects of intrinsic load ([20]).

Project TOMO: immediate feedback enabling service in teaching programming

Below the space for entering solutions is the code that is launched
whenever the file is launched. This means that nothing else needs
to be done to test the programme but to launch the code in the file.
Then basically two things happen.

Solution test code is launched. It can be as complex as desired. A
few test examples are usually used to show the student whether or
not the expected results can be obtained with the student’s solu-
tion. If the results are not suitable, feedback is instantly provided
in the console (Fig. 2). It is important to know that this step is
possible even when the student is offline. The test examples are
namely launched locally, on the student’s computer. This is impor-
tant as it also ensures that the Project Tomo’s web server can not
be overloaded. That in turn eliminates the problems arising with
the number of users or the attempted solutions (e. g. solutions that
might start endless loops or harm system files)

If the web server is available, the student’s solution is stored on it.
It stores the entire history of attempted solutions for each student.
This history is also used to make work easier for the students: if
they had done the exercise before, the last attempted solution is
automatically included in the transfer file. The students can then
resume working at home without having to worry about code
transfer from the school computer to the one at home. The main
purpose of keeping history is that we are planning to develop tools
that will enable the analysis of the history. Therefore, the teacher
will be able to determine typical mistakes, possible misunderstood
concepts, and show a graph representing individual exercises and
groups of students. At the moment the analysis is possible, but must
be done manually.

So when the exercise is downloaded, the student solves it and
enters the solutions in the appropriate space. When the programme
is launched, the student is notified of the successfulness of the
attempt.

>>> XRun grupa_tnt.py
Saving solutions to the server ...
subtask has no valid solution.

Solutions saved.

Expression zena(3, 7) returns @.42 5 instead of (9, 3).

Expression zrna(3, 7) returns a float instead of a tuple.

- Expression zrna(32, 7) returns 4 142 4 instead of (4, B).
Have you used the appropriate operators?

- Expression zrna(35, 7) returns 5.8 instead of (5, 5).

Too many errors ... Further tests suppressed.

subtask has no solution.
subtask has a valid solution.

Figure 2: The example of an incomplete solution

In Fig. 2 we see that the student’s attempt was wrong for the
first sub-exercise, there has been no attempt at solving sub-exercise
2, and sub-exercise 3 was solved correctly. At the same time the
markings on the web page are synchronised to reflect the student’s
success.

In our experience, Project Tomo’s greatest strength as a teaching
tool lies in the ease of the preparation of study materials, students’
work analysis and following the students’ progress.

3 PREPARING STUDY MATERIALS

Most subjects available on TOMO are meant to be teaching ma-
terials at a certain school (classes, extra-curricular activities ...).
However, certain subjects are meant mostly as an exercise source

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

for the teachers preparing exercise collections. In the forthcoming
version of TOMO we plan to appropriately visually distinguish
between those two types of subjects.

The first step towards preparing a study material (a collection
of exercises) is to register as a teacher in a certain subject. The
teacher’s status can be assigned by one of the current teachers of
the subject, or the website administrators can be asked to open a
new subject. When are user has a role of a teacher, he can create a
collection in which the exercises will be added. The exercises can
be transferred from other subjects and used in original or adapted
form or can be created from scratch.

3.1 Transferring materials from other subjects

When we are assigned teacher status in a subject, this allows us to
transfer all but the hidden exercises from all other subjects. The
service itself also offers several exercise banks that can be used.
For example NAPO]J project ([2]) incorporated all exercises from
the Informatics e-textbook ([1]) in an exercise bank, adding also a
collection of exercises appropriate for extra practice. Extensive ex-
ercise banks were created also in the course of two student projects
as well: in project ProNAL ([11]) and in the project PiR ([10]). Two
subjects within those projects deserve to be specially mentioned:
Python - a course and R - a course, where most sets are video
enhanced. The videos present the students’ opinions on what is
essential within a certain set (e. g. on functions, loops 4Ae) for the
specific programming language. For the participating teachers it
was a refreshing (and sometimes surprising) view on what in a
certain topic is considered important in the students’ eyes.

The ProNAL project is about the exercises that were included in
the first group of the ACM competition in computer and information
science ([18]). The exercises are divided into several subjects. All
subjects use the same problems but differ according to the method
of solving. This is an attempt towards enabling the teachers to
lessen the cognitive load through different approaches [20]. For
example, an entire subject consists of exercises that offer the student
the correct solution in the wrong order. This is the so called Parson
type problem approach for which studies show (e. g. ([7]) that is
very useful in teaching programming languages.

Anyone who has been assigned teacher status can therefore
transfer exercises from all subjects (their own and other teachers’)
into their own subjects. That enables the teachers to quickly and
efficiently prepare exercises on a given topic even when there is
little time available.

The possibility to copy exercises has been well received by teach-
ers. However, they expressed the regret that there was no option
of simply copying the link to the exercise. If it turns out that an
exercise needs to be corrected, that needs to be done in every single
subject where the exercise is included. If there was the option to
simply copy the link to the exercise, it would only have to be cor-
rected once. On the other hand, that means that if the author later
decides to change the original exercise, all the copies are changed
as well.

In one of the future versions of Project Tomo the option to copy
the exercise and keeping it independently of the original exercise
will be complemented with the option to using the exercise as a
direct link to the original one.

CSERC 19, November 18-20, 2019, Larnaca, Cyprus

3.2 Adaptation of existing exercises

If an existing exercise is not to the teacher’s satisfaction, the teacher
can modify it. First an editing file is downloaded. Just like the
student opens the exercise, the teacher opens the editing file in the
preferred word processing programme and fixes the text and then
launches the file (Fig. 3). Upon launching, the file is transferred to
the web server and any changes are immediately visible on the web
page. The text of the exercise is written in Markdown format that
allows some simple text editing.

def mimmax(o, b, ¢, d, €)
candidates
vertex_x = -b/(2°a)
if d <= vertex_x and vertex_x <= e:
candidates_x.app)

votues = [a°x**2 + b x in condidotes_x]
return (min(volues), max(volues))

Check.part()

(w, M) = mirmax(1, @, 1, -1, 1)

if M -

Check. error((“For va @) the max v

Figure 3: Editing an exercise

This enables quick modifications and corrections during the exer-
cises if the teacher notices a mistake in the exercise or simply wants
to formulate the exercise in a better way. When the students refresh
the page, the edited version of the exercise is already available.

When an exercise is made, the official solution must be formu-
lated. At first sight this means more work for the teacher. According
to our experience, however, this approach has many advantages.
It is very often the case that only when we attempt to solve an
exercise we become aware of the problems in its formulation and
come up with proper testing examples for the particular exercise.
Besides, the official solution is visible to the students after they had
entered their own correct solution (this option can be blocked, e.
g. for homework assignments). Therefore, it makes sense to adapt
the available official solution when we copy an exercise, in order to
adapt it to our particular programming style and code formulation.

The official solution is followed by testing examples. Those are
parts of code that check if the solutions (the student’s as well as
the official one) provide the expected results. Tests can also include
checking for particular formats (e. g. the student’s code must use
the for loop, not the while loop). When the teachers are writing test
cases, they can call the student’s methods and access the student’s
original code. Since test writing takes a long time, a Check class is
offered, which contains some handy methods of easy testing. It is
possible to use simple comparisons such as whether a recall of a
particular expression provides expected results. As the testing part
allows programming as well, the tests can be as complex as desired.
For example, the student’s solution can be analysed with the use
of abstract syntax trees and checks that the student’s programme
never recalls the method with the name det.

Matija Lokar

4 MONITORING THE STUDENTS’ PROGRESS

The new version of Project Tomo a lot of work was done on the
user interface. We wanted it to be simple and transparent, but
nevertheless contain all the important information. The teachers
should have access to the success rate of the entire class in the entire
subject as well as in separate sets and each individual exercise, and
for each individual student.

In order to monitor the progress, the service uses numerical data
(in percent or absolute value) and colour coding. Red colour shows
the number of exercises in a set the students never attempted to
solve, yellow shows the number of exercises that were incorrectly
solved, and green show the number of accepted solutions.

The coding is used in visual aids such as banners and pie charts.
Banners are used to monitor the students’ progress in sets. As
teachers we see the banners above the sets on the first page. The
banners are colour coded (red, yellow, green) as described above.
This allows us to see as soon as we log in how successful the
students were in the most current (last three added) sets. When a
subject is chosen, the teachers can see the same information for all
sets, and the list of students’ names participating in the subject can
be seen on the right hand side.

Programiranje 1 (2018/19) - 2. del

69% siovarji 7% vabe %0 e 28%
encty

Slovarji Il

Programieanje 1 - 3. 1, 2018119 , sener
Prakiéna matematina, 2. semester

73% slovarji in rekurzija |

¢ese53

Slovarji in rekurzija ii

Figure 4: Success rate - group and individual

Next to the name of each student a diagram shows how suc-
cessful that student is when doing the exercises in the subject. If
the teachers are interested in seeing a student’s success rates more
closely, a click on the student’s name will open the section with
detailed information.

This approach has proven to be useful for determining the rate
of difficulty for the exercises and for determining which type of
exercise is more difficult for the students. It is often only at this
stage that it becomes apparent which parts need to be revised again.
If we want to see the names of the students who had succeeded
in solving an exercise correctly, we click the pie chart diagram.
That opens a page where we can see a list listing the names of all
students that shows which of the students had solved which of the
exercises.

4.1 Accessing a student’s solutions

In order to monitor a student’s progress successfully, the teacher
must have appropriate access to the student’s solutions. Project
Tomo has several tools allowing that. The basic tool is the insight
into the current solution of an exercise. If the appropriate circle
is clicked, this shows the student’s solution as well as the official
solution.

Project TOMO: immediate feedback enabling service in teaching programming

Figure 5: Success rates for individual students

A very useful option allows us to view all the student’s attempts
at solving an exercise. At the moment Project Tomo does not yet
allow a direct option for this. Some typing is required which then
takes us to the archive that contains the information of the cor-
rectness of all submitted solutions of all sub-exercises, and files
arranged according to exercises that contain the last submitted
solution for each student. Those files are likewise marked with
correctness checking code so that the teacher can check what is
wrong in each particular solution; perhaps only a simple correction
of punctuation is enough. In this case, the solutions are of course
not stored on the server.

The history directory contains all the student’s submission in
the set, arranged according to the time of the submission and con-
taining the feedback received by the service. The teacher can see
the changes in the code were made by the student between two sub-
missions. The time of the submissions also tells us that the changes
were more or less unpremeditated attempts as the time difference
between both submissions is only two minutes.

5 USING THE SERVICE IN PRACTICE

The Project Tomo service has been used in different courses for
quite a while at the Faculty of Mathematics and Physics, at Ljubl-
jana University. Besides programming courses and courses in data
structures and algorithms, the service is also used in courses in
numerical mathematics and financial mathematics. It turned out
to be an effective tool for lab exercises. Most allow the students to
do exercises on their own and at their own speed. This allows the
teaching assistant to deal with the "real” problems and directs the
students, explains certain concepts when necessary, and does not
need to waste the time for solving minor issues.

The option that allows quick fixes and adaptations of an exercise
or test has proven to be extremely useful. It has often been the case
that an exercise was found to be poorly formulated or lacking a
test case during the course of the lesson itself. The design of the
service allows fast changes and adaptations of exercises and the
changed exercise is immediately available to the students.

Another one of the qualities of the system is that it takes over the
role of the cranky teacher who insists that the solutions must cor-
respond precisely to the exercise. This can be clearly seen from the
letter we had received from a professor at one of Slovene grammar
schools: "What bothered them was that they got an orange or even

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

a red mark for the solutions that gave correct results but did not
use the path specified in the exercise or even if they simply named
the variables with different names than specified. Their progress
was then incorrectly marked.

Of course that seemed odd, as the whole idea behind the ser-
vice is that all solutions are accepted if they withstand the testing
procedure. Therefore, the professor was asked to specify the exer-
cise where that happened. It was one of the exercises in the new
e-textbook for subject Informatics in grammar schools [1]. Com-
parison of the provided solution and the student’s solution shows
that the solutions differ in a single capital letter. The student wrote
"enter" without the capital, but the exercise asked for the capital-
ization of the sentence. Of course we could debate whether or not
the exercise is overly exact, but let us assume that it is not.

This is yet another instance that proves that Project Tomo is
just a teacher’s tool. The teacher is the one who determines what
is important and what is not. The exercise above offers several
different options. Let us mention four of them.

(1) The exercise can be left as is. The purpose is to make the
students read the instructions carefully and stick to them
precisely. Project Tomo can help us with that immensely, as
we do not have to explain to each individual student that
the solution is invalid because of a single capital letter. The
service simply does not accept the solution as correct and
the exercise is marked as incomplete.

(2) The test can be changed so that the student is warned of the
mistake in the capitalization in the feedback provided by the
system, which tells the student that a common mistake was
made but does not "punish” the student for it.

(3) The test can be adapted to accept mistakes in the capital-
ization. This makes sense if the stress in the exercise lies
elsewhere and the displayed text is less important.

(4) The test can be changed to accept any form of imperative
the student uses.

Most important is the teacher’s ability to react to any situation
that arises in the teaching process. That is exactly the reason behind
the development of Project Tomo: to lessen the teacher’s load and
remove the menial tasks, thus providing additional time for the
teacher 4AS student communication during lab exercises. We firmly
believe that this enables in-depth debate between the teacher and
the students as the teacher does not have to devote so much time
to predictable mistakes.

5.1 Teachers’ opinions on Project Tomo

Project Tomo is used by many high school teachers in their pro-
gramming courses. In order to improve the service even further,
they were asked to share their opinion of the service. Some opinions
have already been presented in the article, some more interesting
answers follow. The authors are all professors at Slovene grammar
schools.

o "The tool is especially useful when teaching Matura students
as their knowledge and aptitude regarding programming differ
to such extent that attempting to teach them in a conventional
manner could only be considered a hopeless task."

o T used to work along the lines of exercise - hint - solution.
Tomo, however, is something else. Now I can finally devote my

CSERC 19, November 18-20, 2019, Larnaca, Cyprus

time to a struggling student individually while the others can

continue to work at their own pace”
o "I am impressed with the system’s insistence on the exact for-
mulations, which is often difficult for the students and teaches
them to read the instructions carefully and to fulfil the demands
exactly."
"Both my students and I have extremely positive experience
with the system. The students like that they can do the exercises
at their own pace or even at home. In the meantime, I can devote
more time to the beginners."
"A tool such as Project Tomo is very welcome in lessons. In
the first place it simplifies the work immensely. Perhaps a
banal thing, but it is handy that exercises do not have to be
individually searched for and then projected on the board,
as the exercises are already well written and include all the
necessary instructions.”
"The fact that they could see their progress was good motivation,
and for me it meant that I could quickly see what someone has
done and what has not been done yet."
o "Tomo has proved a very efficient tool in programming lessons.
The initial time input is quite extensive, but that means a lot
less work and a much better overview of the students’ work in
the end. It is also much easier to work with students who come
to the course at very different levels of knowledge."
"The TOMO web service enables me to assign more work to
those students that wish to work more, and to devote more
time to the students who need more practice and additional
explanations. It is TOMO that provides the basic feedback."
"Another important thing to consider when using Tomo is the
large amount of available exercises. The existing exercises are
also easily adapted to your own needs without actually chang-
ing the original exercise in the system.”

6 CONCLUSION

Project Tomo makes work easier for the teachers in several ways
described above. Thus the teachers can devote more of their time
to the preparation of the study materials and the teaching itself. It
aids the students, too. They are given instant feedback regarding
the correctness of their solutions which enables faster progress.

Tools such as Project Tomo will probably become widely useful,
as even the public opinion regarding the knowledge of how to
program a computer is slowly changing towards the notion that at
least a basic familiarity with programming is becoming necessary,
especially when it comes to the way of thinking. As the experience
in other countries shows, the main problem for the teaching of
programming seems to be the lack of good teachers. Of course, no
such service can replace teachers. However, it can help the teachers
to teach large groups of students and to focus on the struggling
students who need help.

The aforementioned experiences with using the Project Tomo
service in Slovene grammar schools show us that the service eases
the teachers load. Thus the teachers can devote more time to prepar-
ing study materials and the teaching itself. It is of especially great
help when the groups consist of students with different levels of

Matija Lokar

existing knowledge. The teacher can more easily focus on individ-
ual students, as beginners have very different needs from the more
proficient programmers.

REFERENCES

[1] Anzelj, G., Brank, J., Brodnik, A., Bulic, P., Ciglari¢, M., Dukic, M., Sterle, P.
(2018). Racunalnistvo in informatika v2.12; E-u¢benik za informatiko v gimnaziji.
https://lusy.fri.uni-lj.si/ucbenik/book/index.html

[2] Anzelj, G., Brodnik, A., Lokar, M. (2018). NAPQJ - proti aktivni skupnosti uciteljev

rac¢unalniskih predmetov. Vzgoja in izobrazevanje v informacijski druzbi - VIVID

2017: zbornik referatov. Ljubljana: VIVID.

] Arnes AAL (2017). https://aai.arnes.si/

[4] Chandler, P., Sweller, J. (1996). Cognitive Load While Learning to Use a Computer
Program. Cognitive Psychology.

[5] Corbett, A. T., Anderson, J. R. (2001). Locus of feedback control in computer-based
tutoring: impact on learning rate, achievement and attitudes. Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems (CHI ’01) (pg. 245-252). New
York: ACM.

[6] Duch, P., Jaworski, T. (2018). Dante - Automated Assessments Tool for Students’
Programming Assignments. 11th International Conference on Human System
Interaction (HSI).

[7] Ericson, B. J., Margulieux, L. E., Rick, J. (2017). Solving parsons problems ver-
sus fixing and writing code. Proceedings of the 17th Koli Calling International
Conference on Computing Education Research (Koli Calling *17).

[8] Higgins, C. A, Gray, G., Symeonidis, P., Tsintsifas, A. (2005). Automated assess-
ment and experiences of teaching programming. J. Educ. Resour. Comput.

[9] Thantola, P., Ahoniemi, T., Karavirta, V., Seppald, O. (2010). Review of recent
systems for automatic assessment of programming assignments. Proceedings of
the 10th Koli Calling International Conference on Computing Education Research
(Koli Calling *10). ACM.

[10] Javni sklad Republike Slovenije za razvoj kadrov in stipendije. (2018). Po kreativni
poti do znanja (PKP). http://www.sklad-kadri.si/si/razvoj-kadrov/po-kreativni-
poti-do-znanja-pkp/

[11] Javni sklad Republike Slovenije za razvoj kadrov in stipendije. (2018). studentski
inovativni projecti za druzbeno korist ($IPK). http://www.sklad-kadri.si/si/razvoj-
kadrov/studentski-inovativni- projecti-za- druzbeno- korist-sipk/

[12] Jerse, G., Lokar, M. (2018). Uporaba sistema za avtomatsko preverjanje nalog
Project Tomo pri u¢enju programiranja. Vzgoja in izobrazevanje v informacijski
druzbi - VIVID 2017 : zbornik referatov. Ljubljana.

[13] Pieterse, V., Liebenberg, J. (2017). Automatic vs manual assessment of program-
ming tasks. Proceedings of the 17th Koli Calling International Conference on
Computing Education Research (Koli Calling °17) (pg. 193-194). ACM.

[14] Poon, C. K., Wong, T.-L., Yu, Y.-T., Lee, V. C., Tang, C. M. (2016). Toward More
Robust Automatic Analysis of Student Program Outputs for Assessment and
Learning. IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), (pg. 780-785).

[15] Pretnar, M., Lokar, M. (2015). A Low Overhead Automated Service for teaching
Programming. Proceedings of the 15th Koli Calling International Conference
on Computing Education Research. Koli, Finland: Proceedings of the 15th Koli
Calling Conference on Computing Education Research. doi:https://doi.org/10.
1145/2828959.2828964

[16] Rajala, T., Kaila, E., Lindén, R., Kurvinen, E., Lokkila, E., Laakso, M.-J., Salakoski,
T. (2016). Automatically assessed electronic exams in programming courses.
Proceedings of the Australasian Computer Science Week Multiconference (ACSW
’16). ACM.

[17] RINOS. (2018). Snovalci digitalne prihodnosti ali le uporabniki? https://fri.uni-
lj.si/sl/novice/novica/uporabniki-ali- snovalci-digitalne- prihodnosti

[18] Tekmovanje ACM iz ra¢unalnistva in informatike. (2018). http://rtk.ijs.si/

[19] UL FMF. (2010). Project Tomo. https://www.project-tomo.si

[20] Wilson (ed.), G. (2018). Teaching Tech Together - Cognitive Load. (Lulu.com)
http://teachtogether.tech/en/load/

Static Detection of Design Patterns in Class Diagrams

ED VAN DOORN, The Hague University of Applied Sciences
SYLVIA STUURMAN, Open University of the Netherlands

MARKO VAN EEKELEN, Open University of the Netherlands and Radboud University

Teaching Object-Oriented design on the class diagram level is often a cumber-
some effort. Requiring the use of specific design patterns helps the students
in structuring their design properly. However, checking whether students
used the right design pattern can be a very time-intensive task due to the
variety of possibilities of creating structure using design patterns on the
high-level of class diagrams. For the same reason, it is hard for students to
check for themselves whether their solution fulfills the basic requirements
that are required by the teacher with respect to the use of design patterns.

Efficiency and the quality of design pattern education can be improved by
automatic detection of design patterns in UML class diagrams. We introduce
a new method to detect design patterns in class diagrams, together with a
prototype of a tool which uses this new method. Using this tool, a teacher
needs less effort to review solutions of design exercises since the tool can
check the basic class requirements automatically. Consequently, a teacher
can focus on the more high-level requirements that were set in the exercise
and students can easier check for themselves whether their design satisfies
the basic required properties on the pattern level.

The method offers static decidability for those design patterns, that are
identified by structural properties i.c. the names of the classes and their asso-
ciations. It is non-duplicating, i.e. a specific occurrence of a design pattern is
not reported multiple times. The method not only detects all 17 static Gang
of Four design patterns without false positives or false negatives, but also it
can detect redundant relations. The prototype, our tool can contribute to
the quality and efficiency of design pattern education, both for students and
for teachers.

Additional Key Words and Phrases: efficiency of learning and education,
design pattern detection

ACM Reference Format:

Ed van Doorn, Sylvia Stuurman, and Marko van Eekelen. 2019. Static Detec-
tion of Design Patterns in Class Diagrams. 1, 1 (November 2019), 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Ed van Doorn, The Hague University of Applied Sciences, The
Hague; Sylvia Stuurman, Open University of the Netherlands, Heerlen; Marko van
Eekelen, Open University of the Netherlands, Heerlen, Radboud University, Nijmegen.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/11-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In many educational situations, automatically detecting design pat-
terns in a class diagram would be of value. For instance, teachers
could be supported by their evaluation of designs that students send
in [SF04]. This support will save time for teachers. It also guarantees
equal assessment and reduces the amount of monotonous work. It
would be also useful as an aid in a class diagram editor for students,
to check whether they have represented an intended design pattern.
Feedback on simple mistakes would also be welcome.

In an educational environment, a tool that uses UML class diagram
as input and can detect design patterns is wanted. Automatically
detecting design patterns based on structural properties can be
generalized to automatically detecting any pattern that consists of
classes and their relations. For that purpose, obligatory larger static
parts may be defined. This paper describes the contributions:

The new theoretical concepts: static, and non-static design
patterns, static decidability, generally complete, non-dupli-
cating.

A new subdivision of design patterns based on these concepts.
A new method for detecting design pattern based on these
concepts.

A prototype of a tool which uses this method. This tool can
detect all 17 Gang of Four static design patterns and is non-
duplicating.

Detecting design patterns which partially exist.

Generating limited feedback.

The tool ! is publicly available. Our paper is structured as follows.
We define a new concept in section 2: static design patterns, that
defines a set of design patterns that are completely defined by their
class names and their relationships. We also define the concept
of static decidability for algorithms that can detect static design
patterns. The concept of non-duplicating is also defined in section
2. For implementation of an algorithm that can detect all static
design patterns in a UML class diagram, several requirements are
wanted. First of all, it should make no errors and so, only detect true
static design patterns. Templates for static design patterns should
be easily definable. It should also detect permutations of design
patterns and multiple occurrences of one design pattern only ones,
i.c. the algorithm should be non-duplicating.

In section 3, we describe earlier approaches to detect design pat-
terns in UML class diagrams. Here, we show that none of these
approaches meet our requirements. Some of these approaches can
detect all static design patterns, but these approaches have short-
comings, e.g. they are not non-duplicating.

In section 4, we describe our approach in detail. We explain how
the above requirements are fulfilled. Our prototype uses 3-tuples
for representing class diagrams.

!http://members.chello.nl/e.doorn1/DesignPatterns/static_decidability

, Vol. 1, No. 1, Article . Publication date: November 2019.

2« Edvan Doorn, Sylvia Stuurman, and Marko van Eekelen

We describe the results of our prototype in section 5. We show
that the implementation of our method results in a prototype which
works in practice. The prototype can detect all 17 static Gang of
Four [GoF] design patterns [GHJV95], because they are fully defined
by their class/interface-names and their relations. The number of
false positives and negatives, the speed of detection and the im-
provements of the detection method are discussed. It can read the
XMI representation of a class diagram by ArgoUML, the drawing
tool for class diagrams and reads templates for design patterns in
XML-format. The results are compared to the result of other tools.

In section 6, we refer to articles about four subjects. Experiences
about education at university level related to design patterns is
clearly an important issue. Several approaches for detecting design
patterns in source code are mentioned. Also, an approach to detect
anti-patterns is referenced. Research on the relation of occurrences
between design patterns and code smells is referenced.

In section 7, we describe our conclusion. The theoretical and
practical advances are recalled. The results are summarized as well
as the limited feedback.

In section 8, we show the limitations of our approach and give
suggestions for future research. In particular, we mention generally
complete detection algorithm, improved detection for the Abstract
factory, improved feedback and measuring the quality of UML class
diagrams.

2 STATIC / STATIC DECIDABILITY / GENERALLY
COMPLETE / NON-DUPLICATING

In this section, we introduce a new subdivision of the set of all design
patterns into two new complementary subsets: static and non-static.
Each subset is related to a type of detection algorithm, that offers:
static decidability or generally complete. The approaches to detect
design patterns in section 3 are labeled by these new concepts.

2.1 New categorization for Design patterns and detection
methods

Traditionally the set of all design patterns is subdivided by their use.
Creational patterns are used to create complex objects. Behavior
patterns are used to divide and assign responsibilities to classes and
to describe the communication between objects. Structural patterns
are used to associate classes to bigger structures [GHJV95].

A second subdivision is based on analyzing source code. Detection
algorithms can use static analysis, during which the code is not run-
ning and during dynamic analysis when the code is running. The
first subset of all design patterns is static structural patterns, which
are detectable based on their classes and relationships. Dynamic
behavior patterns, which are detectable based on the interaction
between objects. This subset of design patterns can be detected
by a combination of static and dynamic analysis. Program-Specific
patterns, which are detectable based on specific keywords and code
styles. This last subset of design patterns can also be detected by a
combination of static and dynamic analysis [LYLO08].

A third subdivision resulted in PINOT, an automated detection tool,
which uses the source code as input[SO06]. The subdivision consists
of five subsets. The first subset is based on the programming lan-

guage. Java provides the Observer and Iterator pattern. The second
subset contains structure driven patterns, that are fully defined by

, Vol. 1, No. 1, Article . Publication date: November 2019.

the relationships between classes. The third subset are behavior
driven patterns. These patterns model behavior aspects. Examples
are Singleton, Strategy, State, Factory method and Decorator. The
fourth subset is the domain specific patterns. The Interpreter and
Command combined with the composite and visitor design pattern
are used for specific languages. The fifth subset is used for general
concepts. The Builder and Memento design pattern constitute this
subset. Their structure is detectable, but their behavior aspects are
hard to detect. PINOT can detect structure and behavior driven
patterns. PINOT could easily be extended to detect patterns, which
are provided by the language. It would only be necessary to detect
some keywords.

Another example of the third subdivision is described by Bernardi
[BCDL14]. He uses a domain specific language to define patterns
and source code. A graph matching search method is used to detect
design patterns. The tool can distinguish between the State and
Strategy patterns which are structurally identical. The Singleton
pattern is detectable and variants of design patterns are also de-
tectable, but the recall and precision of the tool is not 100%.

The first subdivision is not helpful to create detection methods,
because it does not give any information about easily identifiable
characteristics of design patterns. The second and third subdivision
are based source code analysis, but inspired us to give a subdivision
for UML diagrams. When we first look at a class diagram of a design
pattern, we see a number of classes and relationships, which con-
cepts are easily identifiable. This leads to the following definitions.

Definition 2.1. A design pattern is static if it is completely defined
by the names of their participating classes and their relationships.

The Adapter pattern is a simple example because the pattern
consists of a few classes with one association and one inheritance
relation. See Figure 7. A Singleton pattern is not a static design
pattern, as explained after the next definition.

Definition 2.2. A design pattern is non-static, if it needs more char-
acteristics than names of their participating classes and relationships
to be defined.

An example is the Singleton pattern. The Singleton class needs
a static operation which returns the unique object and a static at-
tribute, which contains the unique object or a null-value.

From an educational point of view, one could state that model-
ing design patterns which are non-static needs more attention and
effort than modeling design patterns which are static.

Definition 2.3. A detection algorithm offers static decidability, if
it can detect all static design patterns.

Such an algorithm can detect e.g. the Prototype pattern, see Figure
6 and the Adapter pattern.

Definition 2.4. A detection algorithm is generally complete, if it
can detect all design patterns.

This type of algorithm offers more than those that offer static
decidability. It is not only able to detect e.g. the Adapter and the
Prototype pattern, but also e.g. the Singleton pattern.

The relations between these definitions is depicted in Figure 1.
The purposes of the classical subdivision and our subdivision differ.
The classical subdivision, creational, behavioral, and structural pat-
terns is directed to using design patterns. Our subdivision is directed
to detecting design patterns. The second subdivision is similar to
our subdivision, but they also differ. Both subdivisions use static
characteristics. However, the second subdivision is based on source
code, which have to run to detect dynamic behavior. Our subdivi-
sion is based on design characteristics.

Can detect

Set of design pattern

Can detect

Generally complete

Has
static
decidability

Set of detection algorithms

Fig. 1. Relation between definitions

The static patterns can be shown in a UML structure diagram e.g.
a class diagram. In contrast to a class diagram, names of attributes
and signatures of operations are not involved in the definition of
static decidability. An interface can be regarded as a class without
the implementation of methods, and a class may be abstract. When
to decide whether a design pattern is static or not, the differences be-
tween the concepts: class, abstract class, and interface are irrelevant.
Relationships are (directed) association, aggregation, composite, in-
heritance, realization and dependency. Potential multiplicities of
relationships are irrelevant, because they are not used by Gamma
et al. [GHJV95].

Table 1 denotes the subdivisions: the static and non-static Gang
of Four design patterns. Design patterns to which an asterisk is
added, such as Adapter, contain attributes and/or operations in their
definition giving by Gamma et al. [GHJV95]. Their static structure
is unique and their given attributes and/or operations have minor
influence on the intention of the design pattern. So they are con-
sidered to be static. However, false positive detection of a design
pattern remains possible. For instance, the Factory Method pattern
has an uniq static structure. So, a method which offers static decid-
abilty will detect an occurrence of a Factory Method pattern. But, an
occurrence of a Factory Method needs to create an object. Without
creating an object, a false negative will be generated.
There are 23 GoF design patterns, of which 17 are static and so an
algorithm that offers static decidability is sufficient to detect them.
For the remaining 23 - 17 = 6 design patterns, we give arguments as
to why algorithms that offer static decidability are not capable to
detect them.
o Facade: Any pattern where one class has connections with

at least two other classes, would be a fagade pattern. So, a

false positive detection would be likely. More information is

needed to decide whether this pattern is a facade pattern.

Detecting design patterns « 3

e Prototype: The operation clone is essential for detection.
So, class/interface-names and their relations do not contain
sufficient information to detect this pattern.

Singleton: For detection, a static operation returning the value
of a static attribute, is necessary. So, class/interface-names
and their relations do not contain sufficient information to
detect this pattern.

State pattern: This pattern is structurally identical to the Strat-
egy pattern. So, more information is needed to distinguish
these patterns.

Template Method: The Template Method can only be detected
by taking operations into consideration.

Visitor: The number of operations of the interface visitor
should be equal to the number of classes that implements the
interface element.

Static ‘ non-static ‘

Creational Patterns ‘

Abstract Factory
Builders

Factory Method:x
Structural Patterns
Adapter*

Bridge*

Composite*
Decorator®
Flyweight*

Proxy*

Prototype
Singleton

Fagade

Behavior Patterns ‘

Chain of reponsibility™
Command*

Interpreter

Iterator™

Mediator

Memento*

State/Strategy
Template Method
Visitor

Observer*

Table 1. Subdivisions of Gang of Four design patterns

In anticipation of the problems in section 4.4, which describes
the multiple detection of one occurrence of a design pattern, we
introduce a definition of a type of detection algorithms with a higher
quality.

Definition 2.5. A detection algorithm is non-duplicating, if it de-
tects every occurrence of a design pattern only once.

3 INTRODUCTION TO DETECTION APPROACHES

This subsection gives an overview of detection methods based on
representations of UML class diagrams. It is indicated whether they
are generally complete or offer static decidability or not. Whether
they are non-duplicating or not, is also denoted. Approaches are

, Vol. 1, No. 1, Article . Publication date: November 2019.

4« Edvan Doorn, Sylvia Stuurman, and Marko van Eekelen

explained by an example consisting or the Prototype design pattern,
which is searched for in a UML class diagram of an example system.
See Figure 2, which represents the essential classes and relationships
of the Prototype design pattern. Figure 3 represents the example
system, which contains the Prototype design pattern.

3.1 Matrices

One technique is to represent design patterns as a matrix [DSZ08,
TCSHO6]. For every type of relationship in a class diagram, e.g. asso-
ciation, inheritance, and dependency, a matrix denotes the relation-
ship. If a relationship (for instance, an association) exists between
two classes, the corresponding matrix element is one; if not, it is
zero.

=]
>{[[o]

o
g

Fig. 2. The Prototype pattern Fig. 3. Example of a system

As an example, Table 2 shows for figure 3 the corresponding matrices
for the associations, inheritances, and dependencies. Class A is
associated with class B, is represented by the number 1 in row A and
column B in the association matrix. Likewise, class D inherits from
class B, is represented by the number 1 in row D and column B in the
inheritance matrix, and class D depends on class E, is represented
by the number 1 in row D and column E in the dependency matrix.

Association matrix Inheritance matrix Dependency matrix
A B C D E A B C D E A B C D E
A 0 1 1 0 0)]|A 00 0 0 0)]|A 00 0 0 O
B 0 0 0 0 0| |B 0 0 0 0 0| |B 00 0 0 O
C 0 1 0 0 0f|C 0 0 0 0 0f|C 0 0 0 0 O
D 0 0 0 0 0]|D 0 1 0 0 0]|D 0 0 0 0 1
E 0 0 0 0 0f|E 0 0 1 0 0f[E 0 0 0 0 0

Table 2. matrices representing Figure 3

Similarly, abstract classes and interfaces can be represented by
matrices. If a class is abstract, its corresponding diagonal element
of the abstract matrix is set to one. These matrices can be com-
bined, resulting in one overall matrix [DSZ08]. The overall matrix
is constructed as follows. The association matrix is as associated
with the number 2, inheritance matrix is associated with 3, and the
dependency matrix is associated with 5. The value of the elements
of the overall matrix in Table 4 is defined by

overallMatrix,-j - 2assaciatiunmatrixi1j * 3inheritancematrixi1j %

sdependencymatrix;

In Table 4 the value 2 in row A and column B is calculated by:

, Vol. 1, No. 1, Article . Publication date: November 2019.

overullMutrix1 9= 2assaciationmatrix1,z % 3inheritancematrix1‘2 *
sdependencymatrixys — 91 4 30 . 50 — o

The association matrix shows in row A and column B the value 1.

An overall matrix is likewise constructed for a design pattern. For
Figure 2 the overall matrix is Table 3.

Overall matrix

Overall matrix
P R A B C D E
Q A 1 2 2 1 1
P 1 2 1 B 11 1 1 1
o1 11 c 121 11
R 1 3 1 D 1 3 1 1 5
E 11 3 1 1

Table 3. O Il matrix fi
able verall matrixtor Table 4. Overall matrix for

Fi 2
fgure Table 2 and so Figure 3

To determine whether a design pattern is present in a class dia-
gram, one has to compare the overall matrix of the design pattern
to the overall matrix of the class diagram. In example, compare
Table 3 with Table 4. This can be done by cross-validation [DSZ08].
Alternatively, this can be done by using Blondel’s or Zager’s algo-
rithm [TCSH06, BGH*04, ZV08]. This will result in the solution as
shown in Table 5.

Solution

11213
P> |A|C|A
Q— | B|B|C
R— |[D|D|E

Table 5. Solutions of comparing Table 3 and 4

By representing design patterns by a matrix, one can detect at
least 10 GoF design patterns. When one searches for one of the pat-
terns that can be detected, there are, with some exceptions, no false
negatives. These exceptions involve permutations and interpreta-
tions of the Factory Method and the State pattern. So, this approach
is focused on static design patterns and offers static decidability.
The approach is not non-duplicating because permutations of one
occurrence are not interpreted as one.

The authors did not give any details about the time to detect design
patterns.

3.2 Decision trees

This subsection describes the use of decision trees as an approach
to find design patterns. This approach also uses matrix representa-
tions of design patterns. Instead of comparing overall matrices as in
section 3.1, a direct search that compares individual matrices one
by one is used. This approach results in a decision tree [TCHS05].

The approach starts with constructing 7 matrices and one vector
for representing 20 design patterns. The matrices are used for repre-
senting associations, aggregations, generalizations, instantiations of
objects, method parameter references, similar method invocations,
and abstract method invocations. The vector is used to indicate

whether a class is abstract or is an interface.

The design of the system under consideration is also described by
these 7 matrices and one vector.

Some patterns contain another pattern. For instance, the Abstract
Factory contains the Factory Method. So the search for these pat-
terns can be combined. If a Factory Method is detected then the
search can be continued to detect an Abstract Factory.

The search for Interpreter, Proxy, Composite and Decorator patterns
can be combined [TCHSO05], because their structures resemble partly.
These examples demonstrate that the detection of a design pattern
can be based on decisions about continuing a search or differences
between patterns. These decisions form a decision tree.

The authors claim that their approach can detect 20 out of 23 GoF
design patterns. This approach does not offer static decidability be-
cause instantiations of objects, method parameter references, similar
method invocations, and abstract method invocations are taken into
account. It is unknown whether this approach is non-duplicating, be-
cause the authors did not pay attention to the possibility of multiple
detections of one occurrence of a design pattern.

3.3 Prolog clauses

UML class diagrams may also be represented by Prolog clauses
and rules. In that case, classes and relationships are represented by
clauses, while design patterns are represented by rules.

As an example, the Prototype pattern (see Figure 2) can be repre-
sented by rules, as follows.

prototype (P, Q, R):—
class(concrete, P),
class (concrete, Q),
class (concrete, R),
association (P, Q),
inheritance (Q, R).

Here, P, Q and R are the names of classes or interfaces, and the
rules specify whether a class should be concrete (or abstract or
an interface), and which relationship should exist between which
classes.

Prechet et al. demonstrate this approach for the patterns Adapter,
Bridge, Component, Decorator, and Proxy. The estimation is that
there are no false negatives, but there are false positives [PK98].
This approach has also been used to detect the following patterns:
Factory Method, Prototype, Abstract Factory, Composite, Decorator,
Adapter, Bridge, Proxy, Observer and Iterator [BP00].

An advantage of this approach is that it is possible to generate
critique on the detected patterns, involving the names of classes,
attributes, operations, scope of operations missing operations, opera-
tions that may prevent reusability, and suggestions for the implemen-
tation of the pattern. The critiques can be shown in ArgoUML [BP00].
The authors did not give any information about the speed, and the
number of false negatives and false positives. It is not clear, whether
this approach offers static decidability. The description of the repre-
sentation of a class and relationships suggests a static decidability
approach, but the authors claim the detection of the Prototype pat-
tern, which indicates an approach that offers more. It is unknown

whether this approach is non-duplicating or not, because the authors
did not pay attention to the possibility of multiple detections of one

Detecting design patterns « 5

occurrence of a design pattern.

A test has shown, that 70 design patterns were detected in 2 seconds
on a PC with a Pentium P133 under Windows 95. The precision was
+ 14%.

3.4 Four Tuples

Another approach to represent a class diagram is to use 4-tuples
[BBQ14]. A 4-tuple (A, B, T, S) represents the relationship between
classes or interfaces A and B. T stands for the type of relationship.
T is an integer and may stand for direct association, dependency or
generalization. S is a boolean, to indicate the existence of a self-loop
(a class which has an association with itself).

However, our research shows that for none of the 17 static GoF
design patterns is it necessary to use the boolean self-loop element
of a 4-tuple to define or detect a static design pattern.

Table 6 shows the possibilities for T.

type of relations

1 direct association
2 dependency

3 generalization

Table 6. Representation of types of relations

This representation has not been implemented, but a straight
forward depth-first search algorithm is expected to match the four
tuples of a design pattern with a subset of four tuples representing
the system under consideration. This search will detect all design
patterns in a UML class diagram, that are fully defined by their class
names and their relationships. So, this approach offers static decid-
ability and is unknown whether this approach is non-duplicating.

Summarizing, we found five ways representing structural elements
in a UML class diagram and approaches to detect design patterns:
matrix-based combined with crosshypvalidation, matrix-based with
a decision tree, Prolog clauses, sum of products and 4-tuples.
Implementations exist for matrix-based combined with cross-vali-
dation and Prolog clauses, but is not certain whether they of static
decidability. For the other three approaches, the four tuple approach
has several advantages (see section 1): it will not result in false neg-
atives or positives because an exact search is used, design patterns
can easily be defined, a detection algorithm seems to be imple-
mentable. It is not clear whether one of the three approaches can
detect permutations and multiple occurrences of design patterns.

4 OUR APPROACH

Our approach for detecting static design patterns is based on using
3-tuples [Doo16]. To make this approach useful in an educational
and professional environment, several features are implemented.
We show the representation of templates of design patterns and
class diagrams. Templates of design patterns are described by XML.
The drawing tool ArgoUML transforms class diagrams to XML The
XML- and XMlI-files are used as input of our prototype, see Figure 6.
The problem of multiple detections of one occurrence of a design
pattern is explained. We also explain the solution to this problem.

, Vol. 1, No. 1, Article . Publication date: November 2019.

6 « Edvan Doorn, Sylvia Stuurman, and Marko van Eekelen

3-tuplesDP | (P,Q,1,0) | (R, Q,3,0)
SYS1| (A,B,1,0) | (D, B,3,0)
SYS2 | (A,C,1,0) | (E,C,3,0)
SYS3 | (C,B,1,0) | (D,B,3,0)

Table 8. Corresponding relationships between DP and SYS

Detection of illegal relationships within a detected design pattern
are described. Finally, we pay attention to detecting design patterns
that partially present in a class diagram

4.1 3-tuples

A static design pattern is completely defined by the names of their
participating classes and their relationships. Representing a design
pattern we need the two names of the classes/interfaces, which are
associated and the type of relationship. Possible types of relationship
are directed association, inheritance, aggregate and dependency.

=]
>{[[o]

I
g

Fig. 4. The Prototype pattern Fig. 5. Example of a system

As an example, we repeat Figures 2 and 3 by Figures 4 and 5. We
show the 3-tuples for Figure 4 and Figure 5 in Table 7. The table
shows two sets of 3-tuples: SYS and DP, representing the system
under consideration and the prototype pattern, respectively.

[SYs= {(AB,1). |
(C, B, 1),
(A, C 1),
(D, B,3),
(E,C,3),
(D,E, 2)

}
Dr= {(?.Q1),
RQ3)
}

Table 7. 3-tuples for Figures 2 and 3

The match between the 3-tuples of SYS and DP is shown in Table
8. The first row shows the two 3-tuples of DP. Each of the subse-
quent rows show occurrences of corresponding 3-tuples in SYS. An
occurrence means that there is a combination of three classes or
interfaces of SYS that are can be mapped on both 3-tuples of DP.

, Vol. 1, No. 1, Article . Publication date: November 2019.

We use a recursive depth-first search algorithm to detect the
occurrences of DP in SYS. The resulting table is Table 8.

The first row shows the two 3-tuples of DP. Each of the subse-
quent rows show occurrences of corresponding 3-tuples in SYS. An
occurrence means that there is a combination of three classes or
interfaces of SYS that are can be mapped on both 3-tuples of DP. We

show, by making the names of a class bold, which classes should be
the same in the two 3-tuples in a row. E.g. SYS 1 is one of the three

occurrences of the Prototype pattern. The map of the classes of DP
into SYSis: P — A, Q — B and R — D. See also Figures 2 and 3.
A recursive search algorithm tries to match all the tuples of DP one
by one. The recursive search starts with a randomly chosen tuple
of DP. If a match of this tuple in SYS can be found then the second
recursive call tries to match another tuple and so on.

In general, DP contains several tuples. For performance reasons,
every time a tuple of DP is chosen, it should connect to already
chosen tuples of DP. Therefore, the chosen tuples of DP always con-
stitute a connected graph. The number of tried matched would be
enormous when the chosen tuples would not form a connected
graph. For example, in the first row of Table 7 the classes P and Q
are matched with the classes A and B. In the next step only one of
the tuples (C, B, 1), (A, C, 1), (D, B, 3) can be chosen, because the A
or B matches.

Class diagram
Argo UML

XMI-file

Y
Our prototype

XML definitions
of design patterns

Y

Output with detected
design patterns and
feedback

Fig. 6. Prototype structure

4.2 The prototype tool with ArgoUML as input

The structure of our prototype is depicted in Figure 6.

We used ArgoUML ? to create UML class diagrams and to generate
an XMI-file. A generated XMI-file contains all information of a UML
class diagram, which is needed by an algorithm that offers static

Zhttp://argouml.tigris.org/

decidability. We used XML templates to represent the definitions
of design patterns. The structure of XML templates is described in
paragraph 4.3.

4.3 Design pattern definions by XML

To detect different design patterns during one run of the prototype,
we defined an XML-structure.
The XML-template defines the Adapter and Memento patterns,

which are shown in the Figures 7 and 8.

<xml version="1.0" encoding="UTF-8"?>

<templates>

<!--

<edge ... />

is a threetuple

nodel and node2 are a (abstract)class or een interface

type describe the type of association between nodel and node2
-->

<template name ="Adapter">

<edge nodel="Client" node2="Target"
type="ASSOCIATION_DIRECTED"/>

<edge nodel="Adapter" node2="Target"
type="INHERITANCE"/>

<edge nodel="Adapter" node2="Adaptee"
type="ASSOCIATION_DIRECTED"/>
</template>

<template name ="Memento">

<edge nodel="Memento" node2="Caretaker"
type="AGGREGATE"/>

<edge nodel="Originator" node2="Caretaker"
type="DEPENDENCY" />

</template>
</emplates>
Client > {Target
Adapter < Adaptee

Fig. 7. Adapter pattern

Caretaker <>————-Memento

——-__>

Originator

Fig. 8. Memento pattern

This overall structure of a template of design patterns can be
easily parsed by using the standard SAX-parser of Java. So, every
pattern can one after the other be fed to the method findMatch.

Detecting design patterns « 7

4.4 The problem of false multiple occurrences

A naive approach of our algorithm could detect a single occurrence
of a design pattern several times. We will exemplify two different
reasons, one for the Abstract Factory and one for the Bridge pattern.
We will also describe how these problems are solved in general and
therefore we developed a non-duplicating algorithm that offers static
decidability.

In Figure 9, we see one Abstract Factory.

AbstractFactory Client
ConcreteFactl ConcreteFact2
T
r—-—- DY S -
v v
ProdlA Prod2A Prodl1lB Prod2B
AbstrProdA AbstrProdB

Fig. 9. Abstract Factory pattern

Our first approach detected the Abstract Factory pattern four
times in this system, because Prod1A and Prod2A can be inter-
changed, and Prod1B and Prod2B can be interchanged. Finding four
instances of the pattern is obviously wrong because the four matches
are permutations of one match.

Therefore, we improved the algorithm by adding a call to
isUniqueSolution. These permutations of matches can easily de-
tected. Permutations have two relevant properties. They consist of
the same classes, which is easy to check. Second, the classes are
identical connected to the classes of the design pattern. Considering
that candidate permutations are found in the same recursive search
for a particular design pattern, these classes constitute the same de-
sign pattern. A similar problem arises when one matches Figure 10
with the Bridge pattern (Figure 11).

, Vol. 1, No. 1, Article . Publication date: November 2019.

8 « Edvan Doorn, Sylvia Stuurman, and Marko van Eekelen

E Ab %
| |

ConcrAbll |Con:rAh2| C 1 '1| |" 7| |f' 1 '1|
E 1 |]] E 1 I]

Fig. 10. System with Bridge pattern

|Client > Abstraction | Implementor
I 1 I 1
L | L | —

RefinedAbstraction | | Concretelmplementorl
I | I |

Fig. 11. Bridge pattern

Our first approach detected the Bridge pattern 6 times in Figure 10
because the classes ConcrAbl and ConcrAb2 can be interchanged
and second, two of the classes concImpll, concImpl2, concImpl3 have
to be chosen, which can be done in three ways.

Although the Abstract Factory and the Bridge patterns seems to
occur multiple times, the reasons for the multiple occurrences differ.
The Abstract Factory may have two or more abstract products and
two or more concrete factories. The Bridge pattern has one abstract
class Ab, which may have multiple realizations and one abstract
class Impl which may have multiple realizations. It is hard to detect
the complete Abstract Factory in the system under consideration, if
there are more than two products or concrete factories. The problem
of detecting a Bridge pattern in the system under consideration is
solvable.

This problem is solved by defining a special inheritance asso-
ciation, which may occur in the design pattern. This association
indicates that the inheritance association may occur multiple times
in the system under consideration and the specializations do not
have other associations in the design pattern. The specializations
in the system under consideration may however, have associations.
The classes in Figure 10 Ab and Impl have different numbers of
specializations and the specializations ConcrAb2 and ConcImpll
are associated. If the design pattern contains a normal inheritance
association then numbers of specializations in the system under
consideration and the design pattern should be equal, as shown in
Figures 2 and 3.

4.5 Feedback on illegal relationships

Figure 10 shows another interesting phenomenon. The association
between ConcrAb2 and ConcImpl1 is an association between classes,
that are part of a match with the Bridge pattern. However, the
association does not belong to the Bridge pattern and therefore
it may be a designer’s mistake. This means that here, feedback is

wanted. We implemented a method showSolution that generates
this type of feedback. During the search of a design pattern, all

matched classes and associations are marked. showSolution checks
whether not marked associations between marked classes exist. If
so, then this association is redundant.

, Vol. 1, No. 1, Article . Publication date: November 2019.

4.6 Detecting partial matches

The detection of partial existence of a design pattern is useful in an
educational and professional environment. It helps to check whether
the answer to an exercise is partly realized with the obligatory
pattern, or in professional practice to check whether a design pattern
is fully modeled. The search algorithm tries to match all 3-tuples.
If no match is found, the algorithm tries to match all but one 3-
tuples of DP. The number of unmatchable 3-tuples is a parameter of
the search algorithm. However, finding a partially matched design
pattern is not always useful, see Figure 12.

Prototype pattern Part 1 Part 2

Fig. 12. Prototype pattern and two parts

If one association may be missing, the partial design pattern will
be detected many times because a single class combined with one
inheritance (part 1 in Figure 12) or one association (part 2 in Figure
12) occurs frequently in class diagrams.

Lacking associations may result in false positives. E.g. two Factory
Methods which do not constitute as an Abstract Factory, may be
detected an Abstract Factory, when several associations may be
missing.

Detecting design patterns, which lack at least one relationship is
useful if the remaining part of the design pattern can be represented
by a connected graph.

5 VALIDATION IN PRACTICE

Here, we show that the implementation of our method works in
practice. Our prototype can detect 17 of the 23 GoF patterns based
on structural properties. We searched for a perfect match with tem-
plates of design patterns, which are based on literature [GHJV95]
So, no false positives and false negatives were reported.

Permutations of design patterns can be detected and reported once.
This is shown in the example using the Abstract Factory and the
Bridge pattern. There are two key differences between these pat-
terns. The first difference is the number of repeating inheritance
structures. The number can be variable, for the Abstract Factory or
constant for the Bridge pattern. The second difference is the number
of relationships that specializations may have. The specialization in
an Abstract Factory has relationships, whereby the specializations

in a Bridge pattern do not have relationships.

Redundant associations in a design pattern are reported as feedback.
The tests also showed that the speed of the prototype is good. A class
diagram represented by an XMI-file with 33 classes, 49 relationships
and 17 partially overlapping design patterns was processed within
0.8 seconds. These tests were executed on an AMD Athlon(tm) 64
X2 Dual Core Processor 5000+ [Doo16].

All the necessary software is publicly available®.

6 RELATED WORK

In an educational environment, much time is spent on how to ap-
ply design patterns since this increases the maintainability of the
software. Experiences with teaching design patterns at university
level are described by S. Stuurman [Stu15].

The research on detection of design patterns was at first focused
on analyzing source code. A modern example is APRT, Another
Pattern Recognition Tool. This tool can detect design patterns by
parsing Java Sources. The parser is generated by ANTLR (https:
//www.antlr.org/). The design patterns are language independent
specified. So, by changing the specification of the source language i.c.
Java. Other object-oriented languages can be used as well [BR17].
Source code may besides by parse trees, also be represented by
graphs. Structural and behavioral characteristics of design patterns
may be represented by graphs. Bahareh Bafandeh Mayvan et al.
showed by analysis of JHotDraw5.1, JRefactory 2.6.24 and JUnit 3.7
that ten design patterns could be detected with 100% precision and
100% recall. In some cases, the precision or recall was not available,
because the division was by zero. Their approach can not to distin-
guish Strategy and State patterns. [BMR17].

De Lucia et al. analyze class diagrams, which are generated from
sources. The behavior of candidate design patterns is analyzed based
on generated sequence diagrams and runtime analyzes of bytecodes
within jar files based on generated testdata. They focused on cre-
ational and behavioral design patterns [LDGR18].

Prechelt, as described in section 3.3 was able to detect 70 occur-
rences of patterns of 4 design patterns with a precision of + 14%
[PK98]

Matrix representation of class diagrams for detecting design pat-
terns is described by the approach of Tsantalis [TCHS05]. He claims
that his approach could detect 20 out of 23 GoF patterns, but there
is no empirical evidence.

The approach of Oruc et al. is based on finding subgraphs, repre-
senting design patterns, in a graph by a standard algorithm. Their
approach succeeded in detecting all 23 Gang of Four design patterns
with a precision of 80% and recall 88% on average [OAS16].

Pelzus et al. use a rule-based approach, together with a technique
to detect multiple design flaws and detection of code smells to de-
tect anti-patterns such as The Blob, God class, and Swiss Army Knife
[PKLS16].

Quality of software is positively influenced by using design patterns
and detecting and removing code smells. Walter et al. discovered
negative relations between some design patterns and some code
smells [WA16].

Surlhttp://members.chello.nl/e.doorn1/DesignPatterns/static_decidability

Detecting design patterns « 9

7 CONCLUSION

We have showed the relevance of automatic detection of design
pattern for an educational environment. We have introduced a new
subdivision of the set of Gang of Four design patterns: static and
non-static and a new classification of detection algorithms: static
decidability and generally complete. We have made several contribu-
tions to the progress of research to automatically detecting design
patterns in UML class diagrams. Addressing the problem of multiple
detections of one occurrence of a design pattern is new. We intro-
duced the concept of non-duplicating for higher quality detection
algorithms. With the presented prototype, 17 out of 23 Gang of Four
Design patterns are detectable, within an acceptable time. 17 par-
tially overlapping design patterns were detected within 0.8 seconds
in a class diagram containing 33 classes and 49 relationships. Per-
mutations and so multiple occurrences of these design patterns are
also detectable. We, therefore developed a non-duplicating algorithm
that offers static decidability. The remaining six design patterns are
not detectable by our approach, because they are not fully specified
by structural properties.

Feedback can be given but is restrained to the notification of
superfluous relationships. Detection of a design pattern, that lacks
one or more relationships is useful, if the remaining graph of the
design pattern is connected, otherwise false positives may result.
Our method and prototype for detection and the introduction of a
new subdivision of design patterns offers perspectives educational
application.

8 FUTURE WORK

Our next research will focus on the benefits of the use of the proto-
type in an educational environment in which static design patterns
are introduced. Obviously, teachers and students would be helped
if all design patterns would be detectable. So, a generally complete
algorithm is an important goal for future work. This requires fig-
uring out what information is necessary by such an algorithm and
how the information should be structured and supplied to a tool.

If Figure 9 would contain three abstract products, the current
prototype would detect Abstract Factory three times while it is
actually one occurrence. There is currently no simple way disclosed
to solve this problem.

Automatically giving feedback would, of course, be a large im-
provement. This will require a significant extension of the algorithm.

Can the algorithm be extended to analyze Sequence and State
diagrams in order to detect non-static patterns?

Finally, the scope of our research could be extended to include
other characteristics of class diagrams which may give information
of the quality of design, both in education and in development.

REFERENCES

[BBQ14] Afnan Salem Ba-Brahem and M. Rizwan Jameel Qureshi. The proposal of
improved inexact isomorphic graph algorithm to detect design patterns.
CoRR, abs/1408.6147, 2014.

[BCDL14] Mario Luca Bernardi, Marta Cimitile, and Giuseppe Di Lucca. Design
pattern detection using a dsl-driven graph matching approach. 7. Softw.
Evol. Process, 26(12):1233-1266, dec 2014.

[BGH*04] VincentD. Blondel, Anahi Gajardo, Maureen Heymans, Pierre Senellart, and
Paul Van Dooren. A measure of similarity between graph vertices: Applica-
tions to synonym extraction and web searching. SIAM Rev., 46(4):647-666,
apr 2004.

, Vol. 1, No. 1, Article . Publication date: November 2019.

0 -

[BMR17]

(BP00]

[BR17]

[Dool6]

[DSZ08]

[GHJV95]

[LDGR18]

[LYL08]

[0AS16]

Ed van Doorn, Sylvia Stuurman, and Marko van Eekelen

Bahareh Bafandeh Mayvan and Abbas Rasoolzadegan. Design pattern
detection based on the graph theory. Know.-Based Syst., 120(C):211-225,
mar 2017.

F. Bergenti and A. Poggi. Idea: A design assistant based on automatic
design pattern detection. In Proceedings of 12th International Conference
on Software Engineering and Knowledge Engineering (SEKE 2000), pages
336-343, 2000.

Chris Bates and Ashley Robinson. Aprt — another pattern recognition tool.
GSTF Journal on Computing (JoC), 5(2), 2017.

Ed van Doorn. Supporting design process by automatically detecting
design patterns and giving some feedback. Master’s thesis, Open University,
Heerlen, The Netherlands, 8 2016.

Jing Dong, Yongtao Sun, and Yajing Zhao. Design pattern detection by
template matching. In Proceedings of the 2008 ACM Symposium on Applied
Computing, SAC *08, pages 765-769, New York, NY, USA, 2008. ACM.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi.
Detecting the behavior of design patterns through model checking and
dynamic analysis. ACM Trans. Softw. Eng. Methodol., 26(4):13:1-13:41, feb
2018.

Hakjin Lee, Hyunsang Youn, and Eunseok Lee. A design pattern detection
technique that aids reverse engineering. International Journal of Security
and its Applications, 2, 01 2008.

M. Oruc, F. Akal, and H. Sever. Detecting design patterns in object-oriented
design models by using a graph mining approach. In 2016 4th International
Conference in Software Engineering Research and Innovation (CONISOFT),
volume 00, pages 115-121, April 2016.

, Vol. 1, No. 1, Article . Publication date: November 2019.

[PK98]

[PKLS16]

[SFo4

[S006]

[Stu15]

[TCHS05]

[TCSHO6]

[WA16]

[ZV08)

Lutz Prechelt and Christian Kramer. Functionality versus practicality:
Employing existing tools for recovering structural design patterns. j-jucs,
4(12):866-882, dec 1998.

Sven Peldszus, Géza Kulcsar, Malte Lochau, and Sandro Schulze. Continu-
ous detection of design flaws in evolving object-oriented programs using
incremental multi-pattern matching. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016,
pages 578-589, New York, NY, USA, 2016. ACM.

Sylvia Stuurman and Gert Florijn. Experiences with teaching design pat-
terns. SIGCSE Bull., 36(3):151-155, jun 2004.

N. Shi and R. A. Olsson. Reverse engineering of design patterns from
java source code. In 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pages 123-134, Sept 2006.

Sylvia Stuurman. Design for Change. PhD thesis, Open University, Depart-
ment of Computer Science, 2015.

Nikolaos Tsantalis, Alexander Chatzigeorgiou, Spyros T. Halkidis, and
George Stephanides. A novel approach to automated design pattern detec-
tion. In Panayiotis Bozanis and Elias N. Houstis, editors, 10th Panhellenic
Conference on Informatics, PCI 2005, Volos, Greece - November 11 - 13, 2005,
volume 3746 of Lecture Notes in Computer Science. Springer, 2005.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis. Design
pattern detection using similarity scoring. Software Engineering, IEEE
Transactions on, 32(11):896-909, Nov 2006.

Bartosz Walter and Tarek Alkhaeir. The relationship between design pat-
terns and code smells. Inf. Softw. Technol., 74(C):127-142, jun 2016.

Laura A. Zager and George C. Verghese. Graph similarity scoring and
matching. Applied Mathematics Letters, 21(1):86 — 94, 2008.

Design decisions under object-oriented approach: A thematic
analysis from the abstraction point of view

ABSTRACT

Many authors consider abstraction as one of the key principles in
objected-oriented software engineering, but also very difficult to
achieve. Specifically, during the software design stage, abstraction
allows decrease the complexity and achieve a more efficient decom-
position in a software architecture. However, despite its importance
and difficulty, there is a lack of theoretical or empirical research
that explores how to enhance such ability. In this paper, we report
the results of a research that was undertaken in order to address
this gap in the body of knowledge. Particularly, we conducted a
qualitative study through a thematic analysis to explore how stu-
dents apply abstraction during the object-oriented software design.
Our results reveal that during the modeling of the problem domain
in Unified Modeling Language (UML), students express a deficiency
of abstraction, being the possible causes: strict copy of reality to
software, influence of structured approach, tendency to simplifica-
tion, and lack of understanding of the concepts of object-oriented
approach.

CCS CONCEPTS

«Software and its engineering — Software design engineer-
ing; «Social and professional topics — Software engineering
education; Computational thinking;

KEYWORDS

Abstraction, object-oriented approach, qualitative research

ACM Reference format:

. 1997. Design decisions under object-oriented approach: A thematic analy-
sis from the abstraction point of view. In Proceedings of ACM conference, ,
2019, 8 pages.

DOI: 10.475/123_4

1 INTRODUCTION

Computer Science and Software Engineering are defined as disci-
plines that bring together different thinkers who are characterized
by their algorithmic thinking that changes rapidly from levels of
abstraction [18]. Several studies agree that one of the key funda-
mentals of Computer Science and Software Engineering is abstrac-
tion and the ability to abstract [1, 4, 13, 28]. This concept is also
closely related to the algorithmic formation [41], the automation
of notations and models [43], the decomposition of complex tasks
[42], and the generalization through the definition of patterns [41].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM conference,

© 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

In software design and programming, particularly in the object-
oriented approach, abstraction also plays an important role as a
tool for managing complexity [20, 25, 27, 38, 39] being referred as
a threshold concept, together with the inheritance, modularization,
encapsulation and polymorphism [4, 28, 29, 36].

Several authors suggest that within the skills required for com-
putational thinking, there is the reasoning about abstract objects
[3, 8, 17, 34]. This is evidenced in the report of the European Com-
mission Developing Computational Thinking in Compulsory Educa-
tion, where the main articles of the literature review, place abstrac-
tion as a core concept [7]. According to Booch [16], “An abstraction
denotes the essential characteristics of an object that distinguish it
from all other kinds of objects and thus provide crisply defined con-
ceptual boundaries, relative to the perspective of the viewer”.

In terms of objects, abstraction focuses on the outside view of
an object, and so serves to separate an objects essential behavior
from its implementation [16]. Efforts are made to construct abstract
entities, because these go together with the domain of the problem.
If we talk about characterizing the behavior of an object, it must
be considered the services that it provides to other objects, as well
as the operations that it may perform upon other objects. Meyer
[23], define the contract model of programming: “the outside view
of each object defines a contract upon which other objects may
depend, and which in turn must be carried out by the inside view
of the object itself”. Wirfs [44] says in other words “this contract
encompasses the responsibilities of an object, namely, the behavior
for which it is held accountable”. Therefore, a way of expressing
abstraction is to grant all the behavior of an object, designating
operations we can meaningfully perform upon an object and how
that object reacts [16]. In this study we will be guided by this
definition of abstraction.

Even though, abstraction is an important concept for Computer
Science and Software Engineering; in particular for software devel-
opment and programming with the object-oriented approach [4, 5];
there are very few studies that empower this mechanism in students.
In spite of that, there are studies that show the difficulty of abstract-
ing [26]. Under this perspective, this work focuses on studying
the abstraction, analyzing the students’ assessments that face the
resolution of software design exercises under the object-oriented
approach. The results were obtained through a qualitative case
study applied to university students in Computer Science career.

The rest of the article is structured as follows. Section II shows
several related works found in the literature and the contribution
that our work has regarding them. Section III presents the research
approach. Section IV shows the development of the thematic anal-
ysis. Section V presents the findings of the investigation. Next,
in Section VI presents details the trustworthiness of the research.
Finally Section VII details the conclusions and future work obtained.

ACM conference, 2019,

2 RELATED WORK

In the literature, we found works that addressed the concepts of
software design under the object-oriented approach, some of them
focused on case studies carried out with students and developers.
The first one, corresponds to the study of Ragonis and Ben-Ari [32],
which focuses on the understanding of learning concepts of object-
oriented programming in first-year students through a qualitative
longitudinal study. The findings were divided into four primary
categories: class vs. object, instantiation and constructors, simple
vs. composed classes, and program flow. In these four categories,
conceptions and difficulties are identified, however, within the find-
ings it was not possible to demonstrate the relationship with the
student’s ability and abstraction.

Another work is the one presented by Sanders et al. [37], where
the authors carry out a qualitative study about the software pro-
grams written by a group of students. The study analyze the
misconceptions in turn, which were grouped in basic mechanics,
instance/class conflation, problems with linking and interaction,
class/collection conflation, problems with hierarchies and abstrac-
tion and failures in modelling. The difficulties related to abstraction
focused mainly on the difficulty of the students to be able to con-
ceive a structure of inheritance when it is required to homogenize
classes or when using interfaces. Almost 10 years later a work led
by Sanders et al. [36], allows to identify through the literature, that
Abstraction is considered a threshold concept in computing.

There is also the work of Rachel Or-Bach et al. [29], who present
a qualitative study based on the analysis of the solutions of an ex-
ercise sent to students as homework. This is one of the few studies
that presents results related to the design of object-oriented soft-
ware with special attention to abstraction, which can be showed
through inheritance and the inclusion of relevant attributes and
methods in a class.

Mostrom et al. [25], from empirical evidence, reported in their
research the abstraction is manifested in students as transformative
experiences, not by general abstraction, used to conceptualize at
a higher level, but by particular, practical concepts that relate to
abstraction. In [17], uses the dual process theory to research the
understanding of concepts and principles of the object-oriented
paradigm of software development practitioners. Within the stud-
ied software principles, abstraction is considered, where a low level
of abstraction was evidenced when objects were created close to
reality, difficulties with inheritance and understanding of abstract
classes, and the information hiding principle.

The last work presented was developed by the same authors of
this research [2] and was carried out through a qualitative case
study aimed at understanding the Information Hiding Principle. In
this study students’ perceptions are collected, being one of the find-
ings the relationship that students make between the abstraction
and the polymorphic property of the inheritance. Finally, in [5],
an evaluation based on model object-first is carried out in a com-
puter science subject where the results conclude that abstraction
in general has a positive impact on programming, nevertheless, it

was not possible to demonstrate a correlation between cognitive
development and the grades obtained by students in programming.

The contribution of this study, lies in studying the abstraction
in software design under the object-oriented approach. This study
focuses on discovering the perceptions of students when designing
software and how they manifest abstraction through it. This study
will be carried out with exercises that allow to analyze the students’
perceptions, where the results allow the reflection of those who
study abstraction and its influence on the learning of object-oriented
software design.

3 RESEARCH METHODOLOGY

This section shows the research questions, the chosen methodology
and the details of the selected case study.

3.1 Research Questions

This research have been conducted by two research questions:

e What are the design decisions of students from the point
of view of abstraction?
e What are the possible causes of student design decisions?

3.2 Research Method

The research questions offer a questioning that addresses unknown
aspects about how students perceive abstraction through the object-
oriented approach. A qualitative research has as a key aspect the
understanding of the phenomenon of interest from the perspective
of the participants [22].

In particular, the thematic analysis approach is one of the most
common forms of analysis within qualitative research. Thematic
analysis is a method for identifying, analysing and reporting pat-
terns (themes) within data. It minimally organizes and describes
your data set in (rich) detail. [10].

This approach interconnects the themes which emerge from the
study. Interconnecting themes means that the researcher connects
the themes to display a chronology or sequence of events. [11].
Under this perspective, a thematic analysis is adjusted to the raised
problem, since our study investigates a through the some events
the decisions made by the students around object-oriented software
design applying abstraction take into in account events sequential
of the students.

3.3 Setting

The case study was conducted with a group of students from the
University R in the Faculty of Computer Systems. The details are
shown below:

3.3.1 Background of the subject. The course corresponds to the
subject of Applications in Propietary Environments, mandatory
subject of the fifth semester in Computer Systems. The subject
is taught during 4 hours a week during 16 weeks. The students
that take this subject must have studied previously the subjects
of Database Management, Programming I and Programming II;
and have as a co-requisite the subject of Software Engineering I.

Design decisions under object-oriented approach: A thematic analysis from the abstraction point of view

The content of Programming II focuses on the teaching of object-
oriented programming languages, that is, students already have
prior knowledge about the concepts of this approach.

3.3.2 Background of the participants. The group of students
of this subject consists of 26 students, out of which 23 became
participants in this research. Three students were discarded for the
study since this is the second time they take the subject.

4 THEMATIC ANALYSIS

The research process was based on the model proposed by Seidel
[40] and has the following stages:

Data collection
Coding
Refinement

Grouping

4.1 Data collection

In this stage the collection techniques are defined and the data is
collected. In this study, qualitative data were collected from the
diagnostic test and the interview, as shown in Figure 1; which
represents the sequence of the data collect process used for this
study.

ACADEMIC PERIOD

s @ @ 7

Introductory Diagnostic
Lesson Test

Interview

Figure 1: Sequence of data collect

4.1.1 Introductory lesson.

Before the data collection, the students received a two-hour
class corresponding to concepts of Unified Modeling Language
(UML), in order to have a standard language at the modeling of
the problem. The class also covered the notation of the behavior
diagrams (sequence diagrams), static diagrams (class diagrams, de-
pendency relationships) and a special attention was given to the
semantic of structure of the inheritance. Finally, we also refresh
concepts related to the object-oriented approach like object, class
and message. It is important to emphasize that the students have
already received subjects where they have previously programmed
in object-oriented languages, it means that the concepts taught in
class were a reinforcement to their knowledge about the concepts
of object orientation.

4.1.2 Diagnostic Test.

Documents are a singularly useful source of information, al-
though they are often ignored [21]. In this case study, the doc-
uments collected refer to 5 design exercises that were part of a
diagnostic test. The test was taken to the 26 students at the be-
ginning of the academic period. The test consisted of 5 exercises,
where the design of each statement was requested through class

ACM conference, 2019,

or sequence diagrams. The general directions presented in the test
were the following:

e In each proposed exercise, it is asked to design a software
system that meets the stated requirements. The design
should be modeled through the required diagram. In case of
classes diagram, the student should write the specification
of each class, attributes, methods and the relationships
between classes.

The statements of each exercise are shown below:
Exercise 1: Betting System

It is required to make an application that is in charge of the
sports betting service, where a user must register in the system to
have an account for manage bets. Bets can be received by transfer
or by card. The system supports different types of bets, for example:
simple bet (which team wins), special bet (which minute marks the
first goal) and others.

Exercise 2: Furniture transfer between rooms
This application is responsible for moving a piece of furniture
from one room (contiguous or not) to another. Between adjoining

rooms, the furniture can only pass through the door, while in sep-
arate rooms the furniture can pass through the walls (See Figure

=]

Figure 2: Graphic representation of exercise 2)

Exercise 3: Library

o Definitions
- Client: active teacher or student enrolled in the school
in the current course.
- Library: the software system that must be designed.
The physical library has at least one copy of each book.

o Client Requirements:

- Request the position of a copy of a book on the shelves.

— Borrow a book from the library. It may or may not
be available. If not available, the library informs the
client when it will be available.

— Returns a borrowed book to a person in the library
who confirms the return.

— Buy a book from the library, which varies - Borrow a
book that does not exist in the library, in order to the
Library to request it from another library.

- Buy a book in a bookstore where the book is available
and add it to its book collection.

e Library Requirements:

- Notifies the client the date of return of the book when

this date is approaching.

ACM conference, 2019,

— Punishes the client prohibiting loans for a given time,
if the date of return is passed.

- Invoices and charges the customer for the purchase
of a book. Libraries are added and deleted.

- Bookstores are added and deleted.

Exercise 4: Draw circles

This application consists of drawing a small circle inside a larger
one. The smallest circle can move inside the big circle, without
getting out.

Exercise 5: Booking rooms in a hotel

This application is responsible for booking rooms in a hotel. The
dates of the reservations and the verification of the availability of
the room must be considered.

4.1.3 Interview.

Dexter [14], defines an interview as a conversation with a pur-
pose. In this study, the interview was focused on explaining the
design decisions made by the students when modeling the domain
problem. The interview consisted of certain questions for each ex-
ercise; it was conducted after the diagnostic test and was recorded
in audio.

Exercise 1: Betting System

o In what part of your diagram do you think the bettor has
money to bet?

In what part of your diagram is the type of bets handled?
What class is responsible for making the bet?

Is the sporting event managed somewhere?

Where is the type of payment handled?

Exercise 2: Furniture transfer between rooms

e How do you handle the differentiation between the con-
tiguous room and the non-contiguous one?

e How would you generalize your design in the case of hav-
ing more rooms?

o In what part is the collision with the walls handled?

Exercise 3: Library

e How do you control the expiration notice of the book loan?
e How do you handle the location of the book?
e How do you add and delete libraries?

Exercise 4: Draw circles

o In what part is the small circle considered to be within the
large circle?

o In case the student has considered more than two classes
for a circle. How would you solve the problem with a single
circle class?

Exercise 5: Booking rooms in a hotel

e How do you check the availability of the room?
e Could I book several rooms?
o In what part of you diagram do you make the reservation?

4.2 Coding

In this stage, codes were assigned on the collected documents and
audios. “A code in a qualitative inquiry is defined most often as a
word or short phrase that symbolically assigns a summative, salient,
essence-capturing, and/or evocative attribute for a portion of language-
based or visual data” [35, p. 23]. The processing of the data was
done with the ATLAS.ti software [15].

4.3 Refinement

In this stage, the preliminary codes obtained in the previous stage
were analyzed, matching or detailing similar codes. This stage was
performed iteratively until the codes remained relatively stable.

4.4 Grouping

In this stage, the codes generated in the Refinement stage were
grouped. The grouping was carried out following the criteria of
the research questions. In the next section we can see in detail the
results obtained from this stage.

5 RESEARCH FINDINGS

This section answer both research questions which conducted by
this study, this results are shown below.

5.1 Research Question 1: results

The results obtained from this stage answer the first research ques-
tion “What are the design decisions of students from the point of
view of abstraction?” and these are presented below:

1. Tendency to create an “intermediate” class to register the
details of the related classes as in the entity-relationship model, the
creation of the entity Invoice-Detail.

e Example 1: Class Loan-Detail between the classes Loan
and Refund. Explicit quotation from the student E19: “Con-
fusion with data structures and databases”.

e Example 2: The question was: Where would you put the
value of the bet?, the response was ‘T would go between class
Bet and Person with a class Bet-Detail which includes
the value of the bet and the name of the person”.

e Example 3: The class Library-Client between classes
Client and Library. The Figure 3 below, shows some
examples.

2. Assignment of behavior to classes that represent reality in a
strict way.

e Example: The class Administrator is responsible for book-
ing the room. Student answer to the question: Which class
is responsible for booking the room? ‘I should have created
a class Administrator, that will have the method related to
the booking, because when I go to a hotel the person who is
in charge of administration or reception do the reservation”.

3. Lack of creation of classes for relevant aspects of the applica-
tion.

Design decisions under object-oriented approach: A thematic analysis from the abstraction point of view

CLIENT LIBRARY LOAN REFUND

LIBRARY_CLIENT LOAN_DETAIL

Figure 3: Concepts from the entity-relationship model

e Example: The fact that the students have not considered
that the bettor must have money to make the bet.

4. Design classes with different names, but with the same struc-
ture.

o Example: If the exercise consisted to draw two rooms, the
students create two classes: Room1 and Room2, with same
methods and attributes.

5. Design classes without any behavior. Special interest in defin-
ing classes only through their attributes.

o Example: The example is shown in Figure 4. A particular
case of this design decision is when the students put classes
just with get () or set() methods.

ROOM RESERVATION CLIENT
room_number; ID_Reservation; ID_Cliente;
floor_number; Client; full_name;
state; Room; birthdate;

RENE CIESS T entry_date; phone;

capacity; departure_date; address;
bed_number; total_cost email;
daily_cost;

Figure 4: Classes without methods

6. Place responsibilities on classes that should not be responsible
for that behavior.

e Example 1: For example, the Hotel class is the one who
makes the reservation of the room or the registration of
the client or the Library class is the one who is in charge
of the expiration date of the book.

o Example 2: The Account class has a bet method. In Figure
5 there are the examples. A consequence of this decision,
the design is getting overloaded classes or with an alien
behavior.

7. Differentiation between the subclasses and the superclass only
by their attributes.

e Example: The type of payment is made with an inheritance
with a superclass Bet and two subclasses Simple Bet and
Special Bet, which have as an attribute winningteam
and goalminute respectively. In Figure 6 below see the
example.

ACM conference, 2019,

HOTEL LIBARY ACCOUNT
room_number; ID_Library; ID_Account;
location; address; owner_name;
capacity; phone; registration_day;
register_client(); notify_client(); bet();

asign_room(); penalize_client();

Figure 5: Methods not related to the class

BET

1D_Bet;
sporting_event;
date;
check_bet;

b
[|
SIMPLE BET SPECIAL BET

winning_team; goal_minute;

Figure 6: Specialization of subclasses through their at-
tributes

8. Assignment of complex behaviors as attributes.

e Example: The type of payment as an attribute of the Bet
class.

9. Belief that the students can perform an action on the same
class because there is an ID or numbering attribute, a one-to-many
relationship or because it can have multiple instances.

e Example: Some students believe that they can book several
rooms, due to the fact that each class Room can instantiate
several objects of the class Room. When asked: Is it possible
to book several rooms?

— Student E03: “Yes, because an attribute of the class Room
is the number of rooms, and so you could reserve several
rooms”.

— Student E23: “Yes, because there is a relationship be-
tween the classes Client and Reservation that allows
you to book several rooms”.

- StudentE17: “Yes, because the one-to-many relationship
between the classes Hotel and Room was established”.

10. Definition of classes that are not concepts.

e Example: Classes Transferable or Movement.

5.2 Research Question 2: results

The results previously analyzed in Section 5.1 have been grouped
into four possible causes, this classification answer to the second
research question: “What are the possible causes of student design
decisions?”.

5.2.1 Strict copy of reality.

Within this cause, two behaviors can be identified:

e Absence of a concept because it is not concrete in reality

ACM conference, 2019,

Some results of the analysis of the exercises suggest that some
students do not dare to create objects that are not familiar to them
in reality. For example, in the Betting exercise, the difficulty of
conceiving a concept “payment” as a class that can be responsible
for making the payment of the bet. Another example is the absence
of objects that represent the repositories, that is, they do not imagine
a class that lists the elements instantiated by a class. Nor do they
create collections of objects, as observed in the Booking Room
exercise, where the classes corresponding to a List/Collection
of rooms were absent, the same that could be defined as an Abstract
Data Type (ADT).

o Transfer of a concept that exists in reality

On the other hand, there are other students who forced the
creation of a concept, for the fact that in reality it is a concrete
concept, as is the case of the person who manages a hotel, called
“Administrator”. This concept was transferred by the students to
a class called Administrator who was responsible for booking a
room; which means that he/she personified reality in the software.
Rosson et al. [33], supports the idea of taking the real-world aspects
as a reference, and proposes the so-called “metaphorical extension
of the problem”, which in essence is to modify or extend the entities
of the problem that may be useful. Nevertheless, he says explicit
that the concept could be extended or modified in the software,
otherwise it would be limited to what that concept does or solves
in real life.

According to [6], the process of abstraction starts from placing
a name to a class and granting it what essentially belongs to that
concept under that name, however, in the students the transfer
of reality prevailed before the abstraction. Both behaviors of stu-
dents, obviate a concept or transfer another from real life, directly
influenced on how they decompose and the way in which students
give meaning to each part of the division, in other words how they
abstract.

Other authors [5, 19, 30, 31], mention that one of the properties
of the object-oriented approach is the so-called naturalness, under-
stood as the ease of objects to provide abstract versions of reality.
This property is still discussed by other authors [13] and criticized
for being a limitation to enrich the object-oriented software design
[33].

5.2.2 Structured approach.

The structured approach made its appearance in student resolu-
tions, especially with the entity-relationship model, which is a dia-
gram of the data model [12]. Associated with the entity-relationship
model, there is also the data table, which is responsible for the spec-
ification of the data, and where the first field in the table is the ID.
The entity-relationship model and the use of an ID, were some of
the symptoms of the adoption of the structured approach in the
object-oriented design. Another evidence of the interference of
the structured approach, is to visualize classes that do not have
behavior, and that are required by other classes that process their at-
tributes, corresponding this to the definition of structured approach
by Tom DeMarco [12], where it was established three main parts:
the description of data objects, the specification of the process, and
the specification of the control.

The influence of prior knowledge has been studied in the work of
Morris et al. [24], where he researches the previous experience as a
learning difficulty for the acquisition of new knowledge. Also in [9],
the author presented a research whose objective was to describe the
experience of migrating from structured analysis to object-oriented
modeling.

5.2.3 Simplistic Overview.

Simplistic understood as treating complex issues and problems
as if they were much simpler than they really are. For example,
what was reflected in the results, was the inclusion of attributes
that could have complex behavior in the same class. This behavior
could respond to a simplistic view on the part of the student, that
is, the student does not consider the complexity of a concept and
places it as an attribute. A concrete example of this is the Betting
exercise, where the students created a class Bet that was part of
an inheritance as a superclass, having as subclasses the type of
bet, for example Simple Bet and Special Bet, however, both
the superclass and the subclasses lacked additional behavior to the
get() and set(), and differed only by their attributes.

Many authors [8, 34, 44], resume the abstraction as the process
of reducing concepts to their essence in such a way that only the
necessary elements of that concept are represented. Taking these
words as a reference, abstraction allows us to define an object in its
completeness, with its name, attributes and behavior. A basic level
required of abstraction could be shown with an appropriate class
diagram that put attention in defining each class with its relevant
attributes and methods [29], in this sense, the students demonstrate
alower abstraction level due to the difficulty of reducing an object to
its essence and granting it only the responsibilities that corresponds.
The students at the first instance see the object as a simpler concept
whose complexity can be handled through attributes, resulting in
overloaded and complex classes with high dependency between
them.

5.24 Lack of understanding of object orientation concepts.

It was also possible to see confusion with some object orienta-
tion concepts, as well as its representation in UML. In particular,
problems with abstract classes also were reported in [29], and its
relation with the understanding of inheritance. Hadar [17], also
studied the differences between how the inheritance is conceived in
object oriented and the way we naturally interpret inheritance. The
misunderstanding of inheritance has a direct consequence with the
understanding of polymorphism, the main benefit of inheritance.
We also observed problems distinguishing the concrete classes and
instances of those classes, for example when the Room class could
be instanced instead of creating another Room1 class.

On the other hand, we observed some misunderstandings related
with the semantic in sequence diagrams. This was the aspect that
could be reflected in a lesser degree in the students.

From the exercises analyzed in the diagnostic test, it was also
possible to appreciate that exercises 1, 2 and 4 led students to leave
aside actions that were not expressed explicitly in the statements
of the exercises, actions such as: check if the bettor had money, the
hit of the furniture with the walls of the room or the strike between
the circles. While, in exercises 3 and 5, students were closer to the

Design decisions under object-oriented approach: A thematic analysis from the abstraction point of view

identification of the objects that intervened in the domain of the
problem, since the statement explicitly described the scope of the
exercise.

6 RESEARCH TRUSTWORTHINESS

The study satisfies the quality criteria defined by Lincoln and Guba
[21]. This study presents explicitly the questions asked in the inter-
views, as well as the statements of the exercises that were part of
the diagnostic test.

In addition, this research provides details about the environment
and the participants; also the information obtained from the stu-
dents is triangulated by taking two sources of data such as the
diagnostic test and the interview, thereby complying with the indi-
cators of credibility.

With respect to transferability, and under the guidelines of Lin-
coln and Guba, the term transferability differs from the term gener-
alization from quantitative approaches, and rather speaks of applica-
bility that is to try to establish that the results can be applied under
certain circumstances; that is, that they are potentially applicable.

To ensure the reliability, the researchers detail and make explicit
the trace from the origin of the data and its manipulation until the
declaration of results, thus facilitating traceability.

Additionally, in order to avoid conflicts of ethical nature with
respect to the manipulation of the data collected from the students,
the informed consent forms were made where the anonymity and
confidentiality of the data obtained from the students is guaran-
teed. This report was read and signed by the students prior to the
investigation.

7 CONCLUSIONS AND FUTURE WORK

The research questions that led this study, What are the design deci-
sions of students from the point of view of abstraction? and What are
the causes of student design decisions?, have been answered. Based
on our analysis, we conclude that the students design decisions
reveal a basic level of abstraction, based on the definition of ab-
straction related to grant all the behavior of an object, designating
operations we can meaningfully perform upon an object and how
that object reacts. It was evidenced when the students didn’t model
a concept or transfer a concept that exist in reality in their dia-
grams. We observed the lack of classes with a entire behavior, such
as the existence of objects without any behavior (without methods),
overloaded (many methods) or with alien behavior (methods that
do not correspond to it). Actions that are a voice of alarm when
evidencing student’s gaps by not being able to represent a concept
for its essential characteristics. Also, we noticing that the students
design decisions where also influenced by transfer of concepts of
the structured approach, such as the entity-relationship model, de-
spite the fact that students have already received subjects such
as object-oriented programming. The design decisions shown by
students were grouped around four causes: strict copy of reality to
software, influence of structured approach, tendency to simplifica-
tion, and lack of understanding of the concepts of object-oriented
approach.

The results presented in this study are useful for several reasons.
For a professor: a) it is a way of learning about difficulties that the
student have when implementing the abstraction. b) Analysis the

ACM conference, 2019,

kind of exercise that allows to increase the ability of abstraction;
it helps in the construction of software design exercises for educa-
tional purposes. c) Put special attention in the origins of the design
decisions. On the other hand, the student could reflect around
other solutions of the same problem where the level of abstraction
is higher.

This study also raises challenges related to how to overcome the
difficulties evidenced by students, both at the design and pedagogi-
cal level, such as: how do students stop transferring the knowledge
learned in the structured approach when they design with the
object-oriented approach? or what is the best pedagogical strategy
to learn an object-oriented approach? This study will be extended
analysing the state of the students at the end of the academic period.
It will allow us to know if the first design decisions were kept or it
changed.

REFERENCES

[1] Alfred V. Aho and Jeffrey D. Ullman. 1992. Foundations of Computer Science.

Computer Science Press, Inc., New York, NY, USA.

] Anonymous.

[3] Michal Armoni. 2010. COMPUTING IN SCHOOLS On teaching topics in com-

puter science theory. ACM Inroads 1, 1 (2010), 21-22.
[4] Deborah J Armstrong. 2006. The quarks of object-oriented development. Com-
mun. ACM 49, 2 (2006), 123-128.

[5] Jens Bennedsen and Michael E. Caspersen. 2006. Abstraction Ability As an

Indicator of Success for Learning Object-oriented Programming? SIGCSE Bull.

38, 2 (June 2006), 39-43. DOI:http://dx.doi.org/10.1145/1138403.1138430

Alan F Blackwell, Luke Church, and Thomas RG Green. 2008. The Abstract is an

Enemy: Alternative Perspectives to Computational Thinking.. In PPIG. 5.

Stefania Bocconi, Augusto Chioccariello, Giuliana Dettori, Anusca Ferrari, Katja

Engelhardt, P Kampylis, and Y Punie. 2016. Developing computational thinking

in compulsory education. European Commission, JRC Science for Policy Report

(2016).

Grady Booch. 2006. Object oriented analysis & design with application. Pearson

Education India.

Roger Box and Michael Whitelaw. 2000. Experiences when migrating from struc-

tured analysis to object-oriented modelling. In Proceedings of the Australasian

conference on Computing education. ACM, 12-18.

[10] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77-101. DOI : http://dx.doi.org/10.
1191/1478088706qp0630a

[11] John W Creswell. 2012. Educational research: Planning, conducting, and evaluating
quantitative. Prentice Hall Upper Saddle River, NJ.

[12] Tom DeMarco. 2002. Structured analysis and system specification. In Software
pioneers. Springer, 529-560.

[13] Francoise Détienne. 1990. Difficulties in designing with an object-oriented
language: An empirical study. In Proceedings of the IFIP TC13 Third Interational
Conference on Human-Computer Interaction. North-Holland Publishing Co., 971-
976.

[14] Lewis Anthony Dexter. 2006. Elite and specialized interviewing. Ecpr Press.
[15] Susanne Friese. 2018. ATLAS.ti 8 Mac User Manual. (Aug. 2018).
https://downloads.atlasti.com/docs/manual/manual_a8_mac_en.pdf?_ga=

2.243651149.915135695.1535427970-250496249.1520305147

[16] Booch Grady. 1994. Object-oriented analysis and design with Applicactions. The
Benjamin/Cummings Publishing Company, Inc.

[17] Irit Hadar. 2013. When intuition and logic clash: The case of the object-oriented
paradigm. Science of Computer Programming 78, 9 (2013), 1407 — 1426. DOI:
http://dx.doi.org/10.1016/j.scic0.2012.10.006

[18] Juris Hartmanis. 1994. Turing Award lecture on computational complexity and
the nature of computer science. Commun. ACM 37, 10 (1994), 37-43.

[19] Orit Hazzan. 2003. How students attempt to reduce abstraction in the learning of
mathematics and in the learning of computer science. Computer Science Education
13, 2 (2003), 95-122.

[20] Jeff Kramer. 2007. Is abstraction the key to computing? Commun. ACM 50, 4
(2007), 36-42.

[21] Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. Vol. 75. Sage.

[22] Sharan B Merriam. 1998. Qualitative Research and Case Study Applications in
Education. Revised and Expanded from” Case Study Research in Education.”. ERIC.

[23] Bertrand Meyer. 1992. Applying’design by contract’. Computer 25, 10 (1992),
40-51.

I =

&=

[9

ACM conference, 2019,

[24]

[25]

[26

[27]

[28

[29

(30

[31

[32]

[33

[34]

(35
[36

[37

(38

(39

(40

[41

[42

[43

[44

Michael Morris, Cheri Speier, and Jeffrey Hoffer. 1999. An Examination of Proce-
dural and Object-oriented Systems Analysis Methods: Does Prior Experience
Help or Hinder Performance?*. Decision Sciences 30, 1 (1999), 107-136.

Jan Erik Mostrom, Jonas Boustedt, Anna Eckerdal, Robert McCartney, Kate
Sanders, Lynda Thomas, and Carol Zander. 2008. Concrete Examples of Abstrac-
tion As Manifested in Students’ Transformative Experiences. In Proceedings of the
Fourth International Workshop on Computing Education Research (ICER "08). ACM,
New York, NY, USA, 125-136. DOI:http://dx.doi.org/10.1145/1404520.1404533
Dung Nguyen and Stephen Wong. 2001. OOP in introductory CS: Better students
through abstraction. In Proceedings of the Fifth Workshop on Pedagogies and Tools
for Assimilating Object-Oriented Concepts.

Jaime Nino and Frederick A Hosch. 2008. Introduction to programming and
object-oriented design using Java. Wiley Publishing.

Rachel Or-Bach and Ilana Lavy. 2004. Cognitive activities of abstraction in object
orientation: an empirical study. ACM SIGCSE Bulletin 36, 2 (2004), 82-86.
Rachel Or-Bach and Ilana Lavy. 2004. Cognitive Activities of Abstraction in
Object Orientation: An Empirical Study. SIGCSE Bull. 36, 2 (June 2004), 82-86.
DOI: http://dx.doi.org/10.1145/1024338.1024378

Jacob Perrenet and Eric Kaasenbrood. 2006. Levels of Abstraction in Students’
Understanding of the Concept of Algorithm: The Qualitative Perspective. SIGCSE
Bull. 38, 3 (June 2006), 270-274. DOI :http://dx.doi.org/10.1145/1140123.1140196
Jacob C. Perrenet. 2010. Levels of thinking in computer science: Development
in bachelor students’ conceptualization of algorithm. Education and Informa-
tion Technologies 15, 2 (01 Jun 2010), 87-107. DOI:http://dx.doi.org/10.1007/
$10639-009-9098-8

Noa. Ragonis and Mordechai Ben-Ari. 2005. A long-term investigation of the
comprehension of OOP concepts by novices. (2005).

Mary Beth Rosson and Sherman Alpert. 1990. The Cognitive Consequences of
Object-oriented Design. Hum.-Comput. Interact. 5, 4 (Dec 1990), 345-379. DOI:
http://dx.doi.org/10.1207/s15327051hci0504-1

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E
Lorensen, and others. 1991. Object-oriented modeling and design. Vol. 199.
Prentice-hall Englewood Cliffs, NJ.

Johnny Saldana. 2015. The coding manual for qualitative researchers.

Kate Sanders and Robert McCartney. 2016. Threshold Concepts in Computing:
Past, Present, and Future. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli Calling ’16). ACM, New York,
NY, USA, 91-100. DOI:http://dx.doi.org/10.1145/2999541.2999546

Kate Sanders and Lynda Thomas. 2007. Checklists for grading object-oriented
CS1 programs: concepts and misconceptions. In ACM SIGCSE Bulletin, Vol. 39.
ACM, 166-170.

Kathryn E Sanders. 2006. Object-Oriented Programming in Java: a graphical
approach. Pearson/Addison Wesley.

Robert W Sebesta and Soumen Mukherjee. 1999. Concepts of programming
languages. Vol. 8. Addison-Wesley Reading, Massachusetts.

John V Seidel. 1998. Qualitative data analysis. The Ethnograph v5. 0: A Users
Guide, Appendix E. Colorado Springs, Colorado: Qualis Research. (1998).

J Wing. 2011. Research notebook: Computational thinking—What and why? The
Link Magazine, Spring. (2011).

Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35.

Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical transactions of the royal society of London A: mathematical, physical
and engineering sciences 366, 1881 (2008), 3717-3725.

Rebecca Wirfs-Brock and Brian Wilkerson. 1989. Object-oriented design: a
responsibility-driven approach. In ACM SIGPLAN Notices, Vol. 24. ACM, 71-75.

Teaching Data Structures through Group Based Collaborative
Peer Interactions

Sajid Nazir
sajid.nazir@gcu.ac.uk
Glasgow Caledonian University
Glasgow, UK

ABSTRACT

Data structures and algorithms is an important subject in Computer
Science curriculum and builds upon the programming concepts
learned by the students in their earlier courses. However, the ab-
stract nature of the concepts can often be difficult for students to
grasp. This problem becomes aggravated in an international set-
ting with students from diverse academic backgrounds, resulting
in some students losing interest and failing to follow along.

This paper describes our novel approach to teach data struc-
tures for Computing undergraduates from 30 African countries at
a college in Mauritius in partnership with a UK university. The
blended learning program uses as a student led "flipped classroom”
approach, requiring students to view lecture and supporting mate-
rial online prior to engaging in on-campus seminar session with
the tutor.

Peer instruction is a key component of the flipped approach. In
seminars, students worked on group based problem-solving activi-
ties in data structures supported by the tutor. The students devised
their solutions on white boards taking ownership of the problem,
became motivated to discuss their ideas freely, and to select a group
solution. The group solutions were then shared with the other
groups and peer reviewed, led by the tutor. This collaborative learn-
ing environment was observed to facilitate healthy discussions,
and students’ contributions and performance in later assessments
offered evidence of understanding of core subject concepts.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS

data structures, group learning, active learning, blended learning

ACM Reference Format:

Sajid Nazir, Stephen Naicken, and James H. Paterson. 2019. Teaching Data
Structures through Group Based Collaborative Peer Interactions. In CSERC
’19: The 8th Computer Science Education Research Conference, November
18-20, 2019, Larnaca, Cyprus. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSERC ’19, November 18-20, 2018, Larnaca, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06.... $15.00
https://doi.org/10.1145/1122445.1122456

Stephen Naicken
s.naicken@alueducation.com
African Leadership University
Pamplemousses, Mauritius

James H. Paterson
james.paterson@gcu.ac.uk
Glasgow Caledonian University
Glasgow, UK

1 INTRODUCTION

Data structures and algorithms is an important subject in Com-
puter Science curriculum [13] in universities throughout the world.
Typically, the data structures course follows on from the intro-
ductory programming courses, and is considered useful for other
advanced courses such as computer architecture, and networks
etc. [4, 7]. Thus, it progresses students’ knowledge required for
understanding advanced programming concepts in their further
courses [10]. The subject is also helpful for the students in their
professional careers as software engineers, programmers, analysts,
and information technology specialists.

Data structures concepts are abstract and the problems of its
teaching stem from students failing to grasp these abstract concepts
[13]. Low motivation of students is the first difficulty encountered
by the tutors [12, 17]. Some students who seem to understand the
concepts in class were unable to write programs [17]. Difficulties
faced by the students in understanding basic data structures are
identified in [19]. A common reason for students failing the data
structures course is that they do not complete their programming
tasks [9]. Thus, it is very important that the subject material and
learning activities are engaging so that the students do not lose
interest.

Visualizations and animations have found to be helpful in help-
ing the students to understand the abstract concepts [7, 13]. Most
students prefer a hands-on approach and enjoy the participation
in the learning process [3]. It is imperative that the students are
engaged in activities that motivate them to complete their program-
ming assignments. The curriculum must also stress good program-
ming style, which helps the students to write correct and efficient
programs [10].

This paper describes the experience of teaching data structures
and algorithms during 2017/18 in a bachelor’s degree programme
delivered at a newly established college in Mauritius. The mis-
sion of the college to bring together and train the future leaders
of African countries, and the students were from a wide range
different countries all across the African continent with diverse
academic backgrounds. In keeping with this mission, the students
are encouraged throughout the programme to be active learners
through encouragement and participation in peer activities. The
final degree is awarded by a UK university, and delivery is done
as a collaboration between the college and the university, with on-
line learning material initially developed in the UK and in-person
teaching designed by tutors locally in Mauritius.

The in-person class sessions were key to the teaching approach.
These involved peer discussion by students of problems set for them
which led them to arrive at and articulate suitable solutions. The
focus was on supporting the online learning content and activities

CSERC 19, November 18-20, 2018, Larnaca, Cyprus

through simple yet effective teaching innovations that made the
subject interesting to the students. The experience showed that the
students enjoyed the process, had developed better understanding
of the core subject concepts. Healthy discussion ensued where
the students could discuss and understand the relative merits of
their group solution in relation to those developed by the other
students. The students became active learners and the results were
remarkable.

The rest of the paper is structured as follows: Related work
is described in Section 2. Methods and materials are covered in
Section 3. Section 4 describes the relevant activities of group based
peer interactions. The experiences and evaluations of the proposed
method is provided in Section 5. Section 6 concludes the paper.

2 RELATED WORK

The use of competitive programming to teach data structures is
reported in [4]. The students participated in a competition to im-
prove their games project code against instructor-defined code and
code of other students. Evaluation of code against other students
was found to encourage students to put more efforts into their
code. The project code was to be shared on a web server and the
site ranked the students based on their code and other students
were challenged to improve the ranking. The students were then
evaluated based on code working properly.

The methodology of teaching data structures to be mathematical,
theoretical or hands-on was considered in [8]. The three approaches
were considered at different institutions by the panelists. The ap-
proach, where students were given problems and had to develop and
analyze different possible solutions, helped produce a course with
broad coverage preparing students to understand similar trade-offs
in choice of data structures on their own. The students appreciated
more hands-on approach during lab sessions. The students were
assigned a major report writing exercise but then the danger is
that the student would only be better at the data structure assigned.
Thus, only a seminar/presentation style would be inadequate.

The use of different tools for teaching data structures and al-
gorithms were explored in [3]. By actively involving the students,
raised the students interest and helped the students to understand
the various algorithms. The students’ learning was improved with
use of games and real-life examples. The teaching tools were used to
supplement programming, and other assessments. Pieces of wood
of varying lengths were used to teach about sorting algorithms with
the students moving the wooden pieces according to the algorithm.

A technique termed as Visual Kinesthetic Psuedocode (VKP)
was developed [13] with an aim to help the students code without
coding, and providing necessary support in data structure imple-
mentation with actual code. VKP was designed to help the students
to do actual coding by first helping the students to visualize the
data structure, followed by textual pseudo-code that is, engaging
the students in active learning.

The importance and use of online multimedia course content
compared to face-to-face classroom teaching was explored in [7].
In order to increase the understanding of students they must be
involved through active learning. Visualization through multimedia
improves the learning experience of students.

Nazir et al.

Two tools for supporting the teaching were proposed in [1],
visualizers provided visualizations of user data structures, whereas
Testers then checked the implementation of visualizers. All the
visualizers and testers were developed in Java. However, some
students found it difficult to think of visualizers and testers as
complementary tools.

Different techniques were used in [2] to make it easier to explain
the data structure concepts to students. For example, simulations
with software tools were used for teaching sorting, and Travelling
Salesperson problem with play activity for students to visit all
places to keep distance minimum.

For better learning of students, abstract concepts can be imparted
using visualizations [14]. Thus animations can be developed to aid
understanding of complex concepts such as Dijkstra algorithm.
These animations can help the classroom teaching. Two training
modes were used, with one in classroom to aid understanding, and
the other to aid in programming.

Teaching of data structures in a creative way, Creative Lab with
Active Participation (CLAP), is described in [12]. This provided
an open problem solving approach, where solutions were articu-
lated using an algorithm animation environment . The teaching is
student-centric and the students had to take initiative. The CLAP
course was conducted in student pairs.

An active learning approach for teaching data structures to post-
graduate students is described in [15]. The aim was to increase
the programming concepts learning in the lab. All exercises were
open ended and the students could use their own ways and means
to solve it. This encouraged students to come up with different
applications from other courses being studied.

Interactive learning through visual environments for automatic
feedback to students was used in [11]. Students also provided feed-
back to each other by peer reviewing and it was observed to produce
good learning results. Use of graphics to teach algorithms and data
structures was explored in [5]. Image processing and rendering
projects were used to teach memory allocation and matrix manipu-
lation. Computer graphics provided a mechanism to teach problem
based learning.

Much of the above work is based on tools and visualizations to
support learning. In contrast, our approach is focused on the active
learning that takes place through group based peer interactions
and collaborations in a problem-solving context.

3 METHODS AND MATERIALS

3.1 Learning environment

The data structures course was taught to the first cohort of students
in July 2018. The course was delivered using a blended learning
approach. To support the approach, online material was developed
to present the theory of a range of data structures and examples
of their implementation and use. The course materials were made
available through a Virtual Learning Environment (VLE) and stu-
dents were expected to study the online material before coming
to the class. In the active learning class session, the instructor
presented a real-world problem that could be solved using data
structures which had been introduced in the online material. In
class, concepts were reinforced and further explored through peer
interactions both within and between groups, and finally the tutor

Teaching Data Structures through Group Based Collaborative Peer Interactions

Trimester Module Language
Year 1 Programming 1 Java
Programming 2 Java
Year 2 Data Structures and Algorithms Java
Year 3 Big Data Python

Table 1: Programming related courses on the programme

summarized the discussion by providing feedback on the strengths
and weaknesses of the various group approaches.

The students were from a wide range of different countries and
have experienced widely differing teaching methodologies and first
programming languages in their previous education. However, they
have on their current programme become accustomed to a blended
approach and highly interactive peer learning activities in class.
The challenge in this particular course was to apply this approach
and exploit the students’ collaborative skills in motivating and
facilitating learning abstract concepts which often do not engage
the interest of students.

3.2 Choice of language and data structure

The concepts taught during a typical computing science data struc-
tures curriculum are quite advanced. The programming related
courses at the African college are shown in Table 1.

Students are exposed to Java during year 1. Java is a simple and
elegant programming language for teaching data structures com-
pared to C/C++. The use of frameworks such as Standard template
Library (STL) is described in [16] which is important to teach the
integration of user code with existing libraries. Teaching of data
structures with Java language is described in [18], highlighting the
improvements that the language has over C++.

The advantage of using Java for the students was that they were
already familiar with the core language concepts from the earlier
programming modules. Hence they can concentrate on understand-
ing and implementing the data structure constructs without being
distracted or hindered by the language elements.

Data Structures curriculum was taught by reinforcing the the-
oretical concepts with innovative practical activities. The initial
discussion about a data structure was used to relate the abstract
concepts to real world usage of those concepts known to be familiar
and of interest to the students. For example, for introducing the stu-
dents to trees, students were given examples of Document Object
Model (DOM) with which they were familiar by studying HTML
and XML document structure from the web platform development
module.

Figure 1 shows the DOM representation as a tree. As can be seen
the document has nodes that correspond to the tree structure.

In order to highlight our strategy for improving the student
experience by engaging them in group peer interactions, we have
chosen the DOM based problem that was used to teach the tree data
structure. The problem assigned to the students was to develop
a pseudocode solution and Java code for populating a tree data
structure by reading data from a given HTML document that uses
a simple subset of HTML.

CSERC ’19, November 18-20, 2018, Larnaca, Cyprus

Figure 1: Document object model displayed as a tree.

Root Element
<htmI>

Element
<body>

Element
<head>
[

Element Element
“DOM titie™ <p>

Element
<h1>

Text Text
“paragraph™ “Heading h1"

3.3 Open plan environment

It is important for free peer interactions that the classroom activities
are flexibly designed to encourage open discussions between the
group members. We used the traditional white board approach
for sharing the group’s work in progress by assigning each group
to one of the whiteboards that were installed along the walls all
around the classroom. This physcial environment does not rely on
any expensive technology, but it is a simple and effectively designed
space.

This allowed for peer collaboration within a group without in-
terfering with the discussions or disturbing the other groups. Also,
it made it easier for the tutor to coordinate and interact with the
group activities. The setting enabled the students in later stage
of inter group discussion to look at the reasoning, approach and
development of solutions by other groups.

3.4 Group formation

The idea of group is central to our approach as the peer interactions
take place both within and between groups. It was therefore critical
to make a different group for the next problem. The groups were
formed by the tutor by assigning students randomly to different
groups. This helped students not only to work with different peers
and hence with students of varying backgrounds but also helped
them learn the group dynamics and peer support. Peer interactions
helped to reinforce the data structures and algorithms concepts
being studied providing an active learning environment for the
students.

3.5 Facilitated learning

The sequence of actions with the learning activity is summarized in
Figure 2. The problem to be solved was introduced to the students
before they were divided into groups. This sets a baseline for all the
groups, that is, for the DOM Tree scenario they were introduced to
the construction of the DOM as a real-world problem that motivates
the use of a data structure. The groups were required to fully develop
a solution in a top-down manner, initially within the group, and
are encouraged by the tutor to also capture their solution through
diagrams, flow charts and pseudo code on the white-board. Students
do not use their laptops when working on the problem, so that
the focus is not on code and implementation, but the design of
the algorithm and appropriate use of the relevant data structures,

CSERC 19, November 18-20, 2018, Larnaca, Cyprus

Figure 2: Sequence of actions to communicate full under-
standing of a data structure.

~N
Students review
online lecture
material on trees
J
|
Tutor presents DOM and
relevance to trees
& J
|
s N
Group Formation
\ J
|
4 N
Intra Group Discussions
|- J
|
s B
Inter Group Discussions
- J
[
s 2y
Tutor Feedback
. J
v
(- Bt
Group based peer
interaction session
concludes
N\ J

so that students can develop their computational thinking. The
tools used in the session aid and enhance the student learning and
experience [10]. This also makes it possible for the tutor to see the
progress and the thought process of the group. This is helpful to the
tutor to later reinforce the correct approaches taken by different
groups highlighting the differences and merits in each case.

4 GROUP PEER INTERACTIONS

In this section, we describe the group activities and show how these
contributed to improve the students’ understanding through peer
interactions.

The interactions were closely watched by the tutor and students
were prompted and encouraged to analyze their solutions as they
were being developed. The interactions took place within a group
to arrive at a mutually agreed solution to the given problem.

This also helped the tutor to encourage and direct the students
in arriving at the class wide best solution and see for themselves
the other possible solutions together with their strengths and weak-
nesses.

4.1 Student intra-group interactions

The design of the solution by the students required three distinct
stages, (i) an initial informal discussion in the group with charting

Nazir et al.

Figure 3: Output from group discussions on whiteboards

the program elements on the white board, (ii) iterative refinement
of the solution with peer interaction which is also observed by the
tutor, (iii) development of a fully refined solution. Figure 3 shows
the free-form scribbling on the board for one of the groups to design
and develop a group solution.

The initial discussions in the group sometimes resulted in emer-
gence of one or more group leaders due to group dynamics where
each member was trying to increase their influence. This was bene-
ficial for the group because in peer learning they can quickly follow
a leader to start developing their solution through distribution of
work and coordination of effort.

The students were encouraged to use flowcharts and pseudo-
code to help outline, develop and discuss their solutions. This ap-
proach of a free form solution design had benefits similar to VTK
[13] by helping students to understand the core tree data structure
before implementing it in Java code.

The solutions were developed on the whiteboard and students
were encouraged to graphically depict the solution as shown in
Figure 3. This also made it easier for the tutor to move around
between groups and discuss their progress and provide feedback
to put them on a desired course of action. The whiteboards as an
aid helped significantly as the tutor could easily scan the progress
and direction of each group from a central position. The individual
participation and leadership of each group also became apparent
to the tutor who can then encourage those students who were not
fully engaged with the group activities. The students in general
seemed to be very keen to learn through peer interactions and took
ownership of the learning process.

The algorithm efficiency was also considered during the solution
development process as ultimately it decided how useful a solution
really was in terms of time and space complexity. The emphasis was
on developing efficient solutions [10]. It was critical for students to
complete their assignments up to a good standard [9].

The development of a working solution was a good starting
point and a motivator for the students to work hard to improve

Teaching Data Structures through Group Based Collaborative Peer Interactions

their solution. After that the tutor encouraged the groups to have
a deep look at their solutions and see how those could be made
better. The in-group discussions and attempts to improve the group
solution ensured that every group and student got to understand
the weaknesses and strengths of various possible approaches to
solving the given problem.

4.2 Student inter-group interactions

During inter group deliberations, the students took turns in dis-
cussing their group solution with other groups. The tutor assumed
the role more like a moderator to keep the discussion on course.
The objective was to make it easier for the students to arrive at
the best solution to a given problem and how their group solution
compares with other solutions. The students were found to be very
excited and keenly took part to logically give arguments to support
their approach and solution. The student understanding of the topic
was helped by the fact that they were excited to ask questions and
provide answers, displaying a scientific approach, positive criticism
and feedback.
The process comprised of the following steps:

4.2.1 Presentation of solution to other groups. After the students
in all the groups have had intra-group discussions and converged
to a solution, then the groups were asked to present their solution
and approach to the other groups. Other groups asked questions
with an aim to understand the approach taken and to uncover any
perceived weaknesses in the solution.

4.2.2 Peer Evaluation. Peer evaluation made other groups familiar
with the data structure under consideration and thus students could
clearly see the advantages and limitations of various approaches
together with their time and space complexities.

4.3 Round-up Discussion

After all groups had presented their solution, the tutor described
the relative merits of each approach and concluded by highlighting
the best approach. Students had the opportunity to ask questions
to the facilitator and any group members to further understand the
proposed solutions or the facilitator’s prefered approach.

At the end of the session, the tutor requests that students com-
plete the implementation of the problem prior to the next session.
Students share their code on Github Gist' where the facilitator and
other students may leave feedback using the comments system.
Students are encouraged to leave peer feedback and to iteratively
improve their implementation with respect to feedback.

4.4 Benefits

The students perceived both the intra and inter group interactions to
be of great benefit to their understanding of data structure concepts.
The group interactions provided a means for the students to learn
in a fun way. The student involvement in many practical exercises
helps to reinforce the concepts and develops the skill set of the
students [6].

The active learning environment in the group setting made the
students more confident to voice and share their ideas. In some
groups it was noticed that one or two peer teachers emerged that

Uhttp://gist.github.com

CSERC ’19, November 18-20, 2018, Larnaca, Cyprus

were leading the discussion. However it was found to be of benefit
to all students.

The group interactions and discussion around various implemen-
tations of the same problem is important as this comparison and
evaluation of the different solutions fosters better understanding
of the critical concepts which are required by the student in future
career as programmer, analyst etc. [10].

5 EVALUATION

The feedback received for the proposed technique was very posi-
tive and some students described Data Structures and Algorithms
module as the best part of the programme and that it helped them
understand the difficult concepts. The technique of collaborative
peer learning was tested on a class of 37 students with varying
programming backgrounds and skills. The interest of students in
the module content was found to have increased considerably and
the students rated their learning environment of data structures
to be the best compared to other modules that were using only a
flipped classroom approach.

5.0.1 Student Feedback. The feedback received for the proposed
technique was very positive and some students described it as the
best part of the study programme and that it helped them demystify
and understand the difficult core module concepts.

5.0.2 Inspiration. Many students reported being really inspired as
a result of taking ownership of the learning process through group
based peer interactions. They reported that their initial barriers
and fears of learning a difficult topic such as trees were adequately
overcome.

5.0.3 Student experience. The availability of the online material
and the expectation that they had to study it before coming to the
classroom improved the student experience. The tutor led classroom
activities reinforced the core concepts with the group interactions
enabling the students to learn actively with their peers. The students
who would otherwise not participate in classroom activities taking
the whole classroom as a group, also feel empowered and contribute
to the group discussion thus enhancing their learning in the process.
The ultimate result is an enjoyable learning experience for the
students.

5.0.4 Improvement in results. The module assessment comprised
of both theoretical knowledge and concepts, and practical program-
ming of data structures. The pass rates for the module were better
than other modules where the techniques of group based peer in-
teractions were not applied.

6 CONCLUSION AND FUTURE WORK

This paper has described the trialing of an innovative technique
of creating an easy to access discussion medium to peer learn and
teach an important and complex tree data structure concept in
a classroom environment. The peer interactions made it possible
to freely discuss their ideas and approaches to solve the given
problem. The students could easily articulate their solution on the
whiteboards readily available to the instructor and peers to see,
comment and improve upon.

CSERC 19, November 18-20, 2018, Larnaca, Cyprus

The objective was to make it easier for the students to interact
and understand the complex and abstract data structure concepts
through active learning. The interactions were facilitated by di-
viding the class into random equal-sized groups and encouraging
them to devise a group solution to the given problem by making
use of white board to freely share and comment ideas. The group
solutions were then shared across groups and invited comments
in terms of completeness and efficiency from other groups. It was
observed that the students acquired thorough understanding of the
data structure under study and felt empowered and confident to
tackle complex problems in data structure curriculum.

In our future work we aim to improve the benefits of this study
further by announcing the group problem before the actual class
so that the students get more time and a chance to devise their
individual solutions and before coming to the class. We would also
consider to record the understanding of students of a particular
data structure both before and after group interactions in order to
quantify the benefits achieved through peer learning.

Empowering the students with the right training of the data
structures prepares them well for the diverse and complicated data
structures that they are most likely to encounter in real-world
settings. [10].

REFERENCES

[1] Ryan S Baker, Michael Boilen, Michael T Goodrich, Roberto Tamassia, and
B Aaron Stibel. 1999. Testers and visualizers for teaching data structures. ACM
SIGCSE Bulletin 31, 1 (1999), 261-265.

[2] Suhas Bhagate and Uday Nuli. 2016. Innovative Methods for Teaching Data
Structures and Algorithms. Journal of Engineering Education Transformations
(2016).

[3] Martin J Biernat. 1993. Teaching tools for data structures and algorithms. ACM
SIGCSE Bulletin 25, 4 (1993), 9-12.

[4] Donald Chinn, Phil Prins, and Josh Tenenberg. 2003. The role of the data struc-
tures course in the computing curriculum. Journal of Computing Sciences in
Colleges 19, 2 (2003), 91-93.

[5] Andrew T Duchowski and Timothy A Davis. 2007. Teaching algorithms and data
structures through graphics. In Proc. of Eurographics.

[6] Alan Fekete. 2002. Teaching data structures with multiple collection class libraries.
In ACM SIGCSE Bulletin, Vol. 34. ACM, 396-400.

[7] Sahalu Junaidu. 2008. Effectiveness of multimedia in learning and teaching
data structures online. Turkish Online Journal of Distance Education 9, 4 (2008),
97-107.

[8] Danny Kopec, Richard Close, and Jim Aman. 1999. How should data structures
and algorithms be taught. In ACM SIGCSE Bulletin, Vol. 31. ACM, 175-176.

[9] Ramon Lawrence. 2004. Teaching data structures using competitive games. IEEE
Transactions on Education 47, 4 (2004), 459-466.

[10] Karen Mackey and Howard Fosdick. 1979. An applied computer science/systems
programming approach to teaching data structures. In ACM SIGCSE Bulletin,
Vol. 11. ACM, 76-78.

[11] Lauri Malmi and Ari Korhonen. [n. d.]. A pedagogical approach for teaching
data structures and algorithms.

[12] Veijo Meisalo, Erkki Sutinen, and Jorma Tarhio. 1997. CLAP: teaching data
structures in a creative way. In ACM SIGCSE Bulletin, Vol. 29. ACM, 117-119.

[13] Ogen Odisho, Mark Aziz, and Nasser Giacaman. 2016. Teaching and learning

data structure concepts via Visual Kinesthetic Pseudocode with the aid of a

constructively aligned app. Computer Applications in Engineering Education 24, 6

(2016), 926-933.

Deng Rui, John T Thompson, Yang Hong, Zhou Xing-sheng, Liu Ke-jing, and

Neil Alexander Macintyre. 2008. Imagery training in the teaching of the data

structure curriculum. ACM SIGCSE Bulletin 40, 4 (2008), 92-94.

C Sujatha, GN Jayalaxmi, and GK Suvarna. 2012. An innovative approach carried

out in data structures and algorithms lab. In 2012 IEEE International Conference

on Engineering Education: Innovative Practices and Future Trends (AICERA). IEEE,

1-4.

[16] Josh Tenenberg. 2003. A framework approach to teaching data structures. In
ACM SIGCSE Bulletin, Vol. 35. ACM, 210-214.

[17] Zhao Wang. 2012. The Research on Teaching Ideas ofAAl Data Structure and
AlgorithmaAl in Non-computer Major. In Advances in Computer Science and
Education. Springer, 249-254.

(14

[15

Nazir et al.

[18] Mark Allen Weiss. 1997. Experiences teaching data structures with Java. ACM
SIGCSE Bulletin 29, 1 (1997), 164-168.

[19] Daniel Zingaro, Cynthia Taylor, Leo Porter, Michael Clancy, Cynthia Lee,
Soohyun Nam Liao, and Kevin C Webb. 2018. Identifying Student Difficulties with
Basic Data Structures. In Proceedings of the 2018 ACM Conference on International
Computing Education Research. ACM, 169-177.

DaST: An Online Platform for Automated Exercise
Generation and Solving in the Data Science Domain

ABSTRACT

Over the last few years data science has emerged both as a new
research field and as an educational domain that attracted a large
number of researchers and data practitioners. Although data sci-
ence research is developing at a high pace, the educational process
in the field has been left behind in terms of educational tools and
practices, despite the high number of data science courses offered
and the number of involved stakeholders (professors, tutors, and
students). The present work aims to cover the gap of educational
data science tools by proposing a novel platform for online exer-
cise solving in the data science domain; the platform, coined Data
Science Tutor (DaST), is a free online tool that offers automated
step-by-step exercise solving in a variety of data science algorithms
and techniques aiming at giving insight to the particularities of
each algorithm. The solutions of the exercises are accompanied with
in-context explanations that refer to the operation of the respective
algorithm/technique, and are compatible with the terminology and
the methodology in popular textbooks. Through the proposed plat-
form students in the data science field or in related courses (e.g.,
machine learning, information retrieval) may get solutions for dif-
ferent types of exercises and focus on the details of each algorithm,
while tutors (lecturers, lab assistants) may easily produce a wide
variety of exercises with the accompanying solutions and use them
in classroom or as an auxiliary tool for test correction. To the best of
our knowledge, the proposed platform is the first educational tool
that aims at the data science field, and in its one year of operation
has been warmly accepted by departments worldwide.

CCS CONCEPTS

« Information systems — Data management systems; « Applied
computing — Education; Computer-assisted instruction; In-
teractive learning environments; Collaborative learning.

KEYWORDS

data science, online platform, exercise solving, tertiary education

ACM Reference Format:

.2019. DaST: An Online Platform for Automated Exercise Generation and
Solving in the Data Science Domain. In Proceedings of CSERC 2019: 8th
Computer Science Education Research Conference (CSERC 2019). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CSERC 2019, November 18-20, 2019, Cyprus

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Lately, the explosion of available data and the need to extract insight
out of this data triggered the creation of a new interdisciplinary
field that involved areas ranging from applied mathematics to statis-
tics and from artificial intelligence to machine learning. This field,
known as data science [5, 6, 15, 25], stimulated changes both in
research and education in universities around the world. Towards
this new direction, basic and applied research has focused on ways
of managing, analysing, extracting, and visualising the information
that resides behind the data, and utilising it in decision-making.

Naturally, data science requires skilled and appropriately trained
data scientists, and this need led several departments to incorporate
data science related courses, e.g., big data management, in their
(undergraduate or postgraduate) studies program. These courses
were offered alongside traditional information/data management
courses such as machine learning or information retrieval, thus cre-
ating a large educational “market” involving a significant number
of people (tutors, lab assistants, students) that teach or study meth-
ods, algorithms, and techniques in the broad area of data science
[4, 11]. Despite this explosion in interest for data science related
studies, there is a severe lack of educational tools that could assist
the process of teaching and learning in such a broad and rapidly
evolving scientific field [8, 11, 22, 26].

This paper presents a novel online platform, coined Data Science
Tutor (DaST), that is used for automated problem solving in the
data science domain. Users may automatically design and solve ex-
ercises for data science algorithms by resorting to a completely free
and easy-to-use tool. The solutions of the exercises are presented
in a step-by-step manner, followed by explanations that refer to
the operation of the respective algorithm or technique, and are
compatible with the terminology and the methodology in popular
textbooks, like [1, 3, 17, 19]. The DaST platform acts as a computer-
assisted tutor for a wide range of data management techniques
and algorithms related to the broader field of data science, where
trainers and trainees may create their own exercises, resort to the
ready-to-use example ones, or solve exercises submitted by other
users. The proposed platform targets two main categories of users,
revealing the different objectives for each category. Undergraduate
or postgraduate students in the field of data science (i) have the
potential to learn the particularities of each algorithm and identify
cases that are not covered by the in-class teaching material and (ii)
study in an interactively assisted way the reasoning behind prob-
lem solving and the exercise solution process for different types of
exercises. Similarly, through the proposed platform, the tutors of
a course (lecturers or lab staff) may easily produce a wide variety
of exercises, with the accompanying solutions, and use them in
the classroom or as an auxiliary tool for producing and correcting
student tests. The DaST platform is in use for about one year and is
continuously enriched with new functionality and algorithms. To

CSERC 2019, November 18-20, 2019, Cyprus

the best of our knowledge, the DaST platform is the only online ed-
ucational tool available in the data science domain and has already
been warmly accepted by faculties worldwide.

The rest of the paper is organised as follows. In Section 2, we
present the available approaches related to our platform. Section 3
describes the architecture, the capabilities and the provided func-
tionality of the DaST platform, while in Section 4, we present and
discuss the user acceptance of the proposed platform. Finally, Sec-
tion 5 gives directions for future research and concludes the paper.

2 RELATED WORK

Our research is broadly related to approaches that deal with the
organization and management of the study, including educational
portals and online learning environments. In [20] an educational
portal based on personalized information retrieval is presented; the
proposed solution aims to act as an aid at the learning process by
retrieving information pertaining to the context of the problems
studied by the students. In a similar spirit, [27] visualizes a user
model to achieve adaptive information retrieval in a learning envi-
ronment, while [12] addresses effective content-delivery with the
help of a university intranet, and collates the teacher-moderated on-
line forum with the associated intranet portal. Online educational
tools for guiding learners through the programming process have
also been lately proposed; [14] focuses on the programming process
by providing a tool that helps students learn the necessary steps
towards designing a computer program, while [21] concentrates on
JavaScript. Finally, [7] presents the educational goals and objectives
when dealing with a broad teaching domain and aims at student
collaboration for analyzing and tackling difficult problems.

Works that are most closely connected to our platform include [9,
10, 16]. In [9] an educational system that assists students in learning
and tutors in teaching is presented; however, this system deals
only with search algorithms within the artificial intelligence (AI)
domain. Towards a different direction, [10] proposes a computer-
supported learning environment using an information retrieval (IR)
game, aiming to provide a realistic environment for demonstrating
the performance of queries in different types of search situations.
The experimental evaluation of this system revealed that students
found different characteristics of the IR game both enhancing and
inhibiting learning. Similarly, [16] presents an Al game platform,
which includes state-of-the-art algorithms and aims to bring a rich
and fun learning experience in the AI domain. Finally, problem
meta-heuristic solver [13] is an educational software tool that aims
at the generic study of the concepts related to the optimization field,
by covering the main stages when solving optimization problems;
the results obtained by its usage suggest that the tool improves the
understanding of the theoretical concepts and reduces the workload
of the students when implementing optimization methods.

Educational tools prove important not only to the computer sci-
ence field, but also to other fields like mathematics or art. Wolfram
Alpha is a platform similar to DaST, that targets exercise solving
in the field of mathematics [2, 18, 23]. This platform is a computa-
tional knowledge engine that is able to answer factual mathematical
queries, providing (with a subscription fee) a step-by-step solution
for a wide variety of mathematical problems. Maestoso [24] is an
intelligent computer-assisted educational application that allows

people to learn the theory of music through sketching, and enables
them to progress through provided lessons of important fundamen-
tals in music theory.

Although all the above approaches concern different aspects of
on-line student aids, none of them focuses on computer-assisted
learning on the data science field, despite the fact that research [22]
has indicated the need for such tools in a rapidly evolving domain
that involves a broad spectrum of techniques and algorithms. This
need for learning environments related to data science inspired
us to design and develop the DaST platform as an on-line, free-of-
charge tool that will enhance the students’ learning process and
assist tutors in their teaching tasks.

3 THE DAST PLATFORM

In this section, we describe the architecture, the capabilities and
the quality of the provided functionality for the DaST platform.

The DaST platform has been implemented using widespread pro-
gramming languages and tools, while its architecture is stratified
with the goal of creating an easy way to add new techniques and
algorithms. It is entirely based on php and javascript, fully compat-
ible with the latest HTML and CSS standards, while for displaying
widgets (e.g., charts or graphs) it uses the Google Chart API At this
stage, the platform is hosted on a typical Ubuntu Linux (version
16.04.3) server with 64bit / Dual Core 2GHz / 4GB RAM.

3.1 Features and functionality

Access to the platform is possible via any modern browser and is
provided for free, does not require any sort of registration, and does
not collect any type of personal information. Thus, by just typing
the web address of the DaST platform, ! the user is transferred to
the graphical interface of the proposed application (Figure 1) and
may benefit from all the functionality provided by the DaST plat-
form. There, a variety of algorithms and techniques related to the
data science domain are presented, each alongside three different
choices meant for creating, and subsequently automatically solving,
an exercise. The user may choose the algorithm/technique he is
interested in practicing or for producing auxiliary material, and
may also select to create the exercise from scratch, get a randomly
generated one, or by resorting to an already submitted exercise by
another user. In its current version, the DaST platform provides
the opportunity to produce, practice with, and solve several types
of exercises for fourteen (14) different algorithms alongside their
variants. The DaST platform provides the users with the choice to
print or export to a PDF file the exercise with the provided step-by-
step solution. The whole interaction with the platform, as well as
the provided step-by-step solutions and comments of the exercises
are in English, and all the provided information on the algorithms
references the relevant literature.

All algorithms and techniques available in the DaST platform are
accompanied with a concise presentation of the related theory as
well as assistance for the type of entry required to create an exercise
for each algorithm or technique. It is worth mentioning that the
DaST platform addresses the tertiary education and focuses on a
broad and demanding field of science; the algorithms and techniques
related to the data science domain require specialized knowledge,

! Address is disclosed for facilitating the double-blind review process.

DaST:

K Slas
Sob.e %e val wex Jhasaayg pootisen

Comate 48 vl

et e

Automated Exercise Generation & Solving for Data Science

CSERC 2019, November 18-20, 2019, Cyprus

Dalta Science Tutor

Bow et Mung

ety Sagueas Tanecs d pececss
ngh confiiance raes fom thaw,

Cronte ma rwaie

L

Fewe oe vammg e (o pmamay e

¢ To—e g0

°“’n«-«

Bl 3 acwcky of tlacan vy mk msalsym algoerhee B res Neb

ERTE

Croste ma wisiihe Crovte me o ine

[P wovme
[N Cotem,

Frum o wamy wme F3n i waany 3w

Figure 1: Part of the home screen of the DaST platform presenting (some of) the available algorithms

even for the data entry needed to create an exercise. For this reason,
the provision of a guide for each algorithm/technique was deemed
necessary after the requirements analysis and personal interviews
conducted to users of the platform. The guide provided by the DaST
platform for each algorithm or technique contains all the necessary
explanations that refer to its operation (and to the step-by-step
solutions of the corresponding exercises), is fully compatible with
the terminology and the methodology met in popular textbooks,
and is used within a wizard-style environment to facilitate the
exercise creation process.

In what follows, we present the three different ways the user
may utilise to create an exercise, after having chosen an algorithm
or technique provided by the DaST platform.

e From scratch. In this case, the user may create an exercise
by providing/uploading at the DaST platform his own data.
The process for entering the necessary input data for each
algorithm is done using a simple, user-friendly wizard that
guides the user in filling in the required fields. User data
input is supported in three ways: (i) by using the online
graphical environment, (ii) by uploading an appropriately
formatted text file containing the input data (parameters
still have to be inserted through the graphical interface), or
(iii) by uploading an appropriately formatted XML file con-
taining all the necessary parameter setups and data input
that will allow the creation of the exercise (and its subse-
quent solution). The different options for providing input
address the needs of both beginner/occasional users and
also more expert ones who often require an easy, fast, and
semi-automated way to create exercises. For all file-based
input the system provides example (.txt and .xml) files for
downloading, while to support interoperability with other
applications the XML schema is also available through the
platform.

e Radomly. In this case, the chosen algorithm or technique is
fed with randomly generated data and parameters. Choosing
this way to create an exercise, the interested user has the
opportunity to understand the functionality of an algorithm
by studying the step-by-step solution of an exercise, without
being puzzled with the data entry to create the exercise. This
choice mostly targets students or beginners that are looking
for a simple and straightforward way to familiarise with
data science concepts and methods through exercise solving.
For repeatability reasons the random exercise generation
process asks the user to input a seed that may be used again
later on to recreate the exercise. If none is provided, the
system generates one seed by resorting to a time variable,
and reports it to the user for future reference.

By using an existing exercise. In this case, the user may
select to use and solve one of the exercises that were pre-
viously submitted by another user. Please notice that user
anonymity is fully protected as users are not required to
register to the platform and the application does not relate
in any way which user created which exercise. The users
may change the data and/or the parameters of submitted
exercises and study the way the algorithm and the provided
solution are affected. The selection between the existing ex-
ercises is performed either randomly or based on a specific
feature (e.g., difficulty of the exercise, type of user —tutor or
student- that created it). Using exercises provided by others,
while protecting the anonymity of the users, provides the
DaST platform with an interesting social dimension. This
feature is currently under alpha testing.

3.2 Supported algorithms

The full list of algorithms that are available in the current edition
of the DaST platform are presented below. The algorithms are
classified here in research fields related to the data science domain.

CSERC 2019, November 18-20, 2019, Cyprus

3.2.1 Unsupervised clustering. Unsupervised clustering identifies
previously unknown patterns in data sets without pre-existing
labels. In essence, unsupervised clustering involves a set of simple-
yet-powerful tools for identifying groups of objects, and typically
serves as an introduction for more complicated techniques that
involve also (semi-)supervised counterparts.

K-Means is the most well-known algorithm for unsupervised
clustering of objects; objects in DaST are represented as vec-
tors with up to 10 dimensions — remember that the aim is
exercise solving, not real-world operation. Users input the
vectors and the algorithm setup. The number of dimensions
is automatically inferred (vectors with less dimensions are
padded with zeros), while the user may tune the number of
clusters, the number of iterations, the initial cluster seeds,
the distance method (Euclidean or Manhattan), and the algo-
rithm variant (sequential of on-line).

K-Medoids is another well-known unsupervised clustering
algorithm that is robust to noise and outliers. The options
provided for the algorithm are the same as those described
above for algorithm K-Means.

HAC (Hierarchical Agglomerative Clustering) is a popular
bottom-up clustering algorithm that merges objects to cre-
ate a dendrogram, in contrast to the flat clustering algo-
rithms presented above. The DaST platform supports the
four most popular variants of HAC (single-link, complete-
link, centroid-link, average-link), and the user may also tune
the number of iterations and the distance method (Euclidean
or Manhattan).

3.2.2 Classification. Classification identifies to which among a set
of categories a new observation belongs, based on training with
data that contain known data memberships.

Naive Bayes is the simplest family of probabilistic classifiers
that operate with the assumption of independence between
the features. The DaST platform supports document classifi-
cation, and users are required to input only the number of
documents and the document terms.

3.2.3 Information Retrieval Models. These models typically refer
to a representation of documents and queries that is suitable to
facilitate the retrieval of information relevant to a user need.

Boolean Model is a standard textbook representation for doc-
uments/queries that assumes a binary vector representa-
tion. Users input the query, the documents, and the scoring
method (Euclidean or Manhattan).

VSM (Vector Space Model) is the most popular representation
for documents/queries that assumes a real-valued vector
representation. Users input the query and documents, the
model variant (12 variants are supported), and the distance
method (Euclidean or Manhattan).

3.24 Link Analysis. Link analysis refers to graph-analysis tech-

niques used to evaluate relationships (connections/edges) between
nodes (vertices) in a graph.

PageRank was introduced in the Google search engine as

a way to measure the importance of web pages. The user

inputs the graph (by means of edges between vertices), the

number of iterations, and the Pagerank variant (with/without
dampening and Google matrix usage).

HITS (Hyperlink-Induced Topic Search) is a well-known text-
book algorithm that rates web pages based on the concepts
of hubs and authorities; user input is the same as that of
Pagerank provided above.

3.25 Decentralised object location. Inspired from work in P2P
networks, decentralised object location and routing currently form
the backbone for most big data filesystems including GFS, HDFS,
Cassandra and others.

Chord is the most famous object location protocol that is cur-
rently taught as the prominent representative of distributed
hash tables (DHTs). Its key-value pair philosophy blends
well with many big data system concepts. The user input
involves the size of the Chord ring, the active Chord nodes,
and other distributed search-specific data.

3.2.6 Association rule mining. Association rule mining is a rule-
based machine learning method for discovering interesting relations
between transactions in large databases; it discovers interesting
rules in databases using different measures of interestingness.

Apriori uses a breadth-first search strategy to count the sup-
port of itemsets and constitutes the most popular textbook
algorithm for association rule mining. To create an exercise
the user inputs the transaction database (up to 20 transac-
tions — remember that the aim is exercise solving, not real-
world operation), and algorithm parameters (i.e., support
and confidence).

The DaST platform is regularly enriched with new algorithms
and methods from the data science domain; additions are simple,
due to the architectural design of the platform that allows devel-
opers to deploy new algorithms independently. In the future we
plan to open-source the platform code and create a community of
developers that will help the expansion of the platform and the
verification of the submitted code.

3.3 Solution visualisation & step-by-step guide

As mentioned above, when selecting an algorithm/technique, the
user is presented with a wizard-styled web interface to input the
appropriate data and parameters for exercise creation. After the
exercise creation, the user is presented with the solution of the
exercise in a step-by-step manner, emphasizing the details of the
algorithm. An example of such a solution is shown (in part) in
Figure 2, where an exercise on the Apriori algorithm for itemset
mining is solved. Please notice the stepwise execution, the color-
coding and graphical elements marking the pruned and non-pruned
itemsets, and the concise writeup that is meant to improve the
readability and understanding of the solution.

If applicable, an appropriate visualisation of various exercise
elements is also included in the provided solution; for example in
link analysis the user is provided with a visualisation of the input
graph, while in itemset mining a color-coded latice representation of
the frequent itemsets is given as a visual aid of pruned and candidate
itemsets (see top right corner of Figure 2 for an example). These
graphical representations of the input data and the solution space
help users to get a better insight of the functionality of the examined

DaST: Automated Exercise Generation & Solving for Data Science

Sclution

CSERC 2019, November 18-20, 2019, Cyprus

Figure 2: Solution of an itemset mining exercise (algorithm Apriori), and a graphical representation of the (in)frequent itemsets

algorithm/technique and help tutors provide better explanations to
students.

For the interested reader we have created an anonymised Google
Drive folder that contains more screenshots of the DaST platform;
the folder is accessible at http://tinyurl.com/y4h7u3za.

4 PRELIMINARY EVALUATION

The DaST platform is online and fully functional for about one
year, and we had the opportunity to make a first assessment of its
acceptance by the community of tertiary education. According to
user feedback we received, the platform has so far been used in a
variety of courses related to the data science domain worldwide
and is utilised in the context of both undergraduate and postgradu-
ate curricula. Our assessment was carried out over three different
axis: (a) qualitative and quantitative assessment from standarised
anonymous questionnaires handed out from the quality assurance
unit of our university, (b) student performance measurement by
using a control and a test group, (c) a questionnaire survey of our
own focusing on the platform specifics. The results of our pre-
liminary assessment are reported below; we are currently in the
process of performing a large scale assessment in cooperation with
departments that have used our platform.

4.1 Evaluation from the quality assurance unit

Given the short life span of the platform, the time to conduct a
full-scale evaluation of the learning outcomes that derive from it
was limited. However, the acceptance of the DaST platform by the
students of our department was encouraging. More specifically, our
students evaluated the DaST platform by responding to the stan-
darised questionnaires that are distributed by the quality assurance

unit of our university and target the evaluation of the department’s
courses. The students’ comments about the DaST platform were
very positive and mostly addressed the usefulness of the platform
with respect to (i) helping them “prepare for the final exams” in
data science related lessons, (ii) providing them with “insights on
the operation” of the respective algorithms, (iii) assisting them get
non-trivial “peculiarities of the algorithms that are typically not
even addressed in class”, and (iv) “assessing the results and mark-
ing of tests and homeworks”. One of the questions included in the
questionnaires disseminated by the quality assurance unit referred
specifically to the online educational material and its contribution
to the better understanding of the Information Retrieval course;
the students replied that the educational material was helpful and
provided an overall score of 4,33 out of 5.

4.2 Students performance report

The second axis of our assessment involved at looking into student
performance metrics, such as the achieved student grades at the
final written examinations. We separated the students in one of
the related courses into two different groups of ten students each;
Group A had the opportunity to use the DaST platform during the
semester, while Group B was not aware of the platform and did not
have access to it. The chart shown in Figure 3(a) reveals the impact
of the platform on student grades as marked by the corresponding
instructor; the students having used the DaST platform achieved
on average 36% better score (mark range is between 0-100) in the
final written examinations when compared to the students that
did not use the platform. Although our sample is not big enough
for extracting accurate statistical results, the particular assessment
indicates that the DaST platform was beneficial to the student
performance and the learning process itself.

CSERC 2019, November 18-20, 2019, Cyprus

" 1vss Te phattn bn yous e

e rage geades of Nl
cLamiuton %
.. &

G0 A Covmapt

i (o))

Figure 3: (a) Average score in final exams, (b) aggregate an-
swers to (some of) the questions

4.3 Questionnaire survey

Finally, the third assessment axis involved the design of a spe-
cialised questionnaire survey to gather information specifically
concerning the DaST platform and its different dimensions (e.g.,
usefulness, usability, user experience). Our survey (shown in Fig-
ure 4) was performed by directly forwarding the questionnaire to
users that provided email feedback to us and asking them to fill
it in anonymously. The positive feedback we received, shown in
part in Figure 3(b), is representative of the overall positive stance
of the users’ response to our questionnaire. Therefore, although an

1. Have you ever boes ssvelved in Data Science cousses such as: Mackine Learmusg
lafeemation Retrseval Dats Misisg oe Big Data”

2 Have you ever used an calise platforss o coder te solve 0 exeteise” If 5o, what
was the platfoens® Was it free”

3. How ofven do you attend the the course of iaformeation reteieval”

1. How useful 51 was the different waps of esnenag dasa®

2 How well understond 10 the solutwn of an exeonse”

3 How madh 414 the ainamary sodution of esercises belp row sndeestand the
FRDNTIO ¢

1 From your eatoe sxpernnce with the placform. whas would you be mare
positive about”

2 From your eotire expemience with the platfornms, what would 796 be more
negatIve About”

3 Gove some sagpertions S smpooring the caline piatform

Figure 4: Part of the questionnaire

extensive user study of the DaST platform has not been performed
so far, user acceptance and preliminary user feedback are positive
and encouraging.

5 CONCLUSIONS AND FUTURE RESEARCH

The proposed DaST platform is a novel online tool that facilitates the
learning and teaching of data science related algorithms/methods
through automated, step-by-step problem solving of user-generated
or automatically created exercises. The proposed platform is con-
tinuously expanded with new algorithms and functionality, and
has so far been warmly accepted by the data science community
in tertiary education. Future research directions and extensions
include (i) extended user studies to extract macroscopic findings

concerning the learning outcomes and related targets, (ii) introduc-
ing different levels of difficulty in exercise generation, (iii) creating
an online community around DaST to help development and result
verification, and (iv) integration with popular learning management
systems such as Open eClass and Moodle.

REFERENCES

[1] C.C. Aggarwal. 2015. Data Mining: The Textbook. Springer.

[2] D. Arnau, M. Arevalillo-Herraez, L. Puig, and J.A. Gonzalez-Calero. 2013. Fun-
damentals of the design and the operation of an intelligent tutoring system for
the learning of the arithmetical and algebraic way of solving word problems.
Computers & Education 63 (2013).

[3] J.Berman. 2013. Principles of Big Data: Preparing, Sharing, and Analyzing Complex
Information. Morgan Kaufmann.

[4] RJ. Brunner and E.J. Kim. 2016. Teaching Data Science. Procedia Computer
Science 80, C (2016).

[5] W.S. Cleveland. 2001. Data science: an action plan for expanding the technical
areas of the field of statistics. In International Statistical Review.

[6] V.Dhar. 2013. Data Science and Prediction. Commun. ACM 56, 12 (2013).

[7] E.N.Efthimiadis,].M. Fernandez-Luna, J.F. Huete, and A. MacFarlane. 2011. Teach-
ing and Learning in Information Retrieval. Vol. 31. Springer.

[8] G.Press. 2013. Data Science: What’s The Half-Life Of A Buz-
zword? Forbes. https://www.forbes.com/sites/gilpress/2013/08/19/
data-science-whats- the- half-life- of-a-buzzword/#47952ffa7bfd

[9] F. Grivokostopoulou, I. Perikos, and I. Hatzilygeroudis. 2016. An Educational
System for Learning Search Algorithms and Automatically Assessing Student
Performance. International Journal of Artificial Intelligence in Education 27 (2016).

[10] K. Halttunen and E. Sormunen. 2000. Learning Information Retrieval through an
Educational Game. Is Gaming sufficient for learning? Education for Information
18, 4 (2000).

[11] S.C. Hicks and R.A. Irizarry. 2018. A Guide to Teaching Data Science. The
American Statistician 72 (2018).

[12] K. Viswanathan Iyer. 2017. A dynamic intranet-based online-portal support for
Computer Science teaching. Education and Information Technologies 22, 3 (2017).

[13] C.E.Izquierdo, I. Lopez-Plata, and J.M. Moreno-Vega. 2015. Problem MetaHeuris-
tic Solver: An educational tool aimed at studying heuristic optimization methods.
Computer Applications in Engineering Education 23, 6 (2015).

[14] H.Keuning, B. Heeren, and J. Jeuring. 2014. Strategy-based Feedback in a Pro-
gramming Tutor. In Proceedings of the International CSERC.

[15] J. Leskovec, A. Rajaraman, and J.D. Ullman. 2011. Mining of Massive Datasets.
Cambridge University Press.

[16] W. Li, H. Zhou, C. Wang, H. Zhang, X. Hong, Y. Zhou, and Q. Zhang. 2019.
Teaching Al Algorithms with Games Including Mahjong and FightTheLandlord
on the Botzone Online Platform. In Proceedings of the ACM Conference on CompEd.

[17] J.Lin and C. Dyer. 2010. Data-Intensive Text Pr with MapReduce. Morgan
Claypool.

[18] M. Lvov, I. Chernenko, L. Shishko, and E. Kozlovsky. 2018. Mathematical Models
of Supporting the Solution of the Algebra Tasks in Systems of Computer Mathe-
matics for Educational Purposes. In Proceedings of the 14th ICTERI. Integration,
Harmonization and Knowledge Transfer Workshops.

[19] C.D. Manning, P. Raghavan, and H. Schiitze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

[20] L. Nakayama, V.N. de Almeida, and R. Vicari. 2004. A Personalized Informa-
tion Retrieval Service for an Educational Environment. In Proceedings of the
International Conference on ITS. Springer.

[21] H. Passier, S. Stuurman, and H. Pootjes. 2014. Beautiful JavaScript: How to Guide
Students to Create Good and Elegant Code. In Proceedings of the International
CSERC.

[22] V.Putnam and C. Conati. 2019. Exploring the Need for Explainable Artificial
Intelligence (XAI) in Intelligent Tutoring Systems (ITS). In Joint Proceedings of
the 24th ACM IUI Workshops.

[23] S. Shirai, T. Fukui, K. Yoshitomi, M. Kawazoe, T. Nakahara, Y. Nakamura, K. Kato,
and T. Taniguchi. 2018. Intelligent Editor for Authoring Educational Materials in
Mathematics e-Learning Systems. In Proceedings of the 6th ICMS.

[24] P. Taele, L. Barreto, and T.A. Hammond. 2015. Maestoso: An Intelligent Educa-
tional Sketching Tool for Learning Music Theory. In Proceedings of the 29th AAAI
Conference on AL

[25] S. Tansley and K.M. Tolle. 2009. The Fourth Paradigm: Data-intensive Scientific
Discovery. Microsoft Research.

[26] P. Warden. 2011. Why the term "data science" is flawed but useful. O’Reilly Radar.
http://radar.oreilly.com/2011/05/data-science-terminology.html

[27] S. Willms. 2003. Visualizing a User Model for Educational Adaptive Information
Retrieval. In Proceedings of the International Conference on UM. Springer.

Digital)S: a visual Verilog simulator for teaching

Marek Materzok
University of Wroctaw
Institute of Computer Science
Wroclaw, Poland

marek.materzok@cs.uni.wroc.pl

S \

wTe ke
Febd S

T

, ST
—— TS
‘)r rac_dece L

o=
o8 pans
S s _resat_cute
-

-

8.

bus_saaress ':'
Sun_wee_cwea

bun_byte_onable |

-

S wene_snante I <

| & | — |
S reed des

PO I sy]
Tox_sadrees

e { B]

YT

s Dte emabie

W

L R

DA _WTER_watie

OO

ao0o0ess | oooecenn | G [omveocce | ooenooce | womosie st

3000000 oo m)

P E avxe e | ooRoane 000000 MO0 pracoRcs
AT | Soaiin | CoatrinG | Obdne | S0MMM | e | Coeding | Coetmive | Obeine Poen
XrooiL) S0OSETLY | G w2 e | e - N t SO K S L Bt) Cowades | -ll.? A

ooty

Figure 1: A RISC V core simulated in DigitalJS

e
I
ho wet wmara
r_orSe_snobe
[Sr o] 000020 | s0000ees | seooosso | wooesas | sooscace | seeseine |
Dut_read_tus AWCHCC
bt wote swa om0 WOH0E | moooees | anoecoso | svesoaos
| |
e Tanml SOA0)S | SOM00LM | CODOSs | dOeitin: | OM0SIS | obesteid
- wates] chelnety | minues)) | Eamameds | ateantty | 0000059) | Died0te

This paper describes a visual circuit simulator tool designed for
teaching students digital circuit design. The tool runs in the browser
and is simple to use. It allows to visualize the synthesized circuit
generated from Verilog/SystemVerilog code and interact with it.

CCS CONCEPTS

« Applied computing — Education; - Hardware — Hardware
description languages and compilation; Software tools for EDA; «
Social and professional topics — Computing education pro-
grams;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CSERC 2019, November 2019, Larnaca, Cyprus

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Verilog, Yosys, HDL, logic synthesis, logic simulation, teaching

ACM Reference Format:

Marek Materzok. 2019. DigitalJS: a visual Verilog simulator for teaching. In
Proceedings of 8th Computer Science Education Research Conference (CSERC
2019). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Thanks to FPGAs (Field Programmable Gate Arrays), creating prac-
tical digital circuits no longer requires expensive silicon production,
and their reconfigurability means that digital circuits can be de-
signed similarly to software, with easy experimentation and fast
prototyping. The availability of FPGA SoC chips with traditional
CPUs integrated, and of PCI Express boards with FPGAs, means
that FPGAs can be used as domain-specific accelerators, like GPUs
are. This makes hardware design an useful skill for a software de-
veloper or computer scientist to have, and therefore an useful skill
to teach computer science students.

CSERC 2019, November 2019, Larnaca, Cyprus

ﬁ ¢ 19171

SR latch (gate mode
module sr_latch

input s, r,

output q, nq

H

nor gliq, r, nq';
nor g2/nq, s, q';

endmodule

Synthesize and simulate!

M. Materzok

s > nq
nq
$ors_input.sv:8%3
q
ng
v
D
s$ors_input.sv:7$1 G

Figure 2: Screenshot of the Digital]S online demonstration app, simulating an SR latch

But how do you do it? Thanks to hardware design languages
(HDLs), such as Verilog [9], SystemVerilog [10] and VHDL [8], a
computer science student familiar with C can quickly get started.
Unfortunately, using them for this purpose has certain pitfalls. They
are modeling languages, and it is possible to write code which does
not map well (or at all) to hardware. Computer science students in
particular might try to use them, by force of habit, like a program-
ming language for CPUs, which would lead to code which runs
just fine in simulation, but synthesizes to non-working or badly
working hardware.

The author believes that it would be a great help for students
if they are provided with a tool which reminds them that, even
though they are writing code, they are actually designing hardware.
Such a tool could help them visualize the structure and workings
of the circuit they are designing, allow to inspect it, interact with it,
and quickly see the effects of their changes in HDL code. This paper
describes DigitalJS, a tool in proof-of-concept stage developed for
this purpose.

The tool is currently being used for the first time in an introduc-
tory course on digital circuit design. It was positively received by
the students.

2 DESIGN GOALS

Digital]S was designed specifically for teaching digital design, si-
multaneously with elements of Verilog/SystemVerilog HDL, to un-
dergraduate computer science students. With this in mind, the
following design goals were set:

Focus on synthesis. It is well known that it’s possible to write
Verilog code which gives different behavior in the synthe-
sized circuit than in the simulation [14]. This is a conse-
quence of the fact that Verilog is at heart a language for pro-
gramming concurrent processes, communicating via wires
and events, and some processes or process interactions do
not have natural representations as circuits. Experience with
teaching students, my own and other educators’ [5], suggests

to adapt a synthesis first approach, where the students are
not taught simulation-only constructs until they have mas-
tered circuit synthesis. Therefore, the tool will only accept
the synthesizable subset of Verilog, and simulate the circuit
using the synthesized, gate-level schematic.

Support for hierarchical designs. Hierarchical modules are

at the heart of digital design. Transistors combine to form
gates, gates combine to form basic combinatorial and sequen-
tial circuits like multiplexers, encoders and flip-flops, which
combine to form more complex circuits like finite state ma-
chines, memories and controllers, and so on. To capture this,
support for modular designs must be simple and natural.
Verilog modules need to correspond to subcircuit blocks.

Readability. The simulated circuit’s construction must be read-

able. This is very important for students, because most of
them do not have previous experience with digital design,
and therefore even minor readability problems can be dis-
tracting or confusing. To achieve this goal, the tool needs
to use standard textbook symbols (e.g. for gates and other
parts), markings (clock lines, bus sizes, etc.) and conventions
(e.g. inputs on the left, outputs on the right). Also, to make
clear the correspondence between the Verilog code and the
resulting circuit, parts and nets must be labelled.

Easy inspection. The current state of the circuit must be eas-

ily visible, even for complex parts, like buses, memories and
subcircuits. The importance of this goal is that seeing the
evolving state of the circuit helps understand its workings
or fix design problems. A good example of a simulator that
does this well (albeit for analog circuits) is Paul Falstad’s
circuit simulator [7]. To this end, the state of wires, buses,
inputs and outputs need to be presented using colors, the ex-
act value on buses must be easily displayable (e.g. by mouse
hover), and the subcircuit’s state must be possible to see
simultaneously with the main circuit.

Digital)S: a visual Verilog simulator for teaching

Usability and portability. As the tool is to be used by under-
graduate students with different degree of previous experi-
ence with complex software, installing and using the tool
must be as simple as possible. It should also be platform
independent, so that students can run the tool on their own
computers. Currently the best way to achieve this goal is to
use a solution based on Web technologies: JavaScript, HTML,
CSS and SVG.

Possibility of batch operation. During a digital circuit de-
sign course, the student will design a number of circuits for
assignments. It would be beneficient for both the students
and the instructor if the students’ designs were automatically
tested for correctness. A model-view-controller (MVC) archi-
tecture allows to separate the tool’s simulation engine from
the graphical user interface, which enables fully automatic
testing.

Acceptable performance. It would be beneficial if the tool
could be used to simulate not only simple examples (like
adders, latches, finite state machines, etc.), but also larger,
realistic circuits. Students could then continue to use the tool
as they tackle more advanced topics. If simple processors
(CPUs) can be simulated, the tool could be used for teaching
computer architecture.

3 RELATED WORK

There are numerous tools which simulate Verilog designs directly.
One of the most known is ModelSim by Mentor Graphics. It is
a fully-featured, industrial quality simulator, included with Intel
Quartus and Xilinx Vivado design tools. It is a great tool for HDL
developers, but using it for teaching newcomers to HDL and digital
design has several downsides. First, its user interface is quirky
and requires some practice to get used to it. Second, it uses the
simulation semantics of Verilog, which, as said before, makes it
easy for students to write non-synthesizable or ambiguous Verilog
constructs.

Other such tool is EDA Playground by Doulos [4]. It is a Web
application, which allows to quickly prototype HDL code, simulate
it using one of the available backends (which include Synopsys VCS,
Cadence Incisive, Aldec Riviera Pro and the free Icarus Verilog), and
see the synthesized circuit diagram. It’s user friendly and an useful
prototyping tool, but it does not offer much help to the beginner to
visualize the connection between the HDL code he is writing and
the working of the resulting circuit.

On the other hand, there exist tools which simulate digital cir-
cuits drawn as diagrams. One of them, specifically created as an
educational tool, is Logisim [2]. It is used for teaching students in
many universities around the world [11]. One of its advantages for
teaching is that it presents the workings of the simulated circuit
graphically, helping the student understand it. It also allows to
export the circuit to Verilog code. Unfortunately, it does not work
with circuits synthesized from HDL code.

4 USING DIGITALJS

The easiest way to get started with DigitalJS is via the online demon-
stration app (Figure 2). It presents the user with a screen split into
three parts. On the left is a code editor, with syntax highlighting for

CSERC 2019, November 2019, Larnaca, Cyprus

g Dt =

$0r§_input.sv:8$3 ba— —Y N\ I:I
a q

$ors_input.sv:7$1 q
T

Figure 3: A SR latch directly after synthesis

SystemVerilog, and a button which instructs the app to synthesize
a circuit from the code. A set of simple example source codes is also
provided to help beginners get started quickly. On the right is a
visual, interactive circuit representation. The top panel is a toolbar,
which in the current version allows to control simulation time, save
and load the circuit schematic, and get a link for sharing.

After clicking the “Synthesize and simulate” button, if the code
is valid, synthesizable SystemVerilog, the synthesized circuit is
laid out automatically and presented on the right panel. Single bit
inputs automatically receive a button widget driving them, similarly,
single bit outputs are connected to a LED-like display. For buses,
numeric input/output widgets are generated; these can be set to
display their value in binary, octal, decimal and hexadecimal. You
can immediately interact with the circuit; for example, for the SR
latch circuit in Figure 2, you can click the S and R buttons and see
the circuit react.

The simulation uses three-valued logic, and the circuit is initial-
ized in an undefined state. Figure 3 presents the SR latch circuit as
it looks like directly after synthesis. You can see that the latch state
is initially undefined, and only after assigning a high value to one
of the inputs the latch stabilizes into a defined state. Colors are used
to display signal values: green for logical one, red for logical zero,
gray for undefined. For buses, the same colors are used if every bit
in the bus is high, low or undefined; otherwise they are colored
blue. Bus wires are drawn with wider lines than single bit signals.

The displayed circuit can be easily modified. The layout can be
changed by dragging the circuit parts, the paths the wires take can
also be modified by adding and removing control points. The actual
connections also can be changed; wires can be added or removed,
and the simulation reacts in real time. If an input becomes undriven,
it automatically assumes undefined state.

If the SystemVerilog code entered contains multiple modules,
a module which does not reference other modules is selected au-
tomatically as the top level circuit. The other modules are treated
as subcircuits, which are displayed as rectangular blocks. The con-
tents of a subcircuit can be displayed by double-clicking a subcircuit
block or hovering the mouse over it and then clicking a loupe icon
which appears over it. The subcircuit is displayed in a window, and
is as interactive as the top level circuit is. Figure 4 presents a full
adder circuit, composed of two half adders.

Amongst the basic elements included in the simulator, other than
logic gates, are: arithmetic operations, bit shifts, multiplexers, D
latches and flip-flops, single and multi-port memories. Their use
is inferred in the synthesis process as usual. Bus grouping and
ungrouping appears explicitly as circuit elements; the tool forbids
connecting inputs and outputs of differing bit width. Figure 5 shows

CSERC 2019, November 2019, Larnaca, Cyprus

module halfadder(
input a, b,
output o, c

)5
assign o = a * b;
assign ¢ = a & b;

endmodule

module fulladder(
input a, b, d,
output o, ¢

)5
logic t, c1, c2;
halfadder hal(a, b, t, cl1);
halfadder ha2(t, d, o, c2);
assign ¢ = c1 | c2;
endmodule

(a) SystemVerilog source code

halfadder
L g
a b ¢ (34 °
NG ool
:

$ors_input.sv:28$3

halfadder hat x

E]'T/s:s,pmvm) B
B ool

$xors_input sv-981

(b) Synthesized circuit graph

Figure 4: Full adder composed of half adders

an accumulating adder circuit, which uses some of the mentioned
parts.

Combinatorial logic delays are simulated by default. This allows
to simulate latches and flip-flops built from gates, like the one in
Figure 2, and to visualize glitches occuring in combinatorial circuits
due to the delays. The simulation time controls present in the top
bar can be used to see how signals propagate through a circuit.

Signal waveforms can be displayed by hovering the mouse pointer
over a wire and clicking a loupe icon. The waveforms are updated in
real time, like in an oscilloscope. Old signal values can be displayed
by dragging the waveforms, and the time scale can be changed
using a mouse scroll wheel. The waveforms are colored in the same
way as signal wires are to improve readability. Figure 5c presents
signal waveforms for an accumulating adder circuit.

If the design to be simulated is composed of multiple files, they
can be uploaded by using a file selection dialog window. Additional
files, e.g. containing initial memory state for the circuit, can also be
uploaded. Figure 1 presents a simple, but fully functional RISC V
core being simulated.

M. Materzok

module accumadder
#(parameter WIDTH = 4)(
input clk, rst, en,
input [WIDTH-1:0] A,
output [WIDTH-1:0] O
)5
always_ff @(posedge clk or posedge rst)
if (rst) 0 <= 0;
else if (en) 0 <= 0 + A;
endmodule

(a) SystemVerilog source code

clk 4
4

o
4
Pk Q
4

ot arst 4 NS
$procdff$é 4 i $procmuxs4
II]i A $adds_input.sv:1352
A
(b) Synthesized circuit graph
scale 100 [FSNESEES range 1255 - 24858

" mOonnNnnNnNnNnnNnnNnNnnNnnnnn

o hexv |x [vf2[sa]se[7[s]ofalo]c[ale[t]o]1

(c) Waveforms generated by the circuit

Figure 5: Accumulating adder circuit

5 IMPLEMENTATION

Digital]S is implemented using the JavaScript programming lan-
guage. This choice was made for two reasons. First, it allows to use
the browser rendering engine for the user interface, which, in the
author’s opinion, is the best option in terms of usability, portabil-
ity and flexibility. Second, the JavaScript community offers a large
choice of useful libraries.

One of them is JointJS [3], which is used in DigitalJS as the graph
rendering engine. Using this library allowed the author to avoid
writing a lot of user interface code, and to focus on the key parts of
the project. The Joint]S library is designed well, with clear separa-
tion between the model and view layers. This separation enabled
easy implementation of subcircuits, and also added a possibility for
the simulator to run headless, which is useful for automatic testing
of designs submitted by students, but also for regression testing of
the tool itself.

The circuit diagrams are drawn using the Scalable Vector Graph-
ics format (SVG), which is universally supported in modern Web
browsers. This allows to easily accomplish the clean and readable
look neccessary in educational software.

The open source project Yosys [18] was used in the backend for
synthesizing circuit schematics from Verilog and SystemVerilog
code. The circuit netlist can be extracted from Yosys in JSON format,

Digital)S: a visual Verilog simulator for teaching

which is easily processed in Javascript. Because the Yosys JSON
format is rather complex, the author decided not to use it directly
as the input format for DigitalJS, but to have a simpler intermediate
JSON format. In this way, processing Yosys output can be decoupled
from the simulator itself. This also opens the way to interfacing
Digital]S with other software.

6 CLASSROOM EXPERIENCE

The tool is currently being used for an introductory course on
digital circuit design in the Computer Science Institute, University
of Wroctaw. Thirty four students are enrolled, which includes 14
first year students, 12 second year students and 8 third year students.
The curriculum is based on two textbooks [1, 12], both of which
present digital design topics simultaneously with Verilog circuit
descriptions. The classes include lectures, pen-and-paper exercises
and lab assignments.

DigitalJS is used during lectures and for lab assignments. Dur-
ing lectures, it helps to illustrate concepts of digital circuit design
with interactive examples. Having circuit state change in response
to input, and having signal waveforms drawn in real-time, in au-
thor’s opinion gives students better learning experience than just
drawings and tables on a blackboard.

For lab assignments, student use DigitalJS on the department’s
computers or on their own. Thanks to the tool, they can instantly
see what circuit their SystemVerilog code synthesizes to, and change
their solution if the result is not as expected. The simulation allows
to interactively test and debug the synthesized circuit.

The assignments are submitted online using the Web-CAT [6]
automatic grading system. On the grader, Digital]S is used for test-
ing the correctness of the submitted designs. When the complexity
of the assignment is small, solutions are tested exhaustively; if not,
the checker uses randomly generated test cases. The solutions are
also checked for meeting various constraints of the assignment;
for example, names and types of inputs and outputs, circuit ab-
stractions used (e.g. multiplexers, registers, memories...), critical
path length. The student receives feedback within seconds of the
submission, which includes, for example, which test cases have
failed. The score received by the student is a sum of the correctness
score and coding style score given by the instructor.

The students were given a voluntary, anonymous survey, where
they could express their opinion on DigitalJS. Ten students (about
30 percent of students enrolled) responded. All ten of them have
declared that their experience with the tool was positive. The spe-
cific responses to the questions in the survey, translated to English,
are presented in Figure 6. If a similar response was given by two
different students, only one of them is presented.

7 USER EXPERIENCE AND FEEDBACK

Other than in the classroom, the tool has potential to be used for
fast prototyping of simple circuits for FPGAs, by both hobbyists and
professionals. To assess its usability in this area, I have collected
some feedback from FPGA users.

Cezary Siwek, who is one of my MSc students and who recently
published a paper on using FPGAs for general game playing [15],
said the following:

CSERC 2019, November 2019, Larnaca, Cyprus

What is the most useful functionality of Digital]S?

Interactive representation of the circuit

Waveform display for selected signals

Signal visualization, in particular the possibility to display
oscillograms

A lot of interactivity

It works :) Different number system display is useful
Possibility of observing state changes step by step, displaying
waveforms

Clear, readable circuit visualization

What is missing in Digital]S?

Changing scale and possibly rotation of the circuit, so that
it fits in the window
Testing framework, for checking expected input/output pairs
Better error messages
Better presentation of error messages
Clock signal configuration
A document or tutorial describing its features

What bothers you the most in Digital]JS?
Text formatting when copying/pasting from the in-browser
editor
Laconic error messages
Working with inputs and outputs is troublesome in larger
circuits
Little control on the final layout of the circuit, in particular
the positions of inputs and outputs

Figure 6: Student survey results

Really impressive tool! It’s the first time when I can
quickly see how sequential logic synthesizes. It seems
to be more efficient for quick prototyping of small
modules than writing testbenches and looking on
resulting waveforms.

An anonymous user identifying himself as captain_wiggles_ on Red-
dit wrote in a comment to my announcement post on /r/fpga [13]:
I really like how you can move stuff in the schematic
around, including the nets. That’s an awesome feature.

[...] Ilike how the symbols for the components are
descriptive too, and not just rectangles. [...] I'm really
interested in automatically drawing schematics from
the code, and then the ability to move stuff around
and make it look neater manually. There’s a lot of
tools that auto generate the schematic, but I know of

none that let me edit it like yours do.

He also pointed out some missing features, like the ability to undo
changes in the schematic.
Al Williams, a writer for Hackaday, wrote in his article [17]:

You don’t usually think of simulating Verilog code -
usually for an FPGA - as a visual process. You write a
test script colloquially known as a test bench and run
your simulation. You might get some printed informa-
tion or you might get a graphical result by dumping a
waveform, but you don’t usually see the circuit. [...]
This isn’t a bad way to learn Verilog since you can

CSERC 2019, November 2019, Larnaca, Cyprus

quickly see what the code is doing. It isn’t flexible
enough to be a workhorse simulator [...] this is fun,
though.

One of the commenters wrote: “This would be super cool integrated
into IceStudio, the block based IDE for IceStorm.” IceStudio [16] is a
simple IDE for the Lattice Semiconductor iCE40 series FPGA chips.
As IceStudio is also written in JavaScript, integrating Digital]S and
IceStudio is in the realm of possibility.

8 CONCLUSION AND FUTURE WORK

Digital]S is currently in a proof-of-concept stage. There are many
features missing, and their inclusion would improve the tool greatly.
I believe the most important are:

o Defining triggers which pause the simulation under specific
conditions. This feature is essential for debugging circuits.
More functional schematic editor. Current editor does not
allow to add new circuit elements manually, and there is no
capability to undo changes. This would allow quick and dirty
experiments with generated circuits.

Better layout algorithm, especially for wires. Currently, Dig-
italJS uses an algorithm built into the Joint]S library, which
puts input/output blocks in unpredictable positions, often
places wires on one another and creates unreadable layouts
for complex circuits.

Ability to simulate finite state machines as a circuit element,
with states and transitions visualized. This would help stu-
dents who struggle with understanding FSMs in digital cir-
cuits.

The tool is open source, published under a BSD license, and contri-
butions are welcome.

REFERENCES
[

Stephen Brown and Zvonko Vranesic. 2014. Fundamentals of Digital Logic with
Verilog Design (3rd ed.). McGraw-Hill, New York.

[2] Carl Burch. 2002. Logisim: a graphical system for logic circuit design and simu-
lation. Journal on Educational Resources in Computing (JERIC) 2 (March 2002),

5-16. Issue 1.

[3] client IO s.r.0. 2009. Joint]S. Retrieved May 16, 2018 from https://www.jointjs.
com/

[4] Doulos. 2013. EDA Playground. Retrieved May 16, 2019 from https://www.
edaplayground.com/

[5] R James Duckworth. 2005. Embedded system design with FPGA using HDL
(lessons learned and pitfalls to be avoided). In Proceedings of the 2005 IEEE Interna-
tional Conference on Microelectronic Systems Education (MSE’05). IEEE, Anaheim,
CA, USA.

[6] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. SIGCSE Bull. 40, 3 (June 2008),
328-328.

[7] Paul Falstad. 2005. Circuit Simulator Applet. Retrieved May 16, 2018 from
https://www.falstad.com/circuit/

[8] IEEE 1076:2009 2009. IEEE Standard VHDL Language Reference Manual. Standard.
Institute of Electrical and Electronics Engineers.

[9] IEEE 1364:2005 2005. IEEE Standard for Verilog Hardware Description Language.

Standard. Institute of Electrical and Electronics Engineers.

IEEE 1800:2017 2017. IEEE Standard for SystemVerilog — Unified Hardware Design,

Specification, and Verification Language. Standard. Institute of Electrical and

Electronics Engineers.

Vanja Lukovic, Radojka Krneta, Ana Vulovic, Christos Dimopoulos, Konstantinos

Katzis, and Maria Meletiou-Mavrotheris. 2016. Using Logisim Educational Soft-

ware in Learning Digital Circuits Design. In Proceedings of the 3rd International

Conference on Electrical, Electronic and Computing Engineering (ICETRAN 2016).

ETRAN Society, Zlatibor, Serbia.

Morris Mano and Michael Ciletti. 2017. Digital Design: With an Introduction to

the Verilog HDL, VHDL, and SystemVerilog (6th ed.). Pearson, New Jersey.

(10

[11

[12

M. Materzok

[13] Marek Materzok. 2018. Tool for learning Verilog — feedback welcome! Retrieved
May 16, 2018 from https://www.reddit.com/r/FPGA/comments/9c1fin/tool_for_
learning_verilog_feedback_welcome/

[14] Don Mills and Clifford E. Cummings. 1999. RTL Coding Styles That Yield Simula-
tion and Synthesis Mismatches. In Synopsys User Group 1999 Proceedings (SNUG
1999). Boston, MA, USA.

[15] Cezary Siwek, Jakub Kowalski, Chiara F. Sironi, and Mark H. M. Winands. 2018.
Implementing Propositional Networks on FPGA. In Proceedings of the 31st Aus-
tralasian Joint Conference on Artificial Intelligence. Springer, Wellington, New
Zealand, 133-145.

[16] Jests Arroyo Torrens. 2016. IceStudio Github page. Retrieved May 16, 2018
from https://github.com/FPGAwars/icestudio/

[17] Al Williams. 2018. Visualizing Verilog Simulation. Retrieved May 16, 2018 from
https://hackaday.com/2018/09/03/visualizing-verilog-simulation/

[18] Clifford Wolf and Johann Glaser. 2013. Yosys — A Free Verilog Synthesis Suite. In
Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip 2013).
Linz, Austria.

