Building Resilient Energy Systems
In the new situation storage of heat and cold, and smart (peer-to-peer) exchange of different types of energy carriers like water and electricity will become crucial. Roadmaps for a stepwise transition towards such a system, securing energy delivery and guaranteeing affordable prices have to be derived from thorough monitoring and evaluation of these processes. Analysis of potential carbon-free urban energy systems gives rise to many questions. What are their essential characteristics? What different approaches could be chosen and in which aspects do they differ? What problems are encountered in the realization of the ambitions? Which stakeholders are involved? To which extent does the new system become more resilient than the former fossil fuel-based system? Which recommendations can be made for urban regions that face the unavoidable transition towards innovative, more resilient energy systems?
The Open Universiteit is involved in several research projects on the future of urban energy systems. These projects focus mainly on the sustainable supply of thermal energy (heating and cooling) in urban environments. The OU collaborates with a wide range of partners from other universities and research institutes, industry, and civil society.
D2Grids
The Faculty of Science of the Open Universiteit (OU) is a partner in D2GRIDS. This Interreg North-West Europe project, coordinated by Mijnwater in Heerlen, aims to increase the share of renewable energy in Europe by rolling out 5th generation heating and cooling networks (5GDHC). Pilot systems are developed at five sites in Paris-Saclay (FR), Bochum (DE), Brunssum (NL), Glasgow (UK), and Nottingham (UK). Knowledge partners in the consortium codify the lessons learnt at these pilot sites to accelerate the industrialization and rollout of 5GDHC technology. The total project budget is 20.8 million Euro of which 11.6 million Euro is covered by Interreg funds. The OU participates for €400,000 in the project, of which €240,000 is covered by Interreg. The project duration is 4 years.
The OU is responsible for ascertaining the long term impact of D2Grids. To spread knowledge about 5GDHC among industry and policymakers, the OU is involved in developing and providing educational programs on 5GDHC. Another responsibility is to develop a method of investigating the climate impact of 5GDHC and apply this method at the D2Grids pilot sites. The OU also coordinates the formation of feasibility studies, action plans, and rollout strategies of 5GDHC in North-West Europe.
Future urban energy: 5GDHC
Future urban energy: the role of social and physical networks is the name of a research project at the Department of Environmental Sciences at Open Universiteit that is part of the OU research program Safety in Urban Environments. Future Urban Energy consists mainly of the PhD research of Stef Boesten. The project aims to provide insights into the optimal approach to implementing 5GDHC systems in existing neighbourhoods. The hypothesis is that an optimal approach requires both an optimal technical design and an optimal implementation approach by the municipality or similar project leader. These two sides can conflict, and a balance will need to be found between the technological optimum and the acceptability of some technical elements by residents. The project duration is four years from October 2018. The first paper in this project was published in Advanced Geosciences in September 2019.
Publications
- Boesten,S. , Weimann, L., Dekker, S. & Gazzani, M. (2020). Water to water heat pump for district heating: modeling for MILP. Scientific presentation at 6th International Conference on Smart Energy Systems, Aalborg Denmark, 6-7 October 2020.
- Ramaker, M. (2020). The effect of thermal energy recovery on the ecology of a small, slow flowing freshwater ecosystem. MSc. Thesis, Open Universiteit, Heerlen.
- Jansen, J., de Wit, L. & Ghijselinck, D. (2020). Solar park value chain analysis: multi-criteria decision analysis for sustainable grid management (in Dutch). Unpublished Bachelor's Thesis, Open Universiteit, Heerlen, The Netherlands.
- Boesten, S., Ivens, W., Dekker, S.C. and Eijdems, H. (2019). 5th generation district heating and cooling systems as a solution for renewable urban thermal energy supply.
- Ivens, W. & Boesten S. (2019). Matching renewable energy supply with building demand profiles and storage at the neighborhood scale.
- Ivens, W. & Boesten S. (2019). Van lineaire naar circulaire energievoorziening (in Dutch).
- Gerard, B., Herbschleb, B., Kistemaker, R., & Snijder, R. (2019). De potentie van synthetische kerosine als alternatieve brandstof voor de luchtvaart. Onderzoek uitgevoerd in opdracht van Beraad Vlieghinder Moet Minder (BVM2), Eindhoven, NL. The potential of synthetic kerosene as an alternative fuel for aviation (in Dutch). Unpublished Bachelor's Thesis, Open Universiteit, Heerlen, NL.
- Ivens, W. (2018). Hoe kan een vervuilende kolenmijn jouw huis duurzaam verwarmen? Presentation Universiteit van Nederland (in Dutch).
- Alberts, J., Bakker, P. & De Waard, C. (2017) Sustainable heating and cooling supply of urban area. Unpublished Bachelor’s Thesis, Open Universiteit Nederland, Heerlen, NL. (in Dutch).
- Ivens, W., Eijdems H. & Verhoeven, R. (2016). Role of thermal storage for integration of energy systems and urban energy supply.
- Eijdems H., Ivens, W. & Lansu, A. (2016). Building Resilient & Sustainable Energy Supply Systems.
- Brakenhoff, D., Huitema, D. & Ivens, W. (2016). The Interrelationship between National Government Policies and the Emergence, Diffusion and Development of Renewable Energy Cooperatives.
- Wijnen, J. van, Kroeze, C., Ivens, W. & Löhr, A. (2015). Future scenarios for N2O emissions from biodiesel production in Europe. Journal of Integrative Environmental Sciences, 12, 2015 - Issue sup1: Non-CO2 Greenhouse Gasses, p. 17-30.
- Fischer, M., Berx, P., Jansen, M. & Van der Weide, B. (2015). Towards an energy neutral campus for the Open Universiteit, Heerlen. Unpublished Bachelor’s Thesis, Open Universiteit Nederland, Heerlen, NL (in Dutch).
Education
We offer an online course on Energy Analysis The course provides an introduction in the analysis of energy systems and energy technologies. In the course, attention is spent on both energy supply and energy demand systems. The course offers methods and tools to analyze energy systems. Topics in the course are, among others: thermodynamics (basics), energy services and demand, energy extraction and conversion, energy markets, energy in a social context, energy management, energy chains, life cycle energy analysis, measuring energy efficiency and intensity, energy technologies, energy scenarios and policies for efficient energy use and renewable energy.
More information and enrollment form
Contact
For further information on research and education on (renewable) energy contact Dr. Wilfried Ivens.